1
|
Peh HY, Chen J. Pro-resolving lipid mediators and therapeutic innovations in resolution of inflammation. Pharmacol Ther 2025; 265:108753. [PMID: 39566561 DOI: 10.1016/j.pharmthera.2024.108753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
This review summarizes findings presented at the 19th World Congress of Basic & Clinical Pharmacology 2023 (Glasgow, Scotland, July 3rd to 7th, 2023) from 8 speakers in the field of resolution of inflammation, resolution pharmacology and resolution biology. It is now accepted that the acute inflammatory response is protective to defend the host against infection or tissue injury. Acute inflammation is self-limited and programmed to be limited in space and time: this is achieved through endogenous resolution processes that ensure return to homeostasis. Resolution is brought about by agonist mediators that include specialized pro-resolving lipid mediators (SPMs) and pro-resolving proteins and peptides such as annexin A1 and angiotensin-(1-7), all acting to initiate anti-inflammatory and pro-resolving processes. If the inflammatory reaction remains unchecked through dysfunctional resolution mechanism, it can become chronic and contribute to a plethora of human diseases, including respiratory, cardiovascular, metabolic, allergic diseases, and arthritis. Herein, we discuss how non-resolving inflammation plays a role in the pathogenesis of these diseases. In addition to SPMs, we highlight the discovery, biosynthesis, biofunctions, and latest research updates on innovative therapeutics (including annexin-A1 peptide-mimetic RTP-026, small molecule FPR2 agonist BM-986235/LAR-1219, biased agonist for FPR1/FPR2 Cmpd17b, lipoxin mimetics AT-01-KG and AT-02-CT, melanocortin receptor agonist AP1189, gold nanoparticles, angiotensin-(1-7), and CD300a) that can promote resolution of inflammation directly or through modulation of SPMs production. Drug development strategies based on the biology of the resolution of inflammation can offer novel therapeutic means and/or add-on therapies for the treatment of chronic diseases.
Collapse
Affiliation(s)
- Hong Yong Peh
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Pharmacology, Singapore; Immunology Programme and Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore; Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Jianmin Chen
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom; Centre for inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
2
|
Posta E, Fekete I, Varkonyi I, Zold E, Barta Z. The Versatile Role of Peroxisome Proliferator-Activated Receptors in Immune-Mediated Intestinal Diseases. Cells 2024; 13:1688. [PMID: 39451206 PMCID: PMC11505700 DOI: 10.3390/cells13201688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that sense lipophilic molecules and act as transcription factors to regulate target genes. PPARs have been implicated in the regulation of innate immunity, glucose and lipid metabolism, cell proliferation, wound healing, and fibrotic processes. Some synthetic PPAR ligands are promising molecules for the treatment of inflammatory and fibrotic processes in immune-mediated intestinal diseases. Some of these are currently undergoing or have previously undergone clinical trials. Dietary PPAR ligands and changes in microbiota composition could modulate PPARs' activation to reduce inflammatory responses in these immune-mediated diseases, based on animal models and clinical trials. This narrative review aims to summarize the role of PPARs in immune-mediated bowel diseases and their potential therapeutic use.
Collapse
Affiliation(s)
- Edit Posta
- GI Unit, Department of Infectology, Faculty of Medicine, University of Debrecen, Bartok Bela Street 2-26, 4031 Debrecen, Hungary; (I.V.); (Z.B.)
| | - Istvan Fekete
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary;
| | - Istvan Varkonyi
- GI Unit, Department of Infectology, Faculty of Medicine, University of Debrecen, Bartok Bela Street 2-26, 4031 Debrecen, Hungary; (I.V.); (Z.B.)
| | - Eva Zold
- Department of Clinical Immunology, Institute of Internal Medicine, Faculty of Medicine, University of Debrecen, Móricz Zsigmond str. 22, 4032 Debrecen, Hungary;
| | - Zsolt Barta
- GI Unit, Department of Infectology, Faculty of Medicine, University of Debrecen, Bartok Bela Street 2-26, 4031 Debrecen, Hungary; (I.V.); (Z.B.)
| |
Collapse
|
3
|
Lu W, Huang J, Flores J, Li P, Wang W, Liu S, Zhang JH, Tang J. GW0742 reduces mast cells degranulation and attenuates neurological impairments via PPAR β/δ/CD300a/SHP1 pathway after GMH in neonatal rats. Exp Neurol 2024; 372:114615. [PMID: 37995951 PMCID: PMC10842885 DOI: 10.1016/j.expneurol.2023.114615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/03/2023] [Accepted: 11/19/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Activation of mast cells plays an important role in brain inflammation. CD300a, an inhibitory receptor located on mast cell surfaces, has been reported to reduce the production of pro-inflammatory cytokines and exert protective effects in inflammation-related diseases. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ), a ligand-activated nuclear receptor, activation upregulates the transcription of CD300a. In this study, we aim to investigate the role of PPARβ/δ in the attenuation of germinal matrix hemorrhage (GMH)-induced mast cell activation via CD300a/SHP1 pathway. METHODS GMH model was induced by intraparenchymal injection of bacterial collagenase into the right hemispheric ganglionic eminence in P7 Sprague Dawley rats. GW0742, a PPARβ/δ agonist, was administered intranasally at 1 h post-ictus. CD300a small interfering RNA (siRNA) and PPARβ/δ siRNA were injected intracerebroventricularly 5 days and 2 days before GMH induction. Behavioral tests, Western blot, immunofluorescence, Toluidine Blue staining, and Nissl staining were applied to assess post-GMH evaluation. RESULTS Results demonstrated that endogenous protein levels of PPARβ/δ and CD300a were decreased, whereas chymase, tryptase, IL-17A and transforming growth factor β1 (TGF-β1) were elevated after GMH. GMH induced significant short- and long-term neurobehavioral deficits in rat pups. GW0742 decreased mast cell degranulation, improved neurological outcomes, and attenuated ventriculomegaly after GMH. Additionally, GW0742 increased expression of PPARβ/δ, CD300a and phosphorylation of SHP1, decreased phosphorylation of Syk, chymase, tryptase, IL-17A and TGF-β1 levels. PPARβ/δ siRNA and CD300a siRNA abolished the beneficial effects of GW0742. CONCLUSIONS GW0742 inhibited mast cell-induced inflammation and improved neurobehavior after GMH, which is mediated by PPARβ/δ/CD300a/SHP1 pathway. GW0742 may serve as a potential treatment to reduce brain injury for GMH patients.
Collapse
Affiliation(s)
- Weitian Lu
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing 400016, China; Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Juan Huang
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing 400016, China; Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Jerry Flores
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Peng Li
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Wenna Wang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Shengpeng Liu
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| |
Collapse
|
4
|
Long L, Zhao X, Chen J, Wang Z, Tang Y, Huang J, Yin Y. Piglet growth performance improved by dietary supplementation of porous or nano particles of zinc oxide may be related to the gut microbiota. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:159-172. [PMID: 38023375 PMCID: PMC10679868 DOI: 10.1016/j.aninu.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 12/01/2023]
Abstract
Previous studies on porous or nano particles zinc oxide (ZnO) in the piglets have mainly focused on growth performance and intestinal inflammation, but have scarcely explored the efficacy on gut microbiota. In addition, the efficacy of nano particles ZnO, which is related to its product quality, remains undefined. This study aimed to determine the efficacy of dietary 500 mg/kg porous or nano particles ZnO on the growth performance and gut microbiota of the weaned piglets. A total of 128 weaned piglets were randomly assigned to the dietary groups: NC (basal diet), PC (basal diet + 3,000 mg/kg conventional ZnO), 500HiZ (basal diet + 500 mg/kg porous particles ZnO), and 500ZNP (basal diet + 500 mg/kg nano particles ZnO). Compared with the NC diet group, both 500HiZ and 500ZNP increased (P < 0.05) average daily feed intake (1 to 28 d) and average daily gain (1 to 28 d), and the 500ZNP tended to decrease feed to gain ratio (F:G ratio, 1 to 28 d) (P = 0.09). Both 500HiZ and 500ZNP decreased crypt depth of the ileum and increased claudin-2 in the duodenum and zonula occludens-1 in the ileum (P < 0.05). Moreover, both 500HiZ and 500ZNP decreased IL-1β and tumor necrosis factor-α (TNF-α) in the jejunum and decreased TNF-α and IL-6 in the ileum (P < 0.05). Both 500HiZ and 500ZNP increased microbial β-diversity index in the ileum and microbial α-diversity indices in the colon of piglets (P < 0.05). The probiotic genera Coprococcus (500ZNP) and Blautia (500HiZ) were positively correlated with the F:G ratio (1 to 28 d) in colon of piglets (P < 0.05). In addition, 500HiZ promoted mitochondrial fusion protein 1 (MFN1) and zinc transporter-1 (ZnT-1) in the jejunum (P < 0.05), whilst 500ZNP decreased MFN1 in the jejunum and ZnT-1 in the ileum (P < 0.05). In summary, both 500HiZ and 500ZNP improved the growth performance of piglets, which is likely via the genera Blautia and Coprococcus, respectively. Both 500HiZ and 500ZNP improved barrier function and inflammation of the intestine, and 500HiZ achieved better efficacy than 500ZNP on intestine mitochondrial functions.
Collapse
Affiliation(s)
- Lina Long
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Xichen Zhao
- Guangdong Laboratory of Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jie Chen
- Foshan Guangmuxing Feed Co., Ltd, Foshan 528000, China
| | - Zixi Wang
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Yanfang Tang
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Jian Huang
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Yulong Yin
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
5
|
Richter H, Gover O, Schwartz B. Anti-Inflammatory Activity of Black Soldier Fly Oil Associated with Modulation of TLR Signaling: A Metabolomic Approach. Int J Mol Sci 2023; 24:10634. [PMID: 37445812 DOI: 10.3390/ijms241310634] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Dietary intervention in the treatment of ulcerative colitis involves, among other things, modifications in fatty acid content and/or profile. For example, replacing saturated long chain fatty acids with medium chain fatty acids (MCFAs) has been reported to ameliorate inflammation. The Black Soldier Fly Larvae's (BSFL) oil is considered a sustainable dietary ingredient rich in the MCFA C12:0; however, its effect on inflammatory-related conditions has not been studied until now. Thus, the present study aimed to investigate the anti-inflammatory activity of BSFL oil in comparison to C12:0 using TLR4- or TLR2-activated THP-1 and J774A.1 cell lines and to assess its putative protective effect against dextran sulfate sodium (DSS)-induced acute colitis in mice. BSFL oil and C12:0 suppressed proinflammatory cytokines release in LPS-stimulated macrophages; however, only BSFL oil exerted anti-inflammatory activity in Pam3CSK4-stimulated macrophages. Transcriptome analysis provided insight into the possible role of BSFL oil in immunometabolism switch, involving mTOR signaling and an increase in PPAR target genes promoting fatty acid oxidation, exhibiting a discrepant mode of action compared to C12:0 treatment, which mainly affected cholesterol biosynthesis pathways. Additionally, we identified anti-inflammatory eicosanoids, oxylipins, and isoprenoids in the BSFL oil that may contribute to an orchestrated anti-inflammatory response. In vivo, a BSFL oil-enriched diet (20%) ameliorated the clinical signs of colitis, as indicated by improved body weight recovery, reduced colon shortening, reduced splenomegaly, and an earlier phase of secretory IgA response. These results indicate the novel beneficial use of BSFL oil as a modulator of inflammation.
Collapse
Affiliation(s)
- Hadas Richter
- Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 761001, Israel
| | - Ofer Gover
- Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 761001, Israel
| | - Betty Schwartz
- Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 761001, Israel
| |
Collapse
|
6
|
Xu Z, Jin Y, Zhang X, Xia P, Wen X, Ma J, Lin J, Qian J. Pan-cancer analysis identifies CD300 molecules as potential immune regulators and promising therapeutic targets in acute myeloid leukemia. Cancer Med 2022; 12:789-807. [PMID: 35642341 PMCID: PMC9844665 DOI: 10.1002/cam4.4905] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/10/2022] [Accepted: 05/24/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND CD300s are a group of proteins playing vital roles in immune responses. However, much is yet to be elucidated regarding the expression patterns and clinical significances of CD300s in cancers. METHODS In this study, we comprehensively investigated CD300s in a pan-cancer manner using multi-omic data from The Cancer Genome Atlas. We also studied the relationship between CD300s and the immune landscape of AML. RESULTS We found that CD300A-CD300LF were generally overexpressed in tumors (especially AML), whereas CD300LG was more often downregulated. In AML, transactivation of CD300A was not mediated by genetic alterations but by histone modification. Survival analyses revealed that high CD300A-CD300LF expression predicted poor outcome in AML patients; the prognostic value of CD300A was validated in seven independent datasets and a meta dataset including 1115 AML patients. Furthermore, we demonstrated that CD300A expression could add prognostic value in refining existing risk models in AML. Importantly, CD300A-CD300LF expression was closely associated with T-cell dysfunction score and could predict response to AML immunotherapy. Also, CD300A was found to be positively associated with HLA genes and critical immune checkpoints in AML, such as VISTA, CD86, CD200R1, Tim-3, and the LILRB family genes. CONCLUSIONS Our study demonstrated CD300s as potential prognostic biomarker and an ideal immunotherapy target in AML, which warrants future functional and clinical studies.
Collapse
Affiliation(s)
- Zi‐jun Xu
- Laboratory CenterAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuPeople's Republic of China,Zhenjiang Clinical Research Center of HematologyZhenjiangJiangsuPeople's Republic of China,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang CityZhenjiangJiangsuPeople's Republic of China
| | - Ye Jin
- Zhenjiang Clinical Research Center of HematologyZhenjiangJiangsuPeople's Republic of China,Department of HematologyAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuPeople's Republic of China
| | - Xin‐long Zhang
- Department of HematologyThe People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong UniversityDanyangJiangsuPeople's Republic of China
| | - Pei‐hui Xia
- Laboratory CenterAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuPeople's Republic of China,Zhenjiang Clinical Research Center of HematologyZhenjiangJiangsuPeople's Republic of China,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang CityZhenjiangJiangsuPeople's Republic of China
| | - Xiang‐mei Wen
- Laboratory CenterAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuPeople's Republic of China,Zhenjiang Clinical Research Center of HematologyZhenjiangJiangsuPeople's Republic of China,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang CityZhenjiangJiangsuPeople's Republic of China
| | - Ji‐chun Ma
- Laboratory CenterAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuPeople's Republic of China,Zhenjiang Clinical Research Center of HematologyZhenjiangJiangsuPeople's Republic of China,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang CityZhenjiangJiangsuPeople's Republic of China
| | - Jiang Lin
- Laboratory CenterAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuPeople's Republic of China,Zhenjiang Clinical Research Center of HematologyZhenjiangJiangsuPeople's Republic of China,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang CityZhenjiangJiangsuPeople's Republic of China
| | - Jun Qian
- Zhenjiang Clinical Research Center of HematologyZhenjiangJiangsuPeople's Republic of China,Department of HematologyThe People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong UniversityDanyangJiangsuPeople's Republic of China
| |
Collapse
|
7
|
Selective PPARα Modulator Pemafibrate and Sodium-Glucose Cotransporter 2 Inhibitor Tofogliflozin Combination Treatment Improved Histopathology in Experimental Mice Model of Non-Alcoholic Steatohepatitis. Cells 2022; 11:cells11040720. [PMID: 35203369 PMCID: PMC8870369 DOI: 10.3390/cells11040720] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/14/2022] Open
Abstract
Ballooning degeneration of hepatocytes is a major distinguishing histological feature of non-alcoholic steatosis (NASH) progression that can lead to cirrhosis and hepatocellular carcinoma (HCC). In this study, we evaluated the effect of the selective PPARα modulator (SPPARMα) pemafibrate (Pema) and sodium-glucose cotransporter 2 (SGLT2) inhibitor tofogliflozin (Tofo) combination treatment on pathological progression in the liver of a mouse model of NASH (STAM) at two time points (onset of NASH progression and HCC survival). At both time points, the Pema and Tofo combination treatment significantly alleviated hyperglycemia and hypertriglyceridemia. The combination treatment significantly reduced ballooning degeneration of hepatocytes. RNA-seq analysis suggested that Pema and Tofo combination treatment resulted in an increase in glyceroneogenesis, triglyceride (TG) uptake, lipolysis and liberated fatty acids re-esterification into TG, lipid droplet (LD) formation, and Cidea/Cidec ratio along with an increased number and reduced size and area of LDs. In addition, combination treatment reduced expression levels of endoplasmic reticulum stress-related genes (Ire1a, Grp78, Xbp1, and Phlda3). Pema and Tofo treatment significantly improved survival rates and reduced the number of tumors in the liver compared to the NASH control group. These results suggest that SPPARMα and SGLT2 inhibitor combination therapy has therapeutic potential to prevent NASH-HCC progression.
Collapse
|
8
|
Luo C, Xia B, Zhong R, Shen D, Li J, Chen L, Zhang H. Early-Life Nutrition Interventions Improved Growth Performance and Intestinal Health via the Gut Microbiota in Piglets. Front Nutr 2022; 8:783688. [PMID: 35047544 PMCID: PMC8762325 DOI: 10.3389/fnut.2021.783688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022] Open
Abstract
Intestinal infections in piglets are the main causes of morbidity before and after weaning. Studies have not explored approaches for combining pre-weaning and post-weaning nutritional strategies to sustain optimal gut health. The current study thus sought to explore the effects of early-life nutrition interventions through administration of synthetic milk on growth performance and gut health in piglets from 3 to 30 days of age. Twelve sows were randomly allocated to control group (CON) and early-life nutrition interventions group (ENI). Piglets were fed with the same creep diet from 7 days of age ad libitum. Piglets in the ENI group were provided with additional synthetic milk from Day 3 to Day 30. The results showed that early-life nutrition interventions improved growth performance, liver weight, spleen weight, and reduced diarrhea rate of piglets after weaning (P < 0.05). Early-life nutrition interventions significantly upregulated expression of ZO-1, Occludin, Claudin4, GALNT1, B3GNT6, and MUC2 in colonic mucosa at mRNA level (P < 0.05). Early-life nutrition interventions reduced activity of alkaline phosphatase (AKP) in serum and the content of lipopolysaccharides (LPS) in plasma (P < 0.05). The number of goblet cells and crypt depth of colon of piglets was significantly higher in piglets in the ENI group relative to that of piglets in the CON group (P < 0.05). The relative mRNA expression levels of MCP-1, TNF-α, IL-1β, and IL-8, and the protein expression levels of TNF-α, IL-6, and IL-8 in colonic mucosa of piglets in the ENI group were lower compared with those of piglets in the CON group (P < 0.05). Relative abundance of Lactobacillus in colonic chyme and mucosa of piglets in the ENI group was significantly higher relative to that of piglets in the CON group (P < 0.05). Correlation analysis indicated that abundance of Lactobacillus was positively correlated with the relative mRNA expression levels of ZO-1, Claudin4, and GALNT1, and it was negatively correlated with the level of MCP-1 in colonic chyme and mucosa. In summary, the findings of this study showed that early-life nutrition interventions improved growth performance, colonic barrier, and reduced inflammation in the colon by modulating composition of gut microbiota in piglets. Early-life nutrition intervention through supplemental synthetic milk is a feasible measure to improve the health and reduce the number of deaths of piglets.
Collapse
Affiliation(s)
- Chengzeng Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Bing Xia
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dan Shen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaheng Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
9
|
Valiate BVS, Queiroz-Junior CM, Levi-Schaffer F, Galvão I, Teixeira MM. CD300a contributes to the resolution of articular inflammation triggered by MSU crystals by controlling neutrophil apoptosis. Immunology 2021; 164:305-317. [PMID: 34002852 DOI: 10.1111/imm.13371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/27/2022] Open
Abstract
Gout is an inflammatory disease triggered by deposition of monosodium urate (MSU) crystals in the joints, resulting in high neutrophil influx and pain. Here, we studied the role of the inhibitory receptor CD300a in the resolution process in a murine model of gout. We found increased CD300a expression on neutrophils emigrated to the joint. When compared to WT mice, CD300a-/- mice had persistent neutrophil influx till 24 hr after MSU injection. This was associated with increased concentration of IL-1β and greater tissue damage in the joints of CD300a-/- mice. There was an increase in the percentage of apoptotic neutrophils in the synovial lavage of WT mice, as compared to CD300a-/- mice. This difference was reflected in the decline of efferocytic events in the synovial cavity of CD300a-/- mice 24 hr after MSU injection. A CD300a agonistic antibody was shown, for the first time, to increase apoptosis of human neutrophils, and this was associated with cleavage of caspase-8. In conclusion, our results reveal an important role of CD300a in the control of leucocyte infiltration, IL-1β production and caspase-8 cleavage in neutrophils, contributing to the resolution of inflammation triggered by MSU injection.
Collapse
Affiliation(s)
- Bruno V S Valiate
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Celso M Queiroz-Junior
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Izabela Galvão
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro M Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
10
|
Cao Y, Ao T, Wang X, Wei W, Fan J, Tian X. CD300a and CD300f molecules regulate the function of leukocytes. Int Immunopharmacol 2021; 93:107373. [PMID: 33548578 DOI: 10.1016/j.intimp.2021.107373] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
The CD300 molecule family is a type I transmembrane glycoprotein expressed on cell membrane of human and other mammals, and of its eight members, only CD300a and CD300f are classified as inhibitory receptors. CD300a and CD300f play an important role in regulating the function of leukocytes, such as activation, proliferation, differentiation, migration and immunity function. They are considered as potential targets for studying the development and progression of inflammation, infection and other diseases. Here, we review the expression and regulatory mechanisms of CD300a and CD300f on leukocytes, as well as their effects on relevant diseases.
Collapse
Affiliation(s)
- Yue Cao
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Tianrang Ao
- Department of Cardiology, Peking Union Medical College Hospital, Tsinghua University, Beijing 100730, China
| | - Xiaohong Wang
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Wumei Wei
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Jun Fan
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Xiaohong Tian
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
11
|
Bowman ER, Cameron CM, Richardson B, Kulkarni M, Gabriel J, Cichon MJ, Riedl KM, Mustafa Y, Cartwright M, Snyder B, Raman SV, Zidar DA, Koletar SL, Playford MP, Mehta NN, Sieg SF, Freeman ML, Lederman MM, Cameron MJ, Funderburg NT. Macrophage maturation from blood monocytes is altered in people with HIV, and is linked to serum lipid profiles and activation indices: A model for studying atherogenic mechanisms. PLoS Pathog 2020; 16:e1008869. [PMID: 33002093 PMCID: PMC7553323 DOI: 10.1371/journal.ppat.1008869] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/13/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022] Open
Abstract
People with HIV (PWH) are at increased risk for atherosclerotic cardiovascular disease (ASCVD). Proportions of vascular homing monocytes are enriched in PWH; however, little is known regarding monocyte-derived macrophages (MDMs) that may drive atherosclerosis in this population. We isolated PBMCs from people with and without HIV, and cultured these cells for 5 days in medium containing autologous serum to generate MDMs. Differential gene expression (DGE) analysis of MDMs from PWH identified broad alterations in innate immune signaling (IL-1β, TLR expression, PPAR βδ) and lipid processing (LXR/RXR, ACPP, SREBP1). Transcriptional changes aligned with the functional capabilities of these cells. Expression of activation markers and innate immune receptors (CD163, TLR4, and CD300e) was altered on MDMs from PWH, and these cells produced more TNFα, reactive oxygen species (ROS), and matrix metalloproteinases (MMPs) than did cells from people without HIV. MDMs from PWH also had greater lipid accumulation and uptake of oxidized LDL. PWH had increased serum levels of free fatty acids (FFAs) and ceramides, with enrichment of saturated FAs and a reduction in polyunsaturated FAs. Levels of lipid classes and species that are associated with CVD correlated with unique DGE signatures and altered metabolic pathway activation in MDMs from PWH. Here, we show that MDMs from PWH display a pro-atherogenic phenotype; they readily form foam cells, have altered transcriptional profiles, and produce mediators that likely contribute to accelerated ASCVD. People with HIV (PWH) are at greater risk for developing cardiovascular disease (CVD) than the general public, but the mechanisms underlying this increased risk are poorly understood. Macrophages play key roles in the pathogenesis of atherosclerosis, and are potential targets for therapeutic intervention. Here, we investigate phenotypic and functional abnormalities in monocyte-derived macrophages (MDMs) isolated from PWH that may drive CVD risk in this population. MDMs were differentiated in the presence of autologous serum, enabling us to explore the contributions of serum components (lipids, inflammatory cytokines, microbial products) as drivers of altered MDM function. We link serum levels of inflammatory biomarkers and CVD-associated lipid species to MDM activation. Our study provides new insight into drivers of pro-atherogenic MDM phenotype in PWH, and identifies directions for future study and potential intervention strategies to mitigate CVD risk.
Collapse
Affiliation(s)
- Emily R. Bowman
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| | - Cheryl M. Cameron
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Brian Richardson
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Manjusha Kulkarni
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, Ohio State University, Columbus, Ohio, United States of America
| | - Janelle Gabriel
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, Ohio State University, Columbus, Ohio, United States of America
| | - Morgan J. Cichon
- Department of Food Science & Technology and the Nutrient & Phytochemical Shared Resource, Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| | - Kenneth M. Riedl
- Department of Food Science & Technology and the Nutrient & Phytochemical Shared Resource, Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| | - Yousef Mustafa
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Michael Cartwright
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Brandon Snyder
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, Ohio State University, Columbus, Ohio, United States of America
| | - Subha V. Raman
- Department of Internal Medicine, Division of Cardiovascular Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - David A. Zidar
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
| | - Susan L. Koletar
- Department of Medicine, Division of Infectious Diseases, Ohio State University, Columbus, Ohio, United States of America
| | - Martin P. Playford
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Nehal N. Mehta
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Scott F. Sieg
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Case Western Reserve University/University Hospitals of Cleveland, Cleveland, Ohio, United States of America
| | - Michael L. Freeman
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Case Western Reserve University/University Hospitals of Cleveland, Cleveland, Ohio, United States of America
| | - Michael M. Lederman
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Case Western Reserve University/University Hospitals of Cleveland, Cleveland, Ohio, United States of America
| | - Mark J. Cameron
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Nicholas T. Funderburg
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
12
|
Sasaki Y, Asahiyama M, Tanaka T, Yamamoto S, Murakami K, Kamiya W, Matsumura Y, Osawa T, Anai M, Fruchart JC, Aburatani H, Sakai J, Kodama T. Pemafibrate, a selective PPARα modulator, prevents non-alcoholic steatohepatitis development without reducing the hepatic triglyceride content. Sci Rep 2020; 10:7818. [PMID: 32385406 PMCID: PMC7210999 DOI: 10.1038/s41598-020-64902-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/05/2020] [Indexed: 12/30/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is characterized by macrovesicular steatosis with ballooning degeneration of hepatocytes, diffused lobular inflammation, and fibrosis. PPAR ligands are promising therapeutic agents in NASH; accordingly, we evaluated the effects of the first clinically available selective PPARα modulator, pemafibrate. We found that pemafibrate improves F4/80-positive macrophage accumulation, ballooning degeneration of hepatocytes, and the non-alcoholic fatty liver disease (NAFLD) activity score without affecting triglyceride (TG) accumulation in the liver of a mouse model of NASH (STAM). A global gene expression analysis indicated that pemafibrate enhances TG hydrolysis and fatty acid β-oxidation as well as re-esterification from dihydroxyacetone 3-phosphate and monoacylglycerol to TG. These changes are accompanied by the induction of genes involved in lipolysis and lipid droplet formation, along with an increased number and reduced size of lipid droplets in pemafibrate-treated livers. Pemafibrate reduced the expression of the cell adhesion molecule Vcam-1, myeloid cell markers, and inflammation- and fibrosis-related genes in STAM mice. Furthermore, pemafibrate significantly reduced VCAM-1 expression induced by high glucose in cultured human umbilical vein endothelial cells. These results suggest that pemafibrate prevents NASH development by reducing myeloid cell recruitment via interactions with liver sinusoidal endothelial cells, without altering hepatic TG accumulation.
Collapse
Affiliation(s)
- Yusuke Sasaki
- Department of Nuclear Receptor Medicine, Laboratories for Systems Biology and Medicine (LSBM) at the Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, 153-8904, Japan.,Pharmaceutical Division, Kowa Company, Ltd., Tokyo, 189-0022, Japan
| | - Masato Asahiyama
- Pharmaceutical Division, Kowa Company, Ltd., Tokyo, 189-0022, Japan
| | - Toshiya Tanaka
- Department of Nuclear Receptor Medicine, Laboratories for Systems Biology and Medicine (LSBM) at the Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, 153-8904, Japan.
| | - Shogo Yamamoto
- Genome Science Division, Laboratories for Systems Biology and Medicine (LSBM) at the Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, 153-8904, Japan
| | - Kentaro Murakami
- Department of Nuclear Receptor Medicine, Laboratories for Systems Biology and Medicine (LSBM) at the Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, 153-8904, Japan.,Pharmaceutical Division, Kowa Company, Ltd., Tokyo, 189-0022, Japan
| | - Wakana Kamiya
- Department of Nuclear Receptor Medicine, Laboratories for Systems Biology and Medicine (LSBM) at the Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, 153-8904, Japan
| | - Yoshihiro Matsumura
- Division of Metabolic Medicine, Laboratories for Systems Biology and Medicine (LSBM) at the Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, 153-8904, Japan
| | - Tsuyoshi Osawa
- Division of Integrative Nutriomics and Oncology, Laboratories for Systems Biology and Medicine (LSBM) at the Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, 153-8904, Japan
| | - Motonobu Anai
- Department of Nuclear Receptor Medicine, Laboratories for Systems Biology and Medicine (LSBM) at the Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, 153-8904, Japan
| | | | - Hiroyuki Aburatani
- Genome Science Division, Laboratories for Systems Biology and Medicine (LSBM) at the Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, 153-8904, Japan
| | - Juro Sakai
- Division of Metabolic Medicine, Laboratories for Systems Biology and Medicine (LSBM) at the Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, 153-8904, Japan.,Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Tatsuhiko Kodama
- Department of Nuclear Receptor Medicine, Laboratories for Systems Biology and Medicine (LSBM) at the Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, 153-8904, Japan
| |
Collapse
|
13
|
Wagner N, Wagner KD. PPAR Beta/Delta and the Hallmarks of Cancer. Cells 2020; 9:cells9051133. [PMID: 32375405 PMCID: PMC7291220 DOI: 10.3390/cells9051133] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/17/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone receptor family. Three different isoforms, PPAR alpha, PPAR beta/delta and PPAR gamma have been identified. They all form heterodimers with retinoic X receptors to activate or repress downstream target genes dependent on the presence/absence of ligands and coactivators or corepressors. PPARs differ in their tissue expression profile, ligands and specific agonists and antagonists. PPARs attract attention as potential therapeutic targets for a variety of diseases. PPAR alpha and gamma agonists are in clinical use for the treatment of dyslipidemias and diabetes. For both receptors, several clinical trials as potential therapeutic targets for cancer are ongoing. In contrast, PPAR beta/delta has been suggested as a therapeutic target for metabolic syndrome. However, potential risks in the settings of cancer are less clear. A variety of studies have investigated PPAR beta/delta expression or activation/inhibition in different cancer cell models in vitro, but the relevance for cancer growth in vivo is less well documented and controversial. In this review, we summarize critically the knowledge of PPAR beta/delta functions for the different hallmarks of cancer biological capabilities, which interplay to determine cancer growth.
Collapse
|
14
|
Valiate BVS, Alvarez RU, Karra L, Queiroz‐Júnior CM, Amaral FA, Levi‐Schaffer F, Teixeira MM. The immunoreceptor CD300a controls the intensity of inflammation and dysfunction in a model of Ag‐induced arthritis in mice. J Leukoc Biol 2019; 106:957-966. [DOI: 10.1002/jlb.3a1018-389r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/21/2019] [Accepted: 05/10/2019] [Indexed: 12/12/2022] Open
Affiliation(s)
- Bruno V. S. Valiate
- Departamento de Bioquímica e ImunologiaInstituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte Brazil
| | - Rodrigo U. Alvarez
- Departamento de Bioquímica e ImunologiaInstituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte Brazil
| | - Laila Karra
- Pharmacology and Experimental Therapeutics UnitInstitute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem Jerusalem Israel
| | | | - Flavio A. Amaral
- Departamento de Bioquímica e ImunologiaInstituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte Brazil
| | - Francesca Levi‐Schaffer
- Pharmacology and Experimental Therapeutics UnitInstitute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem Jerusalem Israel
| | - Mauro M. Teixeira
- Departamento de Bioquímica e ImunologiaInstituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte Brazil
| |
Collapse
|
15
|
Overexpression of p54 nrb/NONO induces differential EPHA6 splicing and contributes to castration-resistant prostate cancer growth. Oncotarget 2018. [PMID: 29535823 PMCID: PMC5828187 DOI: 10.18632/oncotarget.24063] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The non-POU domain-containing octamer binding protein p54nrb/NONO is a multifunctional nuclear protein involved in RNA splicing, processing, and transcriptional regulation of nuclear hormone receptors. Through chromosome copy number analysis via whole-exome sequencing, we revealed amplification of the chromosome Xq11.22-q21.33 locus containing the androgen receptor (AR) and NONO genes in androgen-independent, castration-resistant prostate cancer (CRPC)-like LNCaP-SF cells. Moreover, NONO was frequently amplified and overexpressed in patients with CRPC. RNA sequencing data revealed that a truncated ephrin type-A receptor 6 (EPHA6) splice variant (EPHA6-001) was overexpressed in LNCaP-SF cells, and knockdown of NONO or EPHA6-001 prevented EPHA6-001 expression and reduced proliferation and invasion by LNCaP-SF cells grown under androgen deprivation conditions. Growth inhibition and differential splicing of EPHA6 mRNA by p54nrb/NONO were confirmed in gene silencing experiments in 22Rv1 PCa cells. Importantly, NONO knockdown in LNCaP-SF cells led to reduced tumor growth in castrated mice. These findings indicate that p54nrb/NONO is amplified and overexpressed in CRPC cells and clinical samples, and facilitates CRPC growth by mediating aberrant EPHA6 splicing. We therefore propose that p54nrb/NONO constitutes a novel and attractive therapeutic target for CRPC.
Collapse
|
16
|
Schumann T, Adhikary T, Wortmann A, Finkernagel F, Lieber S, Schnitzer E, Legrand N, Schober Y, Nockher WA, Toth PM, Diederich WE, Nist A, Stiewe T, Wagner U, Reinartz S, Müller-Brüsselbach S, Müller R. Deregulation of PPARβ/δ target genes in tumor-associated macrophages by fatty acid ligands in the ovarian cancer microenvironment. Oncotarget 2016; 6:13416-33. [PMID: 25968567 PMCID: PMC4537024 DOI: 10.18632/oncotarget.3826] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/29/2015] [Indexed: 01/04/2023] Open
Abstract
The nuclear receptor peroxisome proliferator-activated receptor β/δ (PPARβ/δ) is a lipid ligand-inducible transcription factor associated with macrophage polarization. However, its function in tumor-associated macrophages (TAMs) has not been investigated to date. Here, we report the PPARβ/δ-regulated transcriptome and cistrome for TAMs from ovarian carcinoma patients. Comparison with monocyte-derived macrophages shows that the vast majority of direct PPARβ/δ target genes are upregulated in TAMs and largely refractory to synthetic agonists, but repressible by inverse agonists. Besides genes with metabolic functions, these include cell type-selective genes associated with immune regulation and tumor progression, e.g., LRP5, CD300A, MAP3K8 and ANGPTL4. This deregulation is not due to increased expression of PPARβ/δ or its enhanced recruitment to target genes. Instead, lipidomic analysis of malignancy-associated ascites revealed high concentrations of polyunsaturated fatty acids, in particular linoleic acid, acting as potent PPARβ/δ agonists in macrophages. These fatty acid ligands accumulate in lipid droplets in TAMs, thereby providing a reservoir of PPARβ/δ ligands. These observations suggest that the deregulation of PPARβ/δ target genes by ligands of the tumor microenvironment contributes to the pro-tumorigenic polarization of ovarian carcinoma TAMs. This conclusion is supported by the association of high ANGPTL4 expression with a shorter relapse-free survival in serous ovarian carcinoma.
Collapse
Affiliation(s)
- Tim Schumann
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University, Marburg, Germany
| | - Till Adhikary
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University, Marburg, Germany
| | - Annika Wortmann
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University, Marburg, Germany
| | - Florian Finkernagel
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University, Marburg, Germany
| | - Sonja Lieber
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University, Marburg, Germany
| | - Evelyn Schnitzer
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University, Marburg, Germany
| | - Nathalie Legrand
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University, Marburg, Germany
| | - Yvonne Schober
- Metabolomics Core Facility and Institute of Laboratory Medicine and Pathobiochemistry, Philipps University, Marburg, Germany
| | - W Andreas Nockher
- Metabolomics Core Facility and Institute of Laboratory Medicine and Pathobiochemistry, Philipps University, Marburg, Germany
| | - Philipp M Toth
- Medicinal Chemistry Core Facility and Institute of Pharmaceutical Chemistry, Philipps University, Marburg, Germany
| | - Wibke E Diederich
- Medicinal Chemistry Core Facility and Institute of Pharmaceutical Chemistry, Philipps University, Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Philipps University, Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Philipps University, Marburg, Germany
| | - Uwe Wagner
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, Center for Tumor Biology and Immunology (ZTI), Philipps University, Marburg, Germany
| | - Silke Reinartz
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, Center for Tumor Biology and Immunology (ZTI), Philipps University, Marburg, Germany
| | | | - Rolf Müller
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University, Marburg, Germany
| |
Collapse
|
17
|
Barrier regulation: tolerance stops at cell death. Nat Immunol 2016; 17:349-50. [PMID: 27002834 DOI: 10.1038/ni.3418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Tian L, Choi SC, Lee HN, Murakami Y, Qi CF, Sengottuvelu M, Voss O, Krzewski K, Coligan JE. Enhanced efferocytosis by dendritic cells underlies memory T-cell expansion and susceptibility to autoimmune disease in CD300f-deficient mice. Cell Death Differ 2016; 23:1086-96. [PMID: 26768664 DOI: 10.1038/cdd.2015.161] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/20/2015] [Accepted: 11/19/2015] [Indexed: 12/27/2022] Open
Abstract
Homeostasis requires the immunologically silent clearance of apoptotic cells before they become pro-inflammatory necrotic cells. CD300f (CLM-1) is a phosphatidylserine receptor known to positively regulate efferocytosis by macrophages, and CD300f gene-deficient mice are predisposed to develop a lupus-like disease. Here we show that, in contrast to CD300f function in macrophages, its expression inhibits efferocytosis by DC, and its deficiency leads to enhanced antigen processing and T-cell priming by these DC. The consequences are the expansion of memory T cells and increased ANA levels in aged CD300f-deficient mice, which predispose CD300f-deficient mice to develop an overt autoimmune disease when exposed to an overload of apoptotic cells, or an exacerbated autoimmunity when combined with FcγRIIB deficiency. Thus, our data demonstrates that CD300f helps to maintain immune homeostasis by promoting macrophage clearance of self-antigens, while conversely inhibiting DC uptake and presentation of self-antigens.
Collapse
Affiliation(s)
- L Tian
- Receptor Cell Biology Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - S-C Choi
- Receptor Cell Biology Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - H-N Lee
- Receptor Cell Biology Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - Y Murakami
- Receptor Cell Biology Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - C-F Qi
- Pathology Core, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - M Sengottuvelu
- Receptor Cell Biology Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - O Voss
- Receptor Cell Biology Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - K Krzewski
- Receptor Cell Biology Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - J E Coligan
- Receptor Cell Biology Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| |
Collapse
|
19
|
Zenarruzabeitia O, Vitallé J, Eguizabal C, Simhadri VR, Borrego F. The Biology and Disease Relevance of CD300a, an Inhibitory Receptor for Phosphatidylserine and Phosphatidylethanolamine. THE JOURNAL OF IMMUNOLOGY 2015; 194:5053-60. [PMID: 25980030 DOI: 10.4049/jimmunol.1500304] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The CD300a inhibitory receptor belongs to the CD300 family of cell surface molecules that regulate a diverse array of immune cell processes. The inhibitory signal of CD300a depends on the phosphorylation of tyrosine residues embedded in ITIMs of the cytoplasmic tail. CD300a is broadly expressed on myeloid and lymphoid cells, and its expression is differentially regulated depending on the cell type. The finding that CD300a recognizes phosphatidylserine and phosphatidylethanolamine, two aminophospholipids exposed on the outer leaflet of dead and activated cells, has shed new light on its role in the modulation of immune functions and in its participation in the host response to several diseases states, such as infectious diseases, cancer, allergy, and chronic inflammatory diseases. This review summarizes the literature on CD300a expression, regulation, signaling pathways, and ligand interaction, as well as its role in fine tuning immune cell functions and its clinical relevance.
Collapse
Affiliation(s)
| | - Joana Vitallé
- Immunopathology Group, BioCruces Health Research Institute, Barakaldo 48903, Spain
| | - Cristina Eguizabal
- Cell Therapy and Stem Cell Group, Basque Center for Transfusion and Human Tissues, Galdakao 48960, Spain
| | - Venkateswara R Simhadri
- Division of Biotechnology Review and Research-I, Office of Biotechnology Products Review and Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993; and
| | - Francisco Borrego
- Immunopathology Group, BioCruces Health Research Institute, Barakaldo 48903, Spain; Ikerbasque, Basque Foundation for Science 48903, Bilbao, Spain
| |
Collapse
|
20
|
Raza-Iqbal S, Tanaka T, Anai M, Inagaki T, Matsumura Y, Ikeda K, Taguchi A, Gonzalez FJ, Sakai J, Kodama T. Transcriptome Analysis of K-877 (a Novel Selective PPARα Modulator (SPPARMα))-Regulated Genes in Primary Human Hepatocytes and the Mouse Liver. J Atheroscler Thromb 2015; 22:754-72. [PMID: 26040752 DOI: 10.5551/jat.28720] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AIM Selective PPARα modulators (SPPARMα) are under development for use as next-generation lipid lowering drugs. In the current study, to predict the pharmacological and toxicological effects of a novel SPPARMα K-877, comprehensive transcriptome analyses of K-877-treated primary human hepatocytes and mouse liver tissue were carried out. METHODS Total RNA was extracted from the K-877 treated primary human hepatocytes and mouse liver and adopted to the transcriptome analysis. Using a cluster analysis, commonly and species specifically regulated genes were identified. Also, the profile of genes regulated by K-877 and fenofibrate were compared to examine the influence of different SPPARMα on the liver gene expression. RESULTS Consequently, a cell-based transactivation assay showed that K-877 activates PPARα with much greater potency and selectivity than fenofibric acid, the active metabolite of clinically used fenofibrate. K-877 upregulates the expression of several fatty acid β-oxidative genes in human hepatocytes and the mouse liver. Almost all genes up- or downregulated by K-877 treatment in the mouse liver were also regulated by fenofibrate treatment. In contrast, the K-877-regulated genes in the mouse liver were not affected by K-877 treatment in the Ppara-null mouse liver. Depending on the species, the peroxisomal biogenesis-related gene expression was robustly induced in the K-877-treated mouse liver, but not human hepatocytes, thus suggesting that the clinical dose of K-877 may not induce peroxisome proliferation or liver toxicity in humans. Notably, K-877 significantly induces the expression of clinically beneficial target genes (VLDLR, FGF21, ABCA1, MBL2, ENPEP) in human hepatocytes. CONCLUSION These results indicate that changes in the gene expression induced by K-877 treatment are mainly mediated through PPARα activation. K-877 regulates the hepatic gene expression as a SPPARMα and thus may improve dyslipidemia as well as metabolic disorders, such as metabolic syndrome and type 2 diabetes, without untoward side effects.
Collapse
Affiliation(s)
- Sana Raza-Iqbal
- Laboratory for Systems Biology and Medicine (LSBM), Research Center for Advanced Science and Technology (RCAST), University of Tokyo
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abe Y, Rozqie R, Matsumura Y, Kawamura T, Nakaki R, Tsurutani Y, Tanimura-Inagaki K, Shiono A, Magoori K, Nakamura K, Ogi S, Kajimura S, Kimura H, Tanaka T, Fukami K, Osborne TF, Kodama T, Aburatani H, Inagaki T, Sakai J. JMJD1A is a signal-sensing scaffold that regulates acute chromatin dynamics via SWI/SNF association for thermogenesis. Nat Commun 2015; 6:7052. [PMID: 25948511 PMCID: PMC4432656 DOI: 10.1038/ncomms8052] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/27/2015] [Indexed: 12/11/2022] Open
Abstract
Histone 3 lysine 9 (H3K9) demethylase JMJD1A regulates β-adrenergic-induced systemic metabolism and body weight control. Here we show that JMJD1A is phosphorylated at S265 by protein kinase A (PKA), and this is pivotal to activate the β1-adrenergic receptor gene (Adrb1) and downstream targets including Ucp1 in brown adipocytes (BATs). Phosphorylation of JMJD1A by PKA increases its interaction with the SWI/SNF nucleosome remodelling complex and DNA-bound PPARγ. This complex confers β-adrenergic-induced rapid JMJD1A recruitment to target sites and facilitates long-range chromatin interactions and target gene activation. This rapid gene induction is dependent on S265 phosphorylation but not on demethylation activity. Our results show that JMJD1A has two important roles in regulating hormone-stimulated chromatin dynamics that modulate thermogenesis in BATs. In one role, JMJD1A is recruited to target sites and functions as a cAMP-responsive scaffold that facilitates long-range chromatin interactions, and in the second role, JMJD1A demethylates H3K9 di-methylation. Demethylase JMJD1A activates thermogenesis-related target genes in response to β-adrenergic hormones. Here, the authors show that phosphorylation of JMJD1A at S265 increases its interaction with the SWI/SNF chromatin remodeler, leading to long-range chromatin interactions and target gene activation.
Collapse
Affiliation(s)
- Yohei Abe
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo 153-8904, Japan
| | - Royhan Rozqie
- 1] Division of Metabolic Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo 153-8904, Japan [2] Department of Cardiology and Vascular Medicine, Faculty of Medicine, Gadjah Mada University, Yogyakarta 55281, Indonesia
| | - Yoshihiro Matsumura
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo 153-8904, Japan
| | - Takeshi Kawamura
- 1] Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo 153-8904, Japan [2] The Translational Systems Biology and Medicine Initiative, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Ryo Nakaki
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo 153-8904, Japan
| | - Yuya Tsurutani
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo 153-8904, Japan
| | - Kyoko Tanimura-Inagaki
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo 153-8904, Japan
| | - Akira Shiono
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo 153-8904, Japan
| | - Kenta Magoori
- 1] Division of Metabolic Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo 153-8904, Japan [2] The Translational Systems Biology and Medicine Initiative, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Kanako Nakamura
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo 153-8904, Japan
| | - Shotaro Ogi
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo 153-8904, Japan
| | - Shingo Kajimura
- UCSF Diabetes Center, Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California 94143-0669, USA
| | - Hiroshi Kimura
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Toshiya Tanaka
- 1] Division of Metabolic Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo 153-8904, Japan [2] Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo 153-8904, Japan [3] The Translational Systems Biology and Medicine Initiative, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Kiyoko Fukami
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Science, Tokyo 192-0392, Japan
| | - Timothy F Osborne
- Metabolic Disease Program, Sanford-Burnham Medical Research Institute, Orlando, Florida 32827, USA
| | - Tatsuhiko Kodama
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo 153-8904, Japan
| | - Hiroyuki Aburatani
- 1] The Translational Systems Biology and Medicine Initiative, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Tokyo 113-8655, Japan [2] Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo 153-8904, Japan
| | - Takeshi Inagaki
- 1] Division of Metabolic Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo 153-8904, Japan [2] The Translational Systems Biology and Medicine Initiative, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Juro Sakai
- 1] Division of Metabolic Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo 153-8904, Japan [2] The Translational Systems Biology and Medicine Initiative, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
22
|
Di Stasi LC, Costa CA, Witaicenis A. Products for the treatment of inflammatory bowel disease: a patent review (2013 - 2014). Expert Opin Ther Pat 2015; 25:629-42. [PMID: 25944127 DOI: 10.1517/13543776.2015.1041921] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Inflammatory bowel disease (IBD) consists of Crohn's disease, ulcerative colitis and an unspecific IBD. The unclear etiology of IBD is a limiting factor that complicates the development of new pharmacological treatments and explains the high frequency of refractory patients to current drugs, including both conventional and biological therapies. In view of this, recent progress on the development of novel patented products to treat IBD was reviewed. AREAS COVERED Evaluation of the patent literature during the period 2013 - 2014 focused on chemical compounds, functional foods and biological therapy useful for the treatment of IBD. EXPERT OPINION Majority of the patents are not conclusive because they were based on data from unspecific methods not related to intestinal inflammation and, when related to IBD models, few biochemical and molecular evaluations that could be corroborating their use in human IBD were presented. On the other hand, methods and strategies using new formulations of conventional drugs, guanylyl cyclase C peptide agonists, compounds that influence anti-adhesion molecules, mAbs anti-type I interferons and anti-integrin, oligonucleotide antisense Smad7, growth factor neuregulin 4 and functional foods, particularly fermented wheat germ with Saccharomyces cerevisiae, are promising products for use in the very near future.
Collapse
Affiliation(s)
- Luiz C Di Stasi
- São Paulo State University (UNESP), Institute of Biosciences, Department of Pharmacology, Laboratory of Phytomedicines, Pharmacology and Biotechnology (PhytoPharmaTech) , 18.618-000 - Botucatu, São Paulo , Brazil +55 14 3880 0216 ;
| | | | | |
Collapse
|
23
|
Adhikary T, Wortmann A, Schumann T, Finkernagel F, Lieber S, Roth K, Toth PM, Diederich WE, Nist A, Stiewe T, Kleinesudeik L, Reinartz S, Müller-Brüsselbach S, Müller R. The transcriptional PPARβ/δ network in human macrophages defines a unique agonist-induced activation state. Nucleic Acids Res 2015; 43:5033-51. [PMID: 25934804 PMCID: PMC4446423 DOI: 10.1093/nar/gkv331] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/01/2015] [Indexed: 02/06/2023] Open
Abstract
Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) is a lipid ligand-inducible transcription factor with established metabolic functions, whereas its anti-inflammatory function is poorly understood. To address this issue, we determined the global PPARβ/δ-regulated signaling network in human monocyte-derived macrophages. Besides cell type-independent, canonical target genes with metabolic and immune regulatory functions we identified a large number of inflammation-associated NFκB and STAT1 target genes that are repressed by agonists. Accordingly, PPARβ/δ agonists inhibited the expression of multiple pro-inflammatory mediators and induced an anti-inflammatory, IL-4-like morphological phenotype. Surprisingly, bioinformatic analyses also identified immune stimulatory effects. Consistent with this prediction, PPARβ/δ agonists enhanced macrophage survival under hypoxic stress and stimulated CD8+ T cell activation, concomitantly with the repression of immune suppressive target genes and their encoded products CD274 (PD-1 ligand), CD32B (inhibitory Fcγ receptor IIB) and indoleamine 2,3-dioxygenase 1 (IDO-1), as well as a diminished release of the immune suppressive IDO-1 metabolite kynurenine. Comparison with published data revealed a significant overlap of the PPARβ/δ transcriptome with coexpression modules characteristic of both anti-inflammatory and pro-inflammatory cytokines. Our findings indicate that PPARβ/δ agonists induce a unique macrophage activation state with strong anti-inflammatory but also specific immune stimulatory components, pointing to a context-dependent function of PPARβ/δ in immune regulation.
Collapse
Affiliation(s)
- Till Adhikary
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Annika Wortmann
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Tim Schumann
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Florian Finkernagel
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Sonja Lieber
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Katrin Roth
- Cellular Imaging Core Facility, Philipps University, Center for Tumor Biology and Immunology (ZTI), 35043 Marburg, Germany
| | - Philipp M Toth
- Medicinal Chemistry Core Facility and Institute of Pharmaceutical Chemistry, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Wibke E Diederich
- Medicinal Chemistry Core Facility and Institute of Pharmaceutical Chemistry, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Lara Kleinesudeik
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Silke Reinartz
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Sabine Müller-Brüsselbach
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Rolf Müller
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| |
Collapse
|
24
|
Inagaki T, Iwasaki S, Matsumura Y, Kawamura T, Tanaka T, Abe Y, Yamasaki A, Tsurutani Y, Yoshida A, Chikaoka Y, Nakamura K, Magoori K, Nakaki R, Osborne TF, Fukami K, Aburatani H, Kodama T, Sakai J. The FBXL10/KDM2B scaffolding protein associates with novel polycomb repressive complex-1 to regulate adipogenesis. J Biol Chem 2014; 290:4163-77. [PMID: 25533466 DOI: 10.1074/jbc.m114.626929] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Polycomb repressive complex 1 (PRC1) plays an essential role in the epigenetic repression of gene expression during development and cellular differentiation via multiple effector mechanisms, including ubiquitination of H2A and chromatin compaction. However, whether it regulates the stepwise progression of adipogenesis is unknown. Here, we show that FBXL10/KDM2B is an anti-adipogenic factor that is up-regulated during the early phase of 3T3-L1 preadipocyte differentiation and in adipose tissue in a diet-induced model of obesity. Interestingly, inhibition of adipogenesis does not require the JmjC demethylase domain of FBXL10, but it does require the F-box and leucine-rich repeat domains, which we show recruit a noncanonical polycomb repressive complex 1 (PRC1) containing RING1B, SKP1, PCGF1, and BCOR. Knockdown of either RING1B or SKP1 prevented FBXL10-mediated repression of 3T3-L1 preadipocyte differentiation indicating that PRC1 formation mediates the inhibitory effect of FBXL10 on adipogenesis. Using ChIP-seq, we show that FBXL10 recruits RING1B to key specific genomic loci surrounding the key cell cycle and the adipogenic genes Cdk1, Uhrf1, Pparg1, and Pparg2 to repress adipogenesis. These results suggest that FBXL10 represses adipogenesis by targeting a noncanonical PRC1 complex to repress key genes (e.g. Pparg) that control conversion of pluripotent cells into the adipogenic lineage.
Collapse
Affiliation(s)
- Takeshi Inagaki
- From the Division of Metabolic Medicine, the Translational Systems Biology and Medicine Initiative Center for Disease Biology and Integrative Medicine, University of Tokyo, Tokyo 153-8904, Japan,
| | | | | | - Takeshi Kawamura
- the Translational Systems Biology and Medicine Initiative Center for Disease Biology and Integrative Medicine, University of Tokyo, Tokyo 153-8904, Japan, Laboratory for Systems Biology and Medicine
| | - Toshiya Tanaka
- From the Division of Metabolic Medicine, the Translational Systems Biology and Medicine Initiative Center for Disease Biology and Integrative Medicine, University of Tokyo, Tokyo 153-8904, Japan, Laboratory for Systems Biology and Medicine
| | - Yohei Abe
- From the Division of Metabolic Medicine
| | | | | | - Ayano Yoshida
- From the Division of Metabolic Medicine, the Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Science, Tokyo 192-0392, Japan
| | - Yoko Chikaoka
- the Translational Systems Biology and Medicine Initiative Center for Disease Biology and Integrative Medicine, University of Tokyo, Tokyo 153-8904, Japan, Laboratory for Systems Biology and Medicine
| | - Kanako Nakamura
- From the Division of Metabolic Medicine, the Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Science, Tokyo 192-0392, Japan
| | - Kenta Magoori
- From the Division of Metabolic Medicine, the Translational Systems Biology and Medicine Initiative Center for Disease Biology and Integrative Medicine, University of Tokyo, Tokyo 153-8904, Japan
| | - Ryo Nakaki
- Genome Science Division, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904, Japan
| | - Timothy F Osborne
- the Metabolic Disease Program, Sanford-Burnham Medical Research Institute, Orlando, Florida 32827, and
| | - Kiyoko Fukami
- the Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Science, Tokyo 192-0392, Japan
| | - Hiroyuki Aburatani
- the Translational Systems Biology and Medicine Initiative Center for Disease Biology and Integrative Medicine, University of Tokyo, Tokyo 153-8904, Japan, Genome Science Division, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904, Japan
| | | | - Juro Sakai
- From the Division of Metabolic Medicine, the Translational Systems Biology and Medicine Initiative Center for Disease Biology and Integrative Medicine, University of Tokyo, Tokyo 153-8904, Japan,
| |
Collapse
|