1
|
Ho CT, Kao YC, Shyu YM, Wang IC, Liu QX, Liu SW, Huang SC, Chiu H, Hsu LW, Hsu TS, Hsieh WC, Huang CC. Assembly of MSCs into a spheroid configuration increases poly(I:C)-mediated TLR3 activation and the immunomodulatory potential of MSCs for alleviating murine colitis. Stem Cell Res Ther 2025; 16:172. [PMID: 40221757 PMCID: PMC11993957 DOI: 10.1186/s13287-025-04297-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is associated with significant clinical challenges due to the limitations of current therapeutic approaches. Mesenchymal stem cell (MSC)-based therapies have shown promise in alleviating IBD owing to their potent immunomodulatory properties. However, the therapeutic efficacy of these cells remains suboptimal, primarily due to the harsh peritoneal microenvironment, which compromises MSC viability and functional capacity after transplantation. METHODS To address these limitations, this study aimed to improve MSC engraftment and functionality by assembling MSCs into three-dimensional (3D) spheroids and priming them with the Toll-like receptor 3 (TLR3) agonist polyinosinic-polycytidylic acid (poly(I:C)). Their potential for treating IBD was evaluated using male C57BL/6 mice with dextran sulfate sodium-induced colitis. RESULTS While 3D spheroid formation alone upregulated TLR3 expression and increased MSC survival under oxidative stress, poly(I:C) priming had a pronounced synergistic effect, significantly increasing MSC-mediated splenocyte modulation and oxidative stress resistance. In a murine colitis model, compared with unprimed spheroids or MSC suspensions, poly(I:C)-primed MSC spheroids administered intraperitoneally exhibited increased survival and therapeutic efficacy, effectively alleviating colitis symptoms, reducing colonic inflammation, and promoting tissue recovery. CONCLUSION Collectively, these findings highlight the synergistic benefits of combining 3D spheroid assembly with TLR3 activation as an innovative strategy to improve the therapeutic efficacy of MSC-based treatments for IBD and other inflammatory diseases by increasing post-engraftment cell survival and immunomodulatory capacity.
Collapse
Affiliation(s)
- Chao-Ting Ho
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Ying-Chi Kao
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yueh-Ming Shyu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - I-Ching Wang
- Institute of Molecular and Cellular Biology, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Qiao-Xuan Liu
- Institute of Molecular and Cellular Biology, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Shao-Wen Liu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Shih-Chen Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Han Chiu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Li-Wen Hsu
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu , Taiwan
| | - Tzu-Sheng Hsu
- Institute of Molecular and Cellular Biology, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan.
| | - Wan-Chen Hsieh
- Institute of Molecular and Cellular Biology, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan.
| | - Chieh-Cheng Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
2
|
Tolstova T, Dotsenko E, Kozhin P, Novikova S, Zgoda V, Rusanov A, Luzgina N. The effect of TLR3 priming conditions on MSC immunosuppressive properties. Stem Cell Res Ther 2023; 14:344. [PMID: 38031182 PMCID: PMC10687850 DOI: 10.1186/s13287-023-03579-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) have regenerative and immunomodulatory properties, making them suitable for cell therapy. Toll-like receptors (TLRs) in MSCs respond to viral load by secreting immunosuppressive or proinflammatory molecules. The expression of anti-inflammatory molecules in MSCs can be altered by the concentration and duration of exposure to the TLR3 ligand polyinosinic-polycytidylic acid (poly(I:C)). This study aimed to optimize the preconditioning of MSCs with poly(I:C) to increase immunosuppressive effects and to identify MSCs with activated TLR3 (prMSCs). METHODS Flow cytometry and histochemical staining were used to analyze MSCs for immunophenotype and differentiation potential. MSCs were exposed to poly(I:C) at 1 and 10 μg/mL for 1, 3, and 24 h, followed by determination of the expression of IDO1, WARS1, PD-L1, TSG-6, and PTGES2 and PGE2 secretion. MSCs and prMSCs were cocultured with intact (J-) and activated (J+) Jurkat T cells. The proportion of proliferating and apoptotic J+ and J- cells, IL-10 secretion, and IL-2 production after cocultivation with MSCs and prMSCs were measured. Liquid chromatography-mass spectrometry and bioinformatics analysis identified proteins linked to TLR3 activation in MSCs. RESULTS Poly(I:C) at 10 μg/mL during a 3-h incubation caused the highest expression of immunosuppression markers in MSCs. Activation of prMSCs caused a 18% decrease in proliferation and a one-third increase in apoptotic J+ cells compared to intact MSCs. Cocultures of prMSCs and Jurkat cells had increased IL-10 and decreased IL-2 in the conditioned medium. A proteomic study of MSCs and prMSCs identified 53 proteins with altered expression. Filtering the dataset with Gene Ontology and Reactome Pathway revealed that poly(I:C)-induced proteins activate the antiviral response. Protein‒protein interactions by String in prMSCs revealed that the antiviral response and IFN I signaling circuits were more active than in native MSCs. prMSCs expressed more cell adhesion proteins (ICAM-I and Galectin-3), PARP14, PSMB8, USP18, and GBP4, which may explain their anti-inflammatory effects on Jurkat cells. CONCLUSIONS TLR3 activation in MSCs is dependent on exposure time and poly(I:C) concentration. The maximum expression of immunosuppressive molecules was observed with 10 µg/mL poly(I:C) for 3-h preconditioning. This priming protocol for MSCs enhances the immunosuppressive effects of prMSCs on T cells.
Collapse
Affiliation(s)
- Tatiana Tolstova
- Institute of Biomedical Chemistry, Pogodinskaya, Moscow, Russia, 119121
| | | | - Peter Kozhin
- Institute of Biomedical Chemistry, Pogodinskaya, Moscow, Russia, 119121
| | - Svetlana Novikova
- Institute of Biomedical Chemistry, Pogodinskaya, Moscow, Russia, 119121
| | - Victor Zgoda
- Institute of Biomedical Chemistry, Pogodinskaya, Moscow, Russia, 119121
| | - Alexander Rusanov
- Institute of Biomedical Chemistry, Pogodinskaya, Moscow, Russia, 119121.
| | - Nataliya Luzgina
- Institute of Biomedical Chemistry, Pogodinskaya, Moscow, Russia, 119121
| |
Collapse
|
3
|
Liu X, Zhou Z, Zeng WN, Zeng Q, Zhang X. The role of toll-like receptors in orchestrating osteogenic differentiation of mesenchymal stromal cells and osteoimmunology. Front Cell Dev Biol 2023; 11:1277686. [PMID: 37941898 PMCID: PMC10629627 DOI: 10.3389/fcell.2023.1277686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
Osteoimmunology is a concept involving molecular and cellular crosstalk between the skeletal and immune systems. Toll-like receptors (TLRs) are widely expressed both on mesenchymal stromal cells (MSCs), the hematopoietic cells, and immune cells in the osteogenic microenvironment for bone development or repair. TLRs can sense both exogenous pathogen-associated molecular patterns (PAMPs) derived from microorganisms, and damage-associated molecular patterns (DAMPs) derived from normal cells subjected to injury, inflammation, or cell apoptosis under physiological or pathological conditions. Emerging studies reported that TLR signaling plays an important role in bone remodeling by directly impacting MSC osteogenic differentiation or osteoimmunology. However, how to regulate TLR signaling is critical and remains to be elucidated to promote the osteogenic differentiation of MSCs and new bone formation for bone tissue repair. This review outlines distinct TLR variants on MSCs from various tissues, detailing the impact of TLR pathway activation or inhibition on MSC osteogenic differentiation. It also elucidates TLR pathways' interplay with osteoclasts, immune cells, and extracellular vesicles (EVs) derived from MSCs. Furthermore, we explore biomaterial-based activation to guide MSCs' osteogenic differentiation. Therefore, understanding TLRs' role in this context has significant implications for advancing bone regeneration and repair strategies.
Collapse
Affiliation(s)
- Xiaoyang Liu
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Zongke Zhou
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Wei-Nan Zeng
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Qin Zeng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Li L, Ding Q, Wu Y, Zheng Z, Zhang X, Zhang M, Long M, Lü S. Binding of different hyaluronan to CD44 mediates distinct cell adhesion dynamics under shear flow. FEBS J 2023; 290:4695-4711. [PMID: 37254632 DOI: 10.1111/febs.16882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/30/2023] [Accepted: 05/30/2023] [Indexed: 06/01/2023]
Abstract
As a known receptor-ligand pair for mediating cell-cell or cell-extracellular matrix adhesions, cluster of differentiation 44 (CD44)-hyaluronan (HA) interactions are not only determined by molecular weight (MW) diversity of HA, but also are regulated by external physical or mechanical factors. However, the coupling effects of HA MW and shear flow are still unclear. Here, we compared the differences between high molecular weight HA (HHA) and low molecular weight HA (LHA) binding to CD44 under varied shear stresses. The results demonstrated that HHA dominated the binding phase but LHA was in favour of the shear resistance phase, respectively, under shear stress range ≤ 1.0 dyne·cm-2 . This difference was attributed to the high binding strength of the CD44-HHA interaction, as well as the optimal distribution matching between both CD44 and HA sides. Activation of the intracellular signal pathway was sensitive to both HA MW and shear flow. Our findings also indicate that only CD44-HHA interaction under shear stress of 0.2 dyne·cm-2 could significantly enhance the clustering of CD44, as well as induce the increase in both CD44 and CD18 expression. The present study offers the basis for further quantification of the features of CD44-HA interactions and their biological functions.
Collapse
Affiliation(s)
- Linda Li
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, China
| | - Qihan Ding
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Wu
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Zheng
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoning Zhang
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Mingkun Zhang
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Mian Long
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shouqin Lü
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Zhang W, Wang T, Xue Y, Zhan B, Lai Z, Huang W, Peng X, Zhou Y. Research progress of extracellular vesicles and exosomes derived from mesenchymal stem cells in the treatment of oxidative stress-related diseases. Front Immunol 2023; 14:1238789. [PMID: 37646039 PMCID: PMC10461809 DOI: 10.3389/fimmu.2023.1238789] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023] Open
Abstract
There is growing evidence that mesenchymal stem cell-derived extracellular vesicles and exosomes can significantly improve the curative effect of oxidative stress-related diseases. Mesenchymal stem cell extracellular vesicles and exosomes (MSC-EVs and MSC-Exos) are rich in bioactive molecules and have many biological regulatory functions. In this review, we describe how MSC-EVs and MSC-Exos reduce the related markers of oxidative stress and inflammation in various systemic diseases, and the molecular mechanism of MSC-EVs and MSC-Exos in treating apoptosis and vascular injury induced by oxidative stress. The results of a large number of experimental studies have shown that both local and systemic administration can effectively inhibit the oxidative stress response in diseases and promote the survival and regeneration of damaged parenchymal cells. The mRNA and miRNAs in MSC-EVs and MSC-Exos are the most important bioactive molecules in disease treatment, which can inhibit the apoptosis, necrosis and oxidative stress of lung, heart, kidney, liver, bone, skin and other cells, and promote their survive and regenerate.
Collapse
Affiliation(s)
- Wenwen Zhang
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
- Department of Pathophysiology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Tingyu Wang
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
- Department of Pathophysiology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yuanye Xue
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
- Department of Pathophysiology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Bingbing Zhan
- School of Pharmaceutical Sciences, Guangdong Medical University, Dongguan, China
| | - Zengjie Lai
- The Second Clinical Medical College of Guangdong Medical University, Dongguan, China
| | - Wenjie Huang
- School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Xinsheng Peng
- Biomedical Innovation Center, Guangdong Medical University, Dongguan, China
- Institute of Marine Medicine, Guangdong Medical University, Zhanjiang, China
| | - Yanfang Zhou
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
- Department of Pathophysiology, Guangdong Medical University, Dongguan, Guangdong, China
| |
Collapse
|
6
|
Giacomini C, Granéli C, Hicks R, Dazzi F. The critical role of apoptosis in mesenchymal stromal cell therapeutics and implications in homeostasis and normal tissue repair. Cell Mol Immunol 2023; 20:570-582. [PMID: 37185486 DOI: 10.1038/s41423-023-01018-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have been extensively tested for the treatment of numerous clinical conditions and have demonstrated good safety but mixed efficacy. Although this outcome can be attributed in part to the heterogeneity of cell preparations, the lack of mechanistic understanding and tools to establish cell pharmacokinetics and pharmacodynamics, as well as the poorly defined criteria for patient stratification, have hampered the design of informative clinical trials. We and others have demonstrated that MSCs can rapidly undergo apoptosis after their infusion. Apoptotic MSCs are phagocytosed by monocytes/macrophages that are then reprogrammed to become anti-inflammatory cells. MSC apoptosis occurs when the cells are injected into patients who harbor activated cytotoxic T or NK cells. Therefore, the activation state of cytotoxic T or NK cells can be used as a biomarker to predict clinical responses to MSC treatment. Building on a large body of preexisting data, an alternative view on the mechanism of MSCs is that an inflammation-dependent MSC secretome is largely responsible for their immunomodulatory activity. We will discuss how these different mechanisms can coexist and are instructed by two different types of MSC "licensing": one that is cell-contact dependent and the second that is mediated by inflammatory cytokines. The varied and complex mechanisms by which MSCs can orchestrate inflammatory responses and how this function is specifically driven by inflammation support a physiological role for tissue stroma in tissue homeostasis, and it acts as a sensor of damage and initiator of tissue repair by reprogramming the inflammatory environment.
Collapse
Affiliation(s)
- Chiara Giacomini
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK.
| | - Cecilia Granéli
- BioPharmaceuticals R&D Cell Therapy Department, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ryan Hicks
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK
- BioPharmaceuticals R&D Cell Therapy Department, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Francesco Dazzi
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK.
- BioPharmaceuticals R&D Cell Therapy Department, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
7
|
Hwang J, Lee SY, Jo CH. Degenerative tendon matrix induces tenogenic differentiation of mesenchymal stem cells. J Exp Orthop 2023; 10:15. [PMID: 36786947 PMCID: PMC9928997 DOI: 10.1186/s40634-023-00581-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/23/2023] [Indexed: 02/15/2023] Open
Abstract
PURPOSE Mesenchymal stem cells (MSCs) react dynamically with the surrounding microenvironment to promote tissue-specific differentiation and hence increase targeted regenerative capacity. Extracellular matrix (ECM) would be the first microenvironment to interact with MSCs injected into the tissue lesion. However, degenerative tissues would have different characteristics of ECM in comparison with healthy tissues. Therefore, the influence of degenerative ECM on tissue-specific differentiation of MSCs and the formation of matrix composition need to be considered for the sophisticated therapeutic application of stem cells for tissue regeneration. METHODS Human degenerative tendon tissues were obtained from patients undergoing rotator cuff repair and finely minced into 2 ~ 3 mm fragments. Different amounts of tendon matrix (0.005 g, 0.01 g, 0.025 g, 0.05 g, 0.1 g, 0.25 g, 0.5 g, 1 g, and 2 g) were co-cultured with bone marrow MSCs (BM MSCs) for 7 days. Six tendon-related markers, scleraxis, tenomodulin, collagen type I and III, decorin, and tenascin-C, osteogenic marker, alkaline phosphatase (ALP), and chondrogenic marker, aggrecan (ACAN), were analyzed by qRT-PCR. Cell viability and senescence-associated beta-galactosidase assays were performed. The connective tissue growth factor was used as a positive control. RESULTS The expressions of six tendon-related markers were significantly upregulated until the amount of tendon matrix exceeded 0.5 g, the point where the mRNA expressions of all six genes analyzed started to decrease. The tendon matrix exerted an inhibitory effect on ACAN expression but had a negligible effect on ALP expression. Cell viability did not change significantly over the culture period. The amount of tendon matrix exceeding 0.01 g significantly increased the SA-βgal activity of BM MSCs. CONCLUSION This study successfully demonstrated tendon ECM-stimulated tenogenesis of BM MSCs through an indirect co-culture system without the use of exogenous growth factors and the alteration of cellular viability. In contrast to the initial hypothesis, the tenogenesis of BM MSCs induced with the degenerative tendon matrix accompanied cellular senescence.
Collapse
Affiliation(s)
- Joongwon Hwang
- grid.31501.360000 0004 0470 5905Department of Translational Medicine, College of Medicine, Seoul National University, Daehak-Ro 103, Jongno-Gu, Seoul, 03080 South Korea ,grid.412479.dDepartment of Orthopedic Surgery, College of Medicine, SMG-SNU Boramae Medical Center, Seoul National University, 20 Boramae-Ro 5-Gil, Dongjak-Gu, Seoul, 07061 South Korea
| | - Seung Yeon Lee
- grid.412479.dDepartment of Orthopedic Surgery, College of Medicine, SMG-SNU Boramae Medical Center, Seoul National University, 20 Boramae-Ro 5-Gil, Dongjak-Gu, Seoul, 07061 South Korea
| | - Chris Hyunchul Jo
- Department of Translational Medicine, College of Medicine, Seoul National University, Daehak-Ro 103, Jongno-Gu, Seoul, 03080, South Korea. .,Department of Orthopedic Surgery, College of Medicine, SMG-SNU Boramae Medical Center, Seoul National University, 20 Boramae-Ro 5-Gil, Dongjak-Gu, Seoul, 07061, South Korea.
| |
Collapse
|
8
|
Satani N, Parsha K, Davis C, Gee A, Olson SD, Aronowski J, Savitz SI. Peripheral blood monocytes as a therapeutic target for marrow stromal cells in stroke patients. Front Neurol 2022; 13:958579. [PMID: 36277912 PMCID: PMC9580494 DOI: 10.3389/fneur.2022.958579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022] Open
Abstract
Background Systemic administration of marrow stromal cells (MSCs) leads to the release of a broad range of factors mediating recovery in rodent stroke models. The release of these factors could depend on the various cell types within the peripheral blood as they contact systemically administered MSCs. In this study, we assessed the immunomodulatory interactions of MSCs with peripheral blood derived monocytes (Mϕ) collected from acute stroke patients. Methods Peripheral blood from stroke patients was collected at 5–7 days (N = 5) after symptom onset and from age-matched healthy controls (N = 5) using mononuclear cell preparation (CPT) tubes. After processing, plasma and other cellular fractions were removed, and Mϕ were isolated from the mononuclear fraction using CD14 microbeads. Mϕ were then either cultured alone or co-cultured with MSCs in a trans-well cell-culture system. Secretomes were analyzed after 24 h of co-cultures using a MAGPIX reader. Results Our results show that there is a higher release of IFN-γ and IL-10 from monocytes isolated from peripheral blood at day 5–7 after stroke compared with monocytes from healthy controls. In trans-well co-cultures of MSCs and monocytes isolated from stroke patients, we found statistically significant increased levels of IL-4 and MCP-1, and decreased levels of IL-6, IL-1β, and TNF-α. Addition of MSCs to monocytes increased the secretions of Fractalkine, IL-6, and MCP-1, while the secretions of TNF-α decreased, as compared to the secretions from monocytes alone. When MSCs were added to monocytes from stroke patients, they decreased the levels of IL-1β, and increased the levels of IL-10 significantly more as compared to when they were added to monocytes from control patients. Conclusion The systemic circulation of stroke patients may differentially interact with MSCs to release soluble factors integral to their paracrine mechanisms of benefit. Our study finds that the effect of MSCs on Mϕ is different on those derived from stroke patients blood as compared to healthy controls. These findings suggest immunomodulation of peripheral immune cells as a therapeutic target for MSCs in patients with acute stroke.
Collapse
Affiliation(s)
- Nikunj Satani
- Department of Neurology, McGovern Medical School, Institute for Stroke and Cerebrovascular Diseases, The University of Texas Health Science Center at Houston, Houston, TX, United States
- *Correspondence: Nikunj Satani
| | - Kaushik Parsha
- Department of Neurology, McGovern Medical School, Institute for Stroke and Cerebrovascular Diseases, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Courtney Davis
- Department of Neurology, McGovern Medical School, Institute for Stroke and Cerebrovascular Diseases, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Adrian Gee
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
| | - Scott D. Olson
- Department of Pediatric Surgery, McGovern Medical School at UTHealth, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jaroslaw Aronowski
- Department of Neurology, McGovern Medical School, Institute for Stroke and Cerebrovascular Diseases, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sean I. Savitz
- Department of Neurology, McGovern Medical School, Institute for Stroke and Cerebrovascular Diseases, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
9
|
Harnett MM, Doonan J, Lumb FE, Crowe J, Damink RO, Buitrago G, Duncombe-Moore J, Wilkinson DI, Suckling CJ, Selman C, Harnett W. The parasitic worm product ES-62 protects the osteoimmunology axis in a mouse model of obesity-accelerated ageing. Front Immunol 2022; 13:953053. [PMID: 36105811 PMCID: PMC9465317 DOI: 10.3389/fimmu.2022.953053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Despite significant increases in human lifespan over the last century, adoption of high calorie diets (HCD) has driven global increases in type-2 diabetes, obesity and cardiovascular disease, disorders precluding corresponding improvements in healthspan. Reflecting that such conditions are associated with chronic systemic inflammation, evidence is emerging that infection with parasitic helminths might protect against obesity-accelerated ageing, by virtue of their evolution of survival-promoting anti-inflammatory molecules. Indeed, ES-62, an anti-inflammatory secreted product of the filarial nematode Acanthocheilonema viteae, improves the healthspan of both male and female C57BL/6J mice undergoing obesity-accelerated ageing and also extends median lifespan in male animals, by positively impacting on inflammatory, adipose metabolic and gut microbiome parameters of ageing. We therefore explored whether ES-62 affects the osteoimmunology axis that integrates environmental signals, such as diet and the gut microbiome to homeostatically regulate haematopoiesis and training of immune responses, which become dysregulated during (obesity-accelerated) ageing. Of note, we find sexual dimorphisms in the decline in bone health, and associated dysregulation of haematopoiesis and consequent peripheral immune responses, during obesity-accelerated ageing, highlighting the importance of developing sex-specific anti-ageing strategies. Related to this, ES-62 protects trabecular bone structure, maintaining bone marrow (BM) niches that counter the ageing-associated decline in haematopoietic stem cell (HSC) functionality highlighted by a bias towards myeloid lineages, in male but not female, HCD-fed mice. This is evidenced by the ability of ES-62 to suppress the adipocyte and megakaryocyte bias and correspondingly promote increases in B lymphocytes in the BM. Furthermore, the consequent prevention of ageing-associated myeloid/lymphoid skewing is associated with reduced accumulation of inflammatory CD11c+ macrophages and IL-1β in adipose tissue, disrupting the perpetuation of inflammation-driven dysregulation of haematopoiesis during obesity-accelerated ageing in male HCD-fed mice. Finally, we report the ability of small drug-like molecule analogues of ES-62 to mimic some of its key actions, particularly in strongly protecting trabecular bone structure, highlighting the translational potential of these studies.
Collapse
Affiliation(s)
- Margaret M. Harnett
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - James Doonan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Felicity E. Lumb
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Jenny Crowe
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Roel Olde Damink
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Geraldine Buitrago
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Josephine Duncombe-Moore
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Debbie I. Wilkinson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Colin J. Suckling
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Colin Selman
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
10
|
Kim J, Tran ANT, Lee JY, Park SH, Park SR, Min BH, Choi BH. Human Fetal Cartilage-Derived Progenitor Cells Exhibit Anti-Inflammatory Effect on IL-1β-Mediated Osteoarthritis Phenotypes In Vitro. Tissue Eng Regen Med 2022; 19:1237-1250. [PMID: 35932427 PMCID: PMC9679083 DOI: 10.1007/s13770-022-00478-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/18/2022] [Accepted: 06/27/2022] [Indexed: 10/15/2022] Open
Abstract
BACKGROUND In this study, we have investigated whether human fetal cartilage progenitor cells (hFCPCs) have anti-inflammatory activity and can alleviate osteoarthritis (OA) phenotypes in vitro. METHODS hFCPCs were stimulated with various cytokines and their combinations and expression of paracrine factors was examined to find an optimal priming factor. Human chondrocytes or SW982 synoviocytes were treated with interleukin-1β (IL-1β) to produce OA phenotype, and co-cultured with polyinosinic-polycytidylic acid (poly(I-C))-primed hFCPCs to address their anti-inflammatory effect by measuring the expression of OA-related genes. The effect of poly(I-C) on the surface marker expression and differentiation of hFCPCs into 3 mesodermal lineages was also examined. RESULTS Among the priming factors tested, poly(I-C) (1 µg/mL) most significantly induced the expression of paracrine factors such as indoleamine 2,3-dioxygenase, histocompatibility antigen, class I, G, tumor necrosis factor- stimulated gene-6, leukemia inhibitory factor, transforming growth factor-β1 and hepatocyte growth factor from hFCPCs. In the OA model in vitro, co-treatment of poly(I-C)-primed hFCPCs significantly alleviated IL-1β-induced expression of inflammatory factors such as IL-6, monocyte chemoattractant protein-1 and IL-1β, and matrix metalloproteinases in SW982, while it increased the expression of cartilage extracellular matrix such as aggrecan and collagen type II in human chondrocytes. We also found that treatment of poly(I-C) did not cause significant changes in the surface marker profile of hFCPCs, while showed some changes in the 3 lineages differentiation. CONCLUSION These results suggest that poly(I-C)-primed hFCPCs have an ability to modulate inflammatory response and OA phenotypes in vitro and encourage further studies to apply them in animal models of OA in the future.
Collapse
Affiliation(s)
- Jiyoung Kim
- Department of Physiology and Biophysics, Inha University College of Medicine, Incheon, 22212, Korea
| | - An Nguyen-Thuy Tran
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea.,Cell Therapy Center, Ajou University Medical Center, Suwon, 16499, Korea
| | - Ji Young Lee
- Department of Biomedical Sciences, Inha University College of Medicine, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Korea
| | - Sang-Hyug Park
- Department of Biomedical Engineering, Pukyong National University, Pusan, 48513, Korea
| | - So Ra Park
- Department of Physiology and Biophysics, Inha University College of Medicine, Incheon, 22212, Korea
| | - Byoung-Hyun Min
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea.,Cell Therapy Center, Ajou University Medical Center, Suwon, 16499, Korea
| | - Byung Hyune Choi
- Department of Biomedical Sciences, Inha University College of Medicine, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Korea.
| |
Collapse
|
11
|
Skibber MA, Olson SD, Prabhakara KS, Gill BS, Cox CS. Enhancing Mesenchymal Stromal Cell Potency: Inflammatory Licensing via Mechanotransduction. Front Immunol 2022; 13:874698. [PMID: 35874742 PMCID: PMC9297916 DOI: 10.3389/fimmu.2022.874698] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/02/2022] [Indexed: 11/22/2022] Open
Abstract
Mesenchymal stromal cells (MSC) undergo functional maturation upon their migration from bone marrow and introduction to a site of injury. This inflammatory licensing leads to heightened immune regulation via cell-to-cell interaction and the secretion of immunomodulatory molecules, such as anti-inflammatory mediators and antioxidants. Pro-inflammatory cytokines are a recognized catalyst of inflammatory licensing; however, biomechanical forces, such as fluid shear stress, are a second, distinct class of stimuli that incite functional maturation. Here we show mechanotransduction, achieved by exposing MSC to various grades of wall shear stress (WSS) within a scalable conditioning platform, enhances the immunomodulatory potential of MSC independent of classical pro-inflammatory cytokines. A dose-dependent effect of WSS on potency is evidenced by production of prostaglandin E2 (PGE2) and indoleamine 2,3 dioxygenase 1 (IDO1), as well as suppression of tumor necrosis factor-α (TNF- α) and interferon-γ (IFN-γ) production by activated immune cells. Consistent, reproducible licensing is demonstrated in adipose tissue and bone marrow human derived MSC without significant impact on cell viability, cellular yield, or identity. Transcriptome analysis of WSS-conditioned BM-MSC elucidates the broader phenotypic implications on the differential expression of immunomodulatory factors. These results suggest mechanotransduction as a viable, scalable pre-conditioning alternative to pro-inflammatory cytokines. Enhancing the immunomodulatory capacity of MSC via biomechanical conditioning represents a novel cell therapy manufacturing approach.
Collapse
Affiliation(s)
- Max A. Skibber
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Scott D. Olson
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- *Correspondence: Scott D. Olson, ; Brijesh S. Gill, ; Charles S. Cox Jr,
| | - Karthik S. Prabhakara
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Brijesh S. Gill
- Department of Surgery, McGovern Medical School, University of Texas Health Science Center At Houston, Houston, TX, United States
- *Correspondence: Scott D. Olson, ; Brijesh S. Gill, ; Charles S. Cox Jr,
| | - Charles S. Cox
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- *Correspondence: Scott D. Olson, ; Brijesh S. Gill, ; Charles S. Cox Jr,
| |
Collapse
|
12
|
Rana N, Suliman S, Mohamed-Ahmed S, Gavasso S, Gjertsen BT, Mustafa K. Systemic and local innate immune responses to surgical co-transplantation of mesenchymal stromal cells and biphasic calcium phosphate for bone regeneration. Acta Biomater 2022; 141:440-453. [PMID: 34968726 DOI: 10.1016/j.actbio.2021.12.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/03/2021] [Accepted: 12/22/2021] [Indexed: 12/23/2022]
Abstract
Bone regeneration from mesenchymal stromal cells (MSC) is attributed to comprehensive immune modulation mediated by the MSC. However, the temporal and spatial regulation of these immune responses has not yet been described. The aim of the present study was to assess the local and systemic innate immune responses to implantation of biphasic calcium phosphate biomaterial (BCP) alone, or with bone marrow derived MSC (BCP+MSC), in critical-sized calvarial bone defects of Lewis rats. Four weeks after implantation, flow cytometry analysis of innate immune cells revealed increased numbers of circulating classical monocyte-macrophages (MM) and decreased non-classical MM in the BCP+MSC group. At week 8, this differential systemic MM response was associated with an increased presence of local tissue anti-inflammatory macrophages expressing CD68 and CD163 markers (M2-like). In the BCP group without MSC, NK cells increased at weeks 1 and 4, and neutrophils increased in circulation at weeks 2 and 8. At week 8, the increase in number of neutrophils in circulation was associated with decreased local tissue neutrophils, in the BCP+MSC group. Gene expression analysis of tissue biopsies from defects implanted with BCP+MSC, in comparison to BCP alone, revealed upregulated expression of early osteogenesis genes along with macrophage differentiation-related genes at weeks 1 and 8 and neutrophil chemotaxis-related genes at week 1. This study is the first to demonstrate that surgical implantation of BCP or BCP+MSC grafts differentially regulate both systemic and local tissue innate immune responses which enhance bone formation. The results provide new insights into immune mechanisms underlying MSC-mediated bone regeneration. STATEMENT OF SIGNIFICANCE: The suitability of biphasic calcium phosphate and mesenchymal stromal cell construct (BCP+MSC) transplantation is evident from their progress in clinical trials for treating challenging maxillofacial bone defects. But less is known about the overall immune response generated by this surgical process and how it later impacts the bone formation. To this end, it is crucial to understand for both clinicians and researchers, the systemic immune response to transplanting MSC in patients for ensuring both the safety and efficacy of cell therapies. In this study, we used rat calvarial bone defect model and showed that both systemic and local innate immunes responses (monocyte-macrophages and neutrophils) are favorably directed towards enhanced bone formation in BCP+MSC implanted defects, as compared to BCP alone.
Collapse
Affiliation(s)
- Neha Rana
- Centre of Translational Oral Research (TOR) - Tissue Engineering Research Group, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Norway
| | - Salwa Suliman
- Centre of Translational Oral Research (TOR) - Tissue Engineering Research Group, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Norway
| | - Samih Mohamed-Ahmed
- Centre of Translational Oral Research (TOR) - Tissue Engineering Research Group, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Norway
| | - Sonia Gavasso
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Norway
| | - Bjørn Tore Gjertsen
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Norway; Department of Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| | - Kamal Mustafa
- Centre of Translational Oral Research (TOR) - Tissue Engineering Research Group, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Norway.
| |
Collapse
|
13
|
Dunbar H, Weiss DJ, Rolandsson Enes S, Laffey JG, English K. The Inflammatory Lung Microenvironment; a Key Mediator in MSC Licensing. Cells 2021; 10:cells10112982. [PMID: 34831203 PMCID: PMC8616504 DOI: 10.3390/cells10112982] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022] Open
Abstract
Recent clinical trials of mesenchymal stromal cell (MSC) therapy for various inflammatory conditions have highlighted the significant benefit to patients who respond to MSC administration. Thus, there is strong interest in investigating MSC therapy in acute inflammatory lung conditions, such as acute respiratory distress syndrome (ARDS). Unfortunately, not all patients respond, and evidence now suggests that the differential disease microenvironment present across patients and sub-phenotypes of disease or across disease severities influences MSC licensing, function and therapeutic efficacy. Here, we discuss the importance of licensing MSCs and the need to better understand how the disease microenvironment influences MSC activation and therapeutic actions, in addition to the need for a patient-stratification approach.
Collapse
Affiliation(s)
- Hazel Dunbar
- Department of Biology, Maynooth University, W23 F2H6 Maynooth, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Ireland
| | - Daniel J Weiss
- Department of Medicine, 226 Health Science Research Facility, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
| | - Sara Rolandsson Enes
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22100 Lund, Sweden;
| | - John G Laffey
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway, H91 W2TY Galway, Ireland;
- Department of Anaesthesia, Galway University Hospitals, SAOLTA University Health Group, H91 YR71 Galway, Ireland
| | - Karen English
- Department of Biology, Maynooth University, W23 F2H6 Maynooth, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Ireland
- Correspondence: ; Tel.: +353-1-7086290
| |
Collapse
|
14
|
Protective Effects of a Hyaluronan-Binding Peptide (P15-1) on Mesenchymal Stem Cells in an Inflammatory Environment. Int J Mol Sci 2021; 22:ijms22137058. [PMID: 34209086 PMCID: PMC8269309 DOI: 10.3390/ijms22137058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/21/2021] [Accepted: 06/26/2021] [Indexed: 12/27/2022] Open
Abstract
Mesenchymal stem cells (MSCs) obtained from various sources, including bone marrow, have been proposed as a therapeutic strategy for the improvement of tissue repair/regeneration, including the repair of cartilage defects or lesions. Often the highly inflammatory environment after injury or during diseases, however, greatly diminishes the therapeutic and reparative effectiveness of MSCs. Therefore, the identification of novel factors that can protect MSCs against an inflammatory environment may enhance the effectiveness of these cells in repairing tissues, such as articular cartilage. In this study, we investigated whether a peptide (P15-1) that binds to hyaluronan (HA), a major component of the extracellular matrix of cartilage, protects bone-marrow-derived MSCs (BMSCs) in an inflammatory environment. The results showed that P15-1 reduced the mRNA levels of catabolic and inflammatory markers in interleukin-1beta (IL-1β)-treated human BMSCs. In addition, P15-1 enhanced the attachment of BMSCs to HA-coated tissue culture dishes and stimulated the chondrogenic differentiation of the multipotential murine C3H/10T1/2 MSC line in a micromass culture. In conclusion, our findings suggest that P15-1 may increase the capacity of BMSCs to repair cartilage via the protection of these cells in an inflammatory environment and the stimulation of their attachment to an HA-containing matrix and chondrogenic differentiation.
Collapse
|
15
|
Atia MM, Alghriany AA. Adipose-derived mesenchymal stem cells rescue rat hippocampal cells from aluminum oxide nanoparticle-induced apoptosis via regulation of P53, Aβ, SOX2, OCT4, and CYP2E1. Toxicol Rep 2021; 8:1156-1168. [PMID: 34150525 PMCID: PMC8190131 DOI: 10.1016/j.toxrep.2021.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/01/2021] [Accepted: 06/02/2021] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cells (MSCs) possess a preventive capacity against free radical toxicity in various tissues. The present study aimed to demonstrate the reformative and treatment roles of adipose-derived MSCs (AD-MSCs) against severe toxicity in the hippocampal cells of the brain caused by aluminum oxide nanoparticles (Al2O3-NPs). Rats were divided into five experimental groups: an untreated control group, a control group receiving NaCl, a group receiving Al2O3-NPs (6 mg/kg) for 20 days, a group that was allowed to recover (R) for 20 days following treatment with Al2O3-NPs, and a Al2O3-NPs + AD-MSCs group, where each rat was injected with 0.8 × 106 AD-MSCs via the caudal vein. Oral administration of Al2O3-NPs increased the protein levels of P53, cleaved caspase-3, CYP2E1, and beta-amyloid (Aβ); contrarily, AD-MSCs transplantation downregulated the levels of these proteins. In addition, the AD-MSCs-treated hippocampal cells were protected from Al2O3-NPs-induced toxicity, as detected by the expression levels of Sox2 and Oct4 that are essential for the maintenance of self-renewal. It was also found that AD-MSCs injection significantly altered the levels of brain total peroxide and monoamine oxidase (MAO)-A and MAO-B activities. Histologically, our results indicated that AD-MSCs alleviated the severe damage in the hippocampal cells induced by Al2O3-NPs. Moreover, the role of AD-MSCs in reducing hippocampal cell death was reinforced by the regulation of P53, cleaved caspase-3, Aβ, and CYP2E1 proteins, as well as by the regulation of SOX2 and OCT4 levels and MAO-A and MAO-B activities.
Collapse
Key Words
- AD-MSCs, adipose-derived mesenchymal stem cells
- Adipose-Derived mesenchymal stem cells
- Al2O3-NPs, Aluminum oxide nanoparticles
- Aluminum oxide nanoparticles
- Apoptosis
- Aβ, amyloid beta
- EGTA, ethylene glycol tetraacetic acid
- Hippocampal cells
- MAO-A and B, monoamine oxidase A, B
- Oct4, octamer-binding transcription factor 4
- ROS, reactive oxygen species
- Sox2, sex-determining region Y-box 2
- TEM, transmission electron microscopy
Collapse
Affiliation(s)
- Mona M. Atia
- Laboratory of Molecular Cell Biology, Department of Zoology, Faculty of Science, Assiut University, Egypt
| | - Alshaimaa A.I. Alghriany
- Laboratory of Molecular Cell Biology, Department of Zoology, Faculty of Science, Assiut University, Egypt
| |
Collapse
|
16
|
Phenotypic Features of Mesenchymal Stem Cell Subpopulations Obtained under the Influence of Various Toll-Like Receptors Ligands. Bull Exp Biol Med 2021; 170:555-559. [PMID: 33725247 DOI: 10.1007/s10517-021-05105-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Indexed: 01/05/2023]
Abstract
The paper characterizes phenotypic features of subpopulations of human adipose tissue mesenchymal stem cells (MSC) resulting from exposure to Toll-like receptors ligands. MSC1 and MSC2 phenotypes were induced by exposure to LPS and polyinosinic-polycytidylic acid, respectively. Different exposures to Toll-like receptors ligands, short-term (3 h) and long-term (24 h), were studied. The cytokine profile of cells with the MSC2 phenotype differed depending on the duration of exposure to the inductor, while the cytokine profile of cells with the MSC1 phenotype remained stable. Morphometric features of mesenchymal stem cells with the MSC1 and MSC2 phenotypes, as well as differences in the IDO gene expression were identified. These differences can be used to distinguish between these cell types.
Collapse
|
17
|
Rusanov AL, Biryukova YK, Shoshina OO, Luzgina ED, Luzgina NG. Activation of TLR4 of Mesenchymal Stem Cells Enhances the Regenerative Properties of Their Secretomes. Bull Exp Biol Med 2021; 170:544-549. [PMID: 33725255 DOI: 10.1007/s10517-021-05103-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Indexed: 11/28/2022]
Abstract
Mesenchymal stem cells (MSC), like macrophages, can be polarized in vitro. In particular, activation of type 4 Toll-like receptor in MSC leads to the appearance of the so-called "proinflammatory" MSC phenotype (MSC1). We showed that secretome (conditioned media) of MSC1 can affect the wound healing processes: promote healing and modulate exudative inflammation and subsequent fibroplastic processes in the damaged area. These effects of secretomes of polarized MSC were superior to those of intact MSC.
Collapse
Affiliation(s)
- A L Rusanov
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia.
| | - Yu K Biryukova
- Perspectiva Research-and-Production Company, Novosibirsk, Russia
| | - O O Shoshina
- Perspectiva Research-and-Production Company, Novosibirsk, Russia
| | - E D Luzgina
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - N G Luzgina
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
18
|
Andia I, Maffulli N. Mesenchymal stromal cell products for intra-articular knee injections for conservative management of osteoarthritis. Ther Adv Musculoskelet Dis 2021; 13:1759720X21996953. [PMID: 33680097 PMCID: PMC7897835 DOI: 10.1177/1759720x21996953] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
Sports injuries and secondary joint problems, mainly of the knee, are common, especially in sports associated with high impact activities and/or torsional loading. The consequences can be career ending in elite athletes and reduce exercise activities in recreational people. Various cell products can be injected intra-articularly. First, fresh cellular mixtures can be prepared and injected in the same day, such as stromal vascular fraction of adipose tissue (SVF) and bone marrow concentrates (BMCs). Second, autologous mesenchymal stromal cells (MSCs) can be isolated from BMCs or SVF and, after several weeks of laboratory expansion, several millions of MSCs can be obtained for intra-articular injection. Finally, allogeneic MSCs from the bone marrow, adipose tissue or perinatal tissues of selected donors constitute an ‘off-the-shelf’ experimental treatment for injection delivery in patients with osteoarthritis of the knee. The perceived efficacy of all these products is based on the hypothesis of a paracrine mechanism of action: when living cells are delivered within the joint, they establish a molecular cross-talk with immune cells and local cell phenotypes, thereby modulating inflammation with subsequent modifications in the catabolic/degenerative milieu. Current clinical research examines whether injection delivery of MSCs translates into actual clinical benefits. Overall, clinical studies lack the quality needed to answer major research questions, including clinical and structural efficacy, optimal cell dose, and number of injections and specific protocol for cell delivery. Poor experimental designs are exacerbated by the diversity of patient phenotypes that hinder comparisons between treatments. Further understanding of disease pathology is paramount to develop potent function assays and understand whether the host tissue, the cell product or both should be primed before MSCs are injected intra-articularly.
Collapse
Affiliation(s)
- Isabel Andia
- Queen Mary University of London, Barts and the London School of Medicine and Dentistry, London E1 4DG, UK
| | - Nicola Maffulli
- Regenerative Therapies, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Bizkaia, Spain
| |
Collapse
|
19
|
Analysis of Same Selected Immunomodulatory Properties of Chorionic Mesenchymal Stem Cells. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10249040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mesenchymal stem cells (MSCs) represent a population of adherent cells that can be isolated from multiple adult tissues. MSCs have immunomodulatory capacity and the ability to differentiate into many cell lines. Research study examines the immunomodulatory properties of MSCs isolated from chorion (CMSCs). Following the stimulation process, it was found that MSCs are capable of immunomodulatory action via the release of bioactive molecules as well as through direct contact with the immune cells. Immunomodulatory potential of the CMSCs was analyzed by modifying proliferative capacity of mitogen-activated lymphocytes. CMSCs and lymphocytes were tested in cell-to-cell contact. Lymphocytes were stained with carboxyfluorescein diacetate succinimidyl ester. Inhibition of the proliferation of activated lymphocytes was observed. Following the co-cultivation, the expression of markers involved in the immune response modulation was assessed. Afterwards, an increase in CMSCs expression of IL-10 was detected. Following the co-cultivation with activated lymphocyte, adhesion molecules CD54 and CD44 in the CMSCs increased. An increase of CD54 expression was observed. The properties of CMSCs, adherence and differentiation ability, were confirmed. The phenotype of CMSCs CD105+, CD90+, CD73+, CD44+, CD29+, CD45−, CD34−, CD54+ was characterized. It was demonstrated that chorion-derived MSCs have important immunomodulatory effects.
Collapse
|
20
|
Vázquez A, Fernández-Sevilla LM, Jiménez E, Pérez-Cabrera D, Yañez R, Subiza JL, Varas A, Valencia J, Vicente A. Involvement of Mesenchymal Stem Cells in Oral Mucosal Bacterial Immunotherapy. Front Immunol 2020; 11:567391. [PMID: 33329530 PMCID: PMC7711618 DOI: 10.3389/fimmu.2020.567391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/19/2020] [Indexed: 12/19/2022] Open
Abstract
Recent clinical observations indicate that bacterial vaccines induce cross-protection against infections produced by different microorganisms. MV130, a polyvalent bacterial sublingual preparation designed to prevent recurrent respiratory infectious diseases, reduces the infection rate in patients with recurrent respiratory tract infections. On the other hand, mesenchymal stem cells (MSCs) are key cell components that contribute to the maintenance of tissue homeostasis and exert both immunostimulatory and immunosuppressive functions. Herein, we study the effects of MV130 in human MSC functionality as a potential mechanism that contributes to its clinical benefits. We provide evidence that during MV130 sublingual immunization of mice, resident oral mucosa MSCs can take up MV130 components and their numbers remain unchanged after vaccination, in contrast to granulocytes that are recruited from extramucosal tissues. MSCs treated in vitro with MV130 show an increased viability without affecting their differentiation potential. In the short-term, MSC treatment with MV130 induces higher leukocyte recruitment and T cell expansion. In contrast, once T-cell activation is initiated, MV130 stimulation induces an up-regulated expression of immunosuppressor factors in MSCs. Accordingly, MV130-primed MSCs reduce T lymphocyte proliferation, induce the differentiation of dendritic cells with immunosuppressive features and favor M2-like macrophage polarization, thus counterbalancing the immune response. In addition, MSCs trained with MV130 undergo functional changes, enhancing their immunomodulatory response to a secondary stimulus. Finally, we show that MSCs are able to uptake, process and retain a reservoir of the TLR ligands derived from MV130 digestion which can be subsequently transferred to dendritic cells, an additional feature that also may be associated to trained immunity.
Collapse
Affiliation(s)
- Alberto Vázquez
- Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Lidia M Fernández-Sevilla
- Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, Madrid, Spain
| | - Eva Jiménez
- Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, Madrid, Spain
| | - David Pérez-Cabrera
- Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Rosa Yañez
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Investigaciones Sanitarias de la Fundación Jiménez Díaz, Madrid, Spain
| | | | - Alberto Varas
- Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, Madrid, Spain
| | - Jaris Valencia
- Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, Madrid, Spain
| | - Angeles Vicente
- Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
21
|
Ruppert KA, Prabhakara KS, Toledano-Furman NE, Udtha S, Arceneaux AQ, Park H, Dao A, Cox CS, Olson SD. Human adipose-derived mesenchymal stem cells for acute and sub-acute TBI. PLoS One 2020; 15:e0233263. [PMID: 32453741 PMCID: PMC7250455 DOI: 10.1371/journal.pone.0233263] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
In the U.S., approximately 1.7 million people suffer traumatic brain injury each year, with many enduring long-term consequences and significant medical and rehabilitation costs. The primary injury causes physical damage to neurons, glia, fiber tracts and microvasculature, which is then followed by secondary injury, consisting of pathophysiological mechanisms including an immune response, inflammation, edema, excitotoxicity, oxidative damage, and cell death. Most attempts at intervention focus on protection, repair or regeneration, with regenerative medicine becoming an intensively studied area over the past decade. The use of stem cells has been studied in many disease and injury models, using stem cells from a variety of sources and applications. In this study, human adipose-derived mesenchymal stromal cells (MSCs) were administered at early (3 days) and delayed (14 days) time points after controlled cortical impact (CCI) injury in rats. Animals were routinely assessed for neurological and vestibulomotor deficits, and at 32 days post-injury, brain tissue was processed by flow cytometry and immunohistochemistry to analyze neuroinflammation. Treatment with HB-adMSC at either 3d or 14d after injury resulted in significant improvements in neurocognitive outcome and a change in neuroinflammation one month after injury.
Collapse
Affiliation(s)
- Katherine A. Ruppert
- Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Karthik S. Prabhakara
- Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Naama E. Toledano-Furman
- Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Sanjna Udtha
- Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Austin Q. Arceneaux
- Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | | | - An Dao
- Hope Biosciences, Sugarland, TX, United States of America
| | - Charles S. Cox
- Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Scott D. Olson
- Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
22
|
Galland S, Martin P, Fregni G, Letovanec I, Stamenkovic I. Attenuation of the pro-inflammatory signature of lung cancer-derived mesenchymal stromal cells by statins. Cancer Lett 2020; 484:50-64. [PMID: 32418888 DOI: 10.1016/j.canlet.2020.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/20/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
Abstract
Solid tumor growth triggers a dynamic host response, which recapitulates wound healing and defines the tumor microenvironment (TME). In addition to the action of the tumor cells themselves, the TME is maintained by a myriad of immune and stromal cell-derived soluble mediators and extracellular matrix components whose combined action supports tumor progression. However, therapeutic targeting of the TME has proven challenging because of incomplete understanding of the tumor-host crosstalk at the molecular level. Here, we investigated the crosstalk between mesenchymal stromal cells (MSCs) and primary cancer cells (PCCs) from human squamous cell lung carcinoma (SCC). We discovered that PCCs secrete CCL3 and stimulate IL-6, CCL2, ICAM-1 and VCAM-1 expression in MSCs and that the MSC-PCC crosstalk can be disrupted by the lipid-lowering drug simvastatin, which displays pleiotropic effects on cell metabolism and suppresses IL-6 and CCL2 production by MSCs and CCL3 secretion by PCCs. In addition, simvastatin inhibited spheroid formation by PCCs and negatively affected PCC survival. Our observations demonstrate that commonly used statins may be repurposed to target the TME in lung carcinoma.
Collapse
Affiliation(s)
- Sabine Galland
- Experimental Pathology Service, Institute of Pathology, CHUV, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 25, 1011, Lausanne, Switzerland.
| | - Patricia Martin
- Experimental Pathology Service, Institute of Pathology, CHUV, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 25, 1011, Lausanne, Switzerland
| | - Giulia Fregni
- Experimental Pathology Service, Institute of Pathology, CHUV, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 25, 1011, Lausanne, Switzerland
| | - Igor Letovanec
- Clinical Pathology Service, Institute of Pathology, CHUV, Rue du Bugnon 25, 1011, Lausanne, Switzerland
| | - Ivan Stamenkovic
- Experimental Pathology Service, Institute of Pathology, CHUV, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 25, 1011, Lausanne, Switzerland
| |
Collapse
|
23
|
Shammaa R, El-Kadiry AEH, Abusarah J, Rafei M. Mesenchymal Stem Cells Beyond Regenerative Medicine. Front Cell Dev Biol 2020; 8:72. [PMID: 32133358 PMCID: PMC7040370 DOI: 10.3389/fcell.2020.00072] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are competent suitors of cellular therapy due to their therapeutic impact on tissue degeneration and immune-based pathologies. Additionally, their homing and immunomodulatory properties can be exploited in cancer malignancies to transport pharmacological entities, produce anti-neoplastic agents, or induce anti-tumor immunity. Herein, we create a portfolio for MSC properties, showcasing their distinct multiple therapeutic utilities and successes/challenges thereof in both animal studies and clinical trials. We further highlight the promising potential of MSCs not only in cancer management but also in instigating tumor-specific immunity - i.e., cancer vaccination. Finally, we reflect on the possible reasons impeding the clinical advancement of MSC-based cancer vaccines to assist in contriving novel methodologies from which a therapeutic milestone might emanate.
Collapse
Affiliation(s)
- Riam Shammaa
- Canadian Centre for Regenerative Therapy, Toronto, ON, Canada.,IntelliStem Technologies Inc., Toronto, ON, Canada.,Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| | - Abed El-Hakim El-Kadiry
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Montreal, QC, Canada.,Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada
| | - Jamilah Abusarah
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Moutih Rafei
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.,Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada.,Molecular Biology Program, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
24
|
Galland S, Stamenkovic I. Mesenchymal stromal cells in cancer: a review of their immunomodulatory functions and dual effects on tumor progression. J Pathol 2019; 250:555-572. [PMID: 31608444 PMCID: PMC7217065 DOI: 10.1002/path.5357] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/03/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem or stromal cells (MSCs) are pluripotent cells implicated in a broad range of physiological events, including organogenesis and maintenance of tissue homeostasis as well as tissue regeneration and repair. Because their current definition is somewhat loose – based primarily on their ability to differentiate into a variety of mesenchymal tissues, adhere to plastic, and express, or lack, a handful of cell surface markers – MSCs likely encompass several subpopulations, which may have diverse properties. Their diversity may explain, at least in part, the pleiotropic functions that they display in different physiological and pathological settings. In the context of tissue injury, MSCs can respectively promote and attenuate inflammation during the early and late phases of tissue repair. They may thereby act as sensors of the inflammatory response and secrete mediators that boost or temper the response as required by the stage of the reparatory and regenerative process. MSCs are also implicated in regulating tumor development, in which they are increasingly recognized to play a complex role. Thus, MSCs can both promote and constrain tumor progression by directly affecting tumor cells via secreted mediators and cell–cell interactions and by modulating the innate and adaptive immune response. This review summarizes our current understanding of MSC involvement in tumor development and highlights the mechanistic underpinnings of their implication in tumor growth and progression. © 2020 Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Sabine Galland
- Laboratory of Experimental Pathology, Institute of Pathology, CHUV, Lausanne, Switzerland
| | - Ivan Stamenkovic
- Laboratory of Experimental Pathology, Institute of Pathology, CHUV, Lausanne, Switzerland
| |
Collapse
|
25
|
Mesenchymal stem cell-derived extracellular vesicles improve the molecular phenotype of isolated rat lungs during ischemia/reperfusion injury. J Heart Lung Transplant 2019; 38:1306-1316. [PMID: 31530458 DOI: 10.1016/j.healun.2019.08.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/14/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Lung ischemia/reperfusion (IR) injury contributes to the development of severe complications in patients undergoing transplantation. Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) exert beneficial actions comparable to those of MSCs without the risks of the cell-based strategy. This research investigated EV effects during IR injury in isolated rat lungs. METHODS An established model of 180-minutes ex vivo lung perfusion (EVLP) was used. At 60 minutes EVs (n = 5) or saline (n = 5) were administered. Parallel experiments used labeled EVs to determine EV biodistribution (n = 4). Perfusate samples were collected to perform gas analysis and to assess the concentration of nitric oxide (NO), hyaluronan (HA), inflammatory mediators, and leukocytes. Lung biopsies were taken at 180 minutes to evaluate HA, adenosine triphosphate (ATP), gene expression, and histology. RESULTS Compared with untreated lungs, EV-treated organs showed decreased vascular resistance and a rise of perfusate NO metabolites. EVs prevented the reduction in pulmonary ATP caused by IR. Increased medium-high-molecular-weight HA was detected in the perfusate and in the lung tissue of the IR + EV group. Significant differences in cell count on perfusate and tissue samples, together with induction of transcription and synthesis of chemokines, suggested EV-dependent modulation of leukocyte recruitment. EVs upregulated genes involved in the resolution of inflammation and oxidative stress. Biodistribution analysis showed that EVs were retained in the lung tissue and internalized within pulmonary cells. CONCLUSIONS This study shows multiple novel EV influences on pulmonary energetics, tissue integrity, and gene expression during IR. The use of cell-free therapies during EVLP could constitute a valuable strategy for reconditioning and repair of injured lungs before transplantation.
Collapse
|
26
|
Hillmann A, Paebst F, Brehm W, Piehler D, Schubert S, Tárnok A, Burk J. A novel direct co-culture assay analyzed by multicolor flow cytometry reveals context- and cell type-specific immunomodulatory effects of equine mesenchymal stromal cells. PLoS One 2019; 14:e0218949. [PMID: 31247035 PMCID: PMC6597077 DOI: 10.1371/journal.pone.0218949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 06/12/2019] [Indexed: 12/13/2022] Open
Abstract
The immunomodulatory potential of multipotent mesenchymal stromal cells (MSC) provides a basis for current and future regenerative therapies. In this study, we established an approach that allows to address the effects of pro-inflammatory stimulation and co-culture with MSC on different specific leukocyte subpopulations. Equine peripheral blood leukocyte recovery was optimized to preserve all leukocyte subpopulations and leukocyte activation regimes were evaluated. Allogeneic labeled equine adipose-derived MSC were then subjected to direct co-culture with either non-stimulated, concanavalin A (ConA)-activated or phosphate 12-myristate 13-acetate and ionomycin (PMA/I)-activated leukocytes. Subsequently, production of the cytokines interferon-γ (IFN- γ), interleukin-1 (IL-1) and tumor necrosis factor-α (TNF-α) and presence of FoxP3 were determined in specific cell populations using multicolor flow cytometry. Prostaglandin E2 (PGE2) was measured in the supernatants. ConA-stimulation induced mild activation of leukocytes, whereas PMA/I-stimulation led to strong activation. In T cells, PMA/I promoted production of all cytokines, with no distinct suppressive effects of MSC. However, increased numbers of CD25/FoxP3-positive cells indicated that MSC supported regulatory T cell differentiation in PMA/I-activated leukocyte cultures. MSC also reduced numbers of cytokine-producing B cells and granulocytes, mostly irrespective of preceding leukocyte activation, and reversed the stimulatory effect of ConA on IFN-γ production in monocytes. Illustrating the possible suppressive mechanisms, higher numbers of MSC produced IL-10 when co-cultured with non-stimulated or ConA-activated leukocytes. This was not observed in co-culture with PMA/I-activated leukocytes. However, PGE2 concentration in the supernatant was highest in the co-culture with PMA/I-activated leukocytes, suggesting that PGE2 could still mediate modulatory effects in strongly inflammatory environment. These context- and cell type-specific modulatory effects observed give insight into the interactions between MSC and different types of immune cells and highlight the roles of IL-10 and PGE2 in MSC-mediated immunomodulation. The approach presented could provide a basis for further functional MSC characterization and the development of potency assays.
Collapse
Affiliation(s)
- Aline Hillmann
- Saxon Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
- Faculty of Veterinary Medicine, Equine Clinic & Hospital, University of Leipzig, Leipzig, Germany
- Faculty of Veterinary Medicine, Institute of Veterinary Physiology, University of Leipzig, Leipzig, Germany
- * E-mail:
| | - Felicitas Paebst
- Faculty of Veterinary Medicine, Equine Clinic & Hospital, University of Leipzig, Leipzig, Germany
- Horse Power Veterinary Center, Naharya, Israel
| | - Walter Brehm
- Saxon Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
- Faculty of Veterinary Medicine, Equine Clinic & Hospital, University of Leipzig, Leipzig, Germany
| | | | - Susanna Schubert
- Saxon Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
- Faculty of Veterinary Medicine, Institute of Veterinary Physiology, University of Leipzig, Leipzig, Germany
| | - Attila Tárnok
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), Faculty of Medicine, University of Leipzig, Leipzig, Germany
- Department of Therapy Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Janina Burk
- Saxon Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
- Faculty of Veterinary Medicine, Institute of Veterinary Physiology, University of Leipzig, Leipzig, Germany
- Equine Clinic (Surgery), Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
27
|
Diaz-Rodriguez P, Erndt-Marino J, Chen H, Diaz-Quiroz JF, Samavedi S, Hahn MS. A Bioengineered In Vitro Osteoarthritis Model with Tunable Inflammatory Environments Indicates Context-Dependent Therapeutic Potential of Human Mesenchymal Stem Cells. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/s40883-019-00109-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
28
|
Srivastava AK, Prabhakara KS, Kota DJ, Bedi SS, Triolo F, Brown KS, Skiles ML, Brown HL, Cox CS, Olson SD. Human umbilical cord blood cells restore vascular integrity in injured rat brain and modulate inflammation in vitro. Regen Med 2019; 14:295-307. [PMID: 31074319 DOI: 10.2217/rme-2018-0106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: Traumatic brain injury is a complex condition consisting of a mechanical injury with neurovascular disruption and inflammation with limited clinical interventions available. A growing number of studies report systemic delivery of human umbilical cord blood (HUCB) as a therapy for neural injuries. Materials & methods: HUCB cells from five donors were tested to improve blood-brain barrier integrity in a traumatic brain injury rat model at a dose of 2.5 × 107 cells/kg at 24 or 72 h postinjury and for immunomodulatory activity in vitro. Results & Conclusion: We observed that cells delivered 72 h postinjury significantly restored blood-brain barrier integrity. HUCB cells reduced the amount of TNF-α and IFN-γ released by activated primary rat splenocytes, which correlated with the expression of COX2 and IDO1.
Collapse
Affiliation(s)
- Amit K Srivastava
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, TX, 77030, USA
| | - Karthik S Prabhakara
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, TX, 77030, USA
| | - Daniel J Kota
- Emory Personalized Immunotherapy Core Labs, Emory University, School of Medicine, Atlanta, GA 30322, USA
| | - Supinder S Bedi
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, TX, 77030, USA
| | - Fabio Triolo
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, TX, 77030, USA
| | | | | | | | - Charles S Cox
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, TX, 77030, USA
| | - Scott D Olson
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, TX, 77030, USA
| |
Collapse
|
29
|
Nordgren TM, Bailey KL, Heires AJ, Katafiasz D, Romberger DJ. Effects of Agricultural Organic Dusts on Human Lung-Resident Mesenchymal Stem (Stromal) Cell Function. Toxicol Sci 2019; 162:635-644. [PMID: 29319804 DOI: 10.1093/toxsci/kfx286] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Agricultural organic dust exposures trigger harmful airway inflammation, and workers experiencing repetitive dust exposures are at increased risk for lung disease. Mesenchymal stem/stromal cells (MSCs) regulate wound repair processes in the lung, and may contribute to either proresolution or -fibrotic lung responses. It is unknown how organic dust exposures alter lung-resident MSC activation and proinflammatory versus prorepair programs in the lung. To address this gap in knowledge, we isolated human lung-resident MSC from lung tissue. Cells were stimulated with aqueous extracts of organic dusts (DE) derived from swine confinement facilities and were assessed for changes in proliferative and migratory capacities, and production of proinflammatory and prorepair mediators. Through these investigations, we found that DE induces significant release of proinflammatory mediators TNF-α, IL-6, IL-8, and matrix metalloproteases, while also inducing the production of prorepair mediators amphiregulin, FGF-10, and resolvin D1. In addition, DE significantly reduced the growth and migratory capacities of lung-resident MSC. Together, these investigations indicate lung-resident MSC activation and wound repair activities are altered by organic dust exposures. These findings warrant future investigations to assess how organic dusts affect lung-resident mesenchymal stem/stromal cell function and impact airway inflammation, injury, and repair during agricultural aerosol exposures.
Collapse
Affiliation(s)
- Tara M Nordgren
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198.,Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California 92521
| | - Kristina L Bailey
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198.,VA Nebraska-Western Iowa Healthcare System, Omaha, Nebraska 68105
| | - Art J Heires
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Dawn Katafiasz
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Debra J Romberger
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198.,VA Nebraska-Western Iowa Healthcare System, Omaha, Nebraska 68105
| |
Collapse
|
30
|
Khosravi M, Bidmeshkipour A, Cohen JL, Moravej A, Hojjat-Assari S, Naserian S, Karimi MH. Induction of CD4 +CD25 +FOXP3 + regulatory T cells by mesenchymal stem cells is associated with modulation of ubiquitination factors and TSDR demethylation. Stem Cell Res Ther 2018; 9:273. [PMID: 30359308 PMCID: PMC6203284 DOI: 10.1186/s13287-018-0991-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 12/11/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) are known for their ability to induce the conversion of conventional T cells (Tconvs) into induced regulatory T cells (iTregs) in specific inflammatory contexts. Stable Foxp3 expression plays a major role in the phenotypic and functional stability of iTregs. However, how MSCs induce stable Foxp3 expression remains unknown. Methods We first investigated the role of cell–cell contact and cytokine secretion by bone marrow-derived MSCs (BM-MSCs) on the induction, stability, and suppressive functions of Tregs under various experimental conditions that lead to Foxp3 generation by flow cytometry and ELISA respectively. Second, we studied the effect of MSCs on TRAF6, GRAIL, USP7, STUB1, and UBC13 mRNA expression in CD4+ T cells in correlation with the suppressive function of iTregs by real-time PCR; also, we investigated Foxp3 Treg-specific demethylated region (TSDR) methylation in correlation with Foxp3 stability by the high-resolution melting technique. Third, we studied the effect of ex-vivo-expanded BM-MSCs on the induction of transplant tolerance in a model of fully allogeneic skin transplantation. We further analyzed the cytokine secretion patterns in grafted mice as well as the mRNA expression of ubiquitination genes in CD4+ T cells collected from the spleens of protected mice. Results We found that in-vitro MSC-induced Tregs express high mRNA levels of ubiquitination genes such as TRAF6, GRAIL, and USP7 and low levels of STUB1. Moreover, they have enhanced TSDR demethylation. Infusion of MSCs in a murine model of allogeneic skin transplantation prolonged allograft survival. When CD4+ T cells were harvested from the spleens of grafted mice, we observed that mRNA expression of the Foxp3 gene was elevated. Furthermore, Foxp3 mRNA expression was associated with increased TRAF6, GRAIL, UBC13, and USP7 and decreased STUB1 mRNA levels compared with the levels observed in vitro. Conclusions Our data suggest a possible ubiquitination mechanism by which MSCs convert Tconvs to suppressive and stable iTregs. Electronic supplementary material The online version of this article (10.1186/s13287-018-0991-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maryam Khosravi
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran.,Inserm, U955, Equipe 21, F-94000, Créteil, France
| | - Ali Bidmeshkipour
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - José L Cohen
- Université Paris-Est, UMR_S955, UPEC, F-94000, Créteil, France.,Inserm, U955, Equipe 21, F-94000, Créteil, France.,UPEC, APHP, Inserm, CIC Biothérapie, Hôpital Henri Mondor, 94010, Créteil, France
| | - Ali Moravej
- Noncommunicable Diseases Research Centre, Fasa University of Medical Sciences, Fasa, Iran
| | - Suzzan Hojjat-Assari
- Institut Français de Recherche et d'Enseignement Supérieur à l'International (IFRES-INT), Paris, France
| | - Sina Naserian
- Université Paris-Est, UMR_S955, UPEC, F-94000, Créteil, France.,Inserm, U955, Equipe 21, F-94000, Créteil, France.,Inserm, U1197, Hôpital Paul Brousse, 94807, Villejuif, France.,SivanCell, Alborz University of Medical Sciences, Alborz, Iran
| | | |
Collapse
|
31
|
Coatti GC, Frangini M, Valadares MC, Gomes JP, Lima NO, Cavaçana N, Assoni AF, Pelatti MV, Birbrair A, de Lima ACP, Singer JM, Rocha FMM, Da Silva GL, Mantovani MS, Macedo-Souza LI, Ferrari MFR, Zatz M. Pericytes Extend Survival of ALS SOD1 Mice and Induce the Expression of Antioxidant Enzymes in the Murine Model and in IPSCs Derived Neuronal Cells from an ALS Patient. Stem Cell Rev Rep 2018; 13:686-698. [PMID: 28710685 DOI: 10.1007/s12015-017-9752-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is one of the most common adult-onset motor neuron disease causing a progressive, rapid and irreversible degeneration of motor neurons in the cortex, brain stem and spinal cord. No effective treatment is available and cell therapy clinical trials are currently being tested in ALS affected patients. It is well known that in ALS patients, approximately 50% of pericytes from the spinal cord barrier are lost. In the central nervous system, pericytes act in the formation and maintenance of the blood-brain barrier, a natural defense that slows the progression of symptoms in neurodegenerative diseases. Here we evaluated, for the first time, the therapeutic effect of human pericytes in vivo in SOD1 mice and in vitro in motor neurons and other neuronal cells derived from one ALS patient. Pericytes and mesenchymal stromal cells (MSCs) were derived from the same adipose tissue sample and were administered to SOD1 mice intraperitoneally. The effect of the two treatments was compared. Treatment with pericytes extended significantly animals survival in SOD1 males, but not in females that usually have a milder phenotype with higher survival rates. No significant differences were observed in the survival of mice treated with MSCs. Gene expression analysis in brain and spinal cord of end-stage animals showed that treatment with pericytes can stimulate the host antioxidant system. Additionally, pericytes induced the expression of SOD1 and CAT in motor neurons and other neuronal cells derived from one ALS patient carrying a mutation in FUS. Overall, treatment with pericytes was more effective than treatment with MSCs. Our results encourage further investigations and suggest that pericytes may be a good option for ALS treatment in the future. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Giuliana Castello Coatti
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of Sao Paulo (USP), Rua do Matāo 106, São Paulo, SP, CEP 05508-030, Brazil
| | - Miriam Frangini
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| | - Marcos C Valadares
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of Sao Paulo (USP), Rua do Matāo 106, São Paulo, SP, CEP 05508-030, Brazil
| | - Juliana Plat Gomes
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of Sao Paulo (USP), Rua do Matāo 106, São Paulo, SP, CEP 05508-030, Brazil
| | - Natalia O Lima
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of Sao Paulo (USP), Rua do Matāo 106, São Paulo, SP, CEP 05508-030, Brazil
| | - Natale Cavaçana
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of Sao Paulo (USP), Rua do Matāo 106, São Paulo, SP, CEP 05508-030, Brazil
| | - Amanda F Assoni
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of Sao Paulo (USP), Rua do Matāo 106, São Paulo, SP, CEP 05508-030, Brazil
| | - Mayra V Pelatti
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of Sao Paulo (USP), Rua do Matāo 106, São Paulo, SP, CEP 05508-030, Brazil
| | - Alexander Birbrair
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pathology, University Federal of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Julio M Singer
- Department of Statistics, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | | | | | | | - Lucia Inês Macedo-Souza
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of Sao Paulo (USP), Rua do Matāo 106, São Paulo, SP, CEP 05508-030, Brazil
| | - Merari F R Ferrari
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of Sao Paulo (USP), Rua do Matāo 106, São Paulo, SP, CEP 05508-030, Brazil
| | - Mayana Zatz
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of Sao Paulo (USP), Rua do Matāo 106, São Paulo, SP, CEP 05508-030, Brazil.
| |
Collapse
|
32
|
Bone marrow lympho-myeloid malfunction in obesity requires precursor cell-autonomous TLR4. Nat Commun 2018; 9:708. [PMID: 29453396 PMCID: PMC5816016 DOI: 10.1038/s41467-018-03145-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/23/2018] [Indexed: 12/21/2022] Open
Abstract
Obesity, a prevalent condition in adults and children, impairs bone marrow (BM) function. However, the underlying mechanisms are unclear. Here, we show that obese mice exhibit poor emergency immune responses in a toll-like receptor 4 (TLR4)-dependent manner. Canonical myeloid genes (Csf1r, Spi1, Runx1) are enhanced, and lymphoid genes (Flt3, Tcf3, Ebf1) are reduced. Using adoptive transfer and mixed BM chimera approaches we demonstrate that myeloid>lymphoid bias arises after 6 weeks of high-fat diet and depends on precursor cell-autonomous TLR4. Further, lean mice exposed to the TLR4 ligand lipopolysaccharide (LPS) at doses similar to that detectable in obese serum recapitulates BM lympho-myeloid alterations. Together, these results establish a mechanistic contribution of BM cell-intrinsic TLR4 to obesity-driven BM malfunction and demonstrate the importance of LPS. Our findings raises important questions about the impact of maternal obesity and endotoxemia to fetal hematopoiesis, as fetal immune precursors are also sensitive to TLR4 signals. Obesity can affect bone marrow cell differentiation and the generation of myeloid and lymphoid cells. Here, the authors show that diet and obesity, as well as low-dose lipopolysaccharide, can alter Toll-like receptor 4 signaling bone marrow cells to skew the myeloid-lymphoid homeostasis in mice.
Collapse
|
33
|
Harting MT, Srivastava AK, Zhaorigetu S, Bair H, Prabhakara KS, Toledano Furman NE, Vykoukal JV, Ruppert KA, Cox CS, Olson SD. Inflammation-Stimulated Mesenchymal Stromal Cell-Derived Extracellular Vesicles Attenuate Inflammation. Stem Cells 2017; 36:79-90. [PMID: 29076623 DOI: 10.1002/stem.2730] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 09/28/2017] [Accepted: 10/22/2017] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs) secreted by mesenchymal stromal cells (MSCs) have been proposed to be a key mechanistic link in the therapeutic efficacy of cells in response to cellular injuries through paracrine effects. We hypothesize that inflammatory stimulation of MSCs results in the release of EVs that have greater anti-inflammatory effects. The present study evaluates the immunomodulatory abilities of EVs derived from inflammation-stimulated and naive MSCs (MSCEv+ and MSCEv, respectively) isolated using a current Good Manufacturing Practice-compliant tangential flow filtration system. Detailed characterization of both EVs revealed differences in protein composition, cytokine profiles, and RNA content, despite similarities in size and expression of common surface markers. MSCEv+ further attenuated release of pro-inflammatory cytokines in vitro when compared to MSCEv, with a distinctly different pattern of EV-uptake by activated primary leukocyte subpopulations. The efficacy of EVs was partially attributed to COX2/PGE2 expression. The present study demonstrates that inflammatory stimulation of MSCs renders release of EVs that have enhanced anti-inflammatory properties partially due to COX2/PGE2 pathway alteration. Stem Cells 2018;36:79-90.
Collapse
Affiliation(s)
- Matthew T Harting
- Department of Pediatric Surgery, University of Texas McGovern Medical School, Houston, Texas, USA
| | - Amit K Srivastava
- Department of Pediatric Surgery, University of Texas McGovern Medical School, Houston, Texas, USA
| | - Siqin Zhaorigetu
- Department of Pediatric Surgery, University of Texas McGovern Medical School, Houston, Texas, USA
| | - Henry Bair
- Department of Pediatric Surgery, University of Texas McGovern Medical School, Houston, Texas, USA
| | - Karthik S Prabhakara
- Department of Pediatric Surgery, University of Texas McGovern Medical School, Houston, Texas, USA
| | - Naama E Toledano Furman
- Department of Pediatric Surgery, University of Texas McGovern Medical School, Houston, Texas, USA
| | - Jody V Vykoukal
- McCombs Institute for the Early Detection and Treatment of Cancer, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Katherine A Ruppert
- Department of Pediatric Surgery, University of Texas McGovern Medical School, Houston, Texas, USA
| | - Charles S Cox
- Department of Pediatric Surgery, University of Texas McGovern Medical School, Houston, Texas, USA
| | - Scott D Olson
- Department of Pediatric Surgery, University of Texas McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
34
|
The Immunomodulatory Effects of Mesenchymal Stem Cell Polarization within the Tumor Microenvironment Niche. Stem Cells Int 2017; 2017:4015039. [PMID: 29181035 PMCID: PMC5664329 DOI: 10.1155/2017/4015039] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/11/2017] [Accepted: 07/16/2017] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) represent a promising tool for cell therapy, particularly for their antitumor effects. This cell population can be isolated from multiple tissue sources and also display an innate ability to home to areas of inflammation, such as tumors. Upon entry into the tumor microenvironment niche, MSCs promote or inhibit tumor progression by various mechanisms, largely through the release of soluble factors. These factors can be immunomodulatory by activating or inhibiting both the adaptive and innate immune responses. The mechanisms by which MSCs modulate the immune response are not well understood. Because of this, the relationship between MSCs and immune cells within the tumor microenvironment niche continues to be an active area of research in order to help explain the apparent contradictory findings currently available in the literature. The ongoing research aims to enhance the potential of MSCs in future therapeutic applications.
Collapse
|
35
|
Activated Tissue-Resident Mesenchymal Stromal Cells Regulate Natural Killer Cell Immune and Tissue-Regenerative Function. Stem Cell Reports 2017; 9:985-998. [PMID: 28781075 PMCID: PMC5599186 DOI: 10.1016/j.stemcr.2017.06.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 06/29/2017] [Accepted: 06/29/2017] [Indexed: 12/18/2022] Open
Abstract
The interaction of mesenchymal stromal cells (MSCs) with natural killer (NK) cells is traditionally thought of as a static inhibitory model, whereby resting MSCs inhibit NK cell effector function. Here, we use a dynamic in vitro system of poly(I:C) stimulation to model the interaction of NK cells and tissue-resident MSCs in the context of infection or tissue injury. The experiments suggest a time-dependent system of regulation and feedback, where, at early time points, activated MSCs secrete type I interferon to enhance NK cell effector function, while at later time points TGF-β and IL-6 limit NK cell effector function and terminate inflammatory responses by induction of a regulatory senescent-like NK cell phenotype. Importantly, feedback of these regulatory NK cells to MSCs promotes survival, proliferation, and pro-angiogenic properties. Our data provide additional insight into the interaction of stromal cells and innate immune cells and suggest a model of time-dependent MSC polarization and licensing.
Collapse
|
36
|
Bartlett RS, Guille JT, Chen X, Christensen MB, Wang SF, Thibeault SL. Mesenchymal stromal cell injection promotes vocal fold scar repair without long-term engraftment. Cytotherapy 2017; 18:1284-96. [PMID: 27637759 DOI: 10.1016/j.jcyt.2016.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/18/2016] [Accepted: 07/24/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Regenerative medicine holds promise for restoring voice in patients with vocal fold scarring. As experimental treatments approach clinical translation, several considerations remain. Our objective was to evaluate efficacy and biocompatibility of four bone marrow mesenchymal stromal cell (BM-MSC) and tunable hyaluronic acid based hydrogel (HyStem-VF) treatments for vocal fold scar using clinically acceptable materials, a preclinical sample size and a dosing comparison. METHODS Vocal folds of 84 rabbits were injured and injected with four treatment variations (BM-MSC, HyStem-VF, and BM-MSC in HyStem-VF at two concentrations) 6 weeks later. Efficacy was assessed with rheometry, real-time polymerase chain reaction (RT-PCR) and histology at 2, 4 and 10 weeks following treatment. Lung, liver, kidney, spleen and vocal folds were screened for biocompatibility by a pathologist. RESULTS AND DISCUSSION Persistent inflammation was identified in all hydrogel-injected groups. The BM-MSC alone treatment appeared to be the most efficacious and safe, providing an early resolution of viscoelasticity, gene expression consistent with desirable extracellular matrix remodeling (less fibronectin, collagen 1α2, collagen 3, procollagen, transforming growth factor [TGF]β1, alpha smooth muscle actin, interleukin-1β, interleukin-17β and tumor necrosis factor [TNF] than injured controls) and minimal inflammation. Human beta actin expression in BM-MSC-treated vocal folds was minimal after 2 weeks, suggesting that paracrine signaling from the BM-MSCs may have facilitated tissue repair.
Collapse
Affiliation(s)
- R S Bartlett
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - J T Guille
- Department of ENT and Head and Neck Surgery, University Hospital of Pointe à Pitre, Guadeloupe, French West Indies
| | - X Chen
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - M B Christensen
- National Center for Voice and Speech, University of Utah, Salt Lake City, Utah, USA
| | - S F Wang
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - S L Thibeault
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
37
|
Nwabo Kamdje AH, Kamga PT, Simo RT, Vecchio L, Seke Etet PF, Muller JM, Bassi G, Lukong E, Goel RK, Amvene JM, Krampera M. Mesenchymal stromal cells' role in tumor microenvironment: involvement of signaling pathways. Cancer Biol Med 2017; 14:129-141. [PMID: 28607804 PMCID: PMC5444925 DOI: 10.20892/j.issn.2095-3941.2016.0033] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are adult multipotent stem cells residing as pericytes in various tissues and organs where they can differentiate into specialized cells to replace dying cells and damaged tissues. These cells are commonly found at injury sites and in tumors that are known to behave like " wounds that do not heal." In this article, we discuss the mechanisms of MSCs in migrating, homing, and repairing injured tissues. We also review a number of reports showing that tumor microenvironment triggers plasticity mechanisms in MSCs to induce malignant neoplastic tissue formation, maintenance, and chemoresistance, as well as tumor growth. The antitumor properties and therapeutic potential of MSCs are also discussed.
Collapse
Affiliation(s)
| | - Paul Takam Kamga
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Richard Tagne Simo
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Lorella Vecchio
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | | | - Jean Marc Muller
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Giulio Bassi
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Erique Lukong
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Raghuveera Kumar Goel
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Jeremie Mbo Amvene
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Mauro Krampera
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| |
Collapse
|
38
|
Najar M, Krayem M, Meuleman N, Bron D, Lagneaux L. Mesenchymal Stromal Cells and Toll-Like Receptor Priming: A Critical Review. Immune Netw 2017; 17:89-102. [PMID: 28458620 PMCID: PMC5407987 DOI: 10.4110/in.2017.17.2.89] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/24/2017] [Accepted: 02/25/2017] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal Stromal Cells (MSCs) are potential cellular candidates for several immunotherapy purposes. Their multilineage potential and immunomodulatory properties make them interesting tools for the treatment of various immunological diseases. However, depending on the local microenvironment, diverse biological functions of MSCs can be modulated. Indeed, during infections such as obtained following TLR-agonist engagement (called as TLR priming), the phenotype, multilineage potential, hematopoietic support and immunomodulatory capacity of MSCs can present critical changes, which could further affect their therapeutic potential. Thus, for appropriate clinical application of MSCs, it is important to well know and understand these effects in particular during infectious episodes and to find the suitable experimental settings to study that. Pre-stimulation of MSCs with a specific TLR ligand may serve as an effective priming step to modulate one of its function to achieve a desired therapeutic issue.
Collapse
Affiliation(s)
- Mehdi Najar
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Belgium
| | - Mohammad Krayem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Brussels 1000, Belgium
| | - Nathalie Meuleman
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Belgium
| | - Dominique Bron
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Belgium
| |
Collapse
|
39
|
Kota DJ, Prabhakara KS, Toledano-Furman N, Bhattarai D, Chen Q, DiCarlo B, Smith P, Triolo F, Wenzel PL, Cox CS, Olson SD. Prostaglandin E2 Indicates Therapeutic Efficacy of Mesenchymal Stem Cells in Experimental Traumatic Brain Injury. Stem Cells 2017; 35:1416-1430. [DOI: 10.1002/stem.2603] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Daniel J. Kota
- Children-s Health Research Center; Sanford Research; Sioux Falls South Dakota USA
| | - Karthik S. Prabhakara
- Department of Pediatric Surgery; University of Texas Health Science Center at Houston; Houston Texas USA
| | - Naama Toledano-Furman
- Department of Pediatric Surgery; University of Texas Health Science Center at Houston; Houston Texas USA
| | - Deepa Bhattarai
- Department of Pediatric Surgery; University of Texas Health Science Center at Houston; Houston Texas USA
| | - Qingzheng Chen
- Department of Pediatric Surgery; University of Texas Health Science Center at Houston; Houston Texas USA
| | - Bryan DiCarlo
- Department of Pediatric Surgery; University of Texas Health Science Center at Houston; Houston Texas USA
| | - Philippa Smith
- Department of Pediatric Surgery; University of Texas Health Science Center at Houston; Houston Texas USA
| | - Fabio Triolo
- Department of Pediatric Surgery; University of Texas Health Science Center at Houston; Houston Texas USA
| | - Pamela L. Wenzel
- Department of Pediatric Surgery; University of Texas Health Science Center at Houston; Houston Texas USA
| | - Charles S. Cox
- Department of Pediatric Surgery; University of Texas Health Science Center at Houston; Houston Texas USA
| | - Scott D. Olson
- Department of Pediatric Surgery; University of Texas Health Science Center at Houston; Houston Texas USA
| |
Collapse
|
40
|
Transcriptome Profiling of IL-17A Preactivated Mesenchymal Stem Cells: A Comparative Study to Unmodified and IFN- γ Modified Mesenchymal Stem Cells. Stem Cells Int 2017; 2017:1025820. [PMID: 28293262 PMCID: PMC5331321 DOI: 10.1155/2017/1025820] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022] Open
Abstract
Human mesenchymal stem cells pretreatment with IL-17A (MSC-17) potently enhances T cell immunosuppression but not their immunogenicity, in addition to avidly promoting the induction of suppressive regulatory T cells. The aim of this study was to identify potential mechanisms by which human MSC-17 mediate their superior immunomodulatory function. Untreated-MSC (UT-MSC), IFN-γ treated MSC (MSC-γ), and MSC-17 were assessed for their gene expression profile by microarray. Significantly regulated genes were identified for their biological functions (Database for Annotation, Visualisation and Integrated Discovery, DAVID). Microarray analyses identified 1278 differentially regulated genes between MSC-γ and UT-MSC and 67 genes between MSC-17 and UT-MSC. MSC-γ were enriched for genes involved in immune response, antigen processing and presentation, humoral response, and complement activation, consistent with increased MSC-γ immunogenicity. MSC-17 genes were associated with chemotaxis response, which may be involved in T cell recruitment for MSC-17 immunosuppression. MMP1, MMP13, and CXCL6 were highly and specifically expressed in MSC-17, which was further validated by real-time PCR. Thus, MMPs and chemokines may play a key role in mediating MSC-17 superior immunomodulatory function. MSC-17 represent a potential cellular therapy to suppress immunological T cell responses mediated by expression of an array of immunoregulatory molecules.
Collapse
|
41
|
Assoni A, Coatti G, Valadares MC, Beccari M, Gomes J, Pelatti M, Mitne-Neto M, Carvalho VM, Zatz M. Different Donors Mesenchymal Stromal Cells Secretomes Reveal Heterogeneous Profile of Relevance for Therapeutic Use. Stem Cells Dev 2016; 26:206-214. [PMID: 27762666 DOI: 10.1089/scd.2016.0218] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal X-linked disorder caused by null mutations in the dystrophin gene. Although the primary defect is the deficiency of muscle dystrophin, secondary events, including chronic inflammation, fibrosis, and muscle regeneration failure are thought to actively contribute to disease progression. Despite several advances, there is still no effective therapy for DMD. Therefore, the potential regenerative capacities, and immune-privileged properties of mesenchymal stromal cells (MSCs), have been the focus of intense investigation in different animal models aiming the treatment of these disorders. However, these studies have shown different outcomes according to the sources from which MSCs were obtained, which raise the question whether stem cells from distinct sources have comparable clinical effects. Here, we analyzed the protein content of the secretome of MSCs, isolated from three different sources (adipose tissue, skeletal muscle, and uterine tubes), obtained from five donors and evaluated their in vitro properties when cocultured with DMD myoblasts. All MSC lineages showed pathways enrichment related to protein metabolic process, oxidation-reduction process, cell proliferation, and regulation of apoptosis. We found that MSCs secretome proteins and their effect in vitro vary significantly according to the tissue and donors, including opposite effects in apoptosis assay, indicating the importance of characterizing MSC secretome profile before its use in animal and clinical trials. Despite the individual differences a pool of conditioned media from all MSCs lineages was able to delay apoptosis and enhance migration when in contact with DMD myoblasts.
Collapse
Affiliation(s)
- Amanda Assoni
- 1 Human Genome and Stem Cell Research Center, Institute of Biosciences University of São Paulo , São Paulo, Brazil
| | - Giuliana Coatti
- 1 Human Genome and Stem Cell Research Center, Institute of Biosciences University of São Paulo , São Paulo, Brazil
| | - Marcos C Valadares
- 1 Human Genome and Stem Cell Research Center, Institute of Biosciences University of São Paulo , São Paulo, Brazil
| | - Melinda Beccari
- 1 Human Genome and Stem Cell Research Center, Institute of Biosciences University of São Paulo , São Paulo, Brazil
| | - Juliana Gomes
- 1 Human Genome and Stem Cell Research Center, Institute of Biosciences University of São Paulo , São Paulo, Brazil
| | - Mayra Pelatti
- 1 Human Genome and Stem Cell Research Center, Institute of Biosciences University of São Paulo , São Paulo, Brazil
| | - Miguel Mitne-Neto
- 1 Human Genome and Stem Cell Research Center, Institute of Biosciences University of São Paulo , São Paulo, Brazil .,2 Fleury Group (Research and Development Department), São Paulo, Brazil
| | | | - Mayana Zatz
- 1 Human Genome and Stem Cell Research Center, Institute of Biosciences University of São Paulo , São Paulo, Brazil
| |
Collapse
|
42
|
Dang RJ, Yang YM, Zhang L, Cui DC, Hong B, Li P, Lin Q, Wang Y, Wang QY, Xiao F, Mao N, Wang C, Jiang XX, Wen N. A20 plays a critical role in the immunoregulatory function of mesenchymal stem cells. J Cell Mol Med 2016; 20:1550-60. [PMID: 27028905 PMCID: PMC4956951 DOI: 10.1111/jcmm.12849] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/25/2016] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stem cells (MSCs) possess an immunoregulatory capacity and are a therapeutic target for many inflammation‐related diseases. However, the detailed mechanisms of MSC‐mediated immunosuppression remain unclear. In this study, we provide new information to partly explain the molecular mechanisms of immunoregulation by MSCs. Specifically, we found that A20 expression was induced in MSCs by inflammatory cytokines. Knockdown of A20 in MSCs resulted in increased proliferation and reduced adipogenesis, and partly reversed the suppressive effect of MSCs on T cell proliferation in vitro and inhibited tumour growth in vivo. Mechanistic studies indicated that knockdown of A20 in MSCs inhibited activation of the p38 mitogen‐activated protein kinase (MAPK) pathway, which potently promoted the production of tumour necrosis factor (TNF)‐α and inhibited the production of interleukin (IL)‐10. Collectively, these data reveal a crucial role of A20 in regulating the immunomodulatory activities of MSCs by controlling the expression of TNF‐α and IL‐10 in an inflammatory environment. These findings provide novel insights into the pathogenesis of various inflammatory‐associated diseases, and are a new reference for the future development of treatments for such afflictions.
Collapse
Affiliation(s)
- Rui-Jie Dang
- Department of Stomatology, Chinese PLA General Hospital, Haidian District, Beijing, China.,Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences, Haidian District, Beijing, China
| | - Yan-Mei Yang
- Department of Stomatology, Chinese PLA General Hospital, Haidian District, Beijing, China.,Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences, Haidian District, Beijing, China
| | - Lei Zhang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences, Haidian District, Beijing, China.,Department of Biology and Chemical Engineering, Tongren University, Tongren City, Guizhou, China
| | - Dian-Chao Cui
- Department of Anesthesiology, Beijing Aiyuhua Hospital for Children and Women, Beijing, China
| | - Bangxing Hong
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Ping Li
- Department of Stomatology, Chinese PLA General Hospital, Haidian District, Beijing, China.,Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences, Haidian District, Beijing, China
| | - Qiuxia Lin
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences, Haidian District, Beijing, China
| | - Yan Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences, Haidian District, Beijing, China
| | - Qi-Yu Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences, Haidian District, Beijing, China
| | - Fengjun Xiao
- Department of Experimental Hematology, Institute of Radiation Medicine, Beijing, China
| | - Ning Mao
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences, Haidian District, Beijing, China
| | - Changyong Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences, Haidian District, Beijing, China
| | - Xiao-Xia Jiang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences, Haidian District, Beijing, China
| | - Ning Wen
- Department of Stomatology, Chinese PLA General Hospital, Haidian District, Beijing, China
| |
Collapse
|
43
|
de Witte SFH, Franquesa M, Baan CC, Hoogduijn MJ. Toward Development of iMesenchymal Stem Cells for Immunomodulatory Therapy. Front Immunol 2016; 6:648. [PMID: 26779185 PMCID: PMC4701910 DOI: 10.3389/fimmu.2015.00648] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/14/2015] [Indexed: 12/21/2022] Open
Abstract
Mesenchymal stem cells (MSC) are under development as an immunomodulatory therapy. The anticipated immunomodulatory effects of MSC are broad, from direct inhibition of lymphocyte proliferation, induction of regulatory T and B cells, to resetting the immune system via a hit-and-run principle. There are endless flavors of MSC. Differences between MSC are originating from donors variation, differences in tissue of origin, the effects of culture conditions, and expansion time. Even standard culture conditions change the properties of MSC dramatically and generate MSC that only remotely resemble their in vivo counterparts. Adjustments in culture protocols can further emphasize properties of interest in MSC, thereby generating cells fitted for specific purposes. Culture improved immunomodulatory MSC can be designed to target particular immune disorders. In this review, we describe the observed and the desired immunomodulatory effects of MSC and propose approaches how MSC with optimal immunomodulatory properties can be developed.
Collapse
Affiliation(s)
- Samantha F H de Witte
- Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center , Rotterdam , Netherlands
| | - Marcella Franquesa
- Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center , Rotterdam , Netherlands
| | - Carla C Baan
- Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center , Rotterdam , Netherlands
| | - Martin J Hoogduijn
- Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center , Rotterdam , Netherlands
| |
Collapse
|
44
|
Boltze J, Arnold A, Walczak P, Jolkkonen J, Cui L, Wagner DC. The Dark Side of the Force - Constraints and Complications of Cell Therapies for Stroke. Front Neurol 2015; 6:155. [PMID: 26257702 PMCID: PMC4507146 DOI: 10.3389/fneur.2015.00155] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/23/2015] [Indexed: 12/16/2022] Open
Abstract
Cell therapies are increasingly recognized as a promising option to augment the limited therapeutic arsenal available to fight ischemic stroke. During the last two decades, cumulating preclinical evidence has indicated a substantial efficacy for most cell treatment paradigms and first clinical trials are currently underway to assess safety and feasibility in patients. However, the strong and still unmet demand for novel stroke treatment options and exciting findings reported from experimental studies may have drawn our attention away from potential side effects related to cell therapies and the ways by which they are commonly applied. This review summarizes common and less frequent adverse events that have been discovered in preclinical and clinical investigations assessing cell therapies for stroke. Such adverse events range from immunological and neoplastic complications over seizures to cell clotting and cell-induced embolism. It also describes potential complications of clinically applicable administration procedures, detrimental interactions between therapeutic cells, and the pathophysiological environment that they are placed into, as well as problems related to cell manufacturing. Virtually each therapeutic intervention comes at a certain risk for complications. Side effects do therefore not generally compromise the value of cell treatments for stroke, but underestimating such complications might severely limit therapeutic safety and efficacy of cell treatment protocols currently under development. On the other hand, a better understanding will provide opportunities to further improve existing therapeutic strategies and might help to define those circumstances, under which an optimal effect can be realized. Hence, the review eventually discusses strategies and recommendations allowing us to prevent or at least balance potential complications in order to ensure the maximum therapeutic benefit at minimum risk for stroke patients.
Collapse
Affiliation(s)
- Johannes Boltze
- Department of Cell Therapy, Fraunhofer-Institute for Cell Therapy and Immunology , Leipzig , Germany ; Translational Center for Regenerative Medicine, University of Leipzig , Leipzig , Germany
| | - Antje Arnold
- Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine , Baltimore, MD , USA ; Institute for Cell Engineering, Johns Hopkins University , Baltimore, MD , USA
| | - Piotr Walczak
- Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine , Baltimore, MD , USA ; Institute for Cell Engineering, Johns Hopkins University , Baltimore, MD , USA
| | - Jukka Jolkkonen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland , Kuopio , Finland
| | - Lili Cui
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland , Kuopio , Finland
| | - Daniel-Christoph Wagner
- Department of Cell Therapy, Fraunhofer-Institute for Cell Therapy and Immunology , Leipzig , Germany
| |
Collapse
|
45
|
New Steps in the Use of Mesenchymal Stem Cell in Solid Organ Transplantation. CURRENT TRANSPLANTATION REPORTS 2015. [DOI: 10.1007/s40472-015-0053-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Cahill EF, Tobin LM, Carty F, Mahon BP, English K. Jagged-1 is required for the expansion of CD4+ CD25+ FoxP3+ regulatory T cells and tolerogenic dendritic cells by murine mesenchymal stromal cells. Stem Cell Res Ther 2015; 6:19. [PMID: 25890330 PMCID: PMC4414370 DOI: 10.1186/s13287-015-0021-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 02/25/2015] [Accepted: 02/25/2015] [Indexed: 12/26/2022] Open
Abstract
Introduction Mesenchymal stromal cells (MSC) have well defined immunomodulatory properties including the suppression of lymphocyte proliferation and inhibition of dendritic cell (DC) maturation involving both cell contact and soluble factors. These properties have made MSC attractive candidates for cellular therapy. However, the mechanism underlying these characteristics remains unclear. This study sought to investigate the mechanisms by which MSC induce a regulatory environment. Method Allogeneic bone marrow mesenchymal stromal cells were cultured with T cells or dendritic cells in the presence or absence of gamma secretase inhibitor to block Notch receptor signalling. T cells and dendritic cells were examined by flow cytometry for changes in phenotype marker expression. Stable knock down MSC were generated to examine the influence of Jagged 1 signalling by MSC. Both wildtype and knockdown MSC were subsequently used in vivo in an animal model of allergic airway inflammation. Results The Notch ligand Jagged-1 was demonstrated to be involved in MSC expansion of regulatory T cells (Treg). Additionally, MSC-induced a functional semi-mature DC phenotype, which further required Notch signalling for the expansion of Treg. MSC, but not Jagged-1 knock down MSC, reduced pathology in a mouse model of allergic airway inflammation. Protection mediated by MSC was associated with enhanced Treg in the lung and significantly increased production of interleukin (IL)-10 in splenocytes re-stimulated with allergen. Significantly less Treg and IL-10 was observed in mice treated with Jagged-1 knock down MSC. Conclusions The current study suggests that MSC-mediated immune modulation involves the education and expansion of regulatory immune cells in a Jagged-1 dependent manner and provides the first report of the importance of Jagged-1 signalling in MSC protection against inflammation in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0021-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emer F Cahill
- Department of Biology, Institute of Immunology, Maynooth University, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland.
| | - Laura M Tobin
- Department of Biology, Institute of Immunology, Maynooth University, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland.
| | - Fiona Carty
- Department of Biology, Institute of Immunology, Maynooth University, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland.
| | - Bernard P Mahon
- Department of Biology, Institute of Immunology, Maynooth University, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland.
| | - Karen English
- Department of Biology, Institute of Immunology, Maynooth University, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
47
|
MSCs and hyaluronan: Sticking together for new therapeutic potential? Int J Biochem Cell Biol 2014; 55:1-10. [DOI: 10.1016/j.biocel.2014.07.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 12/29/2022]
|