1
|
Schroedter L, Schneider R, Venus J. Transforming waste wood into pure L-(+)-lactic acid: Efficient use of mixed sugar media through cell-recycled continuous fermentation. BIORESOURCE TECHNOLOGY 2025; 419:132010. [PMID: 39719203 DOI: 10.1016/j.biortech.2024.132010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/26/2024]
Abstract
Lignocellulosic media, containing diverse sugars and growth inhibitor compounds, pose great challenges to fermentation processes. This study tested thermophile Heyndrickxia coagulans strains for the production of L-(+)-lactic acid from waste wood hydrolysate. H. coagulans A166 reached high titers of up to 94.6 g·L-1 lactic acid in batch studies, tolerating furfuralic compounds, however, productivity was affected by carbon catabolite repression. Within cell-recycled continuous fermentation studies, this limitation was overcome by determining optimal initial dilution rates: complete and concurrent utilization of mixed sugars was realized at 7.6 g·L-1·h-1 productivity - an increase by factor 4.5-5.8 compared to batch studies. Work on synthetic media enabled process durations of up to 188 h, providing further insights into the process behavior and offering cues for further optimization. Employing inhibitor compound tolerant H. coagulans A166 at optimal initial dilution rate, cell-recycled continuous fermentation is a promising approach to enhance lactic acid production from lignocellulose media.
Collapse
Affiliation(s)
- Linda Schroedter
- Leibniz Institute for Agricultural Engineering and Bioeconomy e. V. (ATB), Department Microbiome Biotechnology, Max-Eyth-Allee 100, Potsdam 14469, Germany.
| | - Roland Schneider
- Leibniz Institute for Agricultural Engineering and Bioeconomy e. V. (ATB), Department Microbiome Biotechnology, Max-Eyth-Allee 100, Potsdam 14469, Germany.
| | - Joachim Venus
- Leibniz Institute for Agricultural Engineering and Bioeconomy e. V. (ATB), Department Microbiome Biotechnology, Max-Eyth-Allee 100, Potsdam 14469, Germany.
| |
Collapse
|
2
|
Dooley D, Ryu S, Giannone RJ, Edwards J, Dien BS, Slininger PJ, Trinh CT. Expanded genome and proteome reallocation in a novel, robust Bacillus coagulans strain capable of utilizing pentose and hexose sugars. mSystems 2024; 9:e0095224. [PMID: 39377583 PMCID: PMC11575207 DOI: 10.1128/msystems.00952-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/06/2024] [Indexed: 10/09/2024] Open
Abstract
Bacillus coagulans, a Gram-positive thermophilic bacterium, is recognized for its probiotic properties and recent development as a microbial cell factory. Despite its importance for biotechnological applications, the current understanding of B. coagulans' robustness is limited, especially for undomesticated strains. To fill this knowledge gap, we characterized the metabolic capability and performed functional genomics and systems analysis of a novel, robust strain, B. coagulans B-768. Genome sequencing revealed that B-768 has the largest B. coagulans genome known to date (3.94 Mbp), about 0.63 Mbp larger than the average genome of sequenced B. coagulans strains, with expanded carbohydrate metabolism and mobilome. Functional genomics identified a well-equipped genetic portfolio for utilizing a wide range of C5 (xylose, arabinose), C6 (glucose, mannose, galactose), and C12 (cellobiose) sugars present in biomass hydrolysates, which was validated experimentally. For growth on individual xylose and glucose, the dominant sugars in biomass hydrolysates, B-768 exhibited distinct phenotypes and proteome profiles. Faster growth and glucose uptake rates resulted in lactate overflow metabolism, which makes B. coagulans a lactate overproducer; however, slower growth and xylose uptake diminished overflow metabolism due to the high energy demand for sugar assimilation. Carbohydrate Transport and Metabolism (COG-G), Translation (COG-J), and Energy Conversion and Production (COG-C) made up 60%-65% of the measured proteomes but were allocated differently when growing on xylose and glucose. The trade-off in proteome reallocation, with high investment in COG-C over COG-G, explains the xylose growth phenotype with significant upregulation of xylose metabolism, pyruvate metabolism, and tricarboxylic acid (TCA) cycle. Strain B-768 tolerates and effectively utilizes inhibitory biomass hydrolysates containing mixed sugars and exhibits hierarchical sugar utilization with glucose as the preferential substrate.IMPORTANCEThe robustness of B. coagulans makes it a valuable microorganism for biotechnology applications; yet, this phenotype is not well understood at the cellular level. Through phenotypic characterization and systems analysis, this study elucidates the functional genomics and robustness of a novel, undomesticated strain, B. coagulans B-768, capable of utilizing inhibitory switchgrass biomass hydrolysates. The genome of B-768, enriched with carbohydrate metabolism genes, demonstrates high regulatory capacity. The coordination of proteome reallocation in Carbohydrate Transport and Metabolism (COG-G), Translation (COG-J), and Energy Conversion and Production (COG-C) is critical for effective cell growth, sugar utilization, and lactate production via overflow metabolism. Overall, B-768 is a novel, robust, and promising B. coagulans strain that can be harnessed as a microbial biomanufacturing platform to produce chemicals and fuels from biomass hydrolysates.
Collapse
Affiliation(s)
- David Dooley
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, Tennessee, USA
| | - Seunghyun Ryu
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, Tennessee, USA
- Center for Bioenergy Innovation, Oak Ridge, Tennessee, USA
| | - Richard J Giannone
- Center for Bioenergy Innovation, Oak Ridge, Tennessee, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Jackson Edwards
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Bioenergy Research Unit, Peoria, Illinois, USA
| | - Bruce S Dien
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Bioenergy Research Unit, Peoria, Illinois, USA
| | - Patricia J Slininger
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Bioenergy Research Unit, Peoria, Illinois, USA
| | - Cong T Trinh
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, Tennessee, USA
- Center for Bioenergy Innovation, Oak Ridge, Tennessee, USA
| |
Collapse
|
3
|
Ali N, Vora C, Mathuria A, Kataria N, Mani I. Advances in CRISPR-Cas systems for gut microbiome. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 208:59-81. [PMID: 39266188 DOI: 10.1016/bs.pmbts.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
CRISPR-Cas technology has revolutionized microbiome research by enabling precise genetic manipulation of microbial communities. This review explores its diverse applications in gut microbiome studies, probiotic development, microbiome diagnostics, pathogen targeting, and microbial community engineering. Engineered bacteriophages and conjugative probiotics exemplify CRISPR-Cas's capability for targeted bacterial manipulation, offering promising strategies against antibiotic-resistant infections and other gut-related disorders. CRISPR-Cas systems also enhance probiotic efficacy by improving stress tolerance and colonization in the gastrointestinal tract. CRISPR-based techniques in diagnostics enable early intervention by enabling fast and sensitive pathogen identification. Furthermore, CRISPR-mediated gene editing allows tailored modification of microbial populations, mitigating risks associated with horizontal gene transfer and enhancing environmental and health outcomes. Despite its transformative potential, ethical and regulatory challenges loom large, demanding robust frameworks to guide its responsible application. This chapter highlights CRISPR-Cas's pivotal role in advancing microbiome research toward personalized medicine and microbial therapeutics while emphasizing the imperative of balanced ethical deliberations and comprehensive regulatory oversight.
Collapse
Affiliation(s)
- Namra Ali
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India
| | - Chaitali Vora
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Anshu Mathuria
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Naina Kataria
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
4
|
Liang J, Li C, Chen Z, Guo F, Dou J, Wang T, Xu ZS. Progress of research and application of Heyndrickxia coagulans ( Bacillus coagulans) as probiotic bacteria. Front Cell Infect Microbiol 2024; 14:1415790. [PMID: 38863834 PMCID: PMC11165213 DOI: 10.3389/fcimb.2024.1415790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/16/2024] [Indexed: 06/13/2024] Open
Abstract
Probiotics are defined as living or dead bacteria and their byproducts that maintain the balance of the intestinal microbiome. They are non-toxic, non-pathogenic, and do not release any toxins either within or outside the body. Adequate consumption of probiotics can enhance metabolite production, increase immunity, maintain a balanced intestinal flora, and stimulate growth. Probiotics do not have negative antibiotic effects and help maintain the natural flora in animals in a balanced state or prevent dysbacteriosis. Heyndrickxia coagulans (H. coagulans) is a novel probiotic species that is gradually being used for the improvement of human health. Compared to commonly used probiotic lactic acid bacteria, H. coagulans can produce spores, which provide the species with high resistance to adverse conditions. Even though they are transient residents of the gut, beneficial bacteria can have a significant impact on the microbiota because they can outnumber harmful germs, and vice versa. This article discusses the probiotic mechanisms of H. coagulans and outlines the requirements for a substance to be classified as a probiotic. It also addresses how to assess strains that have recently been discovered to possess probiotic properties.
Collapse
Affiliation(s)
- Jie Liang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Chunhai Li
- Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zouquan Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Fangyu Guo
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Jiaxin Dou
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Ting Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Zhen Shang Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| |
Collapse
|
5
|
Maresca E, Aulitto M, Contursi P. Harnessing the dual nature of Bacillus (Weizmannia) coagulans for sustainable production of biomaterials and development of functional food. Microb Biotechnol 2024; 17:e14449. [PMID: 38593329 PMCID: PMC11003712 DOI: 10.1111/1751-7915.14449] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/11/2024] Open
Abstract
Bacillus coagulans, recently renamed Weizmannia coagulans, is a spore-forming bacterium that has garnered significant interest across various research fields, ranging from health to industrial applications. The probiotic properties of W. coagulans enhance intestinal digestion, by releasing prebiotic molecules including enzymes that facilitate the breakdown of not-digestible carbohydrates. Notably, some enzymes from W. coagulans extend beyond digestive functions, serving as valuable biotechnological tools and contributing to more sustainable and efficient manufacturing processes. Furthermore, the homofermentative thermophilic nature of W. coagulans renders it an exceptional candidate for fermenting foods and lignocellulosic residues into L-(+)-lactic acid. In this review, we provide an overview of the dual nature of W. coagulans, in functional foods and for the development of bio-based materials.
Collapse
Affiliation(s)
- Emanuela Maresca
- Department of BiologyUniversity of Naples “Federico II”NaplesItaly
| | - Martina Aulitto
- Department of BiologyUniversity of Naples “Federico II”NaplesItaly
- Institute for Polymers, Composites and Biomaterials—IPCB, National Research Council of Italy (CNR)PozzuoliItaly
| | - Patrizia Contursi
- Department of BiologyUniversity of Naples “Federico II”NaplesItaly
- NBFC, National Biodiversity Future CenterPalermoItaly
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro‐Environmental TechnologyUniversity of Naples “Federico II”PorticiItaly
- Task Force on Microbiome StudiesUniversity of Naples “Federico II”NaplesItaly
| |
Collapse
|
6
|
Zhao N, Huang X, Liu Z, Gao Y, Teng J, Yu T, Yan F. Probiotic characterization of Bacillus smithii: Research advances, concerns, and prospective trends. Compr Rev Food Sci Food Saf 2024; 23:e13308. [PMID: 38369927 DOI: 10.1111/1541-4337.13308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/20/2024]
Abstract
Bacillus smithii is a thermophilic Bacillus that can be isolated from white wine, hot spring soil, high-temperature compost, and coffee grounds, with various biofunctions and wide applications. It is resistant to both gastric acid and high temperature, which makes it easier to perform probiotic effects than traditional commercial probiotics, so it can maintain good vitality during food processing and has great application prospects. This paper starts with the taxonomy and genetics and focuses on aspects, including genetic transformation, functional enzyme production, waste utilization, and application in the field of food science as a potential probiotic. According to available studies during the past 30 years, we considered that B. smithii is a novel class of microorganisms with a wide range of functional enzymes such as hydrolytic enzymes and hydrolases, as well as resistance to pathogenic bacteria. It is available in waste degradation, organic fertilizer production, the feed and chemical industries, the pharmaceutical sector, and food fortification. Moreover, B. smithii has great potentials for applications in the food industry, as it presents high resistance to the technological processes that guarantee its health benefits. It is also necessary to systematically evaluate the safety, flavor, and texture of B. smithii and explore its biological mechanism of action, which is of great value for further application in multiple fields, especially in food and medicine.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xuedi Huang
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Zhongyang Liu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yufang Gao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Jialuo Teng
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Ting Yu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Fujie Yan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Shaikh SS, Jhala D, Patel A, Chettiar SS, Ghelani A, Malik A, Sengupta P. In-silico analysis of probiotic attributes and safety assessment of probiotic strain Bacillus coagulans BCP92 for human application. Lett Appl Microbiol 2024; 77:ovad145. [PMID: 38148133 DOI: 10.1093/lambio/ovad145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/16/2023] [Accepted: 12/25/2023] [Indexed: 12/28/2023]
Abstract
The whole genome sequence (WGS) of Bacillus coagulans BCP92 is reported along with its genomic analysis of probiotics and safety features. The identification of bacterial strain was carried out using the 16S rDNA sequencing method. Furthermore, gene-related probiotic features, safety assessment (by in vitro and in silico), and genome stability were also studied using the WGS analysis for the possible use of the bacterial strain as a probiotic. From the BLAST analysis, bacterial strain was identified as Bacillus (Heyndrickxia) coagulans. WGS analysis indicated that the genome consists of a 3 475 658 bp and a GC-content of 46.35%. Genome mining of BCP92 revealed that the strain is consist of coding sequences for d-lactate dehydrogenase and l-lactate dehydrogenases, 36 genes involved in fermentation activities, 29 stress-responsive as well as many adhesions related genes. The genome, also possessing genes, is encoded for the synthesis of novel circular bacteriocin. Using an in-silico approach for the bacterial genome study, it was possible to determine that the Bacillus (Heyndrickxia) coagulans strain BCP92 contains genes that are encoded for the probiotic abilities and did not harbour genes that are risk associated, thus confirming the strain's safety and suitability as a probiotic to be used for human application.
Collapse
Affiliation(s)
- Sohel S Shaikh
- Pellucid Lifesciences Pvt Ltd, Plot No.:3538, Phase-4, GIDC Industrial Estate, Chhatral, Gandhinagar 382729, India
| | - Devendrasinh Jhala
- Zoology Department, School of Sciences, Gujarat University, Ahmedabad 380009, India
| | - Alpesh Patel
- Genexplore Diagnostics & Research Centre Pvt Ltd, 1201 to 1210, Iconic Shyamal, Shyamal, Ahmedabad 380015, India
| | - Shiva Shankaran Chettiar
- Genexplore Diagnostics & Research Centre Pvt Ltd, 1201 to 1210, Iconic Shyamal, Shyamal, Ahmedabad 380015, India
| | - Anjana Ghelani
- Shree Ramkrishna Institute of Computer Education and Applied Sciences, M.T.B. College Campus, B/h P.T. Science College, Opp. Chowpati, Athwalines, Surat 395001, India
| | - Anis Malik
- Pellucid Lifesciences Pvt Ltd, Plot No.:3538, Phase-4, GIDC Industrial Estate, Chhatral, Gandhinagar 382729, India
| | - Priyajit Sengupta
- Pellucid Lifesciences Pvt Ltd, Plot No.:3538, Phase-4, GIDC Industrial Estate, Chhatral, Gandhinagar 382729, India
| |
Collapse
|
8
|
Hooi SL, Dwiyanto J, Toh KY, Tan G, Chong CW, Lee JWJ, Lim J. The microbial composition and functional roles of different kombucha products in Singapore. CYTA - JOURNAL OF FOOD 2023. [DOI: 10.1080/19476337.2023.2190794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
9
|
Liu L, Helal SE, Peng N. CRISPR-Cas-Based Engineering of Probiotics. BIODESIGN RESEARCH 2023; 5:0017. [PMID: 37849462 PMCID: PMC10541000 DOI: 10.34133/bdr.0017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/30/2023] [Indexed: 10/19/2023] Open
Abstract
Probiotics are the treasure of the microbiology fields. They have been widely used in the food industry, clinical treatment, and other fields. The equivocal health-promoting effects and the unknown action mechanism were the largest obstacles for further probiotic's developed applications. In recent years, various genome editing techniques have been developed and applied to explore the mechanisms and functional modifications of probiotics. As important genome editing tools, CRISPR-Cas systems that have opened new improvements in genome editing dedicated to probiotics. The high efficiency, flexibility, and specificity are the advantages of using CRISPR-Cas systems. Here, we summarize the classification and distribution of CRISPR-Cas systems in probiotics, as well as the editing tools developed on the basis of them. Then, we discuss the genome editing of probiotics based on CRISPR-Cas systems and the applications of the engineered probiotics through CRISPR-Cas systems. Finally, we proposed a design route for CRISPR systems that related to the genetically engineered probiotics.
Collapse
Affiliation(s)
- Ling Liu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- CABIO Biotech (Wuhan) Co. Ltd., Wuhan, China
| | - Shimaa Elsayed Helal
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Nan Peng
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
10
|
Sheng L, Madika A, Lau MSH, Zhang Y, Minton NP. Metabolic engineering for the production of acetoin and 2,3-butanediol at elevated temperature in Parageobacillus thermoglucosidasius NCIMB 11955. Front Bioeng Biotechnol 2023; 11:1191079. [PMID: 37200846 PMCID: PMC10185769 DOI: 10.3389/fbioe.2023.1191079] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/20/2023] [Indexed: 05/20/2023] Open
Abstract
The current climate crisis has emphasised the need to achieve global net-zero by 2050, with countries being urged to set considerable emission reduction targets by 2030. Exploitation of a fermentative process that uses a thermophilic chassis can represent a way to manufacture chemicals and fuels through more environmentally friendly routes with a net reduction in greenhouse gas emissions. In this study, the industrially relevant thermophile Parageobacillus thermoglucosidasius NCIMB 11955 was engineered to produce 3-hydroxybutanone (acetoin) and 2,3-butanediol (2,3-BDO), organic compounds with commercial applications. Using heterologous acetolactate synthase (ALS) and acetolactate decarboxylase (ALD) enzymes, a functional 2,3-BDO biosynthetic pathway was constructed. The formation of by-products was minimized by the deletion of competing pathways surrounding the pyruvate node. Redox imbalance was addressed through autonomous overexpression of the butanediol dehydrogenase and by investigating appropriate aeration levels. Through this, we were able to produce 2,3-BDO as the predominant fermentation metabolite, with up to 6.6 g/L 2,3-BDO (0.33 g/g glucose) representing 66% of the theoretical maximum at 50°C. In addition, the identification and subsequent deletion of a previously unreported thermophilic acetoin degradation gene (acoB1) resulted in enhanced acetoin production under aerobic conditions, producing 7.6 g/L (0.38 g/g glucose) representing 78% of the theoretical maximum. Furthermore, through the generation of a ΔacoB1 mutant and by testing the effect of glucose concentration on 2,3-BDO production, we were able to produce 15.6 g/L of 2,3-BDO in media supplemented with 5% glucose, the highest titre of 2,3-BDO produced in Parageobacillus and Geobacillus species to date.
Collapse
Affiliation(s)
- Lili Sheng
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, The University of Nottingham, Nottingham, United Kingdom
| | - Abubakar Madika
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, The University of Nottingham, Nottingham, United Kingdom
- Department of Microbiology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Matthew S. H. Lau
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, The University of Nottingham, Nottingham, United Kingdom
| | - Ying Zhang
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, The University of Nottingham, Nottingham, United Kingdom
| | - Nigel P. Minton
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, The University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, The University of Nottingham, Nottingham, United Kingdom
- *Correspondence: Nigel P. Minton,
| |
Collapse
|
11
|
Mazzantini D, Calvigioni M, Celandroni F, Lupetti A, Ghelardi E. In vitro assessment of probiotic attributes for strains contained in commercial formulations. Sci Rep 2022; 12:21640. [PMID: 36517529 PMCID: PMC9751119 DOI: 10.1038/s41598-022-25688-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Although probiotics are often indiscriminately prescribed, they are not equal and their effects on the host may profoundly differ. In vitro determination of the attributes of probiotics should be a primary concern and be performed even before clinical studies are designed. In fact, knowledge on the biological properties a microbe possesses is crucial for selecting the most suitable bacteriotherapy for each individual. Herein, nine strains (Bacillus clausii NR, OC, SIN, T, Bacillus coagulans ATCC 7050, Bifidobacterium breve DSM 16604, Limosilactobacillus reuteri DSM 17938, Lacticaseibacillus rhamnosus ATCC 53103, and Saccharomyces boulardii CNCM I-745) declared to be contained in six commercial formulations were tested for their ability to tolerate simulated intestinal conditions, adhere to mucins, and produce β-galactosidase, antioxidant enzymes, riboflavin, and D-lactate. With the exception of B. breve, all microbes survived in simulated intestinal fluid. L. rhamnosus was unable to adhere to mucins and differences in mucin adhesion were evidenced for L. reuteri and S. boulardii depending on oxygen levels. All microorganisms produced antioxidant enzymes, but only B. clausii, B. coagulans, B. breve, and L. reuteri synthesize β-galactosidase. Riboflavin secretion was observed for Bacillus species and L. rhamnosus, while D-lactate production was restricted to L. reuteri and L. rhamnosus. Our findings indicate that the analyzed strains possess different in vitro biological properties, thus highlighting the usefulness of in vitro tests as prelude for clinical research.
Collapse
Affiliation(s)
- Diletta Mazzantini
- grid.5395.a0000 0004 1757 3729Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Marco Calvigioni
- grid.5395.a0000 0004 1757 3729Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Francesco Celandroni
- grid.5395.a0000 0004 1757 3729Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Antonella Lupetti
- grid.5395.a0000 0004 1757 3729Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Emilia Ghelardi
- grid.5395.a0000 0004 1757 3729Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy ,grid.5395.a0000 0004 1757 3729Research Center Nutraceuticals and Food for Health-Nutrafood, University of Pisa, Pisa, Italy
| |
Collapse
|
12
|
A Comparative Analysis of Weizmannia coagulans Genomes Unravels the Genetic Potential for Biotechnological Applications. Int J Mol Sci 2022; 23:ijms23063135. [PMID: 35328559 PMCID: PMC8954581 DOI: 10.3390/ijms23063135] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/11/2022] [Accepted: 03/11/2022] [Indexed: 12/20/2022] Open
Abstract
The production of biochemicals requires the use of microbial strains with efficient substrate conversion and excellent environmental robustness, such as Weizmannia coagulans species. So far, the genomes of 47 strains have been sequenced. Herein, we report a comparative genomic analysis of nine strains on the full repertoire of Carbohydrate-Active enZymes (CAZymes), secretion systems, and resistance mechanisms to environmental challenges. Moreover, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) immune system along with CRISPR-associated (Cas) genes, was also analyzed. Overall, this study expands our understanding of the strain's genomic diversity of W. coagulans to fully exploit its potential in biotechnological applications.
Collapse
|
13
|
Kim JA, Kim DH, Kim Y. Complete genome sequence of Bacillus coagulans CACC834 isolated from canine. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:1464-1467. [PMID: 34957459 PMCID: PMC8672255 DOI: 10.5187/jast.2021.e108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/15/2021] [Accepted: 09/25/2021] [Indexed: 11/20/2022]
Abstract
Bacillus coagulans CACC 834 was isolated from canine feces, and
its potential probiotic properties were characterized by functional genome
analysis. Whole-genome sequencing of B. coagulans CACC 834 was
performed using the PacBio RSII platforms. The complete genome assembly
consisted of one circular chromosome (3.1 Mb) with guanine (G) + cytosine (C)
content of 47.1%. Annotation revealed 3,181 protein-coding sequences (CDSs), 30
rRNAs, and 83 tRNAs. Gene associated 11% of the genes were involved in
replication, recombination, and repair. We also annotated various
stress-related, acid resistance, bile salt resistance and adhesion-related
domains in this strain, which likely provide support in exerting probiotic
action by survival under gastrointestinal tract. These results add to our
comprehensive understanding of B. coagulans and suggest
potential mammal-related industrial applications.
Collapse
Affiliation(s)
- Jung-Ae Kim
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup 56212, Korea.,Department of Bioactive Material Science, Jeonbuk National University, Jeonju 54896, Korea
| | - Dae-Hyuk Kim
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup 56212, Korea.,Department of Molecular Biology, Department of Bioactive Material Science, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Korea
| | - Yangseon Kim
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup 56212, Korea
| |
Collapse
|
14
|
Biorefinery Concept Employing Bacillus coagulans: LX-Lignin and L-(+)-Lactic Acid from Lignocellulose. Microorganisms 2021; 9:microorganisms9091810. [PMID: 34576705 PMCID: PMC8466333 DOI: 10.3390/microorganisms9091810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/15/2021] [Accepted: 08/21/2021] [Indexed: 12/02/2022] Open
Abstract
A new biorefinery concept is proposed that integrates the novel LX-Pretreatment with the fermentative production of L-(+)-lactic acid. Lignocellulose was chosen as a substrate that does not compete with the provision of food or feed. Furthermore, it contains lignin, a promising new chemical building material which is the largest renewable source for aromatic compounds. Two substrates were investigated: rye straw (RS) as a residue from agriculture, as well as the fibrous digestate of an anaerobic biogas plant operated with energy corn (DCS). Besides the prior production of biogas from energy corn, chemically exploitable LX-Lignin was produced from both sources, creating a product with a low carbohydrate and ash content (90.3% and 88.2% of acid insoluble lignin). Regarding the cellulose fraction of the biomass, enzymatic hydrolysis and fermentation experiments were conducted, comparing a separate (SHF), simultaneous (SSF) and prehydrolyzed simultaneous saccharification and fermentation (PSSF) approach. For this purpose, thermophilic B. coagulans 14-300 was utilized, reaching 38.0 g L−1 LA in 32 h SSF from pretreated RS and 18.3 g L−1 LA in 30 h PSSF from pretreated DCS with optical purities of 99%.
Collapse
|
15
|
Aulitto M, Strazzulli A, Sansone F, Cozzolino F, Monti M, Moracci M, Fiorentino G, Limauro D, Bartolucci S, Contursi P. Prebiotic properties of Bacillus coagulans MA-13: production of galactoside hydrolyzing enzymes and characterization of the transglycosylation properties of a GH42 β-galactosidase. Microb Cell Fact 2021; 20:71. [PMID: 33736637 PMCID: PMC7977261 DOI: 10.1186/s12934-021-01553-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/25/2021] [Indexed: 01/18/2023] Open
Abstract
Background The spore-forming lactic acid bacterium Bacillus coagulans MA-13 has been isolated from canned beans manufacturing and successfully employed for the sustainable production of lactic acid from lignocellulosic biomass. Among lactic acid bacteria, B. coagulans strains are generally recognized as safe (GRAS) for human consumption. Low-cost microbial production of industrially valuable products such as lactic acid and various enzymes devoted to the hydrolysis of oligosaccharides and lactose, is of great importance to the food industry. Specifically, α- and β-galactosidases are attractive for their ability to hydrolyze not-digestible galactosides present in the food matrix as well as in the human gastrointestinal tract. Results In this work we have explored the potential of B. coagulans MA-13 as a source of metabolites and enzymes to improve the digestibility and the nutritional value of food. A combination of mass spectrometry analysis with conventional biochemical approaches has been employed to unveil the intra- and extra- cellular glycosyl hydrolase (GH) repertoire of B. coagulans MA-13 under diverse growth conditions. The highest enzymatic activity was detected on β-1,4 and α-1,6-glycosidic linkages and the enzymes responsible for these activities were unambiguously identified as β-galactosidase (GH42) and α-galactosidase (GH36), respectively. Whilst the former has been found only in the cytosol, the latter is localized also extracellularly. The export of this enzyme may occur through a not yet identified secretion mechanism, since a typical signal peptide is missing in the α-galactosidase sequence. A full biochemical characterization of the recombinant β-galactosidase has been carried out and the ability of this enzyme to perform homo- and hetero-condensation reactions to produce galacto-oligosaccharides, has been demonstrated. Conclusions Probiotics which are safe for human use and are capable of producing high levels of both α-galactosidase and β-galactosidase are of great importance to the food industry. In this work we have proven the ability of B. coagulans MA-13 to over-produce these two enzymes thus paving the way for its potential use in treatment of gastrointestinal diseases. ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01553-y.
Collapse
Affiliation(s)
- Martina Aulitto
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.,Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Andrea Strazzulli
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.,Task Force On Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Ferdinando Sansone
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Flora Cozzolino
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy.,CEINGE Advanced Biotechnologies, University of Naples Federico II, 80145, Naples, Italy
| | - Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy.,CEINGE Advanced Biotechnologies, University of Naples Federico II, 80145, Naples, Italy
| | - Marco Moracci
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.,Task Force On Microbiome Studies, University of Naples Federico II, Naples, Italy.,Institute of Biosciences and BioResources-National Research Council of Italy, Naples, Italy
| | - Gabriella Fiorentino
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.,BAT Center-Interuniversity Center for Studies On Bioinspired Agro-Environmental Technology, University of Napoli Federico II, Portici, NA, Italy
| | - Danila Limauro
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.,BAT Center-Interuniversity Center for Studies On Bioinspired Agro-Environmental Technology, University of Napoli Federico II, Portici, NA, Italy
| | | | - Patrizia Contursi
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy. .,Task Force On Microbiome Studies, University of Naples Federico II, Naples, Italy. .,BAT Center-Interuniversity Center for Studies On Bioinspired Agro-Environmental Technology, University of Napoli Federico II, Portici, NA, Italy.
| |
Collapse
|
16
|
Zhou Z, Tang H, Wang W, Zhang L, Su F, Wu Y, Bai L, Li S, Sun Y, Tao F, Xu P. A cold shock protein promotes high-temperature microbial growth through binding to diverse RNA species. Cell Discov 2021; 7:15. [PMID: 33727528 PMCID: PMC7966797 DOI: 10.1038/s41421-021-00246-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 01/27/2021] [Indexed: 01/18/2023] Open
Abstract
Endowing mesophilic microorganisms with high-temperature resistance is highly desirable for industrial microbial fermentation. Here, we report a cold-shock protein (CspL) that is an RNA chaperone protein from a lactate producing thermophile strain (Bacillus coagulans 2–6), which is able to recombinantly confer strong high-temperature resistance to other microorganisms. Transgenic cspL expression massively enhanced high-temperature growth of Escherichia coli (a 2.4-fold biomass increase at 45 °C) and eukaryote Saccharomyces cerevisiae (a 2.6-fold biomass increase at 36 °C). Importantly, we also found that CspL promotes growth rates at normal temperatures. Mechanistically, bio-layer interferometry characterized CspL’s nucleotide-binding functions in vitro, while in vivo we used RNA-Seq and RIP-Seq to reveal CspL’s global effects on mRNA accumulation and CspL’s direct RNA binding targets, respectively. Thus, beyond establishing how a cold-shock protein chaperone provides high-temperature resistance, our study introduces a strategy that may facilitate industrial thermal fermentation.
Collapse
Affiliation(s)
- Zikang Zhou
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Weiwei Wang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Lige Zhang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Fei Su
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yuanting Wu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Sicong Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan, Hubei, 430071, People's Republic of China
| | - Yuhui Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan, Hubei, 430071, People's Republic of China
| | - Fei Tao
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
17
|
Cubas-Cano E, Venus J, González-Fernández C, Tomás-Pejó E. Assessment of different Bacillus coagulans strains for l-lactic acid production from defined media and gardening hydrolysates: Effect of lignocellulosic inhibitors. J Biotechnol 2020; 323:9-16. [PMID: 32712129 DOI: 10.1016/j.jbiotec.2020.07.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/07/2020] [Accepted: 07/22/2020] [Indexed: 11/17/2022]
Abstract
Cellulose valorisation has been successfully addressed for years. However, the use of hemicellulosic hydrolysates is limited due to the presence of C5-sugars and inhibitors formed during pretreatment. Bacillus coagulans is one of the few bacteria able to utilize both C6- and C5-sugars to produce l-lactic acid, but its susceptibility to the lignocellulosic inhibitors needs further investigation. For such a purpose, the tolerance of different B. coagulans strains to increasing concentrations of inhibitors is studied. The isolated A162 strain reached the highest l-lactic acid productivity in all cases (up to 2.4 g L-1 h-1), even in presence of 5 g L-1 of furans and phenols. Remarkably, most of furans and phenolic aldehydes were removed from defined media and hemicellulosic gardening hydrolysate after fermentation with A162. Considering the high productivities and the biodetoxifying effect attained, A162 could be pointed out as a great candidate for valorisation of mixed sugars from hemicellulosic hydrolysates with high inhibitors concentration, promoting the implementation of lignocellulosic biorefineries.
Collapse
Affiliation(s)
- Enrique Cubas-Cano
- IMDEA Energy Institute, Biotechnological Processes Unit, 28935, Móstoles, Spain
| | - Joachim Venus
- Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB), 14469, Potsdam, Germany
| | | | - Elia Tomás-Pejó
- IMDEA Energy Institute, Biotechnological Processes Unit, 28935, Móstoles, Spain.
| |
Collapse
|
18
|
Batch and Continuous Lactic Acid Fermentation Based on A Multi-Substrate Approach. Microorganisms 2020; 8:microorganisms8071084. [PMID: 32708134 PMCID: PMC7409180 DOI: 10.3390/microorganisms8071084] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022] Open
Abstract
The utilisation of waste materials and industrial residues became a priority within the bioeconomy concept and the production of biobased chemicals. The aim of this study was to evaluate the feasibility to continuously produce L-lactic acid from different renewable substrates, in a multi-substrate strategy mode. Based on batch experiments observations, Bacillus coagulans A534 strain was able to continuously metabolise acid whey, sugar beet molasses, sugar bread, alfalfa press green juice and tapioca starch. Additionally, reference experiments showed its behaviour in standard medium. Continuous fermentations indicated that the highest productivity was achieved when molasses was employed with a value of 10.34 g·L−1·h−1, while the lactic acid to sugar conversion yield was 0.86 g·g−1. This study demonstrated that LA can be efficiently produced in continuous mode regardless the substrate, which is a huge advantage in comparison to other platform chemicals.
Collapse
|
19
|
Saroj DB, Gupta AK. Genome based safety assessment for Bacillus coagulans strain LBSC (DSM 17654) for probiotic application. Int J Food Microbiol 2020; 318:108523. [DOI: 10.1016/j.ijfoodmicro.2020.108523] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 10/30/2019] [Accepted: 01/12/2020] [Indexed: 01/12/2023]
|
20
|
López-Gómez JP, Latorre-Sánchez M, Unger P, Schneider R, Coll Lozano C, Venus J. Assessing the organic fraction of municipal solid wastes for the production of lactic acid. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107251] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
21
|
Zhao C, Sinumvayo JP, Zhang Y, Li Y. Design and development of a “Y-shaped” microbial consortium capable of simultaneously utilizing biomass sugars for efficient production of butanol. Metab Eng 2019; 55:111-119. [DOI: 10.1016/j.ymben.2019.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/18/2019] [Accepted: 06/22/2019] [Indexed: 10/26/2022]
|
22
|
Jiang S, Xu P, Tao F. l-Lactic acid production by Bacillus coagulans through simultaneous saccharification and fermentation of lignocellulosic corncob residue. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.02.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Marcial-Coba MS, Pjaca AS, Andersen CJ, Knøchel S, Nielsen DS. Dried date paste as carrier of the proposed probiotic Bacillus coagulans BC4 and viability assessment during storage and simulated gastric passage. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.09.052] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Wang Y, Chen C, Cai D, Wang Z, Qin P, Tan T. The optimization of l-lactic acid production from sweet sorghum juice by mixed fermentation of Bacillus coagulans and Lactobacillus rhamnosus under unsterile conditions. BIORESOURCE TECHNOLOGY 2016; 218:1098-1105. [PMID: 27469090 DOI: 10.1016/j.biortech.2016.07.069] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/17/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
The cost reduction of raw material and sterilization could increase the economic feasibility of l-lactic acid fermentation, and the development of an cost-effective and efficient process is highly desired. To improve the efficiency of open fermentation by Lactobacillus rhamnosus based on sweet sorghum juice (SSJ) and to overcome sucrose utilization deficiency of Bacillus coagulans, a mixed fermentation was developed. Besides, the optimization of pH, sugar concentration and fermentation medium were also studied. Under the condition of mixed fermentation and controlled pH, a higher yield of 96.3% was achieved, compared to that (68.8%) in sole Lactobacillus rhamnosus fermentation. With an optimized sugar concentration and a stepwise-controlled pH, the l-lactic acid titer, yield and productivity reached 121gL(-1), 94.6% and 2.18gL(-1)h(-1), respectively. Furthermore, corn steep powder (CSP) as a cheap source of nitrogen and salts was proved to be an efficient supplement to SSJ in this process.
Collapse
Affiliation(s)
- Yong Wang
- National energy R&D center for biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Changjing Chen
- National energy R&D center for biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Di Cai
- National energy R&D center for biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zheng Wang
- National energy R&D center for biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Peiyong Qin
- National energy R&D center for biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Tianwei Tan
- National energy R&D center for biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
25
|
Complete Genome Sequence of Lactobacillus oris J-1, a Potential Probiotic Isolated from the Human Oral Microbiome. GENOME ANNOUNCEMENTS 2016; 4:4/5/e00970-16. [PMID: 27634996 PMCID: PMC5026436 DOI: 10.1128/genomea.00970-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lactobacilli can exert health-promoting effects in the human oral microbiome through many mechanisms, including pathogen inhibition, maintenance of microbial balance, immunomodulation, and enhancement of the epithelial barrier function. Here, we present the complete genome sequence of a potential probiotic, Lactobacillus oris J-1, that was isolated from the oral cavity of a health child.
Collapse
|
26
|
Bosma EF, Koehorst JJ, van Hijum SAFT, Renckens B, Vriesendorp B, van de Weijer AHP, Schaap PJ, de Vos WM, van der Oost J, van Kranenburg R. Complete genome sequence of thermophilic Bacillus smithii type strain DSM 4216(T). Stand Genomic Sci 2016; 11:52. [PMID: 27559429 PMCID: PMC4995803 DOI: 10.1186/s40793-016-0172-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 08/09/2016] [Indexed: 11/10/2022] Open
Abstract
Bacillus smithii is a facultatively anaerobic, thermophilic bacterium able to use a variety of sugars that can be derived from lignocellulosic feedstocks. Being genetically accessible, it is a potential new host for biotechnological production of green chemicals from renewable resources. We determined the complete genomic sequence of the B. smithii type strain DSM 4216(T), which consists of a 3,368,778 bp chromosome (GenBank accession number CP012024.1) and a 12,514 bp plasmid (GenBank accession number CP012025.1), together encoding 3880 genes. Genome annotation via RAST was complemented by a protein domain analysis. Some unique features of B. smithii central metabolism in comparison to related organisms included the lack of a standard acetate production pathway with no apparent pyruvate formate lyase, phosphotransacetylase, and acetate kinase genes, while acetate was the second fermentation product.
Collapse
Affiliation(s)
- Elleke F. Bosma
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
- Present address: The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Kgs. Lyngby, 2800 Denmark
| | - Jasper J. Koehorst
- Laboratory of Systems and Synthetic Biology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| | | | - Bernadet Renckens
- CMBI, NCMLS, Geert-Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| | | | | | - Peter J. Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| | - Richard van Kranenburg
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
- Corbion, Arkelsedijk 46, 4206 AC Gorinchem, The Netherlands
| |
Collapse
|
27
|
High-throughput system for screening of high l-lactic acid-productivity strains in deep-well microtiter plates. Bioprocess Biosyst Eng 2016; 39:1737-47. [DOI: 10.1007/s00449-016-1649-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/09/2016] [Indexed: 12/28/2022]
|
28
|
Systematic development and optimization of chemically defined medium supporting high cell density growth of Bacillus coagulans. Appl Microbiol Biotechnol 2016; 100:8121-34. [PMID: 27262567 DOI: 10.1007/s00253-016-7644-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/09/2016] [Accepted: 05/12/2016] [Indexed: 10/21/2022]
Abstract
With determined components and experimental reducibility, the chemically defined medium (CDM) and the minimal chemically defined medium (MCDM) are used in many metabolism and regulation studies. This research aimed to develop the chemically defined medium supporting high cell density growth of Bacillus coagulans, which is a promising producer of lactic acid and other bio-chemicals. In this study, a systematic methodology combining the experimental technique with flux balance analysis (FBA) was proposed to design and simplify a CDM. The single omission technique and single addition technique were employed to determine the essential and stimulatory compounds, before the optimization of their concentrations by the statistical method. In addition, to improve the growth rationally, in silico omission and addition were performed by FBA based on the construction of a medium-size metabolic model of B. coagulans 36D1. Thus, CDMs were developed to obtain considerable biomass production of at least five B. coagulans strains, in which two model strains B. coagulans 36D1 and ATCC 7050 were involved.
Collapse
|
29
|
Yao G, Gao P, Zhang W. Complete genome sequence of probiotic Bacillus coagulans HM-08: A potential lactic acid producer. J Biotechnol 2016; 228:71-72. [DOI: 10.1016/j.jbiotec.2016.04.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 04/25/2016] [Indexed: 12/22/2022]
|
30
|
Zheng Z, Lin X, Jiang T, Ye W, Ouyang J. Genomic analysis of a xylose operon and characterization of novel xylose isomerase and xylulokinase from Bacillus coagulans NL01. Biotechnol Lett 2016; 38:1331-9. [PMID: 27206341 DOI: 10.1007/s10529-016-2109-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/28/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To investigate the xylose operon and properties of xylose isomerase and xylulokinase in Bacillus coagulans that can effectively ferment xylose to lactic acid. RESULTS The xylose operon is widely present in B. coagulans. It is composed of four putative ORFs. Novel xylA and xylB from B. coagulans NL01 were cloned and expressed in Escherichia coli. Sequence of xylose isomerase was more conserved than that of xylulokinase. Both the enzymes exhibited maximum activities at pH 7-8 but with a high temperature maximum of 80-85 °C, divalent metal ion was prerequisite for their activation. Xylose isomerase and xylulokinase were most effectively activated by Ni(2+) and Co(2+), respectively. CONCLUSIONS Genomic analysis of xylose operon has contributed to understanding xylose metabolism in B. coagulans and the novel xylose isomerase and xylulokinase might provide new alternatives for metabolic engineering of other strains to improve their fermentation performance on xylose.
Collapse
Affiliation(s)
- Zhaojuan Zheng
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.,Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing, 210037, People's Republic of China
| | - Xi Lin
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Ting Jiang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Weihua Ye
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Jia Ouyang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China. .,Key Laboratory of Forest Genetics and Biotechnology of the Ministry of Education, Nanjing, 210037, People's Republic of China.
| |
Collapse
|
31
|
Xu Z, Sun Z, Li S, Xu Z, Cao C, Xu Z, Feng X, Xu H. Systematic unravelling of the biosynthesis of poly (L-diaminopropionic acid) in Streptomyces albulus PD-1. Sci Rep 2015; 5:17400. [PMID: 26632244 PMCID: PMC4668381 DOI: 10.1038/srep17400] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/27/2015] [Indexed: 12/20/2022] Open
Abstract
Poly(L-diaminopropionic acid) (PDAP) is one of the four homopoly(amino acid)s that have been discovered in nature. However, the molecular mechanism of PDAP biosynthesis has yet to be described. In this work, the general layout of the PDAP biosynthetic pathway is characterised in Streptomyces albulus PD-1 by genome mining, gene disruption, heterologous expression and in vitro feeding experiments. As a result, L-diaminopropionic acid (L-DAP), which is the monomer of PDAP, is shown to be jointly synthesised by two protein homologues of cysteine synthetase and ornithine cyclodeaminase. Then, L-DAP is assembled into PDAP by a novel nonribosomal peptide synthetase (NRPS) with classical adenylation and peptidyl carrier protein domains. However, instead of the traditional condensation or thioesterase domain of NRPSs, this NRPS has seven transmembrane domains surrounding three tandem soluble domains at the C-terminus. As far as we know, this novel single-module NRPS structure has only been reported in poly(ε-L-lysine) synthetase. The similar NRPS structure of PDAP synthetase and poly(ε-L-lysine) synthetase may be a common characteristic of homopoly(amino acid)s synthetases. In this case, we may discover and/or design more homopoly(amino acid)s by mining this kind of novel NRPS structure in the future.
Collapse
Affiliation(s)
- Zhaoxian Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing, 211816, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Zhuzhen Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing, 211816, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing, 211816, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Zheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing, 211816, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Changhong Cao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing, 211816, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Zongqi Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing, 211816, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Xiaohai Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing, 211816, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing, 211816, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
32
|
Characterization of microbial compositions in a thermophilic chemostat of mixed culture fermentation. Appl Microbiol Biotechnol 2015; 100:1511-1521. [PMID: 26563549 DOI: 10.1007/s00253-015-7130-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 10/26/2015] [Accepted: 10/29/2015] [Indexed: 10/22/2022]
Abstract
The microbial community compositions of a chemostat enriched in a thermophilic (55 °C) mixed culture fermentation (MCF) for hydrogen production under different operational conditions were revealed in this work by integrating denaturing gradient gel electrophoresis (DGGE), Illumina Miseq high-throughput sequencing, and 16S rRNA clone library sequencing. The results showed that the community structure of the enriched cultures was relatively simple. Clones close to the genera of Thermoanaerobacter and/or Bacillus mainly dominated the bacteria. And homoacetogens and archaea were washed out and not detected even by Illumina Miseq high-throughput sequencing which supported the benefit for hydrogen production. On the other hand, the results revealed that the metabolic shift was clearly associated with the change of dominated bacterial groups. The effects of hydrogen partial pressure (PH2) and pH from 4.0 to 5.5 on the microbial compositions were not notable and Thermoanaerobacter was dominant, thus, the metabolites were also not changed. While Bacillus, Thermoanaerobacter and Propionispora hippei dominated the bacteria communities at neutral pH, or Bacillus and Thermoanaerobacter dominated at high influent glucose concentrations, consequently the main metabolites shifted to acetate, ethanol, propionate, or lactate. Thereby, the effect of microbial composition on the metabolite distribution and shift shall be considered when modeling thermophilic MCF in the future.
Collapse
|
33
|
van Zyl LJ, Taylor MP, Trindade M. Engineering resistance to phage GVE3 in Geobacillus thermoglucosidasius. Appl Microbiol Biotechnol 2015; 100:1833-1841. [DOI: 10.1007/s00253-015-7109-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/13/2015] [Accepted: 10/16/2015] [Indexed: 11/30/2022]
|
34
|
Gandolfi S, Pistone L, Ottolina G, Xu P, Riva S. Hemp hurds biorefining: A path to green L-(+)-lactic acid production. BIORESOURCE TECHNOLOGY 2015; 191:59-65. [PMID: 25983223 DOI: 10.1016/j.biortech.2015.04.118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 06/04/2023]
Abstract
Sugars streams generated by organosolv pretreatment of hemp hurds, cellulose (C6) and hemicellulose (C5) fractions, were fermented to lactic acid (LA) by Bacillus coagulans strains XZL4 and DSM1. Pretreatment conditions and enzymatic hydrolysis were optimized and B. coagulans aptness to use lignocellulosic-derived sugars as a carbon source was evaluated. Methanolic organosolv pretreatment with 2.5% (w/w) H2SO4 gave the best results in terms of glucan recovery (98%), enzymatic hydrolysis of pretreated biomass (70%) and hemicellulosic sugars recovery (61%). C6 and C5 sugars fermentation by strain XZL4 gave, high LA yields (0.90 and 0.84 g/g), high titers (141 and 109 g/L), and high enantiomeric excess (>99%). Overall, 42 g of l-LA were obtained from 100 g of raw hemp hurds. These results can be considered promising for lignocellulosic feedstock valorization toward the production of polymer-grade LA.
Collapse
Affiliation(s)
- Stefano Gandolfi
- Istituto di Chimica del Riconoscimento Molecolare (ICRM), Consiglio Nazioneale delle Ricerche (CNR), Via Mario Bianco 9, 20131 Milano, Italy; The Protein Factory, Centro Interuniversitario di Biotecnologie Proteiche, Università degli Studi dell'Insubria, Politecnico di Milano, ICRM CNR, Milano, Italy.
| | - Lucia Pistone
- Istituto di Chimica del Riconoscimento Molecolare (ICRM), Consiglio Nazioneale delle Ricerche (CNR), Via Mario Bianco 9, 20131 Milano, Italy; The Protein Factory, Centro Interuniversitario di Biotecnologie Proteiche, Università degli Studi dell'Insubria, Politecnico di Milano, ICRM CNR, Milano, Italy
| | - Gianluca Ottolina
- Istituto di Chimica del Riconoscimento Molecolare (ICRM), Consiglio Nazioneale delle Ricerche (CNR), Via Mario Bianco 9, 20131 Milano, Italy; The Protein Factory, Centro Interuniversitario di Biotecnologie Proteiche, Università degli Studi dell'Insubria, Politecnico di Milano, ICRM CNR, Milano, Italy
| | - Ping Xu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Sergio Riva
- Istituto di Chimica del Riconoscimento Molecolare (ICRM), Consiglio Nazioneale delle Ricerche (CNR), Via Mario Bianco 9, 20131 Milano, Italy; The Protein Factory, Centro Interuniversitario di Biotecnologie Proteiche, Università degli Studi dell'Insubria, Politecnico di Milano, ICRM CNR, Milano, Italy
| |
Collapse
|
35
|
Draft Genome Sequence of Bacillus coagulans NL01, a Wonderful l-Lactic Acid Producer. GENOME ANNOUNCEMENTS 2015; 3:3/3/e00635-15. [PMID: 26089419 PMCID: PMC4472896 DOI: 10.1128/genomea.00635-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here, we report the draft genome sequence of Bacillus coagulans NL01, which could produce high optically pure l-lactic acid using xylose as a sole carbon source. The draft genome is 3,505,081 bp, with 144 contigs. About 3,903 protein-coding genes and 92 rRNAs are predicted from this assembly.
Collapse
|
36
|
Yuan Y, Gao M. Genomic analysis of a ginger pathogen Bacillus pumilus providing the understanding to the pathogenesis and the novel control strategy. Sci Rep 2015; 5:10259. [PMID: 25989507 PMCID: PMC4437294 DOI: 10.1038/srep10259] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/07/2015] [Indexed: 02/06/2023] Open
Abstract
Bacillus pumilus has been widely identified as a pathogen of plant and human, while the genetic information is rarely available for pathogenic B. pumilus strains. B. pumilus GR8 is a pathogen that causes ginger rhizome rot disease by invading ginger rhizome parenchymatous tissues, growing in the extracellular space, and producing plant cell wall-degrading enzymes to destroy ginger cells. In this study, the genome of GR8 was sequenced and characterized. This genome was the third completely sequenced genome of the B. pumilus species, and it exhibited high similarity to the genome of the B. pumilus strain B6033. The genome of GR8 was 3.67 Mb in length and encoded 3,713 putative ORFs. Among these predicted proteins, numerous plant cell wall-degrading enzymes and several proteins associated with invading and adapting to the environment in the extracellular space of the ginger rhizome parenchymatous tissue were found. The GR8 genome contained only one restriction-modification system and no CRISPR/Cas system. The lack of phage-resistant system suggested that phages might be potential agents for the control of GR8. The genomic analysis of GR8 provided the understanding to the pathogenesis and the phage-control strategy of pathogenic B. pumilus strains.
Collapse
Affiliation(s)
- Yihui Yuan
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Meiying Gao
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, P.R. China
| |
Collapse
|
37
|
Draft Genome Sequence of Bacillus coagulans GBI-30, 6086, a Widely Used Spore-Forming Probiotic Strain. GENOME ANNOUNCEMENTS 2014; 2:2/6/e01080-14. [PMID: 25377698 PMCID: PMC4223449 DOI: 10.1128/genomea.01080-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bacillus coagulans GBI-30, 6086 is a safe strain, already available on the market, and characterized by certified beneficial effects. The draft genome sequence presented here constitutes the first pillar toward the identification of the molecular mechanisms responsible for its positive features and safety.
Collapse
|
38
|
Xu K, Xu P. Efficient calcium lactate production by fermentation coupled with crystallization-based in situ product removal. BIORESOURCE TECHNOLOGY 2014; 163:33-39. [PMID: 24780270 DOI: 10.1016/j.biortech.2014.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/31/2014] [Accepted: 04/02/2014] [Indexed: 06/03/2023]
Abstract
Lactic acid is a platform chemical with various industrial applications, and its derivative, calcium lactate, is an important food additive. Fermentation coupled with in situ product removal (ISPR) can provide more outputs with high productivity. The method used in this study was based on calcium lactate crystallization. Three cycles of crystallization were performed during the fermentation course using a Bacillus coagulans strain H-1. As compared to fed-batch fermentation, this method showed 1.7 times higher average productivity considering seed culture, with 74.4% more L-lactic acid produced in the fermentation with ISPR. Thus, fermentation coupled with crystallization-based ISPR may be a biotechnological alternative that provides an efficient system for production of calcium lactate or lactic acid.
Collapse
Affiliation(s)
- Ke Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| |
Collapse
|