1
|
Rhodes CT, Wang Y, Lin CHA. Differential Gene Expression in MRI-classified Glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600091. [PMID: 38979247 PMCID: PMC11230240 DOI: 10.1101/2024.06.21.600091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Previous characterization of the genome and transcriptome of glioblastoma (GBM) has revealed molecular alterations that potentially drive GBM pathogenesis and heterogeneity 1-6 . These open-resources are evolving, such as The Cancer Genome Atlas (TCGA) and The Cancer Imaging Atlas (TCIA) at the National Institute of Health comprising a large cohort of molecular and MRI data. Yet, no report deciphers the link between molecular signatures and MRI-classified GBM. The necessity to re-form molecular and imaging data motivated our computational approach to integrate TCIA and TCGA datasets derived from GBM. We uncovered common and distinct molecular signatures across GBM patients and specific to tumor locations, respectively. Despite heterogeneity in GBM, the top 12 genes from our analysis highlights that the dysregulation of a subset of neurotransmitter receptor or transporter and synaptic activity is common across GBM patients. The coherent layer of imaging and molecular information would help us stratify precision neuro-oncology and treatment options in ways that are not possible through MRI or genomic data alone. Our findings provide molecular targets in the disrupted neurocircuit of GBM, suggesting imbalanced excitation and inhibition. Given the fact that GBM patients exhibit similar symptoms resembling patients with neurodegenerative diseases and seizures, our results supported the hypothesis-GBM in the context of neurological disorders beyond a solely cancerous disease.
Collapse
|
2
|
Isachesku E, Braicu C, Pirlog R, Kocijancic A, Busuioc C, Pruteanu LL, Pandey DP, Berindan-Neagoe I. The Role of Non-Coding RNAs in Epigenetic Dysregulation in Glioblastoma Development. Int J Mol Sci 2023; 24:16320. [PMID: 38003512 PMCID: PMC10671451 DOI: 10.3390/ijms242216320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Glioblastoma (GBM) is a primary brain tumor arising from glial cells. The tumor is highly aggressive, the reason for which it has become the deadliest brain tumor type with the poorest prognosis. Like other cancers, it compromises molecular alteration on genetic and epigenetic levels. Epigenetics refers to changes in gene expression or cellular phenotype without the occurrence of any genetic mutations or DNA sequence alterations in the driver tumor-related genes. These epigenetic changes are reversible, making them convenient targets in cancer therapy. Therefore, we aim to review critical epigenetic dysregulation processes in glioblastoma. We will highlight the significant affected tumor-related pathways and their outcomes, such as regulation of cell cycle progression, cell growth, apoptosis, angiogenesis, cell invasiveness, immune evasion, or acquirement of drug resistance. Examples of molecular changes induced by epigenetic modifications, such as DNA epigenetic alterations, histone post-translational modifications (PTMs), and non-coding RNA (ncRNA) regulation, are highlighted. As understanding the role of epigenetic regulators and underlying molecular mechanisms in the overall pro-tumorigenic landscape of glioblastoma is essential, this literature study will provide valuable insights for establishing the prognostic or diagnostic value of various non-coding transcripts, including miRNAs.
Collapse
Affiliation(s)
- Ekaterina Isachesku
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania (C.B.); (R.P.); (L.-L.P.)
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania (C.B.); (R.P.); (L.-L.P.)
| | - Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania (C.B.); (R.P.); (L.-L.P.)
| | - Anja Kocijancic
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway; (A.K.)
| | - Constantin Busuioc
- Department of Pathology, National Institute of Infectious Disease, 021105 Bucharest, Romania;
- Department of Pathology, Onco Team Diagnostic, 010719 Bucharest, Romania
| | - Lavinia-Lorena Pruteanu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania (C.B.); (R.P.); (L.-L.P.)
- Department of Chemistry and Biology, North University Center, Technical University of Cluj-Napoca, 430122 Baia Mare, Romania
| | - Deo Prakash Pandey
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway; (A.K.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania (C.B.); (R.P.); (L.-L.P.)
| |
Collapse
|
3
|
Chongtham MC, Wang H, Thaller C, Hsiao NH, Vachkov IH, Pavlov SP, Williamson LH, Yamashima T, Stoykova A, Yan J, Eichele G, Tonchev AB. Transcriptome Response and Spatial Pattern of Gene Expression in the Primate Subventricular Zone Neurogenic Niche After Cerebral Ischemia. Front Cell Dev Biol 2020; 8:584314. [PMID: 33344448 PMCID: PMC7744782 DOI: 10.3389/fcell.2020.584314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/20/2020] [Indexed: 11/13/2022] Open
Abstract
The main stem cell niche for neurogenesis in the adult mammalian brain is the subventricular zone (SVZ) that extends along the cerebral lateral ventricles. We aimed at characterizing the initial molecular responses of the macaque monkey SVZ to transient, global cerebral ischemia. We microdissected tissue lining the anterior horn of the lateral ventricle (SVZa) from 7 day post-ischemic and sham-operated monkeys. Transcriptomics shows that in ischemic SVZa, 541 genes were upregulated and 488 genes were down-regulated. The transcription data encompassing the upregulated genes revealed a profile typical for quiescent stem cells and astrocytes. In the primate brain the SVZ is morphologically subdivided in distinct and separate ependymal and subependymal regions. The subependymal contains predominantly neural stem cells (NSC) and differentiated progenitors. To determine in which SVZa region ischemia had evoked transcriptional upregulation, sections through control and ischemic SVZa were analyzed by high-throughput in situ hybridization for a total of 150 upregulated genes shown in the www.monkey-niche.org image database. The majority of the differentially expressed genes mapped to the subependymal layers on the striatal or callosal aspect of the SVZa. Moreover, a substantial number of upregulated genes was expressed in the ependymal layer, implicating a contribution of the ependyma to stem cell biology. The transcriptome analysis yielded several novel gene markers for primate SVZa including the apelin receptor that is strongly expressed in the primate SVZa niche upon ischemic insult.
Collapse
Affiliation(s)
- Monika C Chongtham
- Department of Genes and Behavior, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Haifang Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Christina Thaller
- Department of Genes and Behavior, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Nai-Hua Hsiao
- Department of Genes and Behavior, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ivan H Vachkov
- Department of Genes and Behavior, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stoyan P Pavlov
- Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University, Varna, Bulgaria.,Department of Stem Cell Biology and Advanced Computational Bioimaging, Research Institute, Medical University, Varna, Bulgaria
| | - Lorenz H Williamson
- Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University, Varna, Bulgaria.,Department of Stem Cell Biology and Advanced Computational Bioimaging, Research Institute, Medical University, Varna, Bulgaria
| | - Tetsumori Yamashima
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Anastassia Stoykova
- Department of Genes and Behavior, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Jun Yan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Gregor Eichele
- Department of Genes and Behavior, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Anton B Tonchev
- Department of Genes and Behavior, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University, Varna, Bulgaria.,Department of Stem Cell Biology and Advanced Computational Bioimaging, Research Institute, Medical University, Varna, Bulgaria
| |
Collapse
|
4
|
Madl CM, LeSavage BL, Khariton M, Heilshorn SC. Neural Progenitor Cells Alter Chromatin Organization and Neurotrophin Expression in Response to 3D Matrix Degradability. Adv Healthc Mater 2020; 9:e2000754. [PMID: 32743903 DOI: 10.1002/adhm.202000754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/14/2020] [Indexed: 11/09/2022]
Abstract
Neural progenitor cells (NPCs) are promising therapeutic candidates for nervous system regeneration. Significant efforts focus on developing hydrogel-based approaches to facilitate the clinical translation of NPCs, from scalable platforms for stem cell production to injectable carriers for cell transplantation. However, fundamental questions surrounding NPC-hydrogel interactions remain unanswered. While matrix degradability is known to regulate the stemness and differentiation capacity of NPCs, how degradability impacts NPC epigenetic regulation and secretory phenotype remains unknown. To address this question, NPCs encapsulated in recombinant protein hydrogels with tunable degradability are assayed for changes in chromatin organization and neurotrophin expression. In high degradability gels, NPCs maintain expression of stem cell factors, proliferate, and have large nuclei with elevated levels of the stemness-associated activating histone mark H3K4me3. In contrast, NPCs in low degradability gels exhibit more compact, rounded nuclei with peripherally localized heterochromatin, are non-proliferative yet non-senescent, and maintain expression of neurotrophic factors with potential therapeutic relevance. This work suggests that tuning matrix degradability may be useful to direct NPCs toward either a more-proliferative, stem-like phenotype for cell replacement therapies, or a more quiescent-like, pro-secretory phenotype for soluble factor-mediated therapies.
Collapse
Affiliation(s)
- Christopher M. Madl
- Department of Bioengineering Stanford University Stanford CA 94305 USA
- Baxter Laboratory for Stem Cell Biology Department of Microbiology & Immunology Stanford University Stanford CA 94305 USA
| | - Bauer L. LeSavage
- Department of Bioengineering Stanford University Stanford CA 94305 USA
| | | | - Sarah C. Heilshorn
- Department of Materials Science & Engineering Stanford University 476 Lomita Mall, McCullough Room 246 Stanford CA 94305 USA
| |
Collapse
|
5
|
Chang CY, Hung JH, Huang LW, Li J, Fung KS, Kao CF, Chen L. Epigenetic Regulation of WNT3A Enhancer during Regeneration of Injured Cortical Neurons. Int J Mol Sci 2020; 21:ijms21051891. [PMID: 32164275 PMCID: PMC7084788 DOI: 10.3390/ijms21051891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022] Open
Abstract
Traumatic brain injury is known to reprogram the epigenome. Chromatin immunoprecipitation-sequencing of histone H3 lysine 27 acetylation (H3K27ac) and tri-methylation of histone H3 at lysine 4 (H3K4me3) marks was performed to address the transcriptional regulation of candidate regeneration-associated genes. In this study, we identify a novel enhancer region for induced WNT3A transcription during regeneration of injured cortical neurons. We further demonstrated an increased mono-methylation of histone H3 at lysine 4 (H3K4me1) modification at this enhancer concomitant with a topological interaction between sub-regions of this enhancer and with promoter of WNT3A gene. Together, this study reports a novel mechanism for WNT3A gene transcription and reveals a potential therapeutic intervention for neuronal regeneration.
Collapse
Affiliation(s)
- Chu-Yuan Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan; (C.-Y.C.); (K.S.F.)
| | - Jui-Hung Hung
- Department of Computer Science, National Chiao Tung University, Hsinchu 30010, Taiwan; (J.-H.H.); (J.L.)
| | - Liang-Wei Huang
- Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Joye Li
- Department of Computer Science, National Chiao Tung University, Hsinchu 30010, Taiwan; (J.-H.H.); (J.L.)
| | - Ka Shing Fung
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan; (C.-Y.C.); (K.S.F.)
| | - Cheng-Fu Kao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11574, Taiwan;
| | - Linyi Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan; (C.-Y.C.); (K.S.F.)
- Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Correspondence: ; Tel.: +886-3-574-2775; Fax: +886-3-571-5934
| |
Collapse
|
6
|
Lewis R, Li YD, Hoffman L, Hashizume R, Gravohac G, Rice G, Wadhwani NR, Jie C, Pundy T, Mania-Farnell B, Mayanil CS, Soares MB, Lei T, James CD, Foreman NK, Tomita T, Xi G. Global Reduction of H3K4me3 Improves Chemotherapeutic Efficacy for Pediatric Ependymomas. Neoplasia 2019; 21:505-515. [PMID: 31005631 PMCID: PMC6477190 DOI: 10.1016/j.neo.2019.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/24/2019] [Accepted: 03/26/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND Ependymomas (EPNs) are the third most common brain tumor in children. These tumors are resistant to available chemotherapeutic treatments, therefore new effective targeted therapeutics must be identified. Increasing evidence shows epigenetic alterations including histone posttranslational modifications (PTMs), are associated with malignancy, chemotherapeutic resistance and prognosis for pediatric EPNs. In this study we examined histone PTMs in EPNs and identified potential targets to improve chemotherapeutic efficacy. METHODS Global histone H3 lysine 4 trimethylation (H3K4me3) levels were detected in pediatric EPN tumor samples with immunohistochemistry and immunoblots. Candidate genes conferring therapeutic resistance were profiled in pediatric EPN tumor samples with micro-array. Promoter H3K4me3 was examined for two candidate genes, CCND1 and ERBB2, with chromatin-immunoprecipitation coupled with real-time PCR (ChIP-PCR). These methods and MTS assay were used to verify a relationship between H3K4me3 levels and CCND1 and ERBB2, and to investigate cell viability in response to chemotherapeutic drugs in primary cultured pediatric EPN cells. RESULTS H3K4me3 levels positively correlate with WHO grade malignancy in pediatric EPNs and are associated with progression free survival in patients with posterior fossa group A EPNs (PF-EPN-A). Reduction of H3K4me3 by silencing its methyltransferase SETD1A, in primary cultured EPN cells increased cell response to chemotherapy. CONCLUSIONS Our results support the development of a novel treatment that targets H3K4me3 to increase chemotherapeutic efficacy in pediatric PF-EPN-A tumors.
Collapse
Key Words
- epn, ependymoma
- ptm, posttranslational modification
- cns, central nervous system
- emem, eagle's minimum essential medium
- cimp+, cpg island methylator positive
- tss, transcription start site
- pfs, progression free survival
- vcr, vincristine
- cpl, carboplatin
- irb, institutional review board
- mts, 3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2h-tetrazolium
- ffpe, formalin-fixed paraffin-embedded
- chip-pcr, chromatin-immunoprecipitation coupled with real-time pcr
Collapse
Affiliation(s)
- Rebecca Lewis
- Falk Brain Tumor Center and Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yuping D Li
- Falk Brain Tumor Center and Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lindsey Hoffman
- Department of Pediatrics, University of Colorado Denver, Aurora, CO, USA,Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Rintaro Hashizume
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Gordan Gravohac
- Falk Brain Tumor Center and Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Gavin Rice
- Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nitin R Wadhwani
- Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Chunfa Jie
- Department of Biochemistry, Des Moines University, Des Moines, Iowa, USA
| | - Tatiana Pundy
- Falk Brain Tumor Center and Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Chandra S Mayanil
- Falk Brain Tumor Center and Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Department of Development Biology, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marcelo B Soares
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ting Lei
- Department of Neurological Surgery of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Charles D James
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nicolas K Foreman
- Department of Pediatrics, University of Colorado Denver, Aurora, CO, USA,Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Tadanori Tomita
- Falk Brain Tumor Center and Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Guifa Xi
- Falk Brain Tumor Center and Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Development Biology, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
7
|
Heterogeneity of Stem Cells in the Hippocampus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1169:31-53. [DOI: 10.1007/978-3-030-24108-7_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Godini R, Fallahi H. Shortening the list of essential genes in the human genome by network analysis. Meta Gene 2018. [DOI: 10.1016/j.mgene.2018.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
9
|
Interplay between mitochondrial metabolism and oxidative stress in ischemic stroke: An epigenetic connection. Mol Cell Neurosci 2017; 82:176-194. [DOI: 10.1016/j.mcn.2017.05.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/26/2017] [Accepted: 05/24/2017] [Indexed: 12/18/2022] Open
|
10
|
Lin CHA, Rhodes CT, Lin C, Phillips JJ, Berger MS. Comparative analyses identify molecular signature of MRI-classified SVZ-associated glioblastoma. Cell Cycle 2017; 16:765-775. [PMID: 28278055 PMCID: PMC5405724 DOI: 10.1080/15384101.2017.1295186] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/10/2017] [Indexed: 10/20/2022] Open
Abstract
Glioblastoma (GBM) is a highly aggressive brain cancer with limited therapeutic options. While efforts to identify genes responsible for GBM have revealed mutations and aberrant gene expression associated with distinct types of GBM, patients with GBM are often diagnosed and classified based on MRI features. Therefore, we seek to identify molecular representatives in parallel with MRI classification for group I and group II primary GBM associated with the subventricular zone (SVZ). As group I and II GBM contain stem-like signature, we compared gene expression profiles between these 2 groups of primary GBM and endogenous neural stem progenitor cells to reveal dysregulation of cell cycle, chromatin status, cellular morphogenesis, and signaling pathways in these 2 types of MRI-classified GBM. In the absence of IDH mutation, several genes associated with metabolism are differentially expressed in these subtypes of primary GBM, implicating metabolic reprogramming occurs in tumor microenvironment. Furthermore, histone lysine methyltransferase EZH2 was upregulated while histone lysine demethylases KDM2 and KDM4 were downregulated in both group I and II primary GBM. Lastly, we identified 9 common genes across large data sets of gene expression profiles among MRI-classified group I/II GBM, a large cohort of GBM subtypes from TCGA, and glioma stem cells by unsupervised clustering comparison. These commonly upregulated genes have known functions in cell cycle, centromere assembly, chromosome segregation, and mitotic progression. Our findings highlight altered expression of genes important in chromosome integrity across all GBM, suggesting a common mechanism of disrupted fidelity of chromosome structure in GBM.
Collapse
Affiliation(s)
- Chin-Hsing Annie Lin
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
- Neuroscience Institute, University of Texas at San Antonio, San Antonio, TX, USA
| | | | - ChenWei Lin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Joanna J. Phillips
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Mitchel S. Berger
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| |
Collapse
|
11
|
Redd PS, Ibrahim ML, Klement JD, Sharman SK, Paschall AV, Yang D, Nayak-Kapoor A, Liu K. SETD1B Activates iNOS Expression in Myeloid-Derived Suppressor Cells. Cancer Res 2017; 77:2834-2843. [PMID: 28381543 DOI: 10.1158/0008-5472.can-16-2238] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/19/2016] [Accepted: 03/30/2017] [Indexed: 12/15/2022]
Abstract
Inducible nitric oxide synthase (iNOS) generates nitric oxide (NO) in myeloid cells that acts as a defense mechanism to suppress invading microorganisms or neoplastic cells. In tumor-bearing mice, elevated iNOS expression is a hallmark of myeloid-derived suppressor cells (MDSC). MDSCs use NO to nitrate both the T-cell receptor and STAT1, thus inhibiting T-cell activation and the antitumor immune response. The molecular mechanisms underlying iNOS expression and regulation in tumor-induced MDSCs are unknown. We report here that deficiency in IRF8 results in diminished iNOS expression in both mature CD11b+Gr1- and immature CD11b+Gr1+ myeloid cells in vivo Strikingly, although IRF8 was silenced in tumor-induced MDSCs, iNOS expression was significantly elevated in tumor-induced MDSCs, suggesting that the expression of iNOS is regulated by an IRF8-independent mechanism under pathologic conditions. Furthermore, tumor-induced MDSCs exhibited diminished STAT1 and NF-κB Rel protein levels, the essential inducers of iNOS in myeloid cells. Instead, tumor-induced MDSCs showed increased SETD1B expression as compared with their cellular equivalents in tumor-free mice. Chromatin immunoprecipitation revealed that H3K4me3, the target of SETD1B, was enriched at the nos2 promoter in tumor-induced MDSCs, and inhibition or silencing of SETD1B diminished iNOS expression in tumor-induced MDSCs. Our results show how tumor cells use the SETD1B-H3K4me3 epigenetic axis to bypass a normal role for IRF8 expression in activating iNOS expression in MDSCs when they are generated under pathologic conditions. Cancer Res; 77(11); 2834-43. ©2017 AACR.
Collapse
Affiliation(s)
- Priscilla S Redd
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia.,Georgia Cancer Center, Augusta University, Augusta, Georgia.,Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Mohammed L Ibrahim
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia.,Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - John D Klement
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia.,Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Sarah K Sharman
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia.,Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Amy V Paschall
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia.,Georgia Cancer Center, Augusta University, Augusta, Georgia.,Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia.,Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Asha Nayak-Kapoor
- Georgia Cancer Center, Augusta University, Augusta, Georgia.,Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia. .,Georgia Cancer Center, Augusta University, Augusta, Georgia.,Charlie Norwood VA Medical Center, Augusta, Georgia
| |
Collapse
|
12
|
Sun Y, Iyer M, McEachin R, Zhao M, Wu YM, Cao X, Oravecz-Wilson K, Zajac C, Mathewson N, Wu SRJ, Rossi C, Toubai T, Qin ZS, Chinnaiyan AM, Reddy P. Genome-Wide STAT3 Binding Analysis after Histone Deacetylase Inhibition Reveals Novel Target Genes in Dendritic Cells. J Innate Immun 2016; 9:126-144. [PMID: 27866206 DOI: 10.1159/000450681] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/08/2016] [Indexed: 01/12/2023] Open
Abstract
STAT3 is a master transcriptional regulator that plays an important role in the induction of both immune activation and immune tolerance in dendritic cells (DCs). The transcriptional targets of STAT3 in promoting DC activation are becoming increasingly understood; however, the mechanisms underpinning its role in causing DC suppression remain largely unknown. To determine the functional gene targets of STAT3, we compared the genome-wide binding of STAT3 using ChIP sequencing coupled with gene expression microarrays to determine STAT3-dependent gene regulation in DCs after histone deacetylase (HDAC) inhibition. HDAC inhibition boosted the ability of STAT3 to bind to distinct DNA targets and regulate gene expression. Among the top 500 STAT3 binding sites, the frequency of canonical motifs was significantly higher than that of noncanonical motifs. Functional analysis revealed that after treatment with an HDAC inhibitor, the upregulated STAT3 target genes were those that were primarily the negative regulators of proinflammatory cytokines and those in the IL-10 signaling pathway. The downregulated STAT3-dependent targets were those involved in immune effector processes and antigen processing/presentation. The expression and functional relevance of these genes were validated. Specifically, functional studies confirmed that the upregulation of IL-10Ra by STAT3 contributed to the suppressive function of DCs following HDAC inhibition.
Collapse
Affiliation(s)
- Yaping Sun
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Mich., USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Regulation of Stem Cells in Their Niche. CURRENT STEM CELL REPORTS 2016. [DOI: 10.1007/s40778-016-0048-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Homeobox genes gain trimethylation of histone H3 lysine 4 in glioblastoma tissue. Biosci Rep 2016; 36:BSR20160028. [PMID: 27160082 PMCID: PMC5293576 DOI: 10.1042/bsr20160028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/09/2016] [Indexed: 12/12/2022] Open
Abstract
We revealed that in GBM homeobox genes gain tri-methylation on lysine 4 of histone H3 (H3K4me3), whereas the cell–cell adhesion-related cadherin genes lose H3K4me3, suggesting that the H3K4me3 alteration is related to the formation and migration of GBM cells. Glioblastoma multiforme (GBM) exhibits considerable heterogeneity and associates with genome-wide alterations of the repressed chromatin marks DNA methylation and H3 lysine 27 trimethylation (H3K27me3). Tri-methylation on lysine 4 of histone H3 (H3K4me3) is an activating epigenetic mark that is enriched at promoter and promotes expression. It will be helpful in GBM diagnosis and treatment to identify the alteration of H3K4me3 between human GBM and GBM-surrounding tissues. Here, we performed an analysis using next-generation sequencing techniques to identify H3K4me3 modification in a case of GBM and the GBM-surrounding tissues. The results revealed a global decrease in H3K4me3 in GBM, especially at promoters and CpG islands. In GBM, homeobox genes gain H3K4me3, whereas the cell–cell adhesion-related cadherin genes lose H3K4me3. The products of the homeobox genes are highly connected with Ras-signalling and PI3K-Akt signalling pathways. Using The Cancer Genome Atlas (TCGA) data, we inferred the homeobox-regulated genes’ expression is higher in 548 GBM cases than in 27 lower grade glioma cases giving that OLIG2 expression can be a reference. The results suggested that the H3K4me3 alteration is related to the formation and migration of GBM cells. We also found an extremely high reads count at epidermal growth factor receptor (EGFR) promoter, probably due to an amplification of copy number. Our analysis provides a case study about the change of H3K4me3 during shift to GBM.
Collapse
|
15
|
Rhodes CT, Sandstrom RS, Huang SWA, Wang Y, Schotta G, Berger MS, Lin CHA. Cross-species Analyses Unravel the Complexity of H3K27me3 and H4K20me3 in the Context of Neural Stem Progenitor Cells. ACTA ACUST UNITED AC 2016; 6:10-25. [PMID: 27429906 DOI: 10.1016/j.nepig.2016.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neural stem progenitor cells (NSPCs) in the human subventricular zone (SVZ) potentially contribute to life-long neurogenesis, yet subtypes of glioblastoma multiforme (GBM) contain NSPC signatures that highlight the importance of cell fate regulation. Among numerous regulatory mechanisms, the post-translational methylations onto histone tails are crucial regulator of cell fate. The work presented here focuses on the role of two repressive chromatin marks tri-methylations on histone H3 lysine 27 (H3K27me3) and histone H4 lysine 20 (H4K20me3) in the adult NSPC within the SVZ. To best model healthy human NSPCs as they exist in vivo for epigenetic profiling of H3K27me3 and H4K20me3, we utilized NSPCs isolated from the adult SVZ of baboon brain (Papio anubis) with brain structure and genomic level similar to human. The putative role of H3K27me3 in normal NSPCs predominantly falls into the regulation of gene expression, cell cycle, and differentiation, whereas H4K20me3 is involved in DNA replication/repair, metabolism, and cell cycle. Using conditional knock-out mouse models to diminish Ezh2 and Suv4-20h responsible for H3K27me3 and H4K20me3, respectively, we found that both repressive marks have irrefutable function for cell cycle regulation in the NSPC population. While both EZH2/H3K27me3 and Suv4-20h/H4K20me3 have implication in cancers, our comparative genomics approach between healthy NSPCs and human GBM specimens revealed that substantial sets of genes enriched with H3K27me3 and H4K20me3 in the NSPCs are altered in the human GBM. In sum, our integrated analyses across species highlight important roles of H3K27me3 and H4K20me3 in normal and disease conditions in the context of NSPC.
Collapse
Key Words
- Chromatin Immunoprecipitation (ChIP)
- Cre recombinant protein
- Enhancer of zeste (Human- Gene: EZH2, Protein: EZH2) (Mouse- Gene: Ezh2, Protein: Histone-lysine N-methyltransferase EZH2)
- Epigenetic Repression
- Glioblastoma Multiforme (GBM)
- Neural Stem Progenitor Cells (NSPCs)
- Stereotaxic injection
- Suppressor of variegation homolog 1 (Human- Gene: KMT5B or SUV420H1, Protein: lysine methyltransferase 5B, synonym Suv4-20h1) (Mouse- Gene: Suv4-20h1, synonym Kmt5b, Protein: Histone-lysine N-methyltransferase KMT5B, synonym Suv4-20h1)
- Suppressor of variegation homolog 2 (Human- Gene: KMT5C or SUV420H2, Protein: lysine methyltransferase 5C, synonym Suv4-20h2) (Mouse- Gene: Suv4-20h2, synonym Kmt5c, Protein: Histone-lysine N-methyltransferase KMT5C, synonym Suv4-20h2)
- tri-methylation at histone 3 lysine 27 (H3K27me3) and histone 4 lysine 20 (H4K20me3).
Collapse
Affiliation(s)
- Christopher T Rhodes
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | - Richard S Sandstrom
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Shu-Wei Angela Huang
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | - Yufeng Wang
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | - Gunnar Schotta
- Ludwig Maximilians University and Munich Center for Integrated Protein Science (CiPSM), Biomedical Center, Planegg-Martinsried, Germany
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, California 94143, USA
| | - Chin-Hsing Annie Lin
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249, USA; Neuroscience Institute, University of Texas at San Antonio, San Antonio, Texas 78249, USA
| |
Collapse
|
16
|
Changes in Methionine Metabolism and Histone H3 Trimethylation Are Linked to Mitochondrial Defects in Multiple Sclerosis. J Neurosci 2016; 35:15170-86. [PMID: 26558787 DOI: 10.1523/jneurosci.4349-14.2015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Mitochondrial changes, including decreased expression of electron transport chain subunit genes and impaired energetic, have been reported in multiple sclerosis (MS), but the mechanisms involved in these changes are not clear. To determine whether epigenetic mechanisms are involved, we measured the concentrations of methionine metabolites by liquid chromatography tandem mass spectrometry, histone H3 methylation patterns, and markers of mitochondrial respiration in gray matter from postmortem MS and control cortical samples. We found decreases in respiratory markers as well as decreased concentrations of the methionine metabolites S-adenosylmethionine, betaine, and cystathionine in MS gray matter. We also found expression of the enzyme betaine homocysteine methyltransferase in cortical neurons. This enzyme catalyzes the remethylation of homocysteine to methionine, with betaine as the methyl donor, and has previously been thought to be restricted to liver and kidney in the adult human. Decreases in the concentration of the methyl donor betaine were correlated with decreases in histone H3 trimethylation (H3K4me3) in NeuN+ neuronal nuclei in MS cortex compared with controls. Mechanistic studies demonstrated that H3K4me3 levels and mitochondrial respiration were reduced in SH-SY5Y cells after exposure to the nitric oxide donor sodium nitroprusside, and betaine was able to rescue H3K4me3 levels and respiratory capacity in these cells. Chromatin immunoprecipitation experiments showed that betaine regulates metabolic genes in human SH-SY5Y neuroblastoma cells. These data suggest that changes to methionine metabolism may be mechanistically linked to changes in neuronal energetics in MS cortex. SIGNIFICANCE STATEMENT For decades, it has been observed that vitamin B12 deficiency and multiple sclerosis (MS) share certain pathological changes, including conduction disturbances. In the present study, we have found that vitamin B12-dependent methionine metabolism is dysregulated in the MS brain. We found that concentrations of the methyl donor betaine are decreased in MS cortex and are correlated with reduced levels of the histone H3 methyl mark H3K4me3 in neurons. Cell culture and chromatin immunoprecipitation-seq data suggest that these changes may lead to defects in mitochondria and impact neuronal energetics. These data have uncovered a novel pathway linking methionine metabolism with mitochondrial respiration and have important implications for understanding mechanisms involved in neurodegeneration in MS.
Collapse
|
17
|
Ito H, Tanaka S, Akiyama Y, Shimada S, Adikrisna R, Matsumura S, Aihara A, Mitsunori Y, Ban D, Ochiai T, Kudo A, Arii S, Yamaoka S, Tanabe M. Dominant Expression of DCLK1 in Human Pancreatic Cancer Stem Cells Accelerates Tumor Invasion and Metastasis. PLoS One 2016; 11:e0146564. [PMID: 26764906 PMCID: PMC4713149 DOI: 10.1371/journal.pone.0146564] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/18/2015] [Indexed: 01/25/2023] Open
Abstract
Patients with pancreatic cancer typically develop tumor invasion and metastasis in the early stage. These malignant behaviors might be originated from cancer stem cells (CSCs), but the responsible target is less known about invisible CSCs especially for invasion and metastasis. We previously examined the proteasome activity of CSCs and constructed a real-time visualization system for human pancreatic CSCs. In the present study, we found that CSCs were highly metastatic and dominantly localized at the invading tumor margins in a liver metastasis model. Microarray and siRNA screening assays showed that doublecortin-like kinase 1 (DCLK1) was predominantly expressed with histone modification in pancreatic CSCs with invasive and metastatic potential. Overexpression of DCLK1 led to amoeboid morphology, which promotes the migration of pancreatic cancer cells. Knockdown of DCLK1 profoundly suppressed in vivo liver metastasis of pancreatic CSCs. Clinically, DCLK1 was overexpressed in the metastatic tumors in patients with pancreatic cancer. Our studies revealed that DCLK1 is essential for the invasive and metastatic properties of CSCs and may be a promising epigenetic and therapeutic target in human pancreatic cancer.
Collapse
Affiliation(s)
- Hiromitsu Ito
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shu Shimada
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Rama Adikrisna
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoshi Matsumura
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Arihiro Aihara
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Mitsunori
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daisuke Ban
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanori Ochiai
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsushi Kudo
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigeki Arii
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shoji Yamaoka
- Department of Molecular Virology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Minoru Tanabe
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
18
|
Dynamic Trk and G Protein Signalings Regulate Dopaminergic Neurodifferentiation in Human Trophoblast Stem Cells. PLoS One 2015; 10:e0143852. [PMID: 26606046 PMCID: PMC4659658 DOI: 10.1371/journal.pone.0143852] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/09/2015] [Indexed: 12/18/2022] Open
Abstract
Understanding the mechanisms in the generation of neural stem cells from pluripotent stem cells is a fundamental step towards successful management of neurodegenerative diseases in translational medicine. Albeit all-trans retinoic acid (RA) has been associated with axon outgrowth and nerve regeneration, the maintenance of differentiated neurons, the association with degenerative disease like Parkinson's disease, and its regulatory molecular mechanism from pluripotent stem cells to neural stem cells remain fragmented. We have previously reported that RA is capable of differentiation of human trophoblast stem cells to dopamine (DA) committed progenitor cells. Intracranial implantation of such neural progenitor cells into the 6-OHDA-lesioned substantia nigra pars compacta successfully regenerates dopaminergic neurons and integrity of the nigrostriatal pathway, ameliorating the behavioral deficits in the Parkinson’s disease rat model. Here, we demonstrated a dynamic molecular network in systematic analysis by addressing spatiotemporal molecular expression, intracellular protein-protein interaction and inhibition, imaging study, and genetic expression to explore the regulatory mechanisms of RA induction in the differentiation of human trophoblast stem cells to DA committed progenitor cells. We focused on the tyrosine receptor kinase (Trk), G proteins, canonical Wnt2B/β-catenin, genomic and non-genomic RA signaling transductions with Tyrosine hydroxylase (TH) gene expression as the differentiation endpoint. We found that at the early stage, integration of TrkA and G protein signalings aims for axonogenesis and morphogenesis, involving the novel RXRα/Gαq/11 and RARβ/Gβ signaling pathways. While at the later stage, five distinct signaling pathways together with epigenetic histone modifications emerged to regulate expression of TH, a precursor of dopamine. RA induction generated DA committed progenitor cells in one day. Our results provided substantial mechanistic evidence that human trophoblast stem cell-derived neural stem cells can potentially be used for neurobiological study, drug discovery, and as an alternative source of cell-based therapy in neurodegenerative diseases like Parkinson’s disease.
Collapse
|
19
|
Erfani P, Tome-Garcia J, Canoll P, Doetsch F, Tsankova NM. EGFR promoter exhibits dynamic histone modifications and binding of ASH2L and P300 in human germinal matrix and gliomas. Epigenetics 2015; 10:496-507. [PMID: 25996283 DOI: 10.1080/15592294.2015.1042645] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Several signaling pathways important for the proliferation and growth of brain cells are pathologically dysregulated in gliomas, including the epidermal growth factor receptor (EGFR). Expression of EGFR is high in neural progenitors during development and in gliomas but decreases significantly in most adult brain regions. Here we show that EGFR expression is maintained in the astrocyte ribbon of the adult human subventricular zone. The transcriptional regulation of EGFR expression is poorly understood. To investigate the role of epigenetics on EGFR regulation in the contexts of neural development and gliomagenesis, we measured levels of DNA methylation and histone H3 modifications at the EGFR promoter in human brain tissues, glioma specimens, and EGFR-expressing neural cells, acutely isolated from their native niche. While DNA was constitutively hypomethylated in non-neoplastic and glioma samples, regardless of their EGFR-expression status, the activating histone modifications H3K27ac and H3K4me3 were enriched only when EGFR is highly expressed (developing germinal matrix and gliomas). Conversely, repressive H3K27me3 marks predominated in adult white matter where EGFR is repressed. Furthermore, the histone methyltransferase core enzyme ASH2L was bound at EGFR in the germinal matrix and in gliomas where levels of H3K4me3 are high, and the histone acetyltransferase P300 was bound in samples with H3K27ac enrichment. Our studies use human cells and tissues undisturbed by cell-culture artifact, and point to an important, locus-specific role for chromatin remodeling in EGFR expression in human neural development that may be dysregulated during gliomagenesis, unraveling potential novel targets for future drug therapy.
Collapse
Affiliation(s)
- Parsa Erfani
- a Department of Pathology & Cell Biology; Columbia University Medical Center ; New York , NY , USA
| | | | | | | | | |
Collapse
|
20
|
Chen X, Gu P, Li K, Xie W, Chen C, Lin T, Huang J. Gene expression profiling of WDR5 regulated genes in bladder cancer. GENOMICS DATA 2015; 5:27-9. [PMID: 26484217 PMCID: PMC4583625 DOI: 10.1016/j.gdata.2015.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 05/04/2015] [Indexed: 11/17/2022]
Abstract
WD repeat domain 5 (WDR5) plays an important role in various biological functions through the epigenetic regulation of gene transcription (Wysocka et al., 2005 [1]; Sandstrom et al., 2014[2]; Ang et al., 2011[3]). Recently, our study found that WDR5 was upregulated in bladder cancer tissues, promoted bladder cancer cell proliferation, self-renewal and chemoresistance to cisplatin in bladder cancer cells in vitro, and tumor growth in vivo (Chen et al., 2015). To gain a molecular understanding of the role of WDR5 in promoting bladder cancer, we performed a genome-wide analysis on WDR5 knockdown by microarray gene expression profiling. Here we provide detailed experimental methods and analysis for the microarray data, which have been deposited into Gene Expression Omnibus (GEO): GSE59132.
Collapse
Affiliation(s)
- Xu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China ; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peng Gu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China ; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kuiqing Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weibin Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Changhao Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China ; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
21
|
Chen X, Xie W, Gu P, Cai Q, Wang B, Xie Y, Dong W, He W, Zhong G, Lin T, Huang J. Upregulated WDR5 promotes proliferation, self-renewal and chemoresistance in bladder cancer via mediating H3K4 trimethylation. Sci Rep 2015; 5:8293. [PMID: 25656485 PMCID: PMC4319178 DOI: 10.1038/srep08293] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/15/2015] [Indexed: 12/31/2022] Open
Abstract
WD repeat domain 5 (WDR5) plays an important role in various biological functions through the epigenetic regulation of gene transcription; however, its role in bladder cancer remains largely unknown. Our study investigated the role of WDR5 in bladder cancer and demonstrated that WDR5 was upregulated in bladder cancer tissues, and elevated WDR5 protein levels positively correlated with advanced tumor stage and poor survival. Through gain or loss of function, we demonstrated that WDR5 promoted proliferation, self-renewal and chemoresistance to cisplatin in bladder cancer cells in vitro, and tumor growth in vivo. Mechanistically, WDR5 regulated various functions in bladder cancer by mediating the transcription of cyclin B1, cyclin E1, cyclin E2, UHMK1, MCL1, BIRC3 and Nanog by histone H3 lysine 4 trimethylation. Therefore, we have discovered that WDR5 plays an important role in bladder cancer suggesting that WDR5 is a potential biomarker and a promising target in the treatment of bladder cancer.
Collapse
Affiliation(s)
- Xu Chen
- 1] Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China [2] Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weibin Xie
- 1] Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China [2] Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peng Gu
- 1] Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China [2] Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qingqing Cai
- Department of Internal Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Bo Wang
- 1] Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China [2] Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yun Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wen Dong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wang He
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guangzheng Zhong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tianxin Lin
- 1] Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China [2] Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
22
|
Foret MR, Sandstrom RS, Rhodes CT, Wang Y, Berger MS, Lin CHA. Molecular targets of chromatin repressive mark H3K9me3 in primate progenitor cells within adult neurogenic niches. Front Genet 2014; 5:252. [PMID: 25126093 PMCID: PMC4115620 DOI: 10.3389/fgene.2014.00252] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 07/10/2014] [Indexed: 12/13/2022] Open
Abstract
Histone 3 Lysine 9 (H3K9) methylation is known to be associated with pericentric heterochromatin and important in genomic stability. In this study, we show that trimethylation at H3K9 (H3K9me3) is enriched in an adult neural stem cell niche- the subventricular zone (SVZ) on the walls of the lateral ventricle in both rodent and non-human primate baboon brain. Previous studies have shown that there is significant correlation between baboon and human regarding genomic similarity and brain structure, suggesting that findings in baboon are relevant to human. To understand the function of H3K9me3 in this adult neurogenic niche, we performed genome-wide analyses using ChIP-Seq (chromatin immunoprecipitation and deep-sequencing) and RNA-Seq for in vivo SVZ cells purified from baboon brain. Through integrated analyses of ChIP-Seq and RNA-Seq, we found that H3K9me3-enriched genes associated with cellular maintenance, post-transcriptional and translational modifications, signaling pathways, and DNA replication are expressed, while genes involved in axon/neuron, hepatic stellate cell, or immune-response activation are not expressed. As neurogenesis progresses in the adult SVZ, cell fate restriction is essential to direct proper lineage commitment. Our findings highlight that H3K9me3 repression in undifferentiated SVZ cells is engaged in the maintenance of cell type integrity, implicating a role for H3K9me3 as an epigenetic mechanism to control cell fate transition within this adult germinal niche.
Collapse
Affiliation(s)
- Michael R Foret
- Department of Biology, University of Texas at San Antonio San Antonio, TX, USA
| | | | | | - Yufeng Wang
- Department of Biology, University of Texas at San Antonio San Antonio, TX, USA
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California at San Francisco San Francisco, CA, USA
| | - Chin-Hsing Annie Lin
- Department of Biology, University of Texas at San Antonio San Antonio, TX, USA ; Neurobiology, Neuroscience Institute, University of Texas at San Antonio San Antonio, TX, USA
| |
Collapse
|