1
|
Kleinau G, Chini B, Andersson L, Scheerer P. The role of G protein-coupled receptors and their ligands in animal domestication. Anim Genet 2024; 55:893-906. [PMID: 39324206 DOI: 10.1111/age.13476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
The domestication of plants and animals has resulted in one of the most significant cultural and socio-economical transitions in human history. Domestication of animals, including human-supervised reproduction, largely uncoupled particular animal species from their natural, evolutionary history driven by environmental and ecological factors. The primary motivations for domesticating animals were, and still are, producing food and materials (e.g. meat, eggs, honey or milk products, wool, leather products, jewelry and medication products) to support plowing in agriculture or in transportation (e.g. horse, cattle, camel and llama) and to facilitate human activities (for hunting, rescuing, therapeutic aid, guarding behavior and protecting or just as a companion). In recent years, decoded genetic information from more than 40 domesticated animal species have become available; these studies have identified genes and mutations associated with specific physiological and behavioral traits contributing to the complex genetic background of animal domestication. These breeding-altered genomes provide insights into the regulation of different physiological areas, including information on links between e.g. endocrinology and behavior, with important pathophysiological implications (e.g. for obesity and cancer), extending the interest in domestication well beyond the field. Several genes that have undergone selection during domestication and breeding encode specific G protein-coupled receptors, a class of membrane-spanning receptors involved in the regulation of a number of overarching functions such as reproduction, development, body homeostasis, metabolism, stress responses, cognition, learning and memory. Here we summarize the available literature on variations in G protein-coupled receptors and their ligands and how these have contributed to animal domestication.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Berlin, Germany
| | - Bice Chini
- CNR, Institute of Neuroscience, Vedano al Lambro, Italy, and NeuroMI - Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Patrick Scheerer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Berlin, Germany
| |
Collapse
|
2
|
Wang Y, Gou Y, Yuan R, Zou Q, Zhang X, Zheng T, Fei K, Shi R, Zhang M, Li Y, Gong Z, Luo C, Xiong Y, Shan D, Wei C, Shen L, Tang G, Li M, Zhu L, Li X, Jiang Y. A chromosome-level genome of Chenghua pig provides new insights into the domestication and local adaptation of pigs. Int J Biol Macromol 2024; 270:131796. [PMID: 38677688 DOI: 10.1016/j.ijbiomac.2024.131796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/24/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024]
Abstract
As a country with abundant genetic resources of pigs, the domestication history of pigs in China and the adaptive evolution of Chinese pig breeds at different latitudes have rarely been elucidated at the genome-wide level. To fill this gap, we first assembled a high-quality chromosome-level genome of the Chenghua pig and used it as a benchmark to analyse the genomes of 272 samples from three genera of three continents. The divergence of the three species belonging to three genera, Phacochoerus africanus, Potamochoerus porcus, and Sus scrofa, was assessed. The introgression of pig breeds redefined that the migration routes were basically from southern China to central and southwestern China, then spread to eastern China, arrived in northern China, and finally reached Europe. The domestication of pigs in China occurred ∼12,000 years ago, earlier than the available Chinese archaeological domestication evidence. In addition, FBN1 and NR6A1 were identified in our study as candidate genes related to extreme skin thickness differences in Eurasian pig breeds and adaptive evolution at different latitudes in Chinese pig breeds, respectively. Our study provides a new resource for the pig genomic pool and refines our understanding of pig genetic diversity, domestication, migration, and adaptive evolution at different latitudes.
Collapse
Affiliation(s)
- Yifei Wang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Yuwei Gou
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Rong Yuan
- Chengdu Livestock and Poultry Genetic Resources Protection Center, Chengdu, Sichuan 610081, China
| | - Qin Zou
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Xukun Zhang
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Ting Zheng
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Kaixin Fei
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Rui Shi
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Mei Zhang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Yujing Li
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Zhengyin Gong
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Chenggang Luo
- Chengdu Livestock and Poultry Genetic Resources Protection Center, Chengdu, Sichuan 610081, China
| | - Ying Xiong
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Dai Shan
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Chenyang Wei
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Linyuan Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Guoqing Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Mingzhou Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xuewei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yanzhi Jiang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China.
| |
Collapse
|
3
|
Lin Y, Li J, Gu Y, Jin L, Bai J, Zhang J, Wang Y, Liu P, Long K, He M, Li D, Liu C, Han Z, Zhang Y, Li X, Zeng B, Lu L, Kong F, Sun Y, Fan Y, Wang X, Wang T, Jiang A, Ma J, Shen L, Zhu L, Jiang Y, Tang G, Fan X, Liu Q, Li H, Wang J, Chen L, Ge L, Li X, Tang Q, Li M. Haplotype-resolved 3D chromatin architecture of the hybrid pig. Genome Res 2024; 34:310-325. [PMID: 38479837 PMCID: PMC10984390 DOI: 10.1101/gr.278101.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024]
Abstract
In diploid mammals, allele-specific three-dimensional (3D) genome architecture may lead to imbalanced gene expression. Through ultradeep in situ Hi-C sequencing of three representative somatic tissues (liver, skeletal muscle, and brain) from hybrid pigs generated by reciprocal crosses of phenotypically and physiologically divergent Berkshire and Tibetan pigs, we uncover extensive chromatin reorganization between homologous chromosomes across multiple scales. Haplotype-based interrogation of multi-omic data revealed the tissue dependence of 3D chromatin conformation, suggesting that parent-of-origin-specific conformation may drive gene imprinting. We quantify the effects of genetic variations and histone modifications on allelic differences of long-range promoter-enhancer contacts, which likely contribute to the phenotypic differences between the parental pig breeds. We also observe the fine structure of somatically paired homologous chromosomes in the pig genome, which has a functional implication genome-wide. This work illustrates how allele-specific chromatin architecture facilitates concomitant shifts in allele-biased gene expression, as well as the possible consequential phenotypic changes in mammals.
Collapse
Affiliation(s)
- Yu Lin
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;
| | - Yiren Gu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Long Jin
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jingyi Bai
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaman Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yujie Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Pengliang Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Keren Long
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengnan He
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Can Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ziyin Han
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaokai Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Zeng
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lu Lu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Fanli Kong
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ying Sun
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Geriatric Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yongliang Fan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xun Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Tao Wang
- School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - An'an Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jideng Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linyuan Shen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanzhi Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Guoqing Tang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaolan Fan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qingyou Liu
- Animal Molecular Design and Precise Breeding Key Laboratory of Guangdong Province, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Hua Li
- Animal Molecular Design and Precise Breeding Key Laboratory of Guangdong Province, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Jinyong Wang
- Pig Industry Sciences Key Laboratory of Ministry of Agriculture and Rural Affairs, Chongqing Academy of Animal Sciences, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Li Chen
- Pig Industry Sciences Key Laboratory of Ministry of Agriculture and Rural Affairs, Chongqing Academy of Animal Sciences, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Liangpeng Ge
- Pig Industry Sciences Key Laboratory of Ministry of Agriculture and Rural Affairs, Chongqing Academy of Animal Sciences, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Xuewei Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qianzi Tang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;
| |
Collapse
|
4
|
Deng X, Zhang Y, Song G, Fu Y, Chen Y, Gao H, Wang Q, Jin Z, Yin Y, Xu K. Integrative Analysis of Transcriptomic and Lipidomic Profiles Reveals a Differential Subcutaneous Adipose Tissue Mechanism among Ningxiang Pig and Berkshires, and Their Offspring. Animals (Basel) 2023; 13:3321. [PMID: 37958077 PMCID: PMC10647668 DOI: 10.3390/ani13213321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/28/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Adipose tissue composition contributes greatly to the quality and nutritional value of meat. Transcriptomic and lipidomic techniques were used to investigate the molecular mechanisms of the differences in fat deposition in Ningxiang pigs, Berkshires and F1 offspring. Transcriptomic analysis identified 680, 592, and 380 DEGs in comparisons of Ningxiang pigs vs. Berkshires, Berkshires vs. F1 offspring, and Ningxiang pigs vs. F1 offspring. The lipidomic analysis screened 423, 252, and 50 SCLs in comparisons of Ningxiang pigs vs. Berkshires, Berkshires vs. F1 offspring, and Ningxiang pigs vs. F1 offspring. Lycine, serine, and the threonine metabolism pathway, fatty acid biosynthesis and metabolism-related pathways were significantly enriched in comparisons of Berkshires vs. Ningxiang pigs and Berkshires vs. F1 offspring. The DEGs (PHGDH, LOC110256000) and the SCLs (phosphatidylserines) may have a great impact on the glycine, serine, and the threonine metabolism pathway. Moreover, the DEGs (FASN, ACACA, CBR4, SCD, ELOV6, HACD2, CYP3A46, CYP2B22, GPX1, and GPX3) and the SCLs (palmitoleic acid, linoleic acid, arachidonic acid, and icosadienoic acid) play important roles in the fatty acid biosynthesis and metabolism of fatty acids. Thus, the difference in fat deposition among Ningxiang pig, Berkshires, and F1 offspring may be caused by differences in the expression patterns of key genes in multiple enriched KEGG pathways. This research revealed multiple lipids that are potentially available biological indicators and screened key genes that are potential targets for molecular design breeding. The research also explored the molecular mechanisms of the difference in fat deposition among Ningxiang pig, Berkshires, and F1 pigs, and provided an insight into selection for backfat thickness and the fat composition of adipose tissue for future breeding strategies.
Collapse
Affiliation(s)
- Xiaoxiao Deng
- Laboratory of Animal Nutrition Physiology and Metabolism, The Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China; (X.D.); (Y.F.); (Y.C.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; (Y.Z.); (G.S.); (H.G.); (Q.W.); (Z.J.)
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Changsha 410125, China
| | - Yuebo Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; (Y.Z.); (G.S.); (H.G.); (Q.W.); (Z.J.)
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410125, China
| | - Gang Song
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; (Y.Z.); (G.S.); (H.G.); (Q.W.); (Z.J.)
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410125, China
| | - Yawei Fu
- Laboratory of Animal Nutrition Physiology and Metabolism, The Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China; (X.D.); (Y.F.); (Y.C.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; (Y.Z.); (G.S.); (H.G.); (Q.W.); (Z.J.)
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Changsha 410125, China
| | - Yue Chen
- Laboratory of Animal Nutrition Physiology and Metabolism, The Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China; (X.D.); (Y.F.); (Y.C.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; (Y.Z.); (G.S.); (H.G.); (Q.W.); (Z.J.)
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Changsha 410125, China
| | - Hu Gao
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; (Y.Z.); (G.S.); (H.G.); (Q.W.); (Z.J.)
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410125, China
| | - Qian Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; (Y.Z.); (G.S.); (H.G.); (Q.W.); (Z.J.)
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410125, China
| | - Zhao Jin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; (Y.Z.); (G.S.); (H.G.); (Q.W.); (Z.J.)
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410125, China
| | - Yulong Yin
- Laboratory of Animal Nutrition Physiology and Metabolism, The Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China; (X.D.); (Y.F.); (Y.C.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; (Y.Z.); (G.S.); (H.G.); (Q.W.); (Z.J.)
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Changsha 410125, China
| | - Kang Xu
- Laboratory of Animal Nutrition Physiology and Metabolism, The Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China; (X.D.); (Y.F.); (Y.C.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; (Y.Z.); (G.S.); (H.G.); (Q.W.); (Z.J.)
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Changsha 410125, China
| |
Collapse
|
5
|
Wang D, Sun Y, Lei W, Zhu H, Wang J, Bi H, Feng S, Liu J, Ru D. Backcrossing to different parents produced two distinct hybrid species. Heredity (Edinb) 2023; 131:145-155. [PMID: 37264213 PMCID: PMC10382510 DOI: 10.1038/s41437-023-00630-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023] Open
Abstract
Repeated homoploid hybrid speciation (HHS) events with the same parental species have rarely been reported. In this study, we used population transcriptome data to test paraphyly and HHS events in the conifer Picea brachytyla. Our analyses revealed non-sister relationships for two lineages of P. brachytyla, with the southern lineage being placed within the re-circumscribed P. likiangensis species complex (PLSC) and P. brachytyla sensu stricto (s.s.) consisted solely of the northern lineage, forming a distinct clade that is paratactic to both the PLSC and P. wilsonii. Our phylogenetic and coalescent analyses suggested that P. brachytyla s.s. arose from HHS between the ancestor of the PLSC before its diversification and P. wilsonii through an intermediate hybrid lineage at an early stage and backcrossing to the ancestral PLSC. Additionally, P. purpurea shares the same parents and an extinct lineage with P. brachytyla s.s. but backcrossing to the other parent, P. wilsonii at a later stage. We reveal the first case that backcrossing to different parents of the same extinct hybrid lineage produced two different hybrid species. Our results highlight the existence of more reticulate evolution during species diversification in the spruce genus and more complex homoploid hybrid events than previously identified.
Collapse
Affiliation(s)
- Donglei Wang
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Yongshuai Sun
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Weixiao Lei
- State Key Laboratory of Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Hui Zhu
- State Key Laboratory of Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Ji Wang
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Hao Bi
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Shuo Feng
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai, China
| | - Jianquan Liu
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China.
- State Key Laboratory of Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| | - Dafu Ru
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China.
- State Key Laboratory of Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
6
|
Bull JK, Stanford BCM, Bokvist JK, Josephson MP, Rogers SM. Environment and genotype predict the genomic nature of domestication of salmonids as revealed by gene expression. Proc Biol Sci 2022; 289:20222124. [PMID: 36475438 PMCID: PMC9727666 DOI: 10.1098/rspb.2022.2124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Billions of salmonids are produced annually by artificial reproduction for harvest and conservation. Morphologically, behaviourally and physiologically these fish differ from wild-born fish, including in ways consistent with domestication. Unlike most studied domesticates, which diverged from wild ancestors millennia ago, salmonids offer a tractable model for early-stage domestication. Here, we review a fundamental mechanism for domestication-driven differences in early-stage domestication, differentially expressed genes (DEGs), in salmonids. We found 34 publications examining DEGs under domestication driven by environment and genotype, covering six species, over a range of life-history stages and tissues. Three trends emerged. First, domesticated genotypes have increased expression of growth hormone and related metabolic genes, with differences magnified under artificial environments with increased food. Regulatory consequences of these DEGs potentially drive overall DEG patterns. Second, immune genes are often DEGs under domestication and not simply owing to release from growth-immune trade-offs under increased food. Third, domesticated genotypes exhibit reduced gene expression plasticity, with plasticity further reduced in low-complexity environments typical of production systems. Recommendations for experimental design improvements, coupled with tissue-specific expression and emerging analytical approaches for DEGs present tractable avenues to understand the evolution of domestication in salmonids and other species.
Collapse
Affiliation(s)
- James K. Bull
- Department of Biological Sciences, University of Calgary, Alberta, Canada T2N 1N4
| | | | - Jessy K. Bokvist
- Department of Biological Sciences, University of Calgary, Alberta, Canada T2N 1N4,Fisheries and Oceans Canada, South Coast Area Office, Nanaimo, British Columbia, Canada V9T 1K3
| | - Matthew P. Josephson
- Department of Biological Sciences, University of Calgary, Alberta, Canada T2N 1N4
| | - Sean M. Rogers
- Department of Biological Sciences, University of Calgary, Alberta, Canada T2N 1N4,Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada V0R 1B0
| |
Collapse
|
7
|
Population Structure and Selection Signatures Underlying Domestication Inferred from Genome-Wide Copy Number Variations in Chinese Indigenous Pigs. Genes (Basel) 2022; 13:genes13112026. [PMID: 36360263 PMCID: PMC9690591 DOI: 10.3390/genes13112026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Single nucleotide polymorphism was widely used to perform genetic and evolution research in pigs. However, little is known about the effect of copy number variation (CNV) on characteristics in pigs. This study performed a genome-wide comparison of CNVs between Wannan black pigs (WBP) and Asian wild boars (AWB), using whole genome resequencing data. By using Manta, we detected in total 28,720 CNVs that covered approximately 1.98% of the pig genome length. We identified 288 selected CNVs (top 1%) by performing Fst statistics. Functional enrichment analyses for genes located in selected CNVs were found to be muscle related (NDN, TMOD4, SFRP1, and SMYD3), reproduction related (GJA1, CYP26B1, WNT5A, SRD5A2, PTPN11, SPEF2, and CCNB1), residual feed intake (RFI) related (MAP3K5), and ear size related (WIF1). This study provides essential information on selected CNVs in Wannan black pigs for further research on the genetic basis of the complex phenotypic and provides essential information for direction in the protection and utilization of Wannan black pig.
Collapse
|
8
|
Sá P, Santos D, Chiaia H, Leitão A, Cordeiro JM, Gama LT, Amaral AJ. Lost pigs of Angola: Whole genome sequencing reveals unique regions of selection with emphasis on metabolism and feed efficiency. Front Genet 2022; 13:1003069. [PMID: 36353101 PMCID: PMC9639768 DOI: 10.3389/fgene.2022.1003069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022] Open
Abstract
Angola, in the western coast of Africa, has been through dramatic social events that have led to the near-disappearance of native swine populations, and the recent introduction of European exotic breeds has also contributed to the erosion of this native swine repertoire. In an effort to investigate the genetic basis of native pigs in Angola (ANG) we have generated whole genomes from animals of a remote local pig population in Huambo province, which we have compared with 78 genomes of European and Asian pig breeds as well as European and Asian wild boars that are currently in public domain. Analyses of population structure showed that ANG pigs grouped within the European cluster and were clearly separated from Asian pig breeds. Pairwise FST ranged from 0.14 to 0.26, ANG pigs display lower levels of genetic differentiation towards European breeds. Finally, we have identified candidate regions for selection using a complementary approach based on various methods. All results suggest that selection towards feed efficiency and metabolism has occurred. Moreover, all analysis identified CDKAL1 gene, which is related with insulin and cholesterol metabolism, as a candidate gene overlapping signatures of selection unique to ANG pigs. This study presents the first assessment of the genetic relationship between ANG pigs and other world breeds and uncovers selection signatures that may indicate adaptation features unique to this important genetic resource.
Collapse
Affiliation(s)
- Pedro Sá
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
- Laboratório Associado para a Ciência Animal e Veterinária (AL4AnimalS), Avenida da Universidade Técnica, Lisboa, Portugal
| | - Dulce Santos
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
- Laboratório Associado para a Ciência Animal e Veterinária (AL4AnimalS), Avenida da Universidade Técnica, Lisboa, Portugal
| | - Hermenegildo Chiaia
- Faculdade de Medicina Veterinária, Universidade José Eduardo dos Santos, Huambo, Angola
| | - Alexandre Leitão
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
- Laboratório Associado para a Ciência Animal e Veterinária (AL4AnimalS), Avenida da Universidade Técnica, Lisboa, Portugal
| | - José Moras Cordeiro
- Faculdade de Medicina Veterinária, Universidade José Eduardo dos Santos, Huambo, Angola
| | - Luís T. Gama
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
- Laboratório Associado para a Ciência Animal e Veterinária (AL4AnimalS), Avenida da Universidade Técnica, Lisboa, Portugal
| | - Andreia J. Amaral
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
- Laboratório Associado para a Ciência Animal e Veterinária (AL4AnimalS), Avenida da Universidade Técnica, Lisboa, Portugal
- *Correspondence: Andreia J. Amaral,
| |
Collapse
|
9
|
Hou H, Wang X, Ding W, Xiao C, Cai X, Lv W, Tu Y, Zhao W, Yao J, Yang C. Whole-genome sequencing reveals the artificial selection and local environmental adaptability of pigeons ( Columba livia). Evol Appl 2022; 15:603-617. [PMID: 35505885 PMCID: PMC9046921 DOI: 10.1111/eva.13284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/17/2021] [Accepted: 07/12/2021] [Indexed: 12/16/2022] Open
Abstract
To meet human needs, domestic pigeons (Columba livia) with various phenotypes have been bred to provide genetic material for our research on artificial selection and local environmental adaptation. Seven pigeon breeds were resequenced and can be divided into commercial varieties (Euro-pigeon, Shiqi, Shen King, Taishen, and Silver King), ornamental varieties (High Fliers), and local varieties (Tarim pigeon). Phylogenetic analysis based on population resequencing showed that one group contained local breeds and ornamental pigeons from China, whereas all commercial varieties were clustered together. It is revealed that the traditional Chinese ornamental pigeon is a branch of Tarim pigeon. Runs of homozygosity (ROH) and linkage disequilibrium (LD) analyses revealed significant differences in the genetic diversity of the three types of pigeons. Genome sweep analysis revealed that the selected genes of commercial breeds were related to body size, reproduction, and plumage color. The genomic imprinting genes left by the ornamental pigeon breeds were mostly related to special human facial features and muscular dystrophy. The Tarim pigeon has evolved genes related to chemical ion transport, photoreceptors, oxidative stress, organ development, and olfaction in order to adapt to local environmental stress. This research provides a molecular basis for pigeon genetic resource evaluation and genetic improvement and suggests that the understanding of adaptive evolution should integrate the effects of various natural environmental characteristics.
Collapse
Affiliation(s)
- Haobin Hou
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| | - Xiaoliang Wang
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| | - Weixing Ding
- Shanghai Academy of Agricultural SciencesShanghaiChina
| | - Changfeng Xiao
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| | - Xia Cai
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| | - Wenwei Lv
- National Poultry Engineer Research CenterShanghaiChina
| | - Yingying Tu
- National Poultry Engineer Research CenterShanghaiChina
| | - Weimin Zhao
- Shanghai Jinhuang Pigeon CompanyShanghaiChina
| | - Junfeng Yao
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| | - Changsuo Yang
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| |
Collapse
|
10
|
Peng Y, Cai X, Wang Y, Liu Z, Zhao Y. Genome‐wide analysis suggests multiple domestication events of Chinese local pigs. Anim Genet 2022; 53:293-306. [DOI: 10.1111/age.13183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 02/12/2022] [Accepted: 02/12/2022] [Indexed: 01/02/2023]
Affiliation(s)
- Yebo Peng
- State Key Laboratory of Agrobiotechnology College of Biological Sciences China Agricultural University Beijing China
| | - Xinyu Cai
- State Key Laboratory of Agrobiotechnology College of Biological Sciences China Agricultural University Beijing China
| | - Yuzhan Wang
- State Key Laboratory of Agrobiotechnology College of Biological Sciences China Agricultural University Beijing China
| | - Zexuan Liu
- State Key Laboratory of Agrobiotechnology College of Biological Sciences China Agricultural University Beijing China
| | - Yiqiang Zhao
- State Key Laboratory of Agrobiotechnology College of Biological Sciences China Agricultural University Beijing China
| |
Collapse
|
11
|
Persoons A, Maupetit A, Louet C, Andrieux A, Lipzen A, Barry KW, Na H, Adam C, Grigoriev IV, Segura V, Duplessis S, Frey P, Halkett F, De Mita S. Genomic signatures of a major adaptive event in the pathogenic fungus Melampsora larici-populina. Genome Biol Evol 2021; 14:6468622. [PMID: 34919678 PMCID: PMC8755504 DOI: 10.1093/gbe/evab279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 11/14/2022] Open
Abstract
The recent availability of genome-wide sequencing techniques has allowed systematic screening for molecular signatures of adaptation, including in nonmodel organisms. Host–pathogen interactions constitute good models due to the strong selective pressures that they entail. We focused on an adaptive event which affected the poplar rust fungus Melampsora larici-populina when it overcame a resistance gene borne by its host, cultivated poplar. Based on 76 virulent and avirulent isolates framing narrowly the estimated date of the adaptive event, we examined the molecular signatures of selection. Using an array of genome scan methods based on different features of nucleotide diversity, we detected a single locus exhibiting a consistent pattern suggestive of a selective sweep in virulent individuals (excess of differentiation between virulent and avirulent samples, linkage disequilibrium, genotype–phenotype statistical association, and long-range haplotypes). Our study pinpoints a single gene and further a single amino acid replacement which may have allowed the adaptive event. Although our samples are nearly contemporary to the selective sweep, it does not seem to have affected genome diversity further than the immediate vicinity of the causal locus, which can be explained by a soft selective sweep (where selection acts on standing variation) and by the impact of recombination in mitigating the impact of selection. Therefore, it seems that properties of the life cycle of M. larici-populina, which entails both high genetic diversity and outbreeding, has facilitated its adaptation.
Collapse
Affiliation(s)
| | - Agathe Maupetit
- Université de Lorraine,INRAE, IAM, Nancy, France.,Physiology and Biotechnology of Algae Laboratory,IFREMER, Nantes, France
| | | | | | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Kerrie W Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Hyunsoo Na
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Catherine Adam
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Vincent Segura
- BioForA,INRAE, ONF, Orléans, France.,UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | | | - Pascal Frey
- Université de Lorraine,INRAE, IAM, Nancy, France
| | | | - Stéphane De Mita
- Université de Lorraine,INRAE, IAM, Nancy, France.,PHIM, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| |
Collapse
|
12
|
Chen B, Xi S, El-Senousey HAK, Zhou M, Cheng D, Chen K, Wan L, Xiong T, Liao M, Liu S, Mao H. Deletion in KRT75L4 linked to frizzle feather in Xiushui Yellow Chickens. Anim Genet 2021; 53:101-107. [PMID: 34904261 DOI: 10.1111/age.13158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 11/30/2022]
Abstract
Bird feathers are the product of interactions between natural and artificial selection. Feather-related traits are important for chicken selection and breeding. Frizzle feather is characterized by the abnormally development of feathers in chickens. In the current study, frizzle feather characteristics were observed in a local breed called Xiushui Yellow Chicken in Jiangxi, China. To determine the molecular mechanisms that underlie frizzle feather in Xiushui Yellow Chicken, four populations of three breeds (Xiushui Yellow Chicken with frizzle feathers, Xiushui Yellow Chicken with normal feathers, Guangfeng White-Ear Yellow Chicken, and Ningdu Yellow Chicken) were selected for whole-genome resequencing. Using a comparative genome strategy and genome-wide association study, a missense mutation (g.5281494A>G) and a 15-bp deletion (g.5285437-5285451delGATGCCGGCAGGACG) in KRT75L4 were identified as candidate mutations associated with frizzle feather in Xiushui Yellow Chicken. Based on genotyping performed in a large Xiushui Yellow Chicken population, the g.5285437-5285451delGATGCCGGCAGGACG mutation in KRT75L4 was confirmed as the putative causative mutation of frizzle feather. These results deepen the understanding of the molecular mechanisms responsible for frizzle feather, as well as facilitating the molecular detection and selection of the feather phenotype in Xiushui Yellow Chickens.
Collapse
Affiliation(s)
- B Chen
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - S Xi
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China.,Jiangxi Biotech Vocational College, Nanchang, Jiangxi, 330200, China
| | - H A K El-Senousey
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - M Zhou
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - D Cheng
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - K Chen
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - L Wan
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - T Xiong
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - M Liao
- School of Foreign Languages, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - S Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - H Mao
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| |
Collapse
|
13
|
Mori C, Matsumura S. Development and validation of simultaneous identification of 26 mammalian and poultry species by a multiplex assay. Int J Legal Med 2021; 136:1-12. [PMID: 34626212 DOI: 10.1007/s00414-021-02711-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/24/2021] [Indexed: 11/29/2022]
Abstract
A multiplex PCR assay was developed to simultaneously identify 22 mammalian species (alpaca, Asiatic black bear, Bactrian camel, brown rat, cat, cattle, common raccoon, dog, European rabbit, goat, horse, house mouse, human, Japanese badger, Japanese wild boar, masked palm civet, pig, raccoon dog, red fox, sheep, Siberian weasel, and sika deer) and four poultry species (chicken, domestic turkey, Japanese quail, and mallard), even from a biological sample containing a DNA mixture of multiple species. The assay was designed to identify species through multiplex PCR and capillary electrophoresis, with a combination of amplification of a partial region of the mitochondrial D-loop by universal primer sets and a partial region of the cytochrome b (cyt b) gene by species-specific primer sets. The assay was highly sensitive, with a detection limit of 100 copies of mitochondrial DNA. The assay's ability to identify species from complex DNA mixtures was demonstrated using an experimental sample consisting of 10 species. Efficacy, accuracy, and reliability of the assay were validated for use in forensic analysis with the guidelines of Scientific Working Group on DNA Analysis Methods (SWGDAM). The multiplex PCR assay developed in this study enables cost-effective, highly sensitive, and simultaneous species identification without massively parallel sequencing (MPS) platforms. Thus, the technique described is straightforward and suitable for routine forensic investigations.
Collapse
Affiliation(s)
- Chikahiro Mori
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan. .,Forensic Science Laboratory, Gifu Prefectural Police Headquarters, 2-1-1 Yabutaminami, Gifu, 500-8501, Japan.
| | - Shuichi Matsumura
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| |
Collapse
|
14
|
Feng G, Ai X, Yi H, Guo W, Wu J. Genomic and transcriptomic analyses of Citrus sinensis varieties provide insights into Valencia orange fruit mastication trait formation. HORTICULTURE RESEARCH 2021; 8:218. [PMID: 34593784 PMCID: PMC8484299 DOI: 10.1038/s41438-021-00653-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 06/01/2023]
Abstract
Valencia orange (Citrus sinensis Osbeck) (VO) is a type of late-ripening sweet orange whose ripening occurs 4 to 5 months later than that of the mid-ripening common sweet orange (CO). Notably, the mastication trait of VO fruit is inferior to that of CO fruit. To date, how inferior pulp mastication trait forms in VO has not been determined. In this study, 13 VO varieties and 12 CO varieties were subjected to whole-genome resequencing. A total of 2.98 million SNPs were identified from 25 varieties, and a SNP molecular marker was developed to distinguish VO and CO. Moreover, 144 and 141 genes identified by selective sweep analysis were selected during VO and CO evolution, respectively. Based on gene functional enrichment analysis, most of the selected VO genes were related to the stress response and lignin biosynthesis. Simultaneously, we comparatively analyzed the transcriptome profiles of peel and pulp tissues among three VO varieties and three CO varieties, and the results demonstrated differences in lignin biosynthesis between VO and CO fruits. Furthermore, coexpression network analysis was performed to identify hub genes of lignin-related and variety-specific networks, which included CsERF74, CsNAC25, CsHSFB3, CsSPL4/13, etc. Overall, this study provides important insights into the mastication trait formation of Valencia orange fruit.
Collapse
Affiliation(s)
- Guizhi Feng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
| | - Xiu Ai
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
| | - Hualin Yi
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
| | - Wenwu Guo
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
| | - Juxun Wu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, PR China.
| |
Collapse
|
15
|
Wang X, Rao H, Ma J, Chen X, Li G, Zhao G. Genomic Variation Landscape of the Model Salt Cress Eutrema salsugineum. FRONTIERS IN PLANT SCIENCE 2021; 12:700161. [PMID: 34484264 PMCID: PMC8416042 DOI: 10.3389/fpls.2021.700161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/22/2021] [Indexed: 05/13/2023]
Abstract
Eutrema salsugineum has long been used as the model for examining salt and other abiotic stress in plants. In addition to the forward genetics approaches widely used in the lab, natural variations undoubtedly will provide a rich genetic resource for studying molecular mechanisms underlying the stress tolerance and local adaptation of this species. We used 90 resequencing whole genomes of natural populations of this species across its Asian and North American distributions to detect the selection signals for genes involved in salt and other stresses at the species-range level and local distribution. We detected selection signals for genes involved in salt and other abiotic tolerance at the species level. In addition, several cold-induced and defense genes showed selection signals due to local adaptation in North America-NE Russia or northern China, respectively. These variations and findings provide valuable resources for further deciphering genetic mechanisms underlying the stress tolerance and local adaptations of this model species.
Collapse
Affiliation(s)
- Xiaojuan Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Hua Rao
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
- Special Economic Zone for Science and Technology Synergy, China State-Level Xixian New Area, Xi'an, China
| | - Jianxiang Ma
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xiaodan Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Guanglin Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Guifang Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
16
|
De AK, Sawhney S, Ponraj P, Muthiyan R, Muniswamy K, Ravi SK, Malakar D, Alyethodi RR, Mondal S, Sunder J, Banik S, Kundu A, Bhattacharya D. Maternal lineage of Nicobari pig ( Sus scrofa nicobaricus) correlated with migration of Nicobarese, a native tribal population of Andaman and Nicobar Islands, India. Anim Biotechnol 2021; 34:156-165. [PMID: 34310265 DOI: 10.1080/10495398.2021.1950742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Nicobari pig is reared by Nicobarese, a native tribal population of Andaman and Nicobar Islands. Nicobari pig has maintained its genetic identity due to geographical isolation. This communication is the first report on maternal inheritance of Nicobari pigs. DNA polymorphism data showed seven haplotypes. D-loop sequence information and mitogenome analysis were able to earmark Nicobari pigs to Asian clade. The domestication process of pigs and its expansion pattern help to understand human migration pattern. Based on this hypothesis, this communication elucidates the probable origin of Nicobarese. Earlier studies indicated that Nicobarese had genetic affinities to races distributed in China, Malaysia and Thailand. Our data on maternal inheritance of Nicobari pig correlates with the data on migration of Nicobarese. Moreover, we could establish a novel connection of Nicobarese with people of Northeastern parts of India, Philippines and Vietnam through phylogenetic signal and geographical provenance of Nicobari pig. We further concluded that migration of Nicobarese happened during Western route of migration (WRM) ∼4000 years before present. Therefore, we propose one wave hypothesis of peopling of Nicobar based on our study and existence of Ausrtroasiatic language, Mon-Khmer in these islands.
Collapse
Affiliation(s)
- Arun Kumar De
- Animal Science Division, ICAR-Central Island Agricultural Research Institute, Port Blair, India
| | - Sneha Sawhney
- Animal Science Division, ICAR-Central Island Agricultural Research Institute, Port Blair, India
| | - Perumal Ponraj
- Animal Science Division, ICAR-Central Island Agricultural Research Institute, Port Blair, India
| | - Ramachandran Muthiyan
- Animal Science Division, ICAR-Central Island Agricultural Research Institute, Port Blair, India
| | - Kangayan Muniswamy
- Animal Science Division, ICAR-Central Island Agricultural Research Institute, Port Blair, India
| | - Sanjay Kumar Ravi
- Animal Science Division, ICAR-Central Island Agricultural Research Institute, Port Blair, India
| | - Dhruba Malakar
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - R R Alyethodi
- Animal Science Division, ICAR-Central Island Agricultural Research Institute, Port Blair, India
| | - Samiran Mondal
- Department of Veterinary Pathology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Jai Sunder
- Animal Science Division, ICAR-Central Island Agricultural Research Institute, Port Blair, India
| | - Santanu Banik
- Department of Animal Genetics and Breeding, ICAR-National Research Centre on Pig, Guwahati, India
| | - Anandamoy Kundu
- Animal Science Division, ICAR-Central Island Agricultural Research Institute, Port Blair, India
| | - Debasis Bhattacharya
- Animal Science Division, ICAR-Central Island Agricultural Research Institute, Port Blair, India
| |
Collapse
|
17
|
Feng P, Zeng T, Yang H, Chen G, Du J, Chen L, Shen J, Tao Z, Wang P, Yang L, Lu L. Whole-genome resequencing provides insights into the population structure and domestication signatures of ducks in eastern China. BMC Genomics 2021; 22:401. [PMID: 34058976 PMCID: PMC8165772 DOI: 10.1186/s12864-021-07710-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 05/12/2021] [Indexed: 01/03/2023] Open
Abstract
Background Duck is an ancient domesticated animal with high economic value, used for its meat, eggs, and feathers. However, the origin of indigenous Chinese ducks remains elusive. To address this question, we performed whole-genome resequencing to first explore the genetic relationship among variants of these domestic ducks with their potential wild ancestors in eastern China, as well as understand how the their genomes were shaped by different natural and artificial selective pressures. Results Here, we report the resequencing of 60 ducks from Chinese spot-billed ducks (Anas zonorhyncha), mallards (Anas platyrhnchos), Fenghua ducks, Shaoxing ducks, Shanma ducks and Cherry Valley Pekin ducks of eastern China (ten from each population) at an average effective sequencing depth of ~ 6× per individual. The results of population and demographic analysis revealed a deep phylogenetic split between wild (Chinese spot-billed ducks and mallards) and domestic ducks. By applying selective sweep analysis, we identified that several candidate genes, important pathways and GO categories associated with artificial selection were functionally related to cellular adhesion, type 2 diabetes, lipid metabolism, the cell cycle, liver cell proliferation, and muscle functioning in domestic ducks. Conclusion Genetic structure analysis showed a close genetic relationship of Chinese spot-billed ducks and mallards, which supported that Chinese spot-billed ducks contributed to the breeding of domestic ducks. During the long history of artificial selection, domestic ducks have developed a complex biological adaptation to captivity. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07710-2.
Collapse
Affiliation(s)
- Peishi Feng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China.,Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Tao Zeng
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hua Yang
- Institute of Quality and Standards for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guohong Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jinping Du
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Science, Wuhan, China
| | - Li Chen
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Junda Shen
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhenrong Tao
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ping Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China.
| | - Lin Yang
- College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Lizhi Lu
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| |
Collapse
|
18
|
Liber M, Duarte I, Maia AT, Oliveira HR. The History of Lentil ( Lens culinaris subsp. culinaris) Domestication and Spread as Revealed by Genotyping-by-Sequencing of Wild and Landrace Accessions. FRONTIERS IN PLANT SCIENCE 2021; 12:628439. [PMID: 33841458 PMCID: PMC8030269 DOI: 10.3389/fpls.2021.628439] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/15/2021] [Indexed: 05/06/2023]
Abstract
Protein-rich legumes accompanied carbohydrate-rich cereals since the beginning of agriculture and yet their domestication history is not as well understood. Lentil (Lens culinaris Medik. subsp. culinaris) was first cultivated in Southwest Asia (SWA) 8000-10,000 years ago but archeological evidence is unclear as to how many times it may have been independently domesticated, in which SWA region(s) this may have happened, and whether wild species within the Lens genus have contributed to the cultivated gene pool. In this study, we combined genotyping-by-sequencing (GBS) of 190 accessions from wild (67) and domesticated (123) lentils from the Old World with archeological information to explore the evolutionary history, domestication, and diffusion of lentils to different environments. GBS led to the discovery of 87,647 single-nucleotide polymorphisms (SNPs), which allowed us to infer the phylogeny of genus Lens. We confirmed previous studies proposing four groups within it. The only gene flow detected was between cultivated varieties and their progenitor (L. culinaris subsp. orientalis) albeit at very low levels. Nevertheless, a few putative hybrids or naturalized cultivars were identified. Within cultivated lentil, we found three geographic groups. Phylogenetics, population structure, and archeological data coincide in a scenario of protracted domestication of lentils, with two domesticated gene pools emerging in SWA. Admixed varieties are found throughout their range, suggesting a relaxed selection process. A small number of alleles involved in domestication and adaptation to climatic variables were identified. Both novel mutation and selection on standing variation are presumed to have played a role in adaptation of lentils to different environments. The results presented have implications for understanding the process of plant domestication (past), the distribution of genetic diversity in germplasm collections (present), and targeting genes in breeding programs (future).
Collapse
Affiliation(s)
- Marta Liber
- Interdisciplinary Center for Archaeology and Evolution of Human Behavior (ICArEHB), Universidade do Algarve, Faro, Portugal
- Department of Biomedical Sciences and Medicine (DCBM), Universidade do Algarve, Faro, Portugal
- Centre for Biomedical Research (CBMR), Universidade do Algarve, Faro, Portugal
| | - Isabel Duarte
- Centre for Biomedical Research (CBMR), Universidade do Algarve, Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve, Faro, Portugal
| | - Ana Teresa Maia
- Department of Biomedical Sciences and Medicine (DCBM), Universidade do Algarve, Faro, Portugal
- Centre for Biomedical Research (CBMR), Universidade do Algarve, Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve, Faro, Portugal
| | - Hugo R. Oliveira
- Interdisciplinary Center for Archaeology and Evolution of Human Behavior (ICArEHB), Universidade do Algarve, Faro, Portugal
- *Correspondence: Hugo R. Oliveira,
| |
Collapse
|
19
|
Zhang S, Zhang K, Peng X, Zhan H, Lu J, Xie S, Zhao S, Li X, Ma Y. Selective sweep analysis reveals extensive parallel selection traits between large white and Duroc pigs. Evol Appl 2020; 13:2807-2820. [PMID: 33294024 PMCID: PMC7691457 DOI: 10.1111/eva.13085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
In the process of pig genetic improvement, different commercial breeds have been bred for the same purpose, improving meat production. Most of the economic traits, such as growth and fertility, have been selected similarly despite the discrepant selection pressure, which is known as parallel selection. Here, 28 whole-genome sequencing data of Danish large white pigs with an approximately 25-fold depth each were generated, resulting in about 12 million high-quality SNPs for each individual. Combined with the sequencing data of 27 Duroc and 23 European wild boars, we investigated the parallel selection of Danish large white and Duroc pigs using two complementary methods, Fst and iHS. In total, 67 candidate regions were identified as the signatures of parallel selection. The genes in candidate regions of parallel selection were mainly associated with sensory perception, growth rate, and body size. Further functional annotation suggested that the striking consistency of the terms may be caused by the polygenetic basis of quantitative traits, and revealing the complex genetic basis of parallel selection. Besides, some unique terms were enriched in population-specific selection regions, such as the limb development-related terms enriched in Duroc-specific selection regions, suggesting unique selections of breed-specific selected traits. These results will help us better understand the parallel selection process of different breeds. Moreover, we identified several potential causal SNPs that may contribute to the pig genetic breeding process.
Collapse
Affiliation(s)
- Saixian Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhanChina
| | - Kaili Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhanChina
| | - Xia Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhanChina
| | - Huiwen Zhan
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhanChina
| | - Jiahui Lu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhanChina
| | - Shengsong Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhanChina
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhanChina
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhanChina
| | - Yunlong Ma
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
20
|
Bian J, Cui L, Wang X, Yang G, Huo F, Ling H, Chen L, She K, Du X, Levi B, Levi AJ, Yan Z, Nie X, Weining S. Genomic and Phenotypic Divergence in Wild Barley Driven by Microgeographic Adaptation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000709. [PMID: 33344112 PMCID: PMC7740101 DOI: 10.1002/advs.202000709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 09/14/2020] [Indexed: 05/17/2023]
Abstract
Microgeographic adaptation is a fundamental driving force of evolution, but the underlying causes remain undetermined. Here, the phenotypic, genomic and transcriptomic variations of two wild barley populations collected from sharply divergent and adjacent micro-geographic sites to identify candidate genes associated with edaphic local adaptation are investigated. Common garden and reciprocal transplant studies show that large phenotypic differentiation and local adaptation to soils occur between these populations. Genetic, phylogenetic and admixture analyses based on population resequencing show that significant genetic divergences occur between basalt and chalk populations. These divergences are consistent with the phenotypic variations observed in the field. Genome sweep analyses reveal 162.7 Mb of selected regions driven by edaphic local adaptation, in which 445 genes identified, including genes associated with root architecture, metal transport/detoxification, and ABA signaling. When the phenotypic, genomic and transcriptomic data are combined, HvMOR, encoding an LBD transcription factor, is determined to be the vital candidate for regulating the root architecture to adapt to edaphic conditions at the microgeographic scale. This study provides new insights into the genetic basis of edaphic adaptation and demonstrates that edaphic factors may contribute to the evolution and speciation of barley.
Collapse
Affiliation(s)
- Jianxin Bian
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Agronomy and Yangling Branch of China Wheat Improvement CenterNorthwest A&F UniversityYanglingShaanxi712100China
| | - Licao Cui
- College of Life ScienceJiangxi Agricultural UniversityNanchangJiangxi330045China
| | - Xiaoyu Wang
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Agronomy and Yangling Branch of China Wheat Improvement CenterNorthwest A&F UniversityYanglingShaanxi712100China
| | - Guang Yang
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Agronomy and Yangling Branch of China Wheat Improvement CenterNorthwest A&F UniversityYanglingShaanxi712100China
| | - Fulin Huo
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Agronomy and Yangling Branch of China Wheat Improvement CenterNorthwest A&F UniversityYanglingShaanxi712100China
| | - Hubin Ling
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Agronomy and Yangling Branch of China Wheat Improvement CenterNorthwest A&F UniversityYanglingShaanxi712100China
| | - Liqin Chen
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Agronomy and Yangling Branch of China Wheat Improvement CenterNorthwest A&F UniversityYanglingShaanxi712100China
| | - Kuijun She
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Agronomy and Yangling Branch of China Wheat Improvement CenterNorthwest A&F UniversityYanglingShaanxi712100China
| | - Xianghong Du
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Agronomy and Yangling Branch of China Wheat Improvement CenterNorthwest A&F UniversityYanglingShaanxi712100China
| | - Boaz Levi
- Reidman CollegeTel Aviv6997536Israel
| | - Adi Jonas Levi
- Faculty of Sciences and TechnologyTel Hai CollegeUpper Galilee1220800Israel
| | - Zhaogui Yan
- College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhan430070China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Agronomy and Yangling Branch of China Wheat Improvement CenterNorthwest A&F UniversityYanglingShaanxi712100China
| | - Song Weining
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Agronomy and Yangling Branch of China Wheat Improvement CenterNorthwest A&F UniversityYanglingShaanxi712100China
- Australia‐China Joint Research Centre for Abiotic and Biotic Stress Management in AgricultureHorticulture and ForestryYanglingShaanxi712100China
| |
Collapse
|
21
|
Neaux D, Sansalone G, Lecompte F, Haruda A, Schafberg R, Cucchi T. Examining the effect of feralization on craniomandibular morphology in pigs, Sus scrofa (Artiodactyla: Suidae). Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Abstract
Feralization is the process by which domestic animals return to the wild and produce self-sustaining populations. It is often considered as a model in understanding the permanence of morphological changes associated with domestication; however, it is still unclear how much the release of anthropogenic selective pressures affects domestic traits. Here, we assessed the influence of feralization on the domestic morphological traits acquired through selective breeding using craniomandibular differences in shape and size between populations of feral pigs, wild boar and domestic pigs, using landmark-based geometric morphometrics. Our results suggest that numerous cranial and mandibular traits associated with domestication still exist in feral specimens, corroborating that domestication-induced changes in the shape of morphological elements are broadly maintained in feral populations. This is not the case for size variations, however, as the cranium is significantly smaller in feral pigs than in domesticated breeds, which could be due to the selective pressures associated with founding events. Our exploratory study, therefore, underlines the complexity of feral population history, the intricate influence of variations in genetic diversity, and novel selection pressures in the morphology of these groups. Future studies will need to expand the sample to take into account the diversity of morphotypes.
Collapse
Affiliation(s)
- Dimitri Neaux
- Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements, UMR 7209, Muséum national d’Histoire naturelle CNRS, CP, Paris, France
- Laboratoire Paléontologie Evolution Paléoécosystèmes Paléoprimatologie, UMR 7262, Université de Poitiers CNRS, Poitiers, France
| | - Gabriele Sansalone
- Function, Evolution & Anatomy Research Laboratory, School of Environmental and Rural Science, University of New England, NSW, Armidale, Australia
- Department of Sciences, Roma Tre University, Rome, Italy
- Center for Evolutionary Ecology, Rome, Italy
| | - François Lecompte
- Plateforme Chirurgie et Imagerie pour la Recherche et l’Enseignement, INRAE, Nouzilly, France
| | - Ashleigh Haruda
- Central Natural Science Collections, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Renate Schafberg
- Central Natural Science Collections, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Thomas Cucchi
- Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements, UMR 7209, Muséum national d’Histoire naturelle CNRS, CP, Paris, France
| |
Collapse
|
22
|
Kim YM, Seong HS, Lee JJ, Son DH, Kim JS, Sa SJ, Kim YS, Choi TJ, Cho KH, Hong JK, Choi JW, Cho ES. Genome-wide investigation of a Korean synthetic breed, Woori-Heukdon using the Illumina PorcineSNP60K BeadChip. Genes Genomics 2020; 42:1443-1453. [PMID: 33145727 DOI: 10.1007/s13258-020-01008-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/25/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Woori-Heukdon (KWH) is a Korean synthetic pig breed generated using Chookjin-Duroc (KCD), Chookjin-Chamdon (KCC), and their crossbreds. Currently, there is a severe lack of studies investigating the Korean breed populations including wild boars (KWB) throughout the genome. OBJECTIVE This study was performed to investigate the genetic characteristics of Korean pig populations at the genome-wide level. METHODS Using the SNP dataset derived from genotyped and downloaded datasets using the Illumina PorcineSNP60K BeadChip, we compared the genomes of 532 individuals derived from 23 pig breeds to assess the genetic diversity, inbreeding coefficient, genetic differentiation, and population structure. RESULTS KWB showed the lowest average expected heterozygosity (HE = 0.1904), while KWH showed the highest genetic diversity (HE = 0.02859) among Korean populations. We verified that the genetic composition of KWH, showing USD of 74.8% and KCC of 25.2% in ADMIXTURE analysis. In population structure analyses, KCC was consistently shown to be separated from other pig populations. In addition, we observed gene flow from Western pigs to a part of Chinese populations. CONCLUSION This study showed that Korean native pigs, KCC have genetic differences in comparison with Chinese and Western pigs; despite some historical records and recent genetic studies, we could not find any clear evidence that KCC was significantly influenced by Chinese or Western breeds in this study. We also verified the theoretical genomic composition of KWH at the molecular level in structure analyses. To our knowledge, this is the first genomic study to investigate the genomic characteristics of KWH and KCC.
Collapse
Affiliation(s)
- Yong-Min Kim
- Rural Development Administration, National Institute of Animal Science, Cheonan, 331-801, Republic of Korea.,College of Animal Life Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ha-Seung Seong
- College of Animal Life Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jung-Jae Lee
- Jung P & C Institute, Inc., 1504 U-TOWER, Yongin, 16950, Republic of Korea
| | - Da-Hye Son
- Darby Genetics, Anseong, 7381-8, Republic of Korea
| | - Jin-Su Kim
- College of Animal Life Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Soo-Jin Sa
- Rural Development Administration, National Institute of Animal Science, Cheonan, 331-801, Republic of Korea
| | - Young-Sin Kim
- Rural Development Administration, National Institute of Animal Science, Cheonan, 331-801, Republic of Korea
| | - Tae-Jeong Choi
- Rural Development Administration, National Institute of Animal Science, Cheonan, 331-801, Republic of Korea
| | - Kyu-Ho Cho
- Rural Development Administration, National Institute of Animal Science, Cheonan, 331-801, Republic of Korea
| | - Joon-Ki Hong
- Rural Development Administration, National Institute of Animal Science, Cheonan, 331-801, Republic of Korea.
| | - Jung-Woo Choi
- College of Animal Life Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Eun-Seok Cho
- Rural Development Administration, National Institute of Animal Science, Cheonan, 331-801, Republic of Korea.
| |
Collapse
|
23
|
Historical range expansion and biological changes of Sus scrofa corresponding to domestication and feralization. MAMMAL RES 2020. [DOI: 10.1007/s13364-020-00534-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Silva EC, McManus C, Piovezan U, Faria DA, Souza CA, Caetano AR, Paiva SR. Phylogeography of feral Monteiro pig in the Brazilian Pantanal Ecosystem. Genetica 2020; 148:183-193. [PMID: 32770285 DOI: 10.1007/s10709-020-00099-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 07/29/2020] [Indexed: 10/23/2022]
Abstract
The Monteiro is a feral pig found in the Brazilian Pantanal ecosystem. The goal of this research is to generate data and knolewdge related to animal populations wich can be used for management and development of an in vitro conservation program for animal resourses at Pantanal ecosystem. The present study evaluated animals sampled from 10 distinct locations within the region, using 19 microsatellite markers (N = 189) and the control region of mitochondrial DNA (mtDNA) (N = 392). Low genetic differences were found between populations with the microsatellite data. The FST range was between 0.009 and 0.063 (p-value < 0.05). The Mantel test corroborated with previous results, as low correlations between genetic and geographic distances were observed (r2 = 0.2309, p = 0.06). Bayesian analysis for genetic structure identification placed the Monteiro pigs into three main clusters (MOB, Pop 1 and all others Pantanal populations). Most of the Monteiro pigs share a single European haplotype as seen by mtDNA analyses. This haplotype is not exclusive, as it is shared with other swine populations (commercial and other locally adapted breeds). Monteiro populations from different geographic locations within Pantanal are not isolated and can be considered as a large unique population. Since animals roam freely to seek food and water, or even due to seasonal flooding of their habitat, the Monteiro populations presented absence of major genetic structure and evidence of high gene flow. These results can be used to create a management plan and in situ and ex situ conservation program for conservation and use of the Monteiro breed in the Pantanal ecosystem.
Collapse
Affiliation(s)
- Elizabete C Silva
- Faculdade de Agronomia E Medicina Veterinária, Instituto Central de Ciências, Campus Darcy Ribeiro, Universidade de Brasília, Asa Norte, Brasilia, DF, 70910-900, Brazil
| | - Concepta McManus
- Departamento de Ciências Fisiológicas, Instituto de Biologia, Campus Darcy Ribeiro, Universidade de Brasilia, Asa Norte, Brasilia, DF, 70910-900, Brazil
| | - Ubiratan Piovezan
- Embrapa Tabuleiros Costeiros, Av. Beira Mar, 3250 - Jardins, Aracaju, SE, 49025-040, Brazil
| | - Danielle A Faria
- Faculdade de Agronomia E Medicina Veterinária, Instituto Central de Ciências, Campus Darcy Ribeiro, Universidade de Brasília, Asa Norte, Brasilia, DF, 70910-900, Brazil
| | - Carla A Souza
- La Trobe University, Plenty Rd & Kingsbury Dr., Bundoora, VIC, 3086, Australia
| | - Alexandre R Caetano
- Embrapa Recursos Genéticos E Biotecnologia, Final W5 Norte, Brasília, DF, 70770-917, Brazil
| | - Samuel R Paiva
- Embrapa Recursos Genéticos E Biotecnologia, Final W5 Norte, Brasília, DF, 70770-917, Brazil.
| |
Collapse
|
25
|
Whole genome sequence analysis reveals genetic structure and X-chromosome haplotype structure in indigenous Chinese pigs. Sci Rep 2020; 10:9433. [PMID: 32523001 PMCID: PMC7286894 DOI: 10.1038/s41598-020-66061-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 05/14/2020] [Indexed: 12/05/2022] Open
Abstract
Chinese indigenous pigs exhibit considerable phenotypic diversity, but their population structure and the genetic basis of agriculturally important traits need further exploration. Here, we sequenced the whole genomes of 24 individual pigs representing 22 breeds distributed throughout China. For comparison with European and commercial breeds (one pig per breed), we included seven published pig genomes with our new genomes for analyses. Our results showed that breeds grouped together based on morphological classifications are not necessarily more genetically similar to each other than to breeds from other groups. We found that genetic material from European pigs likely introgressed into five Chinese breeds. We have identified two new subpopulations of domestic pigs that encompass morphology-based criteria in China. The Southern Chinese subpopulation comprises the classical South Chinese Type and part of the Central China Type. In contrast, the Northern Chinese subpopulation comprises the North China Type, the Lower Yangtze River Basin Type, the Southwest Type, the Plateau Type, and the remainder of the Central China Type. Eight haplotypes and two recombination sites were identified within a conserved 40.09 Mb linkage-disequilibrium (LD) block on the X chromosome. Potential candidate genes (LEPR, FANCC, COL1A1, and PCCA) influencing body size were identified. Our findings provide insights into the phylogeny of Chinese indigenous pig breeds and benefit gene mining efforts to improve major economic traits.
Collapse
|
26
|
Wang Y, Zhang W, Wu X, Wu C, Qian L, Wang L, Zhang X, Yang M, Li D, Ding J, Wang C, Yin Z, Ding Y. Transcriptomic comparison of liver tissue between Anqing six-end-white pigs and Yorkshire pigs based on RNA sequencing. Genome 2020; 63:203-214. [DOI: 10.1139/gen-2019-0105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chinese indigenous pig and Western commercial pig breeds show different patterns of lipid metabolism, fat deposition, and fatty acid composition; for these reasons, they have become vitally important models of energy metabolism and obesity in humans. To compare the mechanisms underlying lipid metabolism between Yorkshire pigs (lean type) and Anqing six-end-white pigs (obese type), the liver transcriptomes of six castrated boars with a body weight of approximately 100 kg (three Yorkshire and three Anqing) were analyzed by RNA-seq. The total number of reads produced for each liver sample ranged from 47.05 to 62.6 million. Among 362 differentially expressed genes, 142 were up-regulated and 220 were down-regulated in Anqing six-end-white pigs. Based on these data, 79 GO terms were significantly enriched. The top 10 (the 10 with lowest corrected P-value) significantly enriched GO terms were identified, including lipid metabolic process and carboxylic acid metabolic process. Pathway analysis revealed three significantly enriched KEGG pathways including PPAR signaling pathway, steroid hormone biosynthesis, and retinol metabolism. Based on protein–protein interaction networks, multiple genes responsible for lipid metabolism were identified, such as PCK1, PPARA, and CYP7A1, and these were considered promising candidate genes that could affect porcine liver lipid metabolism and fat deposition. Our results provide abundant transcriptomic information that will be useful for animal breeding and biomedical research.
Collapse
Affiliation(s)
- Yuanlang Wang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Wei Zhang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xudong Wu
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Chaodong Wu
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Li Qian
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Li Wang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiaodong Zhang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Min Yang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Dengtao Li
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jian Ding
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Chonglong Wang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China
| | - Zongjun Yin
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yueyun Ding
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| |
Collapse
|
27
|
Hou Y, Qi F, Bai X, Ren T, Shen X, Chu Q, Zhang X, Lu X. Genome-wide analysis reveals molecular convergence underlying domestication in 7 bird and mammals. BMC Genomics 2020; 21:204. [PMID: 32131728 PMCID: PMC7057487 DOI: 10.1186/s12864-020-6613-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 02/24/2020] [Indexed: 12/19/2022] Open
Abstract
Background In response to ecological niche of domestication, domesticated mammals and birds developed adaptively phenotypic homoplasy in behavior modifications like fearlessness, altered sociability, exploration and cognition, which partly or indirectly result in consequences for economic productivity. Such independent adaptations provide an excellent model to investigate molecular mechanisms and patterns of evolutionary convergence driven by artificial selection. Results First performing population genomic and brain transcriptional comparisons in 68 wild and domesticated chickens, we revealed evolutionary trajectories, genetic architectures and physiologic bases of adaptively behavioral alterations. To extensively decipher molecular convergence on behavioral changes thanks to domestication, we investigated selection signatures in hundreds of genomes and brain transcriptomes across chicken and 6 other domesticated mammals. Although no shared substitution was detected, a common enrichment of the adaptive mutations in regulatory sequences was observed, presenting significance to drive adaptations. Strong convergent pattern emerged at levels of gene, gene family, pathway and network. Genes implicated in neurotransmission, semaphorin, tectonic protein and modules regulating neuroplasticity were central focus of selection, supporting molecular repeatability of homoplastic behavior reshapes. Genes at nodal positions in trans-regulatory networks were preferably targeted. Consistent down-regulation of majority brain genes may be correlated with reduced brain size during domestication. Up-regulation of splicesome genes in chicken rather mammals highlights splicing as an efficient way to evolve since avian-specific genomic contraction of introns and intergenics. Genetic burden of domestication elicits a general hallmark. The commonly selected genes were relatively evolutionary conserved and associated with analogous neuropsychiatric disorders in human, revealing trade-off between adaption to life with human at the cost of neural changes affecting fitness in wild. Conclusions After a comprehensive investigation on genomic diversity and evolutionary trajectories in chickens, we revealed basis, pattern and evolutionary significance of molecular convergence in domesticated bird and mammals, highlighted the genetic basis of a compromise on utmost adaptation to the lives with human at the cost of high risk of neurophysiological changes affecting animals’ fitness in wild.
Collapse
Affiliation(s)
- Yali Hou
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China. .,China National Center for Bioinformation, Beijing, People's Republic of China.
| | - Furong Qi
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China.,China National Center for Bioinformation, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xue Bai
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China.,China National Center for Bioinformation, Beijing, People's Republic of China
| | - Tong Ren
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xu Shen
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Qin Chu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| | - Xiquan Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, People's Republic of China.
| | - Xuemei Lu
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China. .,University of Chinese Academy of Sciences, Beijing, People's Republic of China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, People's Republic of China.
| |
Collapse
|
28
|
Berihulay H, Li Y, Gebrekidan B, Gebreselassie G, Liu X, Jiang L, Ma Y. Whole Genome Resequencing Reveals Selection Signatures Associated With Important Traits in Ethiopian Indigenous Goat Populations. Front Genet 2019; 10:1190. [PMID: 31850061 PMCID: PMC6892828 DOI: 10.3389/fgene.2019.01190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
Ethiopia is considered as the main gateway for the introduction of livestock species, including goat, to the African continent. Ethiopian goats are characterized by their unique adaptive ability, and different physical characteristics in terms of morphology, body size, coat colors, and other important traits. The comparative population genomic analysis provides useful genomic information associated with important traits. Whole-genome resequencing of 44 Ethiopian indigenous goats produced 16 million single-nucleotide polymorphisms (SNPs) as well as 123,577 insertions and deletions. Specifically, 11,137,576, 10,760,581, 10,833,847, 12,229,657 and 10,749,996 putative SNPs were detected in Abergelle, Afar, Begait, Central Highland and Meafure goat populations, respectively. In this study, we used population differentiation (FST) and pooled heterozygosity (HP) Cbased approaches. From the FST analysis, we identified 480 outlier windows. The HP approach detected 108 and 205 outlier windows for Abergelle, and Begait, respectively. About 11 and 5 genes under selective signals were common for both approaches that were associated with important traits. After genome annotation, we found 41 Gene ontology (GO) terms (12 in biological processes, 8 in cellular components and 11 in the molecular function) and 10 Kyoto Encyclopedia of Genes and Genomes pathways. Several of the candidate genes are involved in the reproduction, body weight, fatty acids, and disease related traits. Our investigation contributes to deliver valuable genetic information and paves the way to design conservation strategy, breed management, genetic improvement, and utilization programs. The genomic resources generated in the study will offer an opportunity for further investigations.
Collapse
Affiliation(s)
- Haile Berihulay
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Veterinary Science, Mekelle University, Mekelle, Ethiopia
| | - Yefang Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Berihu Gebrekidan
- College of Veterinary Science, Mekelle University, Mekelle, Ethiopia
| | | | - Xuexue Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuehui Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
29
|
Jiang Y, Jiang Y, Wang S, Zhang Q, Ding X. Optimal sequencing depth design for whole genome re-sequencing in pigs. BMC Bioinformatics 2019; 20:556. [PMID: 31703550 PMCID: PMC6839175 DOI: 10.1186/s12859-019-3164-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 10/16/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND As whole-genome sequencing is becoming a routine technique, it is important to identify a cost-effective depth of sequencing for such studies. However, the relationship between sequencing depth and biological results from the aspects of whole-genome coverage, variant discovery power and the quality of variants is unclear, especially in pigs. We sequenced the genomes of three Yorkshire boars at an approximately 20X depth on the Illumina HiSeq X Ten platform and downloaded whole-genome sequencing data for three Duroc and three Landrace pigs with an approximately 20X depth for each individual. Then, we downsampled the deep genome data by extracting twelve different proportions of 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 paired reads from the original bam files to mimic the sequence data of the same individuals at sequencing depths of 1.09X, 2.18X, 3.26X, 4.35X, 6.53X, 8.70X, 10.88X, 13.05X, 15.22X, 17.40X, 19.57X and 21.75X to evaluate the influence of genome coverage, the variant discovery rate and genotyping accuracy as a function of sequencing depth. In addition, SNP chip data for Yorkshire pigs were used as a validation for the comparison of single-sample calling and multisample calling algorithms. RESULTS Our results indicated that 10X is an ideal practical depth for achieving plateau coverage and discovering accurate variants, which achieved greater than 99% genome coverage. The number of false-positive variants was increased dramatically at a depth of less than 4X, which covered 95% of the whole genome. In addition, the comparison of multi- and single-sample calling showed that multisample calling was more sensitive than single-sample calling, especially at lower depths. The number of variants discovered under multisample calling was 13-fold and 2-fold higher than that under single-sample calling at 1X and 22X, respectively. A large difference was observed when the depth was less than 4.38X. However, more false-positive variants were detected under multisample calling. CONCLUSIONS Our research will inform important study design decisions regarding whole-genome sequencing depth. Our results will be helpful for choosing the appropriate depth to achieve the same power for studies performed under limited budgets.
Collapse
Affiliation(s)
- Yifan Jiang
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Yao Jiang
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Sheng Wang
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Qin Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, 271001 China
| | - Xiangdong Ding
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
30
|
Kim JY, Jeong S, Kim KH, Lim WJ, Lee HY, Kim N. Discovery of Genomic Characteristics and Selection Signatures in Korean Indigenous Goats Through Comparison of 10 Goat Breeds. Front Genet 2019; 10:699. [PMID: 31440273 PMCID: PMC6694180 DOI: 10.3389/fgene.2019.00699] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 07/03/2019] [Indexed: 12/16/2022] Open
Abstract
Indigenous breeds develop their own genomic characteristics by adapting to local environments or cultures over long periods of time. Most of them are not particularly productive in commercial terms, but they have abilities to survive in harsh environments or tolerate to specific diseases. Their adaptive characteristics play an important role as genetic materials for improving commercial breeds. As a step toward this goal, we analyzed the genome of Korean indigenous goats within 10 goat breeds. We collected 136 goat individuals by sequencing 46 new goats and employing 90 publicly available goats. Our whole-genome data was comprised of three indigenous breeds (Korean indigenous goat, Iranian indigenous goat, and Moroccan indigenous goat; n = 29, 18, 20), six commercial breeds (Saanen, Boer, Anglo-Nubian, British Alpine, Alpine, and Korean crossbred; n = 16, 11, 5, 5, 2, 13), and their ancestral species (Capra aegagrus; n = 17). We identified that the Iranian indigenous goat and the Moroccan indigenous goat have relatively similar genomic characteristics within a large category of genomic diversity but found that the Korean indigenous goat has unique genomic characteristics distinguished from the other nine breeds. Through population analysis, we confirmed that these characteristics have resulted from a near-isolated environment with strong genetic drift. The Korean indigenous goat experienced a severe genetic bottleneck upon entering the Korean Peninsula about 2,000 years ago, and has subsequently rarely experienced genetic interactions with other goat breeds. From selection analysis and gene-set enrichment analysis, we revealed selection signals for Salmonella infection and cardiomyopathy in the genome of the Korean indigenous goat. These adaptive characteristics were further identified with genomic-based evidence. We uncovered genomic regions of selective sweeps in the LBP and BPI genes (Salmonella infection) and the TTN and ITGB6 genes (cardiomyopathy), among several candidate genes. Our research presents unique genomic characteristics and distinctive selection signals of the Korean indigenous goat based on the extensive comparison. Although the adaptive traits require further validation through biological experiments, our findings are expected to provide a direction for future biodiversity conservation strategies and to contribute another option to genomic-based breeding programmes for improving the viability of Capra hircus.
Collapse
Affiliation(s)
- Jae-Yoon Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, South Korea
| | - Seongmun Jeong
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Kyoung Hyoun Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, South Korea
| | - Won-Jun Lim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, South Korea
| | - Ho-Yeon Lee
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, South Korea
| | - Namshin Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, South Korea
| |
Collapse
|
31
|
E G, Yang BG, Basang WD, Zhu YB, An TW, Luo XL. Screening for signatures of selection of Tianzhu white yak using genome-wide re-sequencing. Anim Genet 2019; 50:534-538. [PMID: 31246332 DOI: 10.1111/age.12817] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2019] [Indexed: 12/13/2022]
Abstract
The Tianzhu white yak, a domestic yak indigenous to the Qilian Mountains, migrated inland from the Qinghai-Tibet Plateau. Specific ecological and long-term artificial selection influenced the evolution of its pure white coat and physiological characteristics. Therefore, it is not only a natural population that represents a genomic selective region of environmental adaptability but is also an animal model for studying the pigmentation of the yak coat. A total of 24 261 829 variants, including 22 445 252 SNPs, were obtained from 29 yaks by genome-wide re-sequencing. According to the results of a selective sweep analysis of Tianzhu white yak in comparison to Tibetan yaks, nine candidate genes under selection in Tianzhu white yak were identified by combining π, Tajima's D, πA/πB and FST statistics, with threshold standards of 5%. These genes include PDCD1, NUP210, ABCG8, NEU4, LOC102287650, D2HGDH, COL4A1, RTP5 and HDAC11. Five of the nine genes were classified into 12 molecular signaling pathways, and most of these signaling pathways are involved in environmental information processing, organismal systems and metabolism. A majority of these genes has not been implicated in previous studies of yak coat color and high-altitude animals. Our findings are helpful not only for explaining the molecular mechanism of yak coat pigmentation but also for exploring the genetic changes in Tianzhu white yak due to environmental adaptation.
Collapse
Affiliation(s)
- Guangxin E
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - B-G Yang
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - W-D Basang
- Institute of Animal Husbandryand Veterinary Medicine, Tibet Academy of Agriculture and Animal Husandry Science, Lasa, 850009, China
| | - Y-B Zhu
- Institute of Animal Husbandryand Veterinary Medicine, Tibet Academy of Agriculture and Animal Husandry Science, Lasa, 850009, China
| | - T-W An
- Sichuan Academy of Grassland Sciences, Chengdu, Sichuan, 611731, China
| | - X-L Luo
- Sichuan Academy of Grassland Sciences, Chengdu, Sichuan, 611731, China
| |
Collapse
|
32
|
Jiang J, Liu L, Gao Y, Shi L, Li Y, Liang W, Sun D. Determination of genetic associations between indels in 11 candidate genes and milk composition traits in Chinese Holstein population. BMC Genet 2019; 20:48. [PMID: 31138106 PMCID: PMC6537361 DOI: 10.1186/s12863-019-0751-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/20/2019] [Indexed: 01/20/2023] Open
Abstract
Background We have previously identified 11 promising candidate genes for milk composition traits by resequencing the whole genomes of 8 Holstein bulls with extremely high and low estimated breeding values for milk protein and fat percentages (high and low groups), including FCGR2B, CENPE, RETSAT, ACSBG2, NFKB2, TBC1D1, NLK, MAP3K1, SLC30A2, ANGPT1 and UGDH those contained 25 indels between high and low groups. In this study, the purpose was to further examine whether these candidates have significant genetic effects on milk protein and fat traits. Results With PCR product sequencing, 13 indels identified by whole genome resequencing were successfully genotyped. With association analysis in 769 Chinese Holstein cows, we found that the indel in FCGR2B was significantly associated with milk yield, protein yield and protein percentage (P = 0.0041 to 0.0297); five indels in CENPE and one indel in MAP3K1 were markedly relevant to milk yield, fat yield and protein yield (P < 0.0001 to 0.0073); polymorphism in RETSAT was evidently associated with milk yield, fat yield, protein yield and protein percentage (P = 0.0001 to 0.0237); variant in ACSBG2 affected fat yield and protein percentage (P = 0.0088 and 0.0052); one indel in TBC1D1 was with respect to fat percentage and protein percentage (P = 0.0224 and 0.0209). Significant associations were shown between indels in NLK and protein yield and protein percentage (P = 0.0012 to 0.0257); variant in UGDH was related to the milk yield (P = 0.0312). The two exonic indels in FCGR2B and CENPE were predicted to change the mRNA and protein secondary structures, and resulted in the corresponding protein dysfunction. Conclusion Our findings presented here provide the first evidence for the associations of eight functional genes with milk yield and composition traits in dairy cattle. Electronic supplementary material The online version of this article (10.1186/s12863-019-0751-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jianping Jiang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China.,College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Lin Liu
- Beijing Dairy Cattle Center, Beijing, 100085, China
| | - Yahui Gao
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Lijun Shi
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Yanhua Li
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China.,Beijing Dairy Cattle Center, Beijing, 100085, China
| | - Weijun Liang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Dongxiao Sun
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
33
|
Diao S, Huang S, Chen Z, Teng J, Ma Y, Yuan X, Chen Z, Zhang H, Li J, Zhang Z. Genome-Wide Signatures of Selection Detection in Three South China Indigenous Pigs. Genes (Basel) 2019; 10:genes10050346. [PMID: 31067806 PMCID: PMC6563113 DOI: 10.3390/genes10050346] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/28/2019] [Accepted: 05/02/2019] [Indexed: 01/11/2023] Open
Abstract
South China indigenous pigs are famous for their superior meat quality and crude feed tolerance. Saba and Baoshan pigs without saddleback were located in the high-altitude area of Yunnan Province, while Tunchang and Ding’an pigs with saddleback were located in the low-altitude area of Hainan Province. Although these pigs are different in appearance, the underlying genetic differences have not been investigated. In this study, based on the single-nucleotide polymorphism (SNP) genotypes of 124 samples, both the cross-population extended haplotype homozygosity (XP-EHH) and the fixation index (FST) statistic were used to identify potential signatures of selection in these pig breeds. We found nine potential signatures of selection detected simultaneously by two methods, annotated 22 genes in Hainan pigs, when Baoshan pigs were used as the reference group. In addition, eleven potential signatures of selection detected simultaneously by two methods, annotated 24 genes in Hainan pigs compared with Saba pigs. These candidate genes were most enriched in GO: 0048015~phosphatidylinositol-mediated signaling and ssc00604: Glycosphingolipid biosynthesis—ganglio series. These selection signatures were likely to overlap with quantitative trait loci associated with meat quality traits. Furthermore, one potential selection signature, which was associated with different coat color, was detected in Hainan pigs. These results contribute to a better understanding of the underlying genetic architecture of South China indigenous pigs.
Collapse
Affiliation(s)
- Shuqi Diao
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding/National Engineering Research Centre for Breeding Swine Industry/College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Shuwen Huang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding/National Engineering Research Centre for Breeding Swine Industry/College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Zitao Chen
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding/National Engineering Research Centre for Breeding Swine Industry/College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Jinyan Teng
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding/National Engineering Research Centre for Breeding Swine Industry/College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Yunlong Ma
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaolong Yuan
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding/National Engineering Research Centre for Breeding Swine Industry/College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Zanmou Chen
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding/National Engineering Research Centre for Breeding Swine Industry/College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Hao Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding/National Engineering Research Centre for Breeding Swine Industry/College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Jiaqi Li
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding/National Engineering Research Centre for Breeding Swine Industry/College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Zhe Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding/National Engineering Research Centre for Breeding Swine Industry/College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
34
|
Weldenegodguad M, Popov R, Pokharel K, Ammosov I, Ming Y, Ivanova Z, Kantanen J. Whole-Genome Sequencing of Three Native Cattle Breeds Originating From the Northernmost Cattle Farming Regions. Front Genet 2019; 9:728. [PMID: 30687392 PMCID: PMC6336893 DOI: 10.3389/fgene.2018.00728] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/22/2018] [Indexed: 12/30/2022] Open
Abstract
Northern Fennoscandia and the Sakha Republic in the Russian Federation represent the northernmost regions on Earth where cattle farming has been traditionally practiced. In this study, we performed whole-genome sequencing to genetically characterize three rare native breeds Eastern Finncattle, Western Finncattle and Yakutian cattle adapted to these northern Eurasian regions. We examined the demographic history, genetic diversity and unfolded loci under natural or artificial selection. On average, we achieved 13.01-fold genome coverage after mapping the sequencing reads on the bovine reference genome (UMD 3.1) and detected a total of 17.45 million single nucleotide polymorphisms (SNPs) and 1.95 million insertions-deletions (indels). We observed that the ancestral species (Bos primigenius) of Eurasian taurine cattle experienced two notable prehistorical declines in effective population size associated with dramatic climate changes. The modern Yakutian cattle exhibited a higher level of within-population variation in terms of number of SNPs and nucleotide diversity than the contemporary European taurine breeds. This result is in contrast to the results of marker-based cattle breed diversity studies, indicating assortment bias in previous analyses. Our results suggest that the effective population size of the ancestral Asiatic taurine cattle may have been higher than that of the European cattle. Alternatively, our findings could indicate the hybrid origins of the Yakutian cattle ancestries and possibly the lack of intensive artificial selection. We identified a number of genomic regions under selection that may have contributed to the adaptation to the northern and subarctic environments, including genes involved in disease resistance, sensory perception, cold adaptation and growth. By characterizing the native breeds, we were able to obtain new information on cattle genomes and on the value of the adapted breeds for the conservation of cattle genetic resources.
Collapse
Affiliation(s)
- Melak Weldenegodguad
- Department of Production Systems, Natural Resources Institute Finland (Luke), Helsinki, Finland.,Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ruslan Popov
- Yakutian Research Institute of Agriculture (FGBNU Yakutskij NIISH), Yakutsk, Russia
| | - Kisun Pokharel
- Department of Production Systems, Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Innokentyi Ammosov
- Board of Agricultural Office of Eveno-Bytantaj Region, Batagay-Alyta, Russia
| | - Yao Ming
- BGI-Genomics, BGI-Shenzhen, Shenzhen, China
| | - Zoya Ivanova
- Yakutian Research Institute of Agriculture (FGBNU Yakutskij NIISH), Yakutsk, Russia
| | - Juha Kantanen
- Department of Production Systems, Natural Resources Institute Finland (Luke), Helsinki, Finland
| |
Collapse
|
35
|
Shin D, Won KH, Song KD. In silico approaches to discover the functional impact of non-synonymous single nucleotide polymorphisms in selective sweep regions of the Landrace genome. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 31:1980-1990. [PMID: 29879810 PMCID: PMC6212746 DOI: 10.5713/ajas.18.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/13/2018] [Accepted: 05/29/2018] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The aim of this study was to discover the functional impact of non-synonymous single nucleotide polymorphisms (nsSNPs) that were found in selective sweep regions of the Landrace genome. METHODS Whole-genome re-sequencing data were obtained from 40 pigs, including 14 Landrace, 16 Yorkshire, and 10 wild boars, which were generated with the Illumina HiSeq 2000 platform. The nsSNPs in the selective sweep regions of the Landrace genome were identified, and the impacts of these variations on protein function were predicted to reveal their potential association with traits of the Landrace breed, such as reproductive capacity. RESULTS Total of 53,998 nsSNPs in the mapped regions of pigs were identified, and among them, 345 nsSNPs were found in the selective sweep regions of the Landrace genome which were reported previously. The genes featuring these nsSNPs fell into various functional categories, such as reproductive capacity or growth and development during the perinatal period. The impacts of amino acid sequence changes by nsSNPs on protein function were predicted using two in silico SNP prediction algorithms, i.e., sorting intolerant from tolerant and polymorphism phenotyping v2, to reveal their potential roles in biological processes that might be associated with the reproductive capacity of the Landrace breed. CONCLUSION The findings elucidated the domestication history of the Landrace breed and illustrated how Landrace domestication led to patterns of genetic variation related to superior reproductive capacity. Our novel findings will help understand the process of Landrace domestication at the genome level and provide SNPs that are informative for breeding.
Collapse
Affiliation(s)
- Donghyun Shin
- Department of Animal Biotechnology, Chonbuk National University, Jeonju 54896,
Korea
| | - Kyung-Hye Won
- Department of Animal Biotechnology, Chonbuk National University, Jeonju 54896,
Korea
| | - Ki-Duk Song
- Department of Animal Biotechnology, Chonbuk National University, Jeonju 54896,
Korea
- The Molecular Genetics and Breeding Center, Chonbuk National University, Jeonju 54896,
Korea
| |
Collapse
|
36
|
Comprehensive inbred variation discovery in Bama pigs using de novo assemblies. Gene 2018; 679:81-89. [DOI: 10.1016/j.gene.2018.08.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 01/18/2023]
|
37
|
Ru D, Sun Y, Wang D, Chen Y, Wang T, Hu Q, Abbott RJ, Liu J. Population genomic analysis reveals that homoploid hybrid speciation can be a lengthy process. Mol Ecol 2018; 27:4875-4887. [PMID: 30357974 DOI: 10.1111/mec.14909] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/22/2018] [Accepted: 10/02/2018] [Indexed: 12/26/2022]
Abstract
An increasing number of species are thought to have originated by homoploid hybrid speciation (HHS), but in only a handful of cases are details of the process known. A previous study indicated that Picea purpurea, a conifer in the Qinghai-Tibet Plateau (QTP), originated through HHS from P. likiangensis and P. wilsonii. To investigate this origin in more detail, we analysed transcriptome data for 114 individuals collected from 34 populations of the three Picea species from their core distributions in the QTP. Phylogenetic, principal component and admixture analyses of nuclear SNPs showed the species to be delimited genetically and that P. purpurea was admixed with approximately 60% of its ancestry derived from P. wilsonii and 40% from P. likiangensis. Coalescent simulations revealed the best-fitting model of origin involved formation of an intermediate hybrid lineage between P. likiangensis and P. wilsonii approximately 6 million years ago (mya), which backcrossed to P. wilsonii to form P. purpurea approximately one mya. The intermediate hybrid lineage no longer exists and is referred to as a "ghost" lineage. Our study emphasizes the power of population genomic analysis combined with coalescent analysis for reconstructing the stages involved in the origin of a homoploid hybrid species over an extended period. In contrast to other studies, we show that these stages can in some instances span a relatively long period of evolutionary time.
Collapse
Affiliation(s)
- Dafu Ru
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Yongshuai Sun
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China.,CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, PR China
| | - Donglei Wang
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Yang Chen
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Tianjing Wang
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Quanjun Hu
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | | | - Jianquan Liu
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| |
Collapse
|
38
|
Zhao P, Yu Y, Feng W, Du H, Yu J, Kang H, Zheng X, Wang Z, Liu GE, Ernst CW, Ran X, Wang J, Liu JF. Evidence of evolutionary history and selective sweeps in the genome of Meishan pig reveals its genetic and phenotypic characterization. Gigascience 2018; 7:5001425. [PMID: 29790964 PMCID: PMC6007440 DOI: 10.1093/gigascience/giy058] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 05/11/2018] [Indexed: 12/18/2022] Open
Abstract
Background Meishan is a pig breed indigenous to China and famous for its high fecundity. The traits of Meishan are strongly associated with its distinct evolutionary history and domestication. However, the genomic evidence linking the domestication of Meishan pigs with its unique features is still poorly understood. The goal of this study is to investigate the genomic signatures and evolutionary evidence related to the phenotypic traits of Meishan via large-scale sequencing. Results We found that the unique domestication of Meishan pigs occurred in the Taihu Basin area between the Majiabang and Liangzhu Cultures, during which 300 protein-coding genes have underwent positive selection. Notably, enrichment of the FoxO signaling pathway with significant enrichment signal and the harbored gene IGF1R were likely associated with the high fertility of Meishan pigs. Moreover, NFKB1 exhibited strong selective sweep signals and positively participated in hyaluronan biosynthesis as the key gene of NF-kB signaling, which may have resulted in the wrinkled skin and face of Meishan pigs. Particularly, three population-specific synonymous single-nucleotide variants occurred in PYROXD1, MC1R, and FAM83G genes; the T305C substitution in the MCIR gene explained the black coat of the Meishan pigs well. In addition, the shared haplotypes between Meishan and Duroc breeds confirmed the previous Asian-derived introgression and demonstrated the specific contribution of Meishan pigs. Conclusions These findings will help us explain the unique genetic and phenotypic characteristics of Meishan pigs and offer a plausible method for their utilization of Meishan pigs as valuable genetic resources in pig breeding and as an animal model for human wrinkled skin disease research.
Collapse
Affiliation(s)
- Pengju Zhao
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ying Yu
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wen Feng
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Heng Du
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jian Yu
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Huimin Kang
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xianrui Zheng
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhiquan Wang
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, T6G 2C8, Canada
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD 20705-2350, USA
| | | | - Xueqin Ran
- School of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Jiafu Wang
- School of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Jian-Feng Liu
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
39
|
Fu Y, Li J, Tang Q, Zou C, Shen L, Jin L, Li C, Fang C, Liu R, Li M, Zhao S, Li C. Integrated analysis of methylome, transcriptome and miRNAome of three pig breeds. Epigenomics 2018; 10:597-612. [PMID: 29692202 DOI: 10.2217/epi-2017-0087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM Integrated analysis of methylome and transcriptome may help understand the molecular basis of the different breeds with different traits of commercial interest. MATERIALS & METHODS We obtained the first genome-wide methylome with single-base resolution, miRNAome and transcriptome from three swine breeds. RESULTS We displayed the landscape of the three omics in the whole-genome level. Integrated outcomes of methylome with genetic selection, miRNAome and transcriptome are also provided. Finally, we identified 11 candidate differentially methylated genes associated with phenotype variance in pigs. CONCLUSION DNA methylation not only suppresses transcriptome but also miRNAome. The different -omics data have complicated interaction in directly or indirectly and exhibited close relations with the distinct phenotypic traits of growth, disease resistance and energy metabolism.
Collapse
Affiliation(s)
- Yuhua Fu
- Key Lab of Agriculture Animal Genetics, Breeding, & Reproduction of Ministry of Education, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jingxuan Li
- Key Lab of Agriculture Animal Genetics, Breeding, & Reproduction of Ministry of Education, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Qianzi Tang
- Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Cheng Zou
- Key Lab of Agriculture Animal Genetics, Breeding, & Reproduction of Ministry of Education, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Linyuan Shen
- Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Long Jin
- Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Cencen Li
- Key Lab of Agriculture Animal Genetics, Breeding, & Reproduction of Ministry of Education, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Chengchi Fang
- Key Lab of Agriculture Animal Genetics, Breeding, & Reproduction of Ministry of Education, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Rui Liu
- Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Mingzhou Li
- Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Shuhong Zhao
- Key Lab of Agriculture Animal Genetics, Breeding, & Reproduction of Ministry of Education, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Changchun Li
- Key Lab of Agriculture Animal Genetics, Breeding, & Reproduction of Ministry of Education, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| |
Collapse
|
40
|
Zhi D, Da L, Liu M, Cheng C, Zhang Y, Wang X, Li X, Tian Z, Yang Y, He T, Long X, Wei W, Cao G. Whole Genome Sequencing of Hulunbuir Short-Tailed Sheep for Identifying Candidate Genes Related to the Short-Tail Phenotype. G3 (BETHESDA, MD.) 2018; 8:377-383. [PMID: 29208649 PMCID: PMC5919745 DOI: 10.1534/g3.117.300307] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/27/2017] [Indexed: 01/03/2023]
Abstract
The Hulunbuir short-tailed sheep (Ovis aries) is a breed native to China, in which the short-tail phenotype is the result of artificial and natural selection favoring a specific set of genetic mutations. Here, we analyzed the genetic differences between short-tail and normal-tail phenotypes at the genomic level. Selection signals were identified in genome-wide sequences. From 16 sheep, we identified 72,101,346 single nucleotide polymorphisms. Selection signals were detected based on the fixation index and heterozygosity. Seven genomic regions under putative selection were identified, and these regions contained nine genes. Among these genes, T was the strongest candidate as T is related to vertebral development. In T, a nonsynonymous mutation at c.G334T resulted in p.G112W substitution. We inferred that the c.G334T mutation in T leads to functional changes in Brachyury-encoded by this gene-resulting in the short-tail phenotype. Our findings provide a valuable insight into the development of the short-tail phenotype in sheep and other short-tailed animals.
Collapse
Affiliation(s)
- Dafu Zhi
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot 010018, People's Republic of China
| | - Lai Da
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Huhhot 010018, People's Republic of China
| | - Moning Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot 010018, People's Republic of China
| | - Chen Cheng
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot 010018, People's Republic of China
| | - Yukun Zhang
- College of Life Sciences, Inner Mongolia Agricultural University, Huhhot 010018, People's Republic of China
| | - Xin Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot 010018, People's Republic of China
| | - Xiunan Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot 010018, People's Republic of China
| | - Zhipeng Tian
- College of Life Sciences, Inner Mongolia Agricultural University, Huhhot 010018, People's Republic of China
| | - Yanyan Yang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Huhhot 010018, People's Republic of China
| | - Tingyi He
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Huhhot 010018, People's Republic of China
| | - Xin Long
- College of Life Sciences, Inner Mongolia Agricultural University, Huhhot 010018, People's Republic of China
| | - Wei Wei
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot 010018, People's Republic of China
| | - Guifang Cao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot 010018, People's Republic of China
| |
Collapse
|
41
|
Li X, Su R, Wan W, Zhang W, Jiang H, Qiao X, Fan Y, Zhang Y, Wang R, Liu Z, Wang Z, Liu B, Ma Y, Zhang H, Zhao Q, Zhong T, Di R, Jiang Y, Chen W, Wang W, Dong Y, Li J. Identification of selection signals by large-scale whole-genome resequencing of cashmere goats. Sci Rep 2017; 7:15142. [PMID: 29123196 PMCID: PMC5680388 DOI: 10.1038/s41598-017-15516-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/27/2017] [Indexed: 01/14/2023] Open
Abstract
Inner Mongolia and Liaoning cashmere goats are two outstanding Chinese multipurpose breeds that adapt well to the semi-arid temperate grassland. These two breeds are characterized by their soft cashmere fibers, thus making them great models to identify genomic regions that are associated with cashmere fiber traits. Whole-genome sequencing of 70 cashmere goats produced more than 5.52 million single-nucleotide polymorphisms and 710,600 short insertions and deletions. Further analysis of these genetic variants showed some population-specific molecular markers for the two cashmere goat breeds that are otherwise phenotypically similar. By analyzing FST and θπ outlier values, we identified 135 genomic regions that were associated with cashmere fiber traits within the cashmere goat populations. These selected genomic regions contained genes, which are potential involved in the production of cashmere fiber, such as FGF5, SGK3, IGFBP7, OXTR, and ROCK1. Gene ontology enrichment analysis of identified short insertions and deletions also showed enrichment in keratinocyte differentiation and epidermal cell differentiation. These findings demonstrate that this genomic resource will facilitate the breeding of cashmere goat and other Capra species in future.
Collapse
Affiliation(s)
- Xiaokai Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Rui Su
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction - Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,Engineering Research Center for Goat Genetics and Breeding - Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Wenting Wan
- Center for Ecological and Environmental Sciences, Key Laboratory for Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Wenguang Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Huaizhi Jiang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Xian Qiao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Yixing Fan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction - Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,Engineering Research Center for Goat Genetics and Breeding - Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Ruijun Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction - Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,Engineering Research Center for Goat Genetics and Breeding - Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Zhihong Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction - Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,Engineering Research Center for Goat Genetics and Breeding - Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Zhiying Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction - Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,Engineering Research Center for Goat Genetics and Breeding - Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Bin Liu
- Institute of Animal Husbandry, Academy of Agriculture and Stockbreeding Sciences, Hohhot, Inner Mongolia, 010030, China
| | - Yuehui Ma
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qianjun Zhao
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ran Di
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yu Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Wei Chen
- College of Biological Big Data, Yunnan Agriculture University, Kunming, Yunnan, 650504, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, Yunnan, 650201, China
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| | - Yang Dong
- College of Biological Big Data, Yunnan Agriculture University, Kunming, Yunnan, 650504, China. .,BGI-Shenzhen, Shenzhen, Guangdong, 518083, China. .,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, Yunnan, 650201, China.
| | - Jinquan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China. .,Key Laboratory of Animal Genetics, Breeding and Reproduction - Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China. .,Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China. .,Engineering Research Center for Goat Genetics and Breeding - Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.
| |
Collapse
|
42
|
Genetic and phenotypic characterization of the novel mouse substrain C57BL/6N Korl with increased body weight. Sci Rep 2017; 7:14217. [PMID: 29079844 PMCID: PMC5660189 DOI: 10.1038/s41598-017-14196-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/03/2017] [Indexed: 01/10/2023] Open
Abstract
In inbred mouse lines, there is generally little genetic difference between individuals. This small genetic variability facilitates carrying out research on minute changes of various traits and the gene pool. Also, characterizing the diversity and detecting selective genetic and phenotypic signatures are crucial to understanding the genomic basis of a population and to identify specific patterns of evolutionary change. In this study, we investigated the underlying genetic profiles of a newly developed mouse strain, C57BL/6NKorl (Korl), established through sibling mating over 30 generations. To analyse the distinctive genomic features of Korl mice, we used whole-genome sequencing from six samples, which were compared to those of other C57BL/6N-based mouse strains. Korl strain-specific polymorphisms were identified and signatures of a selective sweep were detected. In particular, the candidate genes related to the increased body weight of the Korl strain were identified. Establishment of the genetic profile of Korl mice can provide insight into the inbreeding-induced changes to the gene pool, and help to establish this strain as a useful model for practical and targeted research purposes.
Collapse
|
43
|
Theofanopoulou C, Gastaldon S, O’Rourke T, Samuels BD, Messner A, Martins PT, Delogu F, Alamri S, Boeckx C. Self-domestication in Homo sapiens: Insights from comparative genomics. PLoS One 2017; 12:e0185306. [PMID: 29045412 PMCID: PMC5646786 DOI: 10.1371/journal.pone.0185306] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/11/2017] [Indexed: 02/07/2023] Open
Abstract
This study identifies and analyzes statistically significant overlaps between selective sweep screens in anatomically modern humans and several domesticated species. The results obtained suggest that (paleo-)genomic data can be exploited to complement the fossil record and support the idea of self-domestication in Homo sapiens, a process that likely intensified as our species populated its niche. Our analysis lends support to attempts to capture the "domestication syndrome" in terms of alterations to certain signaling pathways and cell lineages, such as the neural crest.
Collapse
Affiliation(s)
- Constantina Theofanopoulou
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
- Universitat de Barcelona Institute for Complex Systems, Barcelona, Spain
| | - Simone Gastaldon
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
- School of Psychology, University of Padova, Padova, Italy
| | - Thomas O’Rourke
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
| | - Bridget D. Samuels
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, United States of America
| | - Angela Messner
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
| | | | - Francesco Delogu
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Saleh Alamri
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
| | - Cedric Boeckx
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
- Universitat de Barcelona Institute for Complex Systems, Barcelona, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
44
|
Do KT, Jung SW, Park KD, Na CS. Effect of single nucleotide polymorphism on the total number of piglets born per parity of three different pig breeds. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 31:628-635. [PMID: 28823139 PMCID: PMC5930272 DOI: 10.5713/ajas.17.0028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/29/2017] [Accepted: 07/28/2017] [Indexed: 02/04/2023]
Abstract
Objective To determine the effects of genomic breeding values (GBV) and single nucleotide polymorphisms (SNP) on the total number of piglets born (TNB) in 3 pig breeds (Berkshire, Landrace, and Yorkshire). Methods After collecting genomic information (Porcine SNP BeadChip) and phenotypic TNB records for each breed, the effects of GBV and SNP were estimated by using single step best linear unbiased prediction (ssBLUP) method. Results The heritability estimates for TNB in Berkshire, Landrace, and Yorkshire breeds were 0.078, 0.107, and 0.121, respectively. The breeding value estimates for TNB in Berkshire, Landrace, and Yorkshire breeds were in the range of −1.34 to 1.47 heads, −1.79 to 1.87 heads, and −2.60 to 2.94 heads, respectively. Of sows having records for TNB, the reliability of breeding value for individuals with SNP information was higher than that for individuals without SNP information. Distributions of the SNP effects on TNB did not follow gamma distribution. Most SNP effects were near zero. Only a few SNPs had large effects. The numbers of SNPs with absolute value of more than 4 standard deviations in Berkshire, Landrace, and Yorkshire breeds were 11, 8, and 19, respectively. There was no SNP with absolute value of more than 5 standard deviations in Berkshire or Landrace. However, in Yorkshire, four SNPs (ASGA 0089457, ASGA0103374, ALGA0111816, and ALGA0098882) had absolute values of more than 5 standard deviations. Conclusion There was no common SNP with large effect among breeds. This might be due to the large genetic composition differences and the small size of reference population. For the precise evaluation of genetic performance of individuals using a genomic selection method, it may be necessary to establish the appropriate size of reference population.
Collapse
Affiliation(s)
- Kyoung-Tag Do
- Department of Animal Biotechnology, Jeju National University, Jeju 63243, Korea
| | | | - Kyung-Do Park
- Department of Animal Biotechnology, Chonbuk National University, Jeonju 54896, Korea
| | - Chong-Sam Na
- Department of Animal Biotechnology, Chonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
45
|
Li X, Yang S, Dong K, Tang Z, Li K, Fan B, Wang Z, Liu B. Identification of positive selection signatures in pigs by comparing linkage disequilibrium variances. Anim Genet 2017; 48:600-605. [DOI: 10.1111/age.12574] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2017] [Indexed: 11/26/2022]
Affiliation(s)
- X. Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education; Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture; Huazhong Agricultural University; Wuhan Hubei 430070 China
- The Cooperative Innovation Center for Sustainable Pig Production; Wuhan Hubei 430070 China
- Department of Agricultural, Food and Nutritional Science; University of Alberta; Edmonton AB T6G 2P5 Canada
| | - S. Yang
- College of Animal Science and Technology; Zhejiang A&F University; Lin'an Zhejiang 311300 China
| | - K. Dong
- The Key Laboratory for Domestic Animal Genetic Resources and Breeding of Ministry of Agriculture of China; Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - Z. Tang
- The Key Laboratory for Domestic Animal Genetic Resources and Breeding of Ministry of Agriculture of China; Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - K. Li
- The Key Laboratory for Domestic Animal Genetic Resources and Breeding of Ministry of Agriculture of China; Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - B. Fan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education; Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture; Huazhong Agricultural University; Wuhan Hubei 430070 China
| | - Z. Wang
- Department of Agricultural, Food and Nutritional Science; University of Alberta; Edmonton AB T6G 2P5 Canada
| | - B. Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education; Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture; Huazhong Agricultural University; Wuhan Hubei 430070 China
- The Cooperative Innovation Center for Sustainable Pig Production; Wuhan Hubei 430070 China
| |
Collapse
|
46
|
Sahu KK, Chattopadhyay D. Genome-wide sequence variations between wild and cultivated tomato species revisited by whole genome sequence mapping. BMC Genomics 2017; 18:430. [PMID: 28576139 PMCID: PMC5455116 DOI: 10.1186/s12864-017-3822-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/25/2017] [Indexed: 11/10/2022] Open
Abstract
Background Cultivated tomato (Solanum lycopersicum L.) is the second most important vegetable crop after potato and a member of thirteen interfertile species of Solanum genus. Domestication and continuous selection for desirable traits made cultivated tomato species susceptible to many stresses as compared to the wild species. In this study, we analyzed and compared the genomes of wild and cultivated tomato accessions to identify the genomic regions that encountered changes during domestication. Results Analysis was based on SNP and InDel mining of twentynine accessions of twelve wild tomato species and forty accessions of cultivated tomato. Percentage of common SNPs among the accessions within a species corresponded with the reproductive behavior of the species. SNP profiles of the wild tomato species within a phylogenetic subsection varied with their geographical distribution. Interestingly, the ratio of genic SNP to total SNPs increased with phylogenetic distance of the wild tomato species from the domesticated species, suggesting that variations in gene-coding region play a major role in speciation. We retrieved 2439 physical positions in 1594 genes including 32 resistance related genes where all the wild accessions possessed a common wild variant allele different from all the cultivated accessions studied. Tajima’s D analysis predicted a very strong purifying selection associated with domestication in nearly 1% of its genome, half of which is contributed by chromosome 11. This genomic region with a low Tajima’s D value hosts a variety of genes associated with important agronomic trait such as, fruit size, tiller number and wax deposition. Conclusion Our analysis revealed a broad-spectrum genetic base in wild tomato species and erosion of that in cultivated tomato due to recurrent selection for agronomically important traits. Identification of the common wild variant alleles and the genomic regions undergoing purifying selection during cultivation would facilitate future breeding program by introgression from wild species. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3822-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kamlesh Kumar Sahu
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Debasis Chattopadhyay
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
47
|
Ng NSR, Wilton PR, Prawiradilaga DM, Tay YC, Indrawan M, Garg KM, Rheindt FE. The effects of Pleistocene climate change on biotic differentiation in a montane songbird clade from Wallacea. Mol Phylogenet Evol 2017; 114:353-366. [PMID: 28501612 DOI: 10.1016/j.ympev.2017.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/03/2017] [Accepted: 05/08/2017] [Indexed: 11/16/2022]
Abstract
The role of Pleistocene Ice Age in tropical diversification is poorly understood, especially in archipelagos, in which glaciation-induced sea level fluctuations may lead to complicated changes in land distribution. To assess how Pleistocene land bridges may have facilitated gene flow in tropical archipelagos, we investigated patterns of diversification in the rarely-collected rusty-bellied fantail Rhipidura teysmanni (Passeriformes: Rhipiduridae) complex from Wallacea using a combination of bioacoustic traits and whole-genome sequencing methods (dd-RADSeq). We report a biogeographic leapfrog pattern in the vocalizations of these birds, and uncover deep genomic divergence among island populations despite the presence of intermittent land connections between some. We demonstrate how rare instances of genetic introgression have affected the evolution of this species complex, and document the presence of double introgressive mitochondrial sweeps, highlighting the dangers of using only mitochondrial DNA in evolutionary research. By applying different tree inference approaches, we demonstrate how concatenation methods can give inaccurate results when investigating divergence in closely-related taxa. Our study highlights high levels of cryptic avian diversity in poorly-explored Wallacea, elucidates complex patterns of Pleistocene climate-mediated diversification in an elusive montane songbird, and suggests that Pleistocene land bridges may have accounted for limited connectivity among montane Wallacean biota.
Collapse
Affiliation(s)
- Nathaniel S R Ng
- National University of Singapore, Department of Biological Sciences, 14 Science Drive 4, Singapore 117543, Singapore
| | - Peter R Wilton
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, United States
| | - Dewi Malia Prawiradilaga
- Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Jalan Raya Jakarta Bogor KM 46, Cibinong Science Center, Cibinong 16911, Indonesia
| | - Ywee Chieh Tay
- National University of Singapore, Department of Biological Sciences, 14 Science Drive 4, Singapore 117543, Singapore
| | - Mochamad Indrawan
- Center for Biodiversity Strategies, Lab Biologi Laut, Gedung E, FMIPA, Universitas Indonesia, 16424, Indonesia
| | - Kritika M Garg
- National University of Singapore, Department of Biological Sciences, 14 Science Drive 4, Singapore 117543, Singapore.
| | - Frank E Rheindt
- National University of Singapore, Department of Biological Sciences, 14 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
48
|
Zhang J, Chen JH, Liu XD, Wang HY, Liu XL, Li XY, Wu ZF, Zhu MJ, Zhao SH. Genomewide association studies for hematological traits and T lymphocyte subpopulations in a Duroc × Erhualian F resource population. J Anim Sci 2017; 94:5028-5041. [PMID: 28046140 DOI: 10.2527/jas.2016-0924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
It has been shown that hematological traits can act as important indicators of immune function in both humans and livestock. T lymphocytes are key components of the adaptive immune system, playing a critical role in immune response. To identify genomic regions affecting hematological traits and T lymphocyte subpopulations, we performed both a SNP-based genomewide association study (GWAS) and a haplotype analysis for 20 hematological traits and 8 T cell subpopulations at 3 different time points (d 20, 33, and 35) in a Duroc × Erhualian F intercross population. Bonferroni correction was used to calculate the threshold -values for suggestive and 5% genomewide significance levels. In total, for SNP-based GWAS, we detected 96 significant SNP, including 15 genomewide-significant SNP, associated with 23 hematological traits and 234 significant SNP, including 27 genomewide-significant SNP, associated with 8 T cell subpopulations. Meanwhile, we identified 563 significant SNP, including 7 genomewide-significant SNP, associated with 5 hematological traits and 2,407 significant SNP, including 1,261 genomewide-significant SNP, associated with 8 T cell subpopulations by haplotype analysis. Among the significant regions detected, we propose both the () gene and the () gene on SSC3 as plausible candidate genes associated with CD/CD T lymphocytes at d 20. The findings provide insights into the basis of molecular mechanisms that are involved with immune response in the domestic pig and would aid further identification of causative mutations.
Collapse
|
49
|
Whole-genome scanning for the litter size trait associated genes and SNPs under selection in dairy goat (Capra hircus). Sci Rep 2016; 6:38096. [PMID: 27905513 PMCID: PMC5131482 DOI: 10.1038/srep38096] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 11/04/2016] [Indexed: 01/19/2023] Open
Abstract
Dairy goats are one of the most utilized domesticated animals in China. Here, we selected extreme populations based on differential fecundity in two Laoshan dairy goat populations. Utilizing deep sequencing we have generated 68.7 and 57.8 giga base of sequencing data, and identified 12,458,711 and 12,423,128 SNPs in the low fecundity and high fecundity groups, respectively. Following selective sweep analyses, a number of loci and candidate genes in the two populations were scanned independently. The reproduction related genes CCNB2, AR, ADCY1, DNMT3B, SMAD2, AMHR2, ERBB2, FGFR1, MAP3K12 and THEM4 were specifically selected in the high fecundity group whereas KDM6A, TENM1, SWI5 and CYM were specifically selected in the low fecundity group. A sub-set of genes including SYCP2, SOX5 and POU3F4 were localized both in the high and low fecundity selection windows, suggesting that these particular genes experienced strong selection with lower genetic diversity. From the genome data, the rare nonsense mutations may not contribute to fecundity, whereas nonsynonymous SNPs likely play a predominant role. The nonsynonymous exonic SNPs in SETDB2 and CDH26 which were co-localized in the selected region may take part in fecundity traits. These observations bring us a new insights into the genetic variation influencing fecundity traits within dairy goats.
Collapse
|
50
|
Fu Y, Li C, Tang Q, Tian S, Jin L, Chen J, Li M, Li C. Genomic analysis reveals selection in Chinese native black pig. Sci Rep 2016; 6:36354. [PMID: 27808243 PMCID: PMC5093412 DOI: 10.1038/srep36354] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 10/13/2016] [Indexed: 12/12/2022] Open
Abstract
Identification of genomic signatures that help reveal mechanisms underlying desirable traits in domesticated pigs is of significant biological, agricultural and medical importance. To identify the genomic footprints left by selection during domestication of the Enshi black pig, a typical native and meat-lard breed in China, we generated about 72-fold coverage of the pig genome using pools of genomic DNA representing three different populations of Enshi black pigs from three different locations. Combining this data with the available whole genomes of 13 Chinese wild boars, we identified 417 protein-coding genes embedded in the selected regions of Enshi black pigs. These genes are mainly involved in developmental and metabolic processes, response to stimulus, and other biological processes. Signatures of selection were detected in genes involved in body size and immunity (RPS10 and VASN), lipid metabolism (GSK3), male fertility (INSL6) and developmental processes (TBX19). These findings provide a window into the potential genetic mechanism underlying development of desirable phenotypes in Enshi black pigs during domestication and subsequent artificial selection. Thus, our results illustrate how domestication has shaped patterns of genetic variation in Enshi black pigs and provide valuable genetic resources that enable effective use of pigs in agricultural production.
Collapse
Affiliation(s)
- Yuhua Fu
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Cencen Li
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Qianzi Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Shilin Tian
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Long Jin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Jianhai Chen
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Changchun Li
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| |
Collapse
|