1
|
Eberhardt N, Bergero G, Mazzocco Mariotta YL, Aoki MP. Purinergic modulation of the immune response to infections. Purinergic Signal 2022; 18:93-113. [PMID: 34997903 PMCID: PMC8742569 DOI: 10.1007/s11302-021-09838-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023] Open
Abstract
Infectious diseases are caused by the invasion of pathogenic microorganisms such as fungi, bacteria, viruses, and parasites. After infection, disease progression relies on the complex interplay between the host immune response and the microorganism evasion strategies. The host's survival depends on its ability to mount an efficient protective anti-microbial response to accomplish pathogen clearance while simultaneously preventing tissue injury by keeping under control the excessive inflammatory process. The purinergic system has the dual function of regulating the immune response and triggering effector antimicrobial mechanisms. This review provides an overview of the current knowledge of the modulation of innate and adaptive immunity driven by the purinergic system during parasitic, bacterial and viral infections.
Collapse
Affiliation(s)
- Natalia Eberhardt
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) - Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Present Address: Department of Medicine, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, USA
| | - Gastón Bergero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) - Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Yanina L. Mazzocco Mariotta
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) - Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M. Pilar Aoki
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) - Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Haya de La Torre and Medina Allende, Ciudad Universitaria, CP 5000 Córdoba, Argentina
| |
Collapse
|
2
|
Lee JS, Chowdhury N, Roberts JS, Yilmaz Ö. Host surface ectonucleotidase-CD73 and the opportunistic pathogen, Porphyromonas gingivalis, cross-modulation underlies a new homeostatic mechanism for chronic bacterial survival in human epithelial cells. Virulence 2021; 11:414-429. [PMID: 32419582 PMCID: PMC7239027 DOI: 10.1080/21505594.2020.1763061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cell surface nucleotide-metabolizing enzyme, ectonucleotidase-CD73, has emerged as a central component of the cellular homeostatic-machinery that counterbalances the danger-molecule (extracellular-ATP)-driven proinflammatory response in immune cells. While the importance of CD73 in microbial host fitness and symbiosis is gradually being unraveled, there remains a significant gap in knowledge of CD73 and its putative role in epithelial cells. Here, we depict a novel host-pathogen adaptation mechanism where CD73 takes a center role in the intracellular persistence of Porphyromonas gingivalis, a major colonizer of oral mucosa, using human primary gingival epithelial cell (GEC) system. Temporal analyses revealed, upon invasion into the GECs, P. gingivalis can significantly elevate the host-surface CD73 activity and expression. The enhanced and active CD73 significantly increases P. gingivalis intracellular growth in the presence of substrate-AMP and simultaneously acts as a negative regulator of reactive oxygen species (ROS) generation upon eATP treatment. The inhibition of CD73 by siRNA or by a specific inhibitor markedly increases ROS production. Moreover, CD73 and P. gingivalis cross-signaling significantly modulates pro-inflammatory interleukin-6 (IL-6) in the GECs. Conversely, exogenous treatment of the infected GECs with IL-6 suppresses the intracellular bacteria via amplified ROS generation. However, the decreased bacterial levels can be restored by overexpressing functionally active CD73. Together, these findings illuminate how the local extracellular-purine-metabolism, in which CD73 serves as a core molecular switch, can alter intracellular microbial colonization resistance. Further, host-adaptive pathogens such as P. gingivalis can target host ectonucleotidases to disarm specific innate defenses for successful intracellular persistence in mucosal epithelia.
Collapse
Affiliation(s)
- Jaden S Lee
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Nityananda Chowdhury
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - JoAnn S Roberts
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Özlem Yilmaz
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA.,Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
3
|
Liu XH, Wu XR, Lan N, Zheng XB, Zhou C, Hu T, Chen YF, Cai ZR, Chen ZX, Lan P, Wu XJ. CD73 promotes colitis-associated tumorigenesis in mice. Oncol Lett 2020; 20:1221-1230. [PMID: 32724362 PMCID: PMC7377052 DOI: 10.3892/ol.2020.11670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 04/29/2020] [Indexed: 12/26/2022] Open
Abstract
Patients with inflammatory bowel disease (IBD) are at a higher risk of developing colitis-associated colorectal cancer. The aim of the present study was to investigate the role of CD73 in IBD-associated tumorigenesis. A mouse model of colitis-associated tumorigenesis (CAT) induced by azoxymethane and dextran sulfate sodium was successfully constructed. Model mice were injected with CD73 inhibitor or adenosine receptor agonist. Colon length, body weight loss and tumor formation were assessed macroscopically. Inflammatory cytokine measurement and RNA sequencing on colon tissues were performed. Inhibition of CD73 by adenosine 5′-(α,β-methylene) diphosphate (APCP) suppressed the severity of CAT with attenuated weight loss, longer colons, lower tumor number and smaller tumor size compared with the model group. Activation of adenosine receptors using 1-(6-amino-9H-purin-9-yl)-1-deoxy-N-ethyl-β-D-ribofuranuronamide (NECA) exacerbated CAT. Histological assessment indicated that inhibition of CD73 reduced, while activation of adenosine receptors exacerbated, the histological damage of the colon. Increased expression of pro-inflammatory cytokines (tumor necrosis factor-α and interleukin-6) in colonic tissue was detected in the NECA group. According to RNA sequencing results, potential oncogenes such as arachidonate 15-lipoxygenase (ALOX15), Bcl-2-like protein 15 (Bcl2l15) and N-acetylaspartate synthetase (Nat8l) were downregulated in the APCP group and upregulated in the NECA group compared with the model group. Therefore, inhibition of CD73 attenuated IBD-associated tumorigenesis, while activation of adenosine receptors exacerbated tumorigenesis in a C57BL/6J mouse model. This effect may be associated with the expression of pro-inflammatory cytokines and the regulation of ALOX15, Bcl2l15 and Nat8l.
Collapse
Affiliation(s)
- Xuan-Hui Liu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Department of Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xian-Rui Wu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Department of Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong 510655, P.R. China
| | - Nan Lan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Department of Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xiao-Bin Zheng
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Department of Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Chi Zhou
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Department of Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Tuo Hu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Department of Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Yu-Feng Chen
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Department of Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Ze-Rong Cai
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Department of Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Ze-Xian Chen
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Department of Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Ping Lan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Department of Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xiao-Jian Wu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Department of Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| |
Collapse
|
4
|
Basu M, Gupta P, Dutta A, Jana K, Ukil A. Increased host ATP efflux and its conversion to extracellular adenosine is crucial for establishing Leishmania infection. J Cell Sci 2020; 133:jcs239939. [PMID: 32079656 DOI: 10.1242/jcs.239939] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/07/2020] [Indexed: 12/19/2022] Open
Abstract
Intracellular survival of Leishmania donovani demands rapid production of host ATP for its sustenance. However, a gradual decrease in intracellular ATP in spite of increased glycolysis suggests ATP efflux during infection. Accordingly, upon infection, we show here that ATP is exported and the major exporter was pannexin-1, leading to raised extracellular ATP levels. Extracellular ATP shows a gradual decrease after the initial increase, and analysis of cell surface ATP-degrading enzymes revealed induction of the ectonucleotidases CD39 and CD73. Ectonucleotidase-mediated ATP degradation leads to increased extracellular adenosine (eADO), and inhibition of CD39 and CD73 in infected cells decreased adenosine concentration and parasite survival, documenting the importance of adenosine in infection. Inhibiting adenosine uptake by cells did not affect parasite survival, suggesting that eADO exerts its effect through receptor-mediated signalling. We also show that Leishmania induces the expression of adenosine receptors A2AR and A2BR, both of which are important for anti-inflammatory responses. Treating infected BALB/c mice with CD39 and CD73 inhibitors resulted in decreased parasite burden and increased host-favourable cytokine production. Collectively, these observations indicate that infection-induced ATP is exported, and after conversion into adenosine, propagates infection via receptor-mediated signalling.
Collapse
Affiliation(s)
- Moumita Basu
- Department of Biochemistry, University of Calcutta, Kolkata 700019, West Bengal, India
| | - Purnima Gupta
- Infections and Cancer Biology Group, International Agency for Research on Cancer, 69372, Lyon Cedex 08, France
| | - Ananya Dutta
- Division of Molecular Medicine, Bose Institute, P1/12 Calcutta Improvement Trust Scheme, VIIM, Kolkata, 700054, West Bengal, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, P1/12 Calcutta Improvement Trust Scheme, VIIM, Kolkata, 700054, West Bengal, India
| | - Anindita Ukil
- Department of Biochemistry, University of Calcutta, Kolkata 700019, West Bengal, India
| |
Collapse
|
5
|
Alam MS, Cavanaugh C, Pereira M, Babu U, Williams K. Susceptibility of aging mice to listeriosis: Role of anti-inflammatory responses with enhanced Treg-cell expression of CD39/CD73 and Th-17 cells. Int J Med Microbiol 2020; 310:151397. [PMID: 31974050 DOI: 10.1016/j.ijmm.2020.151397] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 11/14/2019] [Accepted: 12/18/2019] [Indexed: 12/22/2022] Open
Abstract
Foodborne Listeria monocytogenes (Lm) causes serious illness and death in immunosuppressed hosts, including the elderly population. We investigated Lm susceptibility and inflammatory cytokines in geriatric mice. Young-adult and old mice were gavaged with a Lm strain Lmo-InlAm. Tissues were assayed for Lm burden and splenocytes were analyzed for Th1/Th2/Th17/Treg responses and expression of CD39 and CD73. Old Lm-infected mice lost body-weight dose-dependently, had higher Lm colonization, and showed higher inflammatory responses than Lm-infected young-adult mice. After infection, IL-17 levels increased significantly in old mice whereas IFN-γ levels were unchanged. Levels of IL-10 and Treg cells were increased in infected old mice as compared to infected young-adult mice. Age-dependent enhanced expression of CD39/CD73 was observed in purified Treg prior to infection, suggesting increased baseline adenosine production in old mice. Lm lysate-treated splenocytes from older mice produced significantly higher levels of IL-10, IL17, and IL-1β, produced less IFN-γ and IL-2, and proliferated less than splenocytes from young-adult mice. Data suggests that older mice maybe more susceptible to Lm infection due to an imbalance of Th cell responses with disproportionate and persistent anti-inflammatory responses. Lm infection enhanced differentiation of proinflammatory Th17 cells, which may also exacerbate pathological responses during listeriosis.
Collapse
Affiliation(s)
- M Samiul Alam
- Immunobiology Branch, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD, 20708, USA.
| | - Christopher Cavanaugh
- Immunobiology Branch, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD, 20708, USA
| | - Marion Pereira
- Immunobiology Branch, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD, 20708, USA
| | - Uma Babu
- Immunobiology Branch, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD, 20708, USA
| | - Kristina Williams
- Immunobiology Branch, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD, 20708, USA
| |
Collapse
|
6
|
Soh KY, Loh JMS, Proft T. Cell wall-anchored 5'-nucleotidases in Gram-positive cocci. Mol Microbiol 2020; 113:691-698. [PMID: 31872460 DOI: 10.1111/mmi.14442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 11/29/2022]
Abstract
5'-nucleotidases (5'-NTs) are enzymes that catalyze the hydrolysis of nucleoside monophosphates to produce nucleosides and phosphate. Since the identification of adenosine synthase A (AdsA) in Staphylococcus aureus in 2009, several other 5'-NTs have been discovered in Gram-positive cocci, mainly in streptococci. Despite some differences in substrate specificity, pH range and metal ion requirements, all characterized 5'-NTs use AMP and ADP, and in some cases ATP, to produce the immunosuppressive adenosine, which dampens pro-inflammatory immune responses. Several 5'-NTs are also able to use dAMP as substrate to generate deoxy-adenosine which is cytotoxic for macrophages. A synergy between 5'-NTs and exonucleases which are commonly expressed in Gram-positive cocci has been described, where the nucleases provide dAMP as a cleavage product from DNA. Some of these nucleases produce dAMP by degrading the DNA backbone of neutrophil extracellular traps (NETs) resulting in a "double hit" strategy of immune evasion. This Micro Review provides an overview of the biochemical properties of Gram-positive cell wall-anchored 5'-NTs and their role as virulence factors. A potential use of 5'-NTs for vaccine development is also briefly discussed.
Collapse
Affiliation(s)
- Kar Yan Soh
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Biomolecular Discoveries, The University of Auckland, Auckland, New Zealand
| | - Jacelyn M S Loh
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Biomolecular Discoveries, The University of Auckland, Auckland, New Zealand
| | - Thomas Proft
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Biomolecular Discoveries, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
Eberhardt N, Sanmarco LM, Bergero G, Theumer MG, García MC, Ponce NE, Cano RC, Aoki MP. Deficiency of CD73 activity promotes protective cardiac immunity against Trypanosoma cruzi infection but permissive environment in visceral adipose tissue. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165592. [PMID: 31678157 DOI: 10.1016/j.bbadis.2019.165592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/16/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022]
Abstract
Damaged cells release the pro-inflammatory signal ATP, which is degraded by the ectonucleotidases CD39 and CD73 to the anti-inflammatory mediator adenosine (ADO). The balance between ATP/ADO is known to determine the outcome of inflammation/infection. However, modulation of the local immune response in different tissues due to changes in the balance of purinergic metabolites has yet to be investigated. Here, we explored the contribution of CD73-derived ADO on the acute immune response against Trypanosoma cruzi parasite, which invades and proliferates within different target tissues. Deficiency of CD73 activity led to an enhanced cardiac microbicidal immune response with an augmented frequency of macrophages with inflammatory phenotype and increased CD8+ T cell effector functions. The increment of local inducible nitric oxide (NO) synthase (iNOS)+ macrophages and the consequent rise of myocardial NO production in association with reduced ADO levels induced protection against T. cruzi infection as observed by the diminished cardiac parasite burden compared to their wild-type (WT) counterpart. Unexpectedly, parasitemia was substantially raised in CD73KO mice in comparison with WT mice, suggesting the existence of tissue reservoir/s outside myocardium. Indeed, CD73KO liver and visceral adipose tissue (VAT) showed increased parasite burden associated with a reduced ATP/ADO ratio and the lack of substantial microbicidal immune response. These data reveal that the purinergic system has a tissue-dependent impact on the host immune response against T. cruzi infection.
Collapse
Affiliation(s)
- Natalia Eberhardt
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina; Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Liliana Maria Sanmarco
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina; Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Gastón Bergero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina; Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Martín Gustavo Theumer
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina; Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Mónica Cristina García
- Unidad de Tecnología Farmacéutica (UNITEFA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Nicolas Eric Ponce
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina.
| | - Roxana Carolina Cano
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Unidad Asociada Área Ciencias Agrarias, Ingeniería, Ciencias Biológicas y de la Salud, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Córdoba, Argentina.
| | - Maria Pilar Aoki
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina; Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
8
|
Raczkowski F, Rissiek A, Ricklefs I, Heiss K, Schumacher V, Wundenberg K, Haag F, Koch-Nolte F, Tolosa E, Mittrücker HW. CD39 is upregulated during activation of mouse and human T cells and attenuates the immune response to Listeria monocytogenes. PLoS One 2018; 13:e0197151. [PMID: 29742141 PMCID: PMC5942830 DOI: 10.1371/journal.pone.0197151] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 04/27/2018] [Indexed: 11/26/2022] Open
Abstract
The ectoenzymes CD39 and CD73 degrade extracellular ATP to adenosine. ATP is released by stressed or damaged cells and provides pro-inflammatory signals to immune cells through P2 receptors. Adenosine, on the other hand, suppresses immune cells by stimulating P1 receptors. Thus, CD39 and CD73 can shape the quality of immune responses. Here we demonstrate that upregulation of CD39 is a consistent feature of activated conventional CD4+ and CD8+ T cells. Following stimulation in vitro, CD4+ and CD8+ T cells from human blood gained surface expression of CD39 but displayed only low levels of CD73. Activated human T cells from inflamed joints largely presented with a CD39+CD73— phenotype. In line, in spleens of mice with acute Listeria monocytogenes, listeria-specific CD4+ and CD8+ T cells acquired a CD39+CD73— phenotype. To test the function of CD39 in control of bacterial infection, CD39-deficient (CD39-/-) mice were infected with L. monocytogenes. CD39-/- mice showed better initial control of L. monocytogenes, which was associated with enhanced production of inflammatory cytokines. In the late stage of infection, CD39-/- mice accumulated more listeria-specific CD8+ T cells in the spleen than wildtype animals suggesting that CD39 attenuates the CD8+ T-cell response to infection. In conclusion, our results demonstrate that CD39 is upregulated on conventional CD4+ and CD8+ T cells at sites of acute infection and inflammation, and that CD39 dampens responses to bacterial infection.
Collapse
Affiliation(s)
- Friederike Raczkowski
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Rissiek
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Isabell Ricklefs
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kirsten Heiss
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Valéa Schumacher
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kira Wundenberg
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Haag
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Tolosa
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Willi Mittrücker
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| |
Collapse
|
9
|
Canonical and non-canonical adenosinergic pathways. Immunol Lett 2018; 205:25-30. [PMID: 29550257 DOI: 10.1016/j.imlet.2018.03.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 03/13/2018] [Indexed: 12/18/2022]
Abstract
Adenosine (ADO) is an immunosuppressive molecule with multiple functions in different human organs. ADO is released through the concerted action of surface molecules endowed with enzymatic functions, that belong to two different adenosinergic pathways. The canonical pathway is started by CD39, that converts ATP to AMP. On the other hand, the non-canonical pathway metabolizes NAD+ to ADPR, through the action of CD38. The latter byproduct is then converted to AMP by CD203a/PC-1. Both pathways converge to CD73, that fully degrades AMP to the final product ADO. In this Review we take into account the most relevant finding regarding the expression of ectoenzymes belonging to both adenosinergic pathways in different cell types, including regulatory cell subsets and neoplastic cells. Moreover, we summarize the role of these molecules in different physiological and pathological settings. Finally, we discuss potential therapeutic application of specific inhibitors of ectoenzymes and/or ADO receptors.
Collapse
|
10
|
Lee JS, Yilmaz Ö. Unfolding Role of a Danger Molecule Adenosine Signaling in Modulation of Microbial Infection and Host Cell Response. Int J Mol Sci 2018; 19:E199. [PMID: 29315226 PMCID: PMC5796148 DOI: 10.3390/ijms19010199] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/10/2017] [Accepted: 01/04/2018] [Indexed: 02/06/2023] Open
Abstract
Ectonucleotidases CD39 and CD73, specific nucleotide metabolizing enzymes located on the surface of the host, can convert a pro-inflammatory environment driven by a danger molecule extracellular-ATP to an adenosine-mediated anti-inflammatory milieu. Accordingly, CD39/CD73 signaling have has strongly implicated in modulating the intensity, duration, and composition of purinergic danger signals delivered to host. Recent studies have eluted potential roles for CD39 and CD73 in selective triggering of a variety of host immune cells and molecules in the presence of pathogenic microorganisms or microbial virulence molecules. Growing evidence also suggests that CD39 and CD73 present complimentary, but likely differential, actions against pathogens to shape the course and severity of microbial infection as well as the associated immune response. Similarly, adenosine receptors A2A and A2B have been proposed to be major immunomodulators of adenosine signaling during chronic inflammatory conditions induced by opportunistic pathogens, such as oral colonizer Porphyromonas gingivalis. Therefore, we here review the recent studies that demonstrate how complex network of molecules in the extracellular adenosine signaling machinery and their interactions can reshape immune responses and may also be targeted by opportunistic pathogens to establish successful colonization in human mucosal tissues and modulate the host immune response.
Collapse
Affiliation(s)
- Jaden S Lee
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, 29425 Charleston, SC 29425, USA.
| | - Özlem Yilmaz
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, 29425 Charleston, SC 29425, USA.
- Department of Microbiology and Immunology, Medical University of South Carolina, 29425 Charleston, SC 29425, USA.
| |
Collapse
|
11
|
Costales MG, Alam MS, Cavanaugh C, Williams KM. Extracellular adenosine produced by ecto-5'-nucleotidase (CD73) regulates macrophage pro-inflammatory responses, nitric oxide production, and favors Salmonella persistence. Nitric Oxide 2017; 72:7-15. [PMID: 29108754 DOI: 10.1016/j.niox.2017.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/21/2017] [Accepted: 11/02/2017] [Indexed: 12/24/2022]
Abstract
Surface enzymes CD39 (nucleoside triphosphate dephosphorylase) and CD73 (ecto-5'-nucleotidase) mediate the synthesis of extracellular adenosine that can regulate immune responses. Adenosine produced by CD39/CD73 acts via adenosine receptors (ARs). CD73 is expressed by a variety of cell types and mediates anti-inflammatory responses. Because efficient innate immune responses are required for clearance of Salmonella infection, we investigated the role of CD73 in macrophage function, including phagocytosis, intracellular killing of Salmonella, and anti-bacterial pro-inflammatory responses to Salmonella-whole cell lysate (ST-WCL) or Salmonella infection. Additionally, RAW 264.7 macrophage mRNA expression of CD39, CD73, and all ARs were measured by qPCR after ST-WCL treatment. Pro-inflammatory cytokine mRNA and nitric oxide (NO) production were quantitated in the ST-WCL treated macrophage with and without CD73-inhibitor (APCP) treatment. Phagocytosis and intracellular killing by peritoneal macrophages from CD73-deficent mice were also evaluated using E. coli BioParticles® and GFP-Salmonella infection, respectively. CD73, CD39, and A2BAR mRNA were predominantly expressed in RAW cells. ST-WCL treatment significantly reduced CD73 expression, suggesting endogenous down-regulation of CD73, and an enhanced pro-inflammatory response. ST-WCL treated and CD73-inhibited macrophages produced more NO and a higher level of pro-inflammatory cytokines than CD73-competent macrophages (e.g. IL-1β, TNF-α). Phagocytosis of E. coli BioParticles® was significantly higher in the macrophages treated with APCP and in the peritoneal macrophages from CD73-deficent mice as compared to APCP-untreated, and CD73-competent macrophages. Internalized bacteria were more efficiently cleared from macrophages in the absence of CD73, as observed by fluorescence-microscopy and Salmonella-DNA measurement by qPCR from the infected cells. CD73 down-regulation or CD73-inhibition of macrophages during Salmonella infection can enhance the production of pro-inflammatory cytokines and NO production, improving intracellular killing and host survivability. Extracellular adenosine synthesized by CD73 suppresses antibacterial responses of macrophages, which may weaken macrophage function and impair innate immune responses to Salmonella infection.
Collapse
Affiliation(s)
- Matthew G Costales
- Immunobiology Branch, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration (FDA), Laurel, MD 20708, USA
| | - Mohammad Samiul Alam
- Immunobiology Branch, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration (FDA), Laurel, MD 20708, USA.
| | - Christopher Cavanaugh
- Immunobiology Branch, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration (FDA), Laurel, MD 20708, USA
| | - Kristina M Williams
- Immunobiology Branch, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration (FDA), Laurel, MD 20708, USA
| |
Collapse
|
12
|
Intestinal Epithelial Ecto-5'-Nucleotidase (CD73) Regulates Intestinal Colonization and Infection by Nontyphoidal Salmonella. Infect Immun 2017; 85:IAI.01022-16. [PMID: 28717030 DOI: 10.1128/iai.01022-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 07/03/2017] [Indexed: 12/23/2022] Open
Abstract
Ecto-5'-nucleotidase (CD73) is expressed abundantly on the apical surface of intestinal epithelial cells (IECs) and functions as the terminal enzyme in the generation of extracellular adenosine. Previous work demonstrated that adenosine signaling in IECs results in a number of tissue-protective effects during inflammation; however, a rationale for its apical expression has been lacking. We hypothesized that the highly polarized expression of CD73 is indicative of an important role for extracellular adenosine as a mediator of host-microbe interactions. We show that adenosine harbors bacteriostatic activity against Salmonella enterica serovar Typhimurium that is not shared by the related purine metabolite 5'-AMP, inosine, or hypoxanthine. Analysis of Salmonella colonization in IEC-specific CD73 knockout mice (CD73f/fVillinCre ) revealed a nearly 10-fold increase in colonization compared to that in controls. Despite the increased luminal colonization by Salmonella, CD73f/fVillinCre mice were protected against Salmonella colitis and showed reduced Salmonella burdens in viscera, suggesting that adenosine promotes dissemination. The knockdown of CD73 expression in cultured IECs resulted in dramatic defects in intraepithelial localization and replication as well as defective transepithelial translocation by Salmonella In conclusion, we define a novel antimicrobial activity of adenosine in the gastrointestinal tract and unveil an important role for adenosine as a regulator of host-microbe interactions. These findings have broad implications for the development of new therapeutic agents for infectious disease.
Collapse
|
13
|
Sukri A, Hanafiah A, Kosai NR, Mohamed Taher M, Mohamed Rose I. Surface Antigen Profiling of Helicobacter pylori-Infected and -Uninfected Gastric Cancer Cells Using Antibody Microarray. Helicobacter 2016; 21:417-27. [PMID: 26807555 DOI: 10.1111/hel.12295] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Comprehensive immunophenotyping cluster of differentiation (CD) antigens in gastric adenocarcinoma, specifically between Helicobacter pylori-infected and -uninfected gastric cancer patients by using DotScan(™) antibody microarray has not been conducted. Current immunophenotyping techniques include flow cytometry and immunohistochemistry are limited to the use of few antibodies for parallel examination. We used DotScan(™) antibody microarray consisting 144 CD antibodies to determine the distribution of CD antigens in gastric adenocarcinoma cells and to elucidate the effect of H. pylori infection toward CD antigen expression in gastric cancer. METHODS Mixed leukocytes population derived from gastric adenocarcinoma patients were immunophenotyped using DotScan(™) antibody microarray. AGS cells were infected with H. pylori strains and cells were captured on DotScan(™) slides. RESULTS Cluster of differentiation antigens involved in perpetuating the tolerance of immune cells to tumor cells was upregulated in gastric adenocarcinoma cells compared to normal cells. CD279 which is essential in T cells apoptosis was found to be upregulated in normal cells. Remarkably, H. pylori-infected gastric cancer patients exhibited upregulated expression of CD27 that important in maintenance of T cells. Infection of cagA+ H. pylori with AGS cells increased CD antigens expression which involved in cancer stem cell while cagA- H. pylori polarized AGS cells to express immune-regulatory CD antigens. Increased CD antigens expression in AGS cells infected with cagA+ H. pylori were also detected in H. pylori-infected gastric cancer patients. CONCLUSION This study suggests the tolerance of immune system toward tumor cells in gastric cancer and distinct mechanisms of immune responses exploited by different H. pylori strains.
Collapse
Affiliation(s)
- Asif Sukri
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Alfizah Hanafiah
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia.
| | - Nik Ritza Kosai
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Mustafa Mohamed Taher
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Isa Mohamed Rose
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Caiazzo E, Maione F, Morello S, Lapucci A, Paccosi S, Steckel B, Lavecchia A, Parenti A, Iuvone T, Schrader J, Ialenti A, Cicala C. Adenosine signalling mediates the anti-inflammatory effects of the COX-2 inhibitor nimesulide. Biochem Pharmacol 2016; 112:72-81. [PMID: 27188793 DOI: 10.1016/j.bcp.2016.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/13/2016] [Indexed: 12/20/2022]
Abstract
Extracellular adenosine formation from ATP is controlled by ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase/CD39) and ecto-5'-nucleotidase (e-5NT/CD73); the latter converts AMP to adenosine and inorganic phosphate, representing the rate limiting step controlling the ratio between extracellular ATP and adenosine. Evidence that cellular expression and activity of CD39 and CD73 may be subject to changes under pathophysiological conditions has identified this pathway as an endogenous modulator in several diseases and was shown to be involved in the molecular mechanism of drugs, such as methotrexate, salicylates , interferon-β. We evaluated whether CD73/adenosine/A2A signalling pathway is involved in nimesulide anti-inflammatory effect, in vivo and in vitro. We found that the adenosine A2A agonist, 4-[2-[[6-amino-9-(N-ethyl-β-d-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid hydrochloride (CGS21680, 2mg/kg ip.), inhibited carrageenan-induced rat paw oedema and the effect was reversed by co-administration of the A2A antagonist -(2-[7-amino-2-[2-furyl][1,2,4]triazolo[2,3-a][1,3,5]triazin-5-yl-amino]ethyl)phenol (ZM241385; 3mg/kg i.p.). Nimesulide (5mg/kg i.p.) anti-inflammatory effect was inhibited by pre-treatment with ZM241385 (3mg/kg i.p.) and by local administration of the CD73 inhibitor, adenosine 5'-(α,β-methylene)diphosphate (APCP; 400μg/paw). Furthermore, we found increased activity of 5'-nucleotidase/CD73 in paws and plasma of nimesulide treated rats, 4h following oedema induction. In vitro, the inhibitory effect of nimesulide on nitrite and prostaglandin E2 production by lipopolysaccharide-activated J774 cell line was reversed by ZM241385 and APCP. Furthermore, nimesulide increased CD73 activity in J774 macrophages while it did not inhibit nitrite accumulation by lipopolysaccharide-activated SiRNA CD73 silenced J774 macrophages. Our data demonstrate that the anti-inflammatory effect of nimesulide in part is mediated by CD73-derived adenosine acting on A2A receptors.
Collapse
Affiliation(s)
| | - Francesco Maione
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Silvana Morello
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | - Andrea Lapucci
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Sara Paccosi
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Bodo Steckel
- Department of Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Antonio Lavecchia
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Astrid Parenti
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Teresa Iuvone
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Jürgen Schrader
- Department of Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Armando Ialenti
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Carla Cicala
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy.
| |
Collapse
|
15
|
Nejati A, Shoja Z, Shahmahmoodi S, Tafakhori A, Mollaei-Kandelous Y, Rezaei F, Hamid KM, Mirshafiey A, Doosti R, Sahraian MA, Mahmoudi M, Shokri F, Emery V, Marashi SM. EBV and vitamin D status in relapsing-remitting multiple sclerosis patients with a unique cytokine signature. Med Microbiol Immunol 2015; 205:143-54. [PMID: 26365612 DOI: 10.1007/s00430-015-0437-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 09/08/2015] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis, a debilitating autoimmune and inflammatory disease of the central nervous system, is associated with both infectious and non-infectious factors. We investigated the role of EBV infection, vitamin D level, and cytokine signature in MS patients. Molecular and serological assays were used to investigate immune biomarkers, vitamin D level, and EBV status in 83 patients with relapsing-remitting multiple sclerosis and 62 healthy controls. In total, 98.8 % of MS patients showed a history of EBV exposure compared to 88.6 % in the healthy group (p = 0.005). EBV DNA load was significantly higher in MS patients than healthy subjects (p < 0.0001). Using a panel of biomarkers, we found a distinct transcriptional signature in MS patients compared to the healthy group with mRNA levels of CD73, IL-6, IL-23, IFN-γ, TNF-α, IL-15, IL-28, and IL-17 significantly elevated in MS patients (p < 0.0001). In contrast, the mRNA levels for TGF-β, IDO, S1PR1, IL-10, and CCL-3 were significantly lower in MS patients compared to healthy controls (p < 0.0001). No significant differences were found with the mRNA levels of IL-13, CCL-5, and FOXP3. Interestingly, in MS patients we found an inverse correlation between vitamin D concentration and EBV load, but not EBNA-1 IgG antibody levels. Our data highlight biomarker correlates in MS patients together with a complex interplay between EBV replication and vitamin D levels.
Collapse
Affiliation(s)
- Ahmad Nejati
- Virology Department, School of Public Health (SPH), Tehran University of Medical Sciences (TUMS), Tehran, 14155-6446, Iran
| | | | - Shohreh Shahmahmoodi
- Virology Department, School of Public Health (SPH), Tehran University of Medical Sciences (TUMS), Tehran, 14155-6446, Iran
| | - Abbas Tafakhori
- Iranian Centre of Neurological Research, Department of Neurology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | | | - Farhad Rezaei
- Virology Department, School of Public Health (SPH), Tehran University of Medical Sciences (TUMS), Tehran, 14155-6446, Iran
| | - Kabir Magaji Hamid
- Tehran University of Medical Sciences, International Campus (TUMS-IC), Tehran, Iran
| | - Abbas Mirshafiey
- Immunology Department, School of Public Health (SPH), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Rozita Doosti
- MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Ali Sahraian
- MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahmood Mahmoudi
- Department of Epidemiology and Biostatistics, School of Public Health (SPH), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Fazel Shokri
- Immunology Department, School of Public Health (SPH), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Vince Emery
- Department of Microbial and Cellular Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Sayed Mahdi Marashi
- Virology Department, School of Public Health (SPH), Tehran University of Medical Sciences (TUMS), Tehran, 14155-6446, Iran. .,Tehran University of Medical Sciences, International Campus (TUMS-IC), Tehran, Iran.
| |
Collapse
|
16
|
Ecto-5'-Nucleotidase (CD73) Deficiency in Mycobacterium tuberculosis-Infected Mice Enhances Neutrophil Recruitment. Infect Immun 2015; 83:3666-74. [PMID: 26150535 DOI: 10.1128/iai.00418-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/28/2015] [Indexed: 12/19/2022] Open
Abstract
The immune system needs safeguards that prevent collateral tissue damage mediated by the immune system while enabling an effective response against a pathogen. The purinergic pathway is one such mechanism and finely modulates inflammation by sensing nucleotides in the environment. Extracellular ATP is considered to be a danger signal leading to a proinflammatory response, whereas adenosine is immunosuppressive. CD73, also called ecto-5'-nucleotidase, occupies a strategic position in this pathway, as it is the main enzyme responsible for the generation of adenosine from ATP. Here, we explore the role of CD73 during tuberculosis, a disease characterized by an immune response that is harmful to the host and unable to eradicate Mycobacterium tuberculosis. Using CD73 knockout (KO) mice, we found that CD73 regulates the response to M. tuberculosis infection in vitro and in vivo. Mycobacterium-infected murine macrophages derived from CD73 KO mice secrete more keratinocyte chemoattractant (KC), tumor necrosis factor alpha (TNF-α), and interleukin-6 (IL-6) and release less vascular endothelial growth factor (VEGF) upon ATP stimulation than do those derived from wild-type (WT) mice. In vivo, CD73 limits the early influx of neutrophils to the lungs without affecting bacterial growth and dissemination. Collectively, our results support the view that CD73 fine-tunes antimycobacterial immune responses.
Collapse
|
17
|
Extracellular adenosine generation in the regulation of pro-inflammatory responses and pathogen colonization. Biomolecules 2015; 5:775-92. [PMID: 25950510 PMCID: PMC4496696 DOI: 10.3390/biom5020775] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/23/2015] [Accepted: 04/25/2015] [Indexed: 12/17/2022] Open
Abstract
Adenosine, an immunomodulatory biomolecule, is produced by the ecto-enzymes CD39 (nucleoside triphosphate dephosphorylase) and CD73 (ecto-5'-nucleotidase) by dephosphorylation of extracellular ATP. CD73 is expressed by many cell types during injury, infection and during steady-state conditions. Besides host cells, many bacteria also have CD39-CD73-like machinery, which helps the pathogen subvert the host inflammatory response. The major function for adenosine is anti-inflammatory, and most recent research has focused on adenosine's control of inflammatory mechanisms underlying various autoimmune diseases (e.g., colitis, arthritis). Although adenosine generated through CD73 provides a feedback to control tissue damage mediated by a host immune response, it can also contribute to immunosuppression. Thus, inflammation can be a double-edged sword: it may harm the host but eventually helps by killing the invading pathogen. The role of adenosine in dampening inflammation has been an area of active research, but the relevance of the CD39/CD73-axis and adenosine receptor signaling in host defense against infection has received less attention. Here, we review our recent knowledge regarding CD73 expression during murine Salmonellosis and Helicobacter-induced gastric infection and its role in disease pathogenesis and bacterial persistence. We also explored a possible role for the CD73/adenosine pathway in regulating innate host defense function during infection.
Collapse
|
18
|
Fausther M, Lavoie EG, Goree JR, Baldini G, Dranoff JA. NT5E mutations that cause human disease are associated with intracellular mistrafficking of NT5E protein. PLoS One 2014; 9:e98568. [PMID: 24887587 PMCID: PMC4041762 DOI: 10.1371/journal.pone.0098568] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/05/2014] [Indexed: 11/21/2022] Open
Abstract
Ecto-5′-nucleotidase/CD73/NT5E, the product of the NT5E gene, is the dominant enzyme in the generation of adenosine from degradation of AMP in the extracellular environment. Nonsense (c.662C→A, p.S221X designated F1, c.1609dupA, p.V537fsX7 designated F3) and missense (c.1073G→A, p.C358Y designated F2) NT5E gene mutations in three distinct families have been shown recently to cause premature arterial calcification disease in human patients. However, the underlying mechanisms by which loss-of-function NT5E mutations cause human disease are unknown. We hypothesized that human NT5E gene mutations cause mistrafficking of the defective proteins within cells, ultimately blocking NT5E catalytic function. To test this hypothesis, plasmids encoding cDNAs of wild type and mutant human NT5E tagged with the fluorescent probe DsRed were generated and used for transfection and heterologous expression in immortalized monkey COS-7 kidney cells that lack native NT5E protein. Enzyme histochemistry and Malachite green assays were performed to assess the biochemical activities of wild type and mutant fusion NT5E proteins. Subcellular trafficking of fusion NT5E proteins was monitored by confocal microscopy and western blot analysis of fractionated cell constituents. All 3 F1, F2, and F3 mutations result in a protein with significantly reduced trafficking to the plasma membrane and reduced ER retention as compared to wild type protein. Confocal immunofluorescence demonstrates vesicles containing DsRed-tagged NT5E proteins (F1, F2 and F3) in the cell synthetic apparatus. All 3 mutations resulted in absent NT5E enzymatic activity at the cell surface. In conclusion, three familial NT5E mutations (F1, F2, F3) result in novel trafficking defects associated with human disease. These novel genetic causes of human disease suggest that the syndrome of premature arterial calcification due to NT5E mutations may also involve a novel “trafficking-opathy”.
Collapse
Affiliation(s)
- Michel Fausther
- Division of Gastroenterology & Hepatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Research Service, Central Arkansas VA Healthcare System, Little Rock, Arkansas, United States of America
| | - Elise G. Lavoie
- Division of Gastroenterology & Hepatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Research Service, Central Arkansas VA Healthcare System, Little Rock, Arkansas, United States of America
| | - Jessica R. Goree
- Division of Gastroenterology & Hepatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Research Service, Central Arkansas VA Healthcare System, Little Rock, Arkansas, United States of America
| | - Giulia Baldini
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Jonathan A. Dranoff
- Division of Gastroenterology & Hepatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Research Service, Central Arkansas VA Healthcare System, Little Rock, Arkansas, United States of America
- * E-mail:
| |
Collapse
|