1
|
Zhu W, Cheng Y, Zhang Y, Li M, Teng Y, Gu Y, Wang H, Xia X. Antibiofilm efficacies and mechanism of perillaldehyde against Shewanella putrefaciens. Food Microbiol 2025; 128:104699. [PMID: 39952773 DOI: 10.1016/j.fm.2024.104699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 02/17/2025]
Abstract
Shewanella putrefaciens is Gram-negative bacterium and important spoilage organism in aquatic products, negatively impacting the organoleptic properties of aquatic products. S. putrefaciens could form biofilm, which increases persistence and contamination in food system. Efficient antibiofilm strategies are urgently needed to reduce its presence in food environment. This study aimed to explore the impact of perillaldehyde on S. putrefaciens biofilm and the underlying mechanisms using transcriptomic analysis. Perillaldehyde remarkably reduced extracellular polymeric substance contents, inhibited metabolic activity of biofilm cells, disrupted bacterial motility, loose biofilm structure and decreased biofilm formation in food juice and on various surfaces (stainless steel, silicone, glass, razon clam and shrimp). Transcriptome analysis revealed that 553 differentially expressed genes were identified, among which 254 were down-regulated and 299 were up-regulated. The differentially expressed genes included ATP-binding cassette transporters, ribosome, two-component systems, resistance/nodulation/division efflux systems, quorum sensing, amino acid metabolism, biosynthesis and degradation pathways. The findings demonstrate antibiofilm properties of perillaldehyde against S. putrefaciens and indicate that perillaldehyde could be developed as an antibiofilm agent to mitigate existence and contamination of S. putrefaciens and to reduce associated food loss caused by this spoilage bacteria.
Collapse
Affiliation(s)
- Wenxiu Zhu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Yuanhang Cheng
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Yankun Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Mingxin Li
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Yue Teng
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Yunqi Gu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Haisong Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Xiaodong Xia
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China.
| |
Collapse
|
2
|
He J, Cui Y, Liu Y, Mao J, Dong Y, Yao R, Yang D, Fan P, Xue J. Resveratrol inhibits the formation of Staphylococcus aureus biofilms by reducing PIA, eDNA release, and ROS production. Front Vet Sci 2025; 12:1594239. [PMID: 40370837 PMCID: PMC12076522 DOI: 10.3389/fvets.2025.1594239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Accepted: 03/31/2025] [Indexed: 05/16/2025] Open
Abstract
Introduction Staphylococcus aureus is a zoonotic pathogen that is difficult to control. Resveratrol (RES) has been shown to have significant antibacterial effects. The present study aimed to investigate the inhibitory effect of RES on the formation of Staphylococcus aureus biofilms and their molecular mechanism. Methods First, the minimum inhibitory concentration and inhibitory action curve of RES against Staphylococcus aureus were obtained through testing. Second, we found that RES can inhibit biofilm formation by reducing the release of polysaccharide intercellular adhesion (PIA) and extracellular DNA (eDNA) from Staphylococcus aureus. Results RES treatment significantly reduced the production of reactive oxygen species (ROS) and nicotinamide adenine dinucleotide phosphate (NADPH) in Staphylococcus aureus, indicating that ROS and NADPH are closely related to biofilm formation. Conclusion This study demonstrates that RES inhibits the formation of Staphylococcus aureus biofilms by reducing PIA, eDNA release, and ROS production, and these results provide new ideas for the clinical application of RES in the treatment of Staphylococcus aureus infection.
Collapse
Affiliation(s)
- Jinfei He
- College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| | - Yilong Cui
- College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| | - Yan Liu
- College of Life Sciences and Food Engineering, Inner Mongolia MINZU University, Tongliao, China
| | - Jingdong Mao
- College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| | - Yanxin Dong
- College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| | - Ruizhi Yao
- College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| | - Dahan Yang
- College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| | - Peichao Fan
- College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| | - Jiangdong Xue
- College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| |
Collapse
|
3
|
Dogheim GM, Shehat MG, Mahdy DM, Barakat HS, Abouelfetouh A, Ramadan AA. Antibacterial and anti-virulence activity of eco-friendly resveratrol-loaded lipid nanocapsules against methicillin-resistant staphylococcus aureus. Sci Rep 2025; 15:14677. [PMID: 40287445 PMCID: PMC12033371 DOI: 10.1038/s41598-025-95343-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/20/2025] [Indexed: 04/29/2025] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is challenging modern antimicrobial therapy due to its high antimicrobial resistance. Nutraceuticals have gained a lot of interest and their incorporation into nanoparticles further improves their efficacy. This study aimed to evaluate the antibacterial activity of linalool-based lipid nanocapsules loaded with resveratrol (LIN-LNC-RES) as a synergistic strategy against MRSA. LIN-LNC-RES were prepared by the phase inversion temperature method and characterized for their colloidal properties, in vitro release, and stability. The antibacterial and antibiofilm activity against S. aureus and different MRSA clinical isolates were investigated. Furthermore, scanning electron microscopy (SEM) imaging for visualization of biofilm formation and bacterial membrane integrity as well as mechanistic investigation using quantitative real-time polymerase chain reaction (qRT-PCR) analysis were performed. LIN-LNCs-RES demonstrated favorable properties with a size of 35.19 ± 0.72 nm, PDI of 0.09 ± 0.02 and a zeta potential of -2.53 ± 0.07 mV with RES 98% EE. They showed a controlled release of RES over 24 h and were stable at 4 °C for 3 months. Compared to free drug, LIN-LNC-RES showed a 4-fold decrease in MIC values and 10-fold decrease in half maximal biofilm inhibitory concentration value. Biofilm eradication assay showed superiority of LIN-LNC-RES over RES against all isolates with disrupted bacterial membranes as revealed by SEM. Mechanistically, qRT-PCR showed that LIN-LNC-RES significantly reduced RNAIII gene expression as well as the expression of SaeRS two component system, potentially affecting quorum sensing and virulence factors expression. RES-loaded LIN-based nanosystem offers a great potential for combating MRSA infections, neutralizing its virulence activity hence, overcoming antimicrobial resistance.
Collapse
Affiliation(s)
- Gaidaa M Dogheim
- Pharmaceutics department, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Michael G Shehat
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| | - Dina M Mahdy
- Pharmaceutics Department, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), Alamein, Egypt
| | - Hebatallah S Barakat
- Pharmaceutics department, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Alaa Abouelfetouh
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
- Department of Microbiology and Immunology, Alamein International University, Alamein, Egypt
| | - Alyaa A Ramadan
- Pharmaceutics department, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
4
|
Tan X, Xiao J, Liu Q, Yang T, Feng D, Zheng R, Luo L, Cheng X, Du D, Li M, Zhou J, Zhu G. Regulatory roles of an sRNA derived from the 5´ UTR and sequence internal to lapA in Pseudomonas aeruginosa PAO1. Microbiol Spectr 2025:e0130324. [PMID: 40261038 DOI: 10.1128/spectrum.01303-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 03/10/2025] [Indexed: 04/24/2025] Open
Abstract
Several key virulence factors of Pseudomonas aeruginosa are regulated by quorum-sensing systems, small noncoding RNAs (sRNAs), and environmental stress, leading to a high mortality rate. Our previous studies indicated that the alkaline phosphatase LapA regulated P. aeruginosa PAO1 biofilm formation in a chronic wound model established with ex vivo porcine skin explants. Notably, one particular sRNA located upstream of the lapA gene was highly expressed in the model. Therefore, the sRNA was further characterized via northern blotting and rapid amplification of cDNA ends. The results revealed that the sRNA we named LapS is 197 nucleotides in length and is derived from the 5´ UTR and sequence internal to the lapA gene. Next, LapS mutation, overexpression, and complementation strains were constructed from the PAO1 strain, and phenotypic experiments associated with lapA were performed and compared with those of the ΔlapA and wild-type strains. The results indicated that LapS is involved in regulating swarming motility, rhamnolipid and alkaline phosphatase production, las/rhl quorum-sensing systems, and biofilm formation by controlling the level of lapA mRNA under phosphate-depleted conditions. Therefore, this LapS-lapA signaling cascade is beneficial for balancing the virulence regulation of P. aeruginosa. Additionally, an in vitro study indicated that LapS directly and post-transcriptionally regulated at least one unlinked gene, putA, which encodes bifunctional proline dehydrogenase, a virulence factor of P. aeruginosa. Collectively, our findings reveal a previously unstudied regulatory sRNA and advance the understanding of the roles of sRNAs in the pathogenicity of P. aeruginosa. IMPORTANCE Pseudomonas aeruginosa is a common nosocomial pathogen that contains hundreds of virulence factors regulated by quorum-sensing systems and environmental stress. Small noncoding RNAs (sRNAs) involved in virulence regulation have been identified in P. aeruginosa. Recently, several potential sRNAs were identified in P. aeruginosa using transcriptome sequencing. However, some of these novel sRNAs have been functionally characterized. In this study, a previously uncharacterized sRNA, LapS, in P. aeruginosa PAO1 was identified as a novel sRNA. LapS is involved in regulating swarming motility, rhamnolipid production, and alkaline phosphatase production during phosphate-depleted stress by controlling the level of lapA mRNA. Furthermore, LapS deletion also reduced the mortality rate of Caenorhabditis elegans in a fast-kill assay. Additionally, LapS directly suppressed PutA, a virulence factor of P. aeruginosa. This study highlights the role of LapS in modulating P. aeruginosa virulence during phosphate-depleted stress.
Collapse
Affiliation(s)
- Xiaojuan Tan
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Jingjing Xiao
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Qianqian Liu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Ting Yang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Dandan Feng
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Ruyi Zheng
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Liping Luo
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Xi Cheng
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Dongsheng Du
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Minghui Li
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Jinwei Zhou
- School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, China
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| |
Collapse
|
5
|
Yang H, Dong P, Huo S, Nychas GJE, Luo X, Zhu L, Mao Y, Han G, Liu M, Liu Y, Zhang Y. Deciphering the inhibitory mechanisms of cinnamaldehyde on biofilm formation of Listeria monocytogenes and implement these strategies to control its transfer to beef surfaces. Food Res Int 2025; 204:115946. [PMID: 39986790 DOI: 10.1016/j.foodres.2025.115946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/17/2025] [Accepted: 02/05/2025] [Indexed: 02/24/2025]
Abstract
Natural essential oils have received widespread attention as promising microbial inhibitors, whereas a comprehensive understanding of their mechanisms underlying biofilm control and impact on biofilm cross-contamination on meat remains poorly understood. In this study, Listeria monocytogenes (Lm) biofilms were treated with sub-inhibitory concentrations of cinnamaldehyde (CA) and characterized over a 4-day period. Both 1/2 MIC (160 μg/mL) and 1/4 MIC (80 μg/mL) CA delayed the development of Lm biofilm on abiotic surfaces and reduced the maximum biofilm formation. The limited effect of 1/4 MIC CA on the flagellar-mediated motility of Lm during initial adhesion indicated that hindering bacterial motility was not the main reason for CA inhibition of biofilm formation. Transcriptomics results showed that CA was involved in inhibitory pathways dominated by energy metabolism and peptidoglycan synthesis during the initial adhesion period and the maturation period of the biofilm, respectively. This posed an obstacle to the polymers required for biofilm cell adhesion and the energy consumption required for their production. Down-regulation of genes associated with multiple signalling systems and virulence factors also suggested that CA further mitigated resistance and virulence in residual biofilm cells. In addition, quantification of biofilm cells transferred to beef surfaces confirmed that CA significantly reduces the biomass transferred and the risk of persistent biofilm contamination. This study provided the theoretical basis for the control of Lm biofilm and its cross-contamination in the food industry by natural essential oils.
Collapse
Affiliation(s)
- Huixuan Yang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Pengcheng Dong
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Shengnan Huo
- Shandong Institute for Food and Drug Control, Jinan 250101, China; Key Laboratory of Supervising Technology for Meat and Meat Products, State Administration for Market Regulation, Jinan 250101, China
| | - George-John E Nychas
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong 271018, China; Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Xin Luo
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong 271018, China
| | - Lixian Zhu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong 271018, China
| | - Yanwei Mao
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong 271018, China
| | - Guangxing Han
- Lilnyi Station of China Agriculture Research System (beef), Linyi, Shandong 276000, China
| | - Minze Liu
- Yangxin Yiliyuan Halal Meat Co., Ltd., Binzhou 251800, China
| | - Yunge Liu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong 271018, China; Yangxin Yiliyuan Halal Meat Co., Ltd., Binzhou 251800, China.
| | - Yimin Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong 271018, China.
| |
Collapse
|
6
|
Kaushik H, Sharma R, Kumar A. Natural products against resistant bacterial infections: A systematic literature review. THE MICROBE 2025; 6:100247. [DOI: 10.1016/j.microb.2025.100247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
|
7
|
Ghadimi N, Asadpour L, Mokhtary M. Enhanced antimicrobial, anti-biofilm, and efflux pump inhibitory effects of ursolic acid-conjugated magnetic nanoparticles against clinical isolates of multidrug-resistant Pseudomonas aeruginosa. Microb Pathog 2025; 199:107241. [PMID: 39716652 DOI: 10.1016/j.micpath.2024.107241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/04/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
OBJECTIVES In the present study, we investigate the effect of Fe3O4 nanoparticles conjugated with ursolic acid (Fe3O4NPs@UA) on inhibiting the growth, biofilm-forming ability and efflux pump activity in clinical isolates of Pseudomonas aeruginosa with multiple drug resistance. METHODS Iron oxide NPs conjugated with ursolic acid (Fe3O4NPs@UA) were synthesized. Physicochemical features of the NPs were studied by FT-IR, XRD, EDAX, and TEM. The antibacterial and antibiofilm effects of Fe3O4NPs@UA against P. aeruginosa isolates were determined by broth microdilution and microtiter plate methods, respectively. The efflux pump inhibitory effect of Fe3O4NPs@UA was determined using Cartwheel method and through determining the expression level of efflux pump genes, including mexA and oprD in selected P. aeruginosa isolates treated with sub-MIC concentration of Fe3O4NPs@UA by real-time PCR. RESULTS In investigating the antimicrobial effect of Fe3O4NPs@UA, the MIC of these nanoparticles varied between 0.19 and 0.78 mg/mL and in the study of the anti-biofilm effect of Fe3O4NPs@UA, it caused a 68-75 % decrease in biofilm formation compared to the control. Moreover, in the Cartwheel test, the anti-efflux effect of these nanoparticles was confirmed at 1/4-MIC concentrations, and the expression of mexA and oprD genes was reduced in bacteria treated with Fe3O4NPs@UA compared to the control. CONCLUSION According to the results, the use of Fe3O4NPs@UA can provide a basis for the development of new treatments against drug-resistant bacteria in P. aeruginosa. This substance can improve the concentration of antibiotics in bacterial cells and increase their effectiveness by inhibiting the efflux in P. aeruginosa isolates.
Collapse
Affiliation(s)
- Narges Ghadimi
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Leila Asadpour
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran.
| | - Masoud Mokhtary
- Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran
| |
Collapse
|
8
|
Maggio F, Rossi C, Serio A, Chaves-Lopez C, Casaccia M, Paparella A. Anti-biofilm mechanisms of action of essential oils by targeting genes involved in quorum sensing, motility, adhesion, and virulence: A review. Int J Food Microbiol 2025; 426:110874. [PMID: 39244811 DOI: 10.1016/j.ijfoodmicro.2024.110874] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/11/2024] [Accepted: 08/15/2024] [Indexed: 09/10/2024]
Abstract
Biofilms are a critical factor for food safety, causing important economic losses. Among the novel strategies for controlling biofilms, essential oils (EOs) can represent an environmentally friendly approach, able to act both on early and mature stages of biofilm formation. This review reports the anti-biofilm mechanisms of action of EOs against five pathogenic bacterial species known for their biofilm-forming ability. These mechanisms include disturbing the expression of genes related to quorum sensing (QS), motility, adhesion, and virulence. Biofilms and QS are interconnected processes, and EOs interfere with the communication system (e.g. regulating the expression of agrBDCA, luxR, luxS, and pqsA genes), thus influencing biofilm formation. In addition, QS is an important mechanism that regulates gene expression related to bacterial survival, virulence, and pathogenicity. Similarly, EOs also influence the expression of many virulence genes. Moreover, EOs exert their effects modulating the genes associated with bacterial adhesion and motility, for example those involved in curli (csg), fimbriae (fim, lpf), and flagella (fla, fli, flh, and mot) production, as well as the ica genes responsible for synthetizing polysaccharide intercellular adhesin. This review provides a comprehensive framework on the topic for a better understanding of EOs biofilm mechanisms of action.
Collapse
Affiliation(s)
- Francesca Maggio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| | - Chiara Rossi
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| | - Annalisa Serio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| | - Clemencia Chaves-Lopez
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| | - Manila Casaccia
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy
| | - Antonello Paparella
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| |
Collapse
|
9
|
Kashi M, Noei M, Chegini Z, Shariati A. Natural compounds in the fight against Staphylococcus aureus biofilms: a review of antibiofilm strategies. Front Pharmacol 2024; 15:1491363. [PMID: 39635434 PMCID: PMC11615405 DOI: 10.3389/fphar.2024.1491363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Staphylococcus aureus is an important pathogen due to its ability to form strong biofilms and antibiotic resistance. Biofilms play an important role in bacterial survival against the host immune system and antibiotics. Natural compounds (NCs) have diverse bioactive properties with a low probability of resistance, making them promising candidates for biofilm control. NC such as curcumin, cinnamaldehyde, carvacrol, eugenol, thymol, citral, linalool, 1,8-cineole, pinene, cymene, terpineol, quercetin, and limonene have been widely utilized for the inhibition and destruction of S. aureus biofilms. NCs influence biofilm formation through several procedures. Some of the antibiofilm mechanisms of NCs are direct bactericidal effect, disrupting the quorum sensing system, preventing bacteria from aggregation and attachment to surfaces, reducing the microbial surface components recognizing adhesive matrix molecules (MSCRAMMs), interfering with sortase A enzyme, and altering the expression of biofilm-associated genes such as icaADBC, agr, and sarA. Furthermore, these compounds affect extracellular polymeric substances (EPS) and their components, such as polysaccharide intercellular adhesin (PIA) and eDNA. However, some disadvantages, such as low water solubility and bioavailability, limit their clinical usage. Therefore, scientists have considered using nanotechnology and drug platforms to improve NC's efficacy. Some NC, such as thymol and curcumin, can also enhance photodynamic therapy against S. aurous biofilm community. This article evaluates the anti-biofilm potential of NC, their mechanisms of action against S. aureus biofilms, and various aspects of their application.
Collapse
Affiliation(s)
- Milad Kashi
- Student Research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Milad Noei
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Chegini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Aref Shariati
- Infectious Diseases Research Center (IDRC), Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
10
|
Xie C, Bai Y, Li Y, Cui B, Cheng G, Liu J, liu Y, Qin X. Revealing sRNA expression profiles of NDM-5-producing CRKP and explore the role of sRNA207 in NDM-5-producing CRKP resistance. Microbiol Spectr 2024; 12:e0153724. [PMID: 39508637 PMCID: PMC11619380 DOI: 10.1128/spectrum.01537-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/23/2024] [Indexed: 11/15/2024] Open
Abstract
New Delhi metallo-beta-lactamase-5 (NDM-5)-producing carbapenem-resistant Klebsiella pneumoniae (CRKP) is characterized by high virulence, high morbidity, and mortality, and the detection rate in children has increased in recent years. Therefore, it is urgent to develop new therapeutic targets and strategies. Non-coding small RNA (sRNA)-mediated RNA-based therapies offer a new direction for the treatment of bacterial infections, especially resistant bacteria. This study first analyzed the transcriptional expression profiles of NDM-5-producing CRKP and Carbapenem-susceptible Klebsiella pneumoniae (CSKP) isolates from the clinic by RNA-seq. A total of 4,623 genes were obtained, of which 307 genes were differentially expressed in NDM-5-producing CRKP, and these differentially expressed genes are mainly related to metabolism. Then, by analyzing the length and secondary structure of genes that could not match the reference gene and non-redundant protein database, we obtained 268 sRNAs, of which 13 sRNAs were differentially expressed in NDM-5-producing CRKP. After the expression level of differentially expressed sRNA was verified by RT-PCR to be consistent with that of RNA-seq, we chose sRNA207 as our research target. By knockdown of sRNA207 and smf-1 (the predicted target mRNA of sRNA207) in the strain, we found that increased expression of sRNA207 promoted biofilm formation by stabilizing expression of smf-1, which in turn affected the resistance of NDM-5-producing CRKP to carbapenems. This provides a new approach to treat CRKP infection. IMPORTANCE sRNAs form a regulatory network that regulates bacterial virulence, drug resistance, and other functions by targeting mRNAs. However, sRNA expression profile and function of NDM-5-producing carbapenem-resistant Klebsiella pneumoniae (CRKP) are still unknown. In this study, we analyzed the sRNA expression profiles of NDM-5-producing CRKP obtained from clinical by referring to the methods of previous articles. A total of 268 candidates sRNAs were obtained, of which 248 were newly discovered. More importantly, 13 sRNAs were differentially expressed in NDM-5-producing CRKP compared with CSKP. We knocked down sRNA207 in NDM-5-producing CRKP to validate its effect on smf-1, biofilm, and resistance of strains. We also confirmed the role of smf-1 in biofilm formation and drug resistance of NDM-5-producing CRKP by constructing smf-1-knockdown strain. The results suggest that smf-1 is the target gene of sRNA207. Increased expression of sRNA207 in NDM-5-producing CRKP stabilizes smf-1 expression, which in turn affects the resistance of the strains through biofilm formation.
Collapse
Affiliation(s)
- Chonghong Xie
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning, China
- Ziyang College of Dental Technology, Ziyang, Sichuan, China
| | - Yibo Bai
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning, China
| | - Yan Li
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning, China
| | - Bing Cui
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning, China
| | - Guixue Cheng
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning, China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning, China
| | - Yong liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning, China
| | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning, China
| |
Collapse
|
11
|
Cui W, Wang Y, Zhang L, Liu F, Duan G, Chen S, Long J, Jin Y, Yang H. Recent advances in the use of resveratrol against Staphylococcus aureus infections (Review). MEDICINE INTERNATIONAL 2024; 4:67. [PMID: 39268247 PMCID: PMC11391518 DOI: 10.3892/mi.2024.191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024]
Abstract
As a notorious bacterial pathogen, Staphylococcus aureus (S. aureus) can readily induce infections in the community and hospital, causing significant morbidity and mortality. With the extensive rise of multiple resistance, conventional antibiotic therapy has rapidly become ineffective for related infections. Resveratrol is a naturally occurring polyphenolic substance that has been demonstrated to have effective antimicrobial activity against S. aureus. Resveratrol at sub-inhibitory doses can suppress the expression of virulence factors, contributing to attenuated biofilm formation, interference with quorum sensing and the inhibition of the production of toxins. As a promising efflux pump inhibitor, resveratrol enhances antibiotic susceptibility to a certain extent. In conjunction with conventional antibiotics, resveratrol displays unique synergistic effects with norfloxacin and aminoglycoside on S. aureus, yet antagonizes the lethal effects of daptomycin, oxacillin, moxifloxacin and levofloxacin. Nevertheless, given the low oral bioavailability of resveratrol, advanced formulations need to be developed to delay the rapid metabolism conversion to low or inactive conjugates. The present review discusses the antibacterial properties of resveratrol against S. aureus, in an aim to provide in-depth insight for researchers to address the challenges of antimicrobial resistance.
Collapse
Affiliation(s)
- Wenjing Cui
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yadong Wang
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou, Henan 450016, P.R. China
| | - Li Zhang
- Xinyang Center for Disease Control and Prevention, Xinyang, Henan 464000, P.R. China
| | - Fang Liu
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Guangcai Duan
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Shuaiyin Chen
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Jinzhao Long
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yuefei Jin
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
12
|
ElFeky DS, Kassem AA, Moustafa MA, Assiri H, El-Mahdy AM. Suppression of virulence factors of uropathogenic Escherichia coli by Trans-resveratrol and design of nanoemulgel. BMC Microbiol 2024; 24:412. [PMID: 39415103 PMCID: PMC11484331 DOI: 10.1186/s12866-024-03538-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 09/20/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Development of multidrug resistance in Uropathogenic Escherichia coli (UPEC) makes treatment of Urinary Tract Infections (UTIs) a major challenge. This study was conducted to investigate the effect of trans-resveratrol (t-RSV) at a subinhibitory concentration (sub-MIC-t-RSV) on phenotypic and genotypic expression of virulence factors of clinical isolates of UPEC and develop a nanoformulation of t-RSV. Fifty-five clinical UPEC strains were investigated for the presence of virulence factors by phenotypic methods and PCR detection of virulence genes. The effect of sub-MIC-t-RSV was studied on the phenotypic and genotypic expression of virulence factors. t-RSV-loaded nanoemulgel formulation was prepared and characterized. RESULTS Out of the 55 tested isolates, 50.9% were biofilm producers, 23.6% showed both mannose-sensitive and mannose-resistant hemagglutination, 21.8% were serum-resistant, 18.2% were hemolysin producers, while 36.4% showed cytotoxic effect on HEp-2 cells. A total of 25.5% of the isolates harbor one or more of hly-A, cnf-1 and papC genes, while 54.5% were positive for one or more of fimH, iss and BssS genes. A concentration of 100 µg/mL of t-RSV effectively downregulates the phenotypic and genotypic expression of the virulence factors in positive isolates. A stable t-RSV-nanaoemulgel with droplet size of 180.3 nm and Zetapotential of -46.9 mV was obtained. CONCLUSION The study proves the effective role of t-RSV as an antivirulence agent against clinical UPEC isolates in vitro and develops a stable t-RSV-nanoemulgel formulation to be assessed in vivo. The promising antibacterial and antivirulence properties of t-RSV place this natural compound to be a better alternative in the treatment of persistent UTIs.
Collapse
Affiliation(s)
- Dalia Saad ElFeky
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Abeer Ahmed Kassem
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Mona A Moustafa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Hanan Assiri
- Health Sciences Research center, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Areej M El-Mahdy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
13
|
Owrang M, Gholami A. Green-synthesized silver nanoparticles from Zataria multiflora as a promising strategy to target quorum sensing and biofilms in Pseudomonas aeruginosa. Heliyon 2024; 10:e38395. [PMID: 39398045 PMCID: PMC11467639 DOI: 10.1016/j.heliyon.2024.e38395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
The global challenge to human health is significantly heightened by the resistance of harmful bacteria to antimicrobial treatments. Given the limited advancement in developing new antimicrobial medications, exploring innovative strategies is imperative to tackle the challenge of resistance to multiple drugs. Furthermore, there is a growing emphasis on the environmentally friendly synthesis of nanoparticles with potent medicinal attributes, specifically those targeting virulence, to combat the rise of multidrug resistance. Focusing on the inhibition of virulence factors and biofilms influenced by quorum sensing has become a promising and novel strategy in the development of anti-infective drugs. An aqueous extract of Zataria multiflora leaves was used to create green-synthesized silver nanoparticles, or AgNPs. X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and UV-visible absorption spectroscopy were used to characterize the AgNPs. The impact of AgNPs on the virulence factors and biofilms of Pseudomonas aeruginosa PAO1, mediated by quorum sensing, was assessed at concentrations below the minimum inhibitory concentration (sub-MIC). Sub-MIC concentrations of Green-synthesized AgNPs inhibited various P. aeruginosa virulence factors, including bacterial motility (89 % inhibition), pyocyanin production (81.48 % inhibition), pyoverdin production (55.80 % inhibition), elastase activity (87.43 % inhibition), exoprotease activity (75.60 % inhibition), and rhamnolipid production (71.28 % inhibition). Additionally, these AgNPs demonstrated 80 % inhibition of P. aeruginosa biofilms. The in vitro efficacy of green-synthesized AgNPs against P. aeruginosa can be utilized for the creation of alternative therapeutic agents for managing bacterial infections, particularly for topical application in cases such as wound infections. Additionally, they can be used for surface coating to inhibit the attachment of bacteria to medical devices.
Collapse
Affiliation(s)
- Mina Owrang
- Faculty of Medicine, Sari branch, Islamic Azad University, Sari, Iran
| | - Alamara Gholami
- Department of Biological Sciences and Technologies, Faculty of Basic Science, Islamic Azad University, Sari branch, Sari, Iran
| |
Collapse
|
14
|
Zhou Y, Shen Z, Xu Y, Qian XN, Chen W, Qiu J. Antimicrobial efficiency and cytocompatibility of resveratrol and naringin as chemical decontaminants on SLA surface. Microbiol Spectr 2024; 12:e0367923. [PMID: 39240122 PMCID: PMC11448033 DOI: 10.1128/spectrum.03679-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 07/23/2024] [Indexed: 09/07/2024] Open
Abstract
Bacterial biofilms are the major etiology agent of peri-implant disease. Chemical decontamination is a promising treatment strategy against bacterial biofilms; however, its applications are limited by its low efficiency and poor biocompatibility. In contrast to three conventional cleaners (sterile saline, hydrogen peroxide, and chlorhexidine), this study used resveratrol and naringin solutions to remove mature Staphylococcus aureus and Porphyromonas gingivalis biofilm on sandblasted (with large grit and acid-etched (SLA) titanium surface. To determine changes in surface characteristics, the surface wettability and roughness were measured, and micromorphology was observed by scanning electron microscopy. With crystal violet (CV) and live/dead bacterial staining, residual plaque quantity and composition were measured. The biocompatibility was tested using pH and cytotoxicity, as well as by osteoblasts (MC3T3-E1) adhesion, proliferation, and differentiation, and fibroblasts (L-929) proliferation were also analyzed. It was found that resveratrol and naringin solutions were more effective in restoring surface characteristics and also showed that less plaque and viable bacteria were left. Naringin removed S. aureus biofilms better than chlorhexidine. Alkaline resveratrol and naringin solutions increased cell adhesion, proliferation, and osteogenic differentiation without any cytotoxicity. Resveratrol increased the expression of mRNA and protein associated with osteogenesis. In conclusion, resveratrol and naringin effectively restored SLA titanium surface characteristics and decontaminated the biofilm with good biocompatibility, suggesting their therapeutic potential as chemical decontaminants. IMPORTANCE Bacterial biofilms are considered the primary etiology of peri-implant disease. Physical cleaning is the most common way to remove bacterial biofilm, but it can cause grooving, melting, and deposition of chemicals that alter the surface of implants, which may hamper biocompatibility and re-osseointegration. Chemical decontamination is one of the most promising treatments but is limited by low efficiency and poor biocompatibility. Our study aims to develop safer, more effective chemical decontaminants for peri-implant disease prevention and treatment. We focus on resveratrol and naringin, two natural compounds, which have shown to be more effective in decontaminating biofilms on dental implant surfaces and exerting better biocompatibility. This research is groundbreaking as it is the first exploration of natural plant extracts' impact on mature bacterial biofilms on rough titanium surfaces. By advancing this knowledge, we seek to contribute to more effective and biocompatible strategies for combating peri-implant diseases, enhancing oral health, and prolonging implant lifespan.
Collapse
Affiliation(s)
- You Zhou
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Zhe Shen
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
| | - Yan Xu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
| | - Xin-na Qian
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
| | - Wei Chen
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
| | - Jing Qiu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|
15
|
Mahmutović-Dizdarević I, Mesic A, Jerković-Mujkić A, Žujo B, Avdić M, Hukić M, Omeragić E, Osmanović A, Špirtović-Halilović S, Ahmetovski S, Mujkanović S, Pramenković E, Salihović M. Biological potential, chemical profiling, and molecular docking study of Morus alba L. extracts. Fitoterapia 2024; 177:106114. [PMID: 38971331 DOI: 10.1016/j.fitote.2024.106114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Morus alba L. is a plant with a long history of dietary and medicinal uses. We hypothesized that M. alba possesses a significant biological potential. In that sense, we aimed to generate the chemical, antimicrobial, toxicological, and molecular profile of M. alba leaf and fruit extracts. Our results showed that extracts were rich in vitamin C, phenols, and flavonoids, with quercetin and pterostilbene concentrated in the leaf, while fisetin, hesperidin, resveratrol, and luteolin were detected in fruit. Extracts exhibited antimicrobial activity against all tested bacteria, including multidrug-resistant strains. The widest inhibition zones were in Staphylococcus aureus ATCC 33591. The values of the minimum inhibitory concentration ranged from 15.62 μg/ml in Enterococcus faecalis to 500 μg/ml in several bacteria. Minimum bactericidal concentration ranged from 31.25 μg/ml to 1000 μg/ml. Extracts impacted the biofilm formation in a concentration-dependent and species-specific manner. A significant difference in the frequency of nucleoplasmic bridges between the methanolic extract of fruit (0.5 μg/ml, 1 μg/ml, 2 μg/ml), as well as for the frequency of micronuclei between ethanolic extract of leaf (2 μg/ml) and the control group was observed. Molecular docking suggested that hesperidin possesses the highest binding affinity for multidrug efflux transporter AcrB and acyl-PBP2a from MRSA, as well as for the SARS-CoV-2 Mpro. This study, by complementing previous research in this field, gives new insights that could be of great value in obtaining a more comprehensive picture of the Morus alba L. bioactive potential, chemical composition, antimicrobial and toxicological features, as well as molecular profile.
Collapse
Affiliation(s)
- Irma Mahmutović-Dizdarević
- University of Sarajevo-Faculty of Science, Department of Biology, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina.
| | - Aner Mesic
- University of Sarajevo-Faculty of Science, Department of Biology, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina
| | - Anesa Jerković-Mujkić
- University of Sarajevo-Faculty of Science, Department of Biology, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina
| | - Belma Žujo
- University of Sarajevo-Faculty of Science, Department of Biology, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina
| | - Monia Avdić
- International Burch University, Faculty of Engineering, Natural and Medical Sciences, Department of Genetics and Bioengineering, Francuske revolucije bb, 71210 Ilidža, Bosnia and Herzegovina; Academy of Sciences and Arts of Bosnia and Herzegovina, Center for Disease Control and Geohealth Studies, Bistrik 7, 71000 Sarajevo, Bosnia and Herzegovina
| | - Mirsada Hukić
- Academy of Sciences and Arts of Bosnia and Herzegovina, Center for Disease Control and Geohealth Studies, Bistrik 7, 71000 Sarajevo, Bosnia and Herzegovina; Institute for Biomedical Diagnostics and Research Nalaz, Čekaluša 69, 71000 Sarajevo, Bosnia and Herzegovina
| | - Elma Omeragić
- University of Sarajevo-Faculty of Pharmacy, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
| | - Amar Osmanović
- University of Sarajevo-Faculty of Pharmacy, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
| | - Selma Špirtović-Halilović
- University of Sarajevo-Faculty of Pharmacy, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
| | - Sarah Ahmetovski
- University of Sarajevo-Faculty of Science, Department of Biology, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina
| | - Samra Mujkanović
- University of Sarajevo-Faculty of Science, Department of Biology, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina
| | - Emina Pramenković
- International Burch University, Faculty of Engineering, Natural and Medical Sciences, Department of Genetics and Bioengineering, Francuske revolucije bb, 71210 Ilidža, Bosnia and Herzegovina
| | - Mirsada Salihović
- University of Sarajevo-Faculty of Pharmacy, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
16
|
Sang H, Jin H, Song P, Xu W, Wang F. Gallic acid exerts antibiofilm activity by inhibiting methicillin-resistant Staphylococcus aureus adhesion. Sci Rep 2024; 14:17220. [PMID: 39060363 PMCID: PMC11282228 DOI: 10.1038/s41598-024-68279-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a serious threat to patients with nosocomial infections, and infection is strongly associated with biofilm formation. Gallic acid (GA) is a natural bioactive compound found in traditional Chinese medicines that exerts potent antimicrobial activity. However, the anti-MRSA biofilm efficacy of GA remained to be determined. This study investigated the antimicrobial activities of GA against MRSA and the mechanisms involved. The results revealed the significant antibacterial and antibiofilm activities of GA. The minimal inhibitory concentration of GA against MRSA was 32 μg/mL and a growth curve assay confirmed the significant inhibitory effect of GA on planktonic MRSA. Crystal violet and XTT assays showed that 8 µg/mL GA effectively inhibited the formation of new biofilms and disrupted existing biofilms by reducing both biofilm biomass and metabolic activities. Alkaline phosphatase and β-galactosidase leakage assays and live/dead staining provided evidence that GA disrupted the integrity of bacterial cell walls and membranes within the biofilm. Scanning electron microscopy observations showed that GA significantly inhibited bacterial adhesion and aggregation, affecting the overall structure of the biofilm. Bacterial adhesion, polysaccharide intercellular adhesion (PIA) production and real-time quantitative PCR assay confirmed that GA inhibited bacterial adhesion, PIA synthesis, and the expression of icaAD and sarA. These results suggested that GA inhibited biofilm formation by inhibiting the expression of sarA, then downregulating the expression of icaA and icaD, thereby reducing the synthesis of PIA to attenuate the adhesion capacity of MRSA. GA is therefore a promising candidate for development as a pharmaceutical agent for the prevention and treatment of bacterial infections caused by MRSA.
Collapse
Affiliation(s)
- He Sang
- School of Life Science, Liaocheng University, Liaocheng, 252059, China
| | - Han Jin
- School of Life Science, Liaocheng University, Liaocheng, 252059, China
| | - Peng Song
- School of Life Science, Liaocheng University, Liaocheng, 252059, China
| | - Wei Xu
- School of Life Science, Liaocheng University, Liaocheng, 252059, China
| | - Fei Wang
- School of Life Science, Liaocheng University, Liaocheng, 252059, China.
| |
Collapse
|
17
|
Liu J, Wang Z, Zeng Y, Wang W, Tang S, Jia A. 1H-Pyrrole-2,5-dicarboxylic acid, a quorum sensing inhibitor from one endophytic fungus in Areca catechu L., acts as antibiotic accelerant against Pseudomonas aeruginosa. Front Cell Infect Microbiol 2024; 14:1413728. [PMID: 39015339 PMCID: PMC11250523 DOI: 10.3389/fcimb.2024.1413728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/27/2024] [Indexed: 07/18/2024] Open
Abstract
Pseudomonas aeruginosa has already been stipulated as a "critical" pathogen, emphasizing the urgent need for researching and developing novel antibacterial agents due to multidrug resistance. Bacterial biofilm formation facilitates cystic fibrosis development and restricts the antibacterial potential of many current antibiotics. The capacity of P. aeruginosa to form biofilms and resist antibiotics is closely correlated with quorum sensing (QS). Bacterial QS is being contemplated as a promising target for developing novel antibacterial agents. QS inhibitors are a promising strategy for treating chronic infections. This study reported that the active compound PT22 (1H-pyrrole-2,5-dicarboxylic acid) isolated from Perenniporia tephropora FF2, one endophytic fungus from Areca catechu L., presents QS inhibitory activity against P. aeruginosa. Combined with gentamycin or piperacillin, PT22 functions as a novel antibiotic accelerant against P. aeruginosa. PT22 (0.50 mg/mL, 0.75 mg/mL, and 1.00 mg/mL) reduces the production of QS-related virulence factors, such as pyocyanin and rhamnolipid, and inhibits biofilm formation of P. aeruginosa PAO1 instead of affecting its growth. The architectural disruption of the biofilms was confirmed by visualization through scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Real-time quantitative PCR (RT-qPCR) indicated that PT22 significantly attenuated the expression of QS-related genes followed by docking analysis of molecules against QS activator proteins. PT22 dramatically increased the survival rate of Galleria mellonella. PT22 combined with gentamycin or piperacillin presents significant inhibition of biofilm formation and eradication of mature biofilm compared to monotherapy, which was also confirmed by visualization through SEM and CLSM. After being treated with PT22 combined with gentamycin or piperacillin, the survival rates of G. mellonella were significantly increased compared to those of monotherapy. PT22 significantly enhanced the susceptibility of gentamycin and piperacillin against P. aeruginosa PAO1. Our results suggest that PT22 from P. tephropora FF2 as a potent QS inhibitor is a candidate antibiotic accelerant to combat the antibiotic resistance of P. aeruginosa.
Collapse
Affiliation(s)
- Junsheng Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Zhennan Wang
- Modern Industrial College of Traditional Chinese Medicine and Health, Lishui University, Lishui, China
| | - Yuexiang Zeng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Wei Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Shi Tang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Aiqun Jia
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
18
|
Deng W, Zhou C, Qin J, Jiang Y, Li D, Tang X, Luo J, Kong J, Wang K. Molecular mechanisms of DNase inhibition of early biofilm formation Pseudomonas aeruginosa or Staphylococcus aureus: A transcriptome analysis. Biofilm 2024; 7:100174. [PMID: 38292330 PMCID: PMC10826141 DOI: 10.1016/j.bioflm.2023.100174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 11/14/2023] [Accepted: 12/18/2023] [Indexed: 02/01/2024] Open
Abstract
In vitro studies show that DNase can inhibit Pseudomonas aeruginosa and Staphylococcus aureus biofilm formation. However, the underlying molecular mechanisms remain poorly understood. This study used an RNA-sequencing transcriptomic approach to investigate the mechanism by which DNase I inhibits early P. aeruginosa and S. aureus biofilm formation on a transcriptional level, respectively. A total of 1171 differentially expressed genes (DEGs) in P. aeruginosa and 1016 DEGs in S. aureus enriched in a variety of biological processes and pathways were identified, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that the DEGs were primarily involved in P. aeruginosa two-component system, biofilm formation, and flagellar assembly and in S. aureus biosynthesis of secondary metabolites, microbial metabolism in diverse environments, and biosynthesis of amino acids, respectively. The transcriptional data were validated using quantitative real-time polymerase chain reaction (RT-qPCR), and the expression profiles of 22 major genes remained consistent. These findings suggested that DNase I may inhibit early biofilm formation by downregulating the expression of P. aeruginosa genes associated with flagellar assembly and the type VI secretion system, and by downregulating S. aureus capsular polysaccharide and amino acids metabolism gene expression, respectively. This study offers insights into the mechanisms of DNase treatment-based inhibition of early P. aeruginosa and S. aureus biofilm formation.
Collapse
Affiliation(s)
- Wusheng Deng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Chuanlin Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiaoxia Qin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yun Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Shaoyang University, Shaoyang, Hunan, China
| | - Dingbin Li
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiujia Tang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jing Luo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jinliang Kong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
19
|
Wu X, Wang H, Xiong J, Yang GX, Hu JF, Zhu Q, Chen Z. Staphylococcus aureus biofilm: Formulation, regulatory, and emerging natural products-derived therapeutics. Biofilm 2024; 7:100175. [PMID: 38298832 PMCID: PMC10827693 DOI: 10.1016/j.bioflm.2023.100175] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 02/02/2024] Open
Abstract
Staphylococcus aureus can readily form biofilm which enhances the drug-resistance, resulting in life-threatening infections involving different organs. Biofilm formation occurs due to a series of developmental events including bacterial adhesion, aggregation, biofilm maturation, and dispersion, which are controlled by multiple regulatory systems. Rapidly increasing research and development outcomes on natural products targeting S. aureus biofilm formation and/or regulation led to an emergent application of active phytochemicals and combinations. This review aimed at providing an in-depth understanding of biofilm formation and regulation mechanisms for S. aureus, outlining the most important antibiofilm strategies and potential targets of natural products, and summarizing the latest progress in combating S. aureus biofilm with plant-derived natural products. These findings provided further evidence for novel antibiofilm drugs research and clinical therapies.
Collapse
Affiliation(s)
- Xiying Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Huan Wang
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Juan Xiong
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Guo-Xun Yang
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jin-Feng Hu
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| |
Collapse
|
20
|
Ma C, Mei C, Liu J, Li H, Jiao M, Hu H, Zhang Y, Xiong J, He Y, Wei W, Yang H, Chen H. Effect of baicalin on eradicating biofilms of bovine milk derived Acinetobacter lwoffii. BMC Vet Res 2024; 20:212. [PMID: 38764041 PMCID: PMC11103975 DOI: 10.1186/s12917-024-04015-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/12/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Acinetobacter lwoffii (A.lwoffii) is a serious zoonotic pathogen that has been identified as a cause of infections such as meningitis, bacteremia and pneumonia. In recent years, the infection rate and detection rate of A.lwoffii is increasing, especially in the breeding industry. Due to the presence of biofilms, it is difficult to eradicate and has become a potential super drug-resistant bacteria. Therefore, eradication of preformed biofilm is an alternative therapeutic action to control A.lwoffii infection. The present study aimed to clarify that baicalin could eradicate A.lwoffii biofilm in dairy cows, and to explore the mechanism of baicalin eradicating A.lwoffii. RESULTS The results showed that compared to the control group, the 4 MIC of baicalin significantly eradicated the preformed biofilm, and the effect was stable at this concentration, the number of viable bacteria in the biofilm was decreased by 0.67 Log10CFU/mL. The total fluorescence intensity of biofilm bacteria decreased significantly, with a reduction rate of 67.0%. There were 833 differentially expressed genes (367 up-regulated and 466 down-regulated), whose functions mainly focused on oxidative phosphorylation, biofilm regulation system and trehalose synthesis. Molecular docking analysis predicted 11 groups of target proteins that were well combined with baicalin, and the content of trehalose decreased significantly after the biofilm of A.lwoffii was treated with baicalin. CONCLUSIONS The present study evaluated the antibiofilm potential of baicalin against A.lwoffii. Baicalin revealed strong antibiofilm potential against A.lwoffii. Baicalin induced biofilm eradication may be related to oxidative phosphorylation and TCSs. Moreover, the decrease of trehalose content may be related to biofilm eradication.
Collapse
Affiliation(s)
- Chengjun Ma
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Cui Mei
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - JingJing Liu
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Hui Li
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Min Jiao
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Huiming Hu
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Yang Zhang
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Jing Xiong
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Yuzhang He
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Wei Wei
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Hongzao Yang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China.
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China.
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China.
| | - Hongwei Chen
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China.
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China.
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China.
| |
Collapse
|
21
|
Lu L, Wang J, Wang C, Zhu J, Wang H, Liao L, Zhao Y, Wang X, Yang C, He Z, Li M. Plant-derived virulence arresting drugs as novel antimicrobial agents: Discovery, perspective, and challenges in clinical use. Phytother Res 2024; 38:727-754. [PMID: 38014754 DOI: 10.1002/ptr.8072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/23/2023] [Accepted: 11/05/2023] [Indexed: 11/29/2023]
Abstract
Antimicrobial resistance (AMR) emerges as a severe crisis to public health and requires global action. The occurrence of bacterial pathogens with multi-drug resistance appeals to exploring alternative therapeutic strategies. Antivirulence treatment has been a positive substitute in seeking to circumvent AMR, which aims to target virulence factors directly to combat bacterial infections. Accumulated evidence suggests that plant-derived natural products, which have been utilized to treat infectious diseases for centuries, can be abundant sources for screening potential virulence-arresting drugs (VADs) to develop advanced therapeutics for infectious diseases. This review sums up some virulence factors and their actions in various species of bacteria, as well as recent advances pertaining to plant-derived natural products as VAD candidates. Furthermore, we also discuss natural VAD-related clinical trials and patents, the perspective of VAD-based advanced therapeutics for infectious diseases and critical challenges hampering clinical use of VADs, and genomics-guided identification for VAD therapeutic. These newly discovered natural VADs will be encouraging and optimistic candidates that may sustainably combat AMR.
Collapse
Affiliation(s)
- Lan Lu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Jingya Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Chongrui Wang
- Faculty of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, P.R. China
| | - Jie Zhu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Hongping Wang
- Safety Evaluation Center, Sichuan Institute for Drug Control (Sichuan Testing Center of Medical Devices), Chengdu, Sichuan, P.R. China
| | - Li Liao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Yuting Zhao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Xiaobo Wang
- Department of Hepatobiliary Surgery, Langzhong People's Hospital, Langzhong, Sichuan, P.R. China
| | - Chen Yang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Zhengyou He
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| |
Collapse
|
22
|
Prevete G, Simonis B, Mazzonna M, Mariani F, Donati E, Sennato S, Ceccacci F, Bombelli C. Resveratrol and Resveratrol-Loaded Galactosylated Liposomes: Anti-Adherence and Cell Wall Damage Effects on Staphylococcus aureus and MRSA. Biomolecules 2023; 13:1794. [PMID: 38136664 PMCID: PMC10741626 DOI: 10.3390/biom13121794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Antibiotic resistance due to bacterial biofilm formation is a major global health concern that makes the search for new therapeutic approaches an urgent need. In this context,, trans-resveratrol (RSV), a polyphenolic natural substance, seems to be a good candidate for preventing and eradicating biofilm-associated infections but its mechanism of action is poorly understood. In addition, RSV suffers from low bioavailability and chemical instability in the biological media that make its encapsulation in delivery systems necessary. In this work, the anti-biofilm activity of free RSV was investigated on Staphylococcus aureus and, to highlight the possible mechanism of action, we studied the anti-adherence activity and also the cell wall damage on a MRSA strain. Free RSV activity was compared to that of RSV loaded in liposomes, specifically neutral liposomes (L = DOPC/Cholesterol) and cationic liposomes (LG = DOPC/Chol/GLT1) characterized by a galactosylated amphiphile (GLT1) that promotes the interaction with bacteria. The results indicate that RSV loaded in LG has anti-adherence and anti-biofilm activity higher than free RSV. On the other side, free RSV has a higher bacterial-growth-inhibiting effect than encapsulated RSV and it can damage cell walls by creating pores; however, this effect can not prevent bacteria from growing again. This RSV ability may underlie its bacteriostatic activity.
Collapse
Affiliation(s)
- Giuliana Prevete
- Department of Chemistry and Technology of Drug, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
- Institute for Biological Systems of Italian National Research Council (ISB-CNR), Area della Ricerca di Roma 1, Via Salaria Km 29,300, 00015 Monterotondo, Italy;
| | - Beatrice Simonis
- Institute for Biological Systems of Italian National Research Council (ISB-CNR), Secondary Office of Rome-Reaction Mechanisms c/o Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy (F.C.); (C.B.)
| | - Marco Mazzonna
- Institute for Biological Systems of Italian National Research Council (ISB-CNR), Area della Ricerca di Roma 1, Via Salaria Km 29,300, 00015 Monterotondo, Italy;
| | - Francesca Mariani
- Institute for Biological Systems of Italian National Research Council (ISB-CNR), Area della Ricerca di Roma 1, Via Salaria Km 29,300, 00015 Monterotondo, Italy;
| | - Enrica Donati
- Institute for Biological Systems of Italian National Research Council (ISB-CNR), Area della Ricerca di Roma 1, Via Salaria Km 29,300, 00015 Monterotondo, Italy;
| | - Simona Sennato
- Institute for Complex Systems of the Italian National Research Council (ISC-CNR), Sede Sapienza c/o Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Francesca Ceccacci
- Institute for Biological Systems of Italian National Research Council (ISB-CNR), Secondary Office of Rome-Reaction Mechanisms c/o Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy (F.C.); (C.B.)
| | - Cecilia Bombelli
- Institute for Biological Systems of Italian National Research Council (ISB-CNR), Secondary Office of Rome-Reaction Mechanisms c/o Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy (F.C.); (C.B.)
| |
Collapse
|
23
|
Tan X, Cheng X, Xiao J, Liu Q, Du D, Li M, Sun Y, Zhou J, Zhu G. Alkaline phosphatase LapA regulates quorum sensing-mediated virulence and biofilm formation in Pseudomonas aeruginosa PAO1 under phosphate depletion stress. Microbiol Spectr 2023; 11:e0206023. [PMID: 37796007 PMCID: PMC10715133 DOI: 10.1128/spectrum.02060-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/19/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE Our previous study demonstrated that the expression of lapA was induced under phosphate depletion conditions, but its roles in virulence and biofilm formation by Pseudomonas aeruginosa remain largely unknown. This study presents a systematic investigation of the roles of lapA in virulence induction and biofilm formation by constructing a lapA-deficient strain with P. aeruginosa PAO1. The results showed that deletion of the lapA gene evidently reduced elastase activity, swimming motility, C4-HSL, and 3-oxo-C12-HSL production, and increased rhamnolipid production under phosphate depletion stress. Moreover, lapA gene deletion inhibited PAO1 biofilm formation in porcine skin explants by reducing the expression levels of las and rhl quorum sensing systems and extracellular polymeric substance synthesis. Finally, lapA gene deletion also reduced the virulence of PAO1 in Caenorhabditis elegans in fast-kill and slow-kill infection assays. This study provides insights into the roles of lapA in modulating P. aeruginosa virulence and biofilm formation under phosphate depletion stress.
Collapse
Affiliation(s)
- Xiaojuan Tan
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Xi Cheng
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Jingjing Xiao
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Qianqian Liu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Dongsheng Du
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Minghui Li
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Yang Sun
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Jinwei Zhou
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, China
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| |
Collapse
|
24
|
Kumar S, Khan HM, Husain FM, Ahmad R, Qais FA, Khan MA, Jalal M, Tayyaba U, Ali SG, Singh A, Shahid M, Lee BI. Antibacterial and antibiofilm activity of Abroma augusta stabilized silver (Ag) nanoparticles against drug-resistant clinical pathogens. Front Mol Biosci 2023; 10:1292509. [PMID: 37965379 PMCID: PMC10642314 DOI: 10.3389/fmolb.2023.1292509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
Infectious diseases remain among the most pressing concerns for human health. This issue has grown even more complex with the emergence of multidrug-resistant (MDR) bacteria. To address bacterial infections, nanoparticles have emerged as a promising avenue, offering the potential to target bacteria at multiple levels and effectively eliminate them. In this study, silver nanoparticles (AA-AgNPs) were synthesized using the leaf extract of a medicinal plant, Abroma augusta. The synthesis method is straightforward, safe, cost-effective, and environment friendly, utilizing the leaf extract of this Ayurvedic herb. The UV-vis absorbance peak at 424 nm indicated the formation of AA-AgNPs, with the involvement of numerous functional groups in the synthesis and stabilization of the particles. AA-AgNPs exhibited robust antibacterial and antibiofilm activities against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE). The MIC values of AA-AgNPs ranged from 8 to 32 μg/mL. Electron microscopic examination of the interaction of AA-AgNPs with the test bacterial pathogens showed a deleterious impact on bacterial morphology, resulting from membrane rupture and leakage of intracellular components. AA-AgNPs also demonstrated a dose-dependent effect in curtailing biofilm formation below inhibitory doses. Overall, this study highlights the potential of AA-AgNPs in the successful inhibition of both the growth and biofilms of MRSA and VRE bacteria. Following studies on toxicity and dose optimization, such AgNPs could be developed into effective medical remedies against infections.
Collapse
Affiliation(s)
- Sachin Kumar
- Department of Microbiology, J. N. Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Haris M. Khan
- Department of Microbiology, J. N. Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Rafiq Ahmad
- ‘New-senior’ Oriented Smart Health Care Education Center, Pukyong National University, Busan, Republic of Korea
| | - Faizan Abul Qais
- Department of Ag. Microbiology, Faculty of Agriculture Sciences, Aligarh Muslim University, Aligarh, India
| | - Mo Ahamad Khan
- Department of Microbiology, J. N. Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohammad Jalal
- Department of Microbiology, J. N. Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Uzma Tayyaba
- Department of Microbiology, J. N. Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Syed Ghazanfar Ali
- Department of Microbiology, J. N. Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Amardeep Singh
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India
| | - Mohammad Shahid
- Department of Microbiology, J. N. Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
- Department of Microbiology, Immunology and Infectious Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Byeong-Il Lee
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea
- Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan, Republic of Korea
- Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
25
|
Argentin MN, Cruz FDPN, Souza AB, D'Aurea EMDO, Bastos JK, Ambrósio SR, Veneziani RCS, Camargo ILBC, Mizuno CS. Synthesis and Antibacterial Activity of Polyalthic Acid Analogs. Antibiotics (Basel) 2023; 12:1202. [PMID: 37508298 PMCID: PMC10376133 DOI: 10.3390/antibiotics12071202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Polyalthic acid (PA) is a diterpene found in copaiba oil. As a continuation of our work with PA, we synthesized PA analogs and investigated their antibacterial effects on preformed biofilms of Staphylococcus epidermidis and determined the minimal inhibitory concentration (MIC) of the best analogs against planktonic bacterial cells. There was no difference in activity between the amides 2a and 2b and their corresponding amines 3a and 3b regarding their ability to eradicate biofilm. PA analogs 2a and 3a were able to significantly eradicate the preformed biofilm of S. epidermidis and were active against all the Gram-positive bacteria tested (Enterococcus faecalis, Enterococcus faecium, S. epidermidis, Staphylococcus aureus), with different MIC depending on the microorganism. Therefore, PA analogs 2a and 3a are of interest for further in vitro and in vivo testing to develop formulations for antibiotic drugs against Gram-positive bacteria.
Collapse
Affiliation(s)
- Marcela Nunes Argentin
- Laboratory of Molecular Epidemiology and Microbiology, Department of Physics and Interdisciplinary Science, São Carlos Institute of Physics, University of São Paulo, São Carlos 13563-120, SP, Brazil
| | - Felipe de Paula Nogueira Cruz
- Laboratory of Molecular Epidemiology and Microbiology, Department of Physics and Interdisciplinary Science, São Carlos Institute of Physics, University of São Paulo, São Carlos 13563-120, SP, Brazil
| | - Ariana Borges Souza
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Av. Dr. Armando Salles de Oliveira, 201 Parque Universitário, Franca 14404-600, SP, Brazil
| | - Elisa Marcela de Oliveira D'Aurea
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Av. Dr. Armando Salles de Oliveira, 201 Parque Universitário, Franca 14404-600, SP, Brazil
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café S/N, Ribeirão Preto 14040-930, SP, Brazil
| | - Sérgio Ricardo Ambrósio
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Av. Dr. Armando Salles de Oliveira, 201 Parque Universitário, Franca 14404-600, SP, Brazil
| | - Rodrigo Cassio Sola Veneziani
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Av. Dr. Armando Salles de Oliveira, 201 Parque Universitário, Franca 14404-600, SP, Brazil
| | - Ilana Lopes Baratella Cunha Camargo
- Laboratory of Molecular Epidemiology and Microbiology, Department of Physics and Interdisciplinary Science, São Carlos Institute of Physics, University of São Paulo, São Carlos 13563-120, SP, Brazil
| | - Cassia Suemi Mizuno
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01109, USA
| |
Collapse
|
26
|
Rajab AAH, Hegazy WAH. What’s old is new again: Insights into diabetic foot microbiome. World J Diabetes 2023; 14:680-704. [PMID: 37383589 PMCID: PMC10294069 DOI: 10.4239/wjd.v14.i6.680] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/20/2023] [Accepted: 04/10/2023] [Indexed: 06/14/2023] Open
Abstract
Diabetes is a chronic disease that is considered one of the most stubborn global health problems that continues to defy the efforts of scientists and physicians. The prevalence of diabetes in the global population continues to grow to alarming levels year after year, causing an increase in the incidence of diabetes complications and health care costs all over the world. One major complication of diabetes is the high susceptibility to infections especially in the lower limbs due to the immunocompromised state of diabetic patients, which is considered a definitive factor in all cases. Diabetic foot infections continue to be one of the most common infections in diabetic patients that are associated with a high risk of serious complications such as bone infection, limb amputations, and life-threatening systemic infections. In this review, we discussed the circumstances associated with the high risk of infection in diabetic patients as well as some of the most commonly isolated pathogens from diabetic foot infections and the related virulence behavior. In addition, we shed light on the different treatment strategies that aim at eradicating the infection.
Collapse
Affiliation(s)
- Azza A H Rajab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagzig 44511, Egypt
| | - Wael A H Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagzig 44511, Egypt
| |
Collapse
|
27
|
Teixeira EH, Andrade AL, Pereira R, Farias LP, Monteiro GS, Marinho MM, Marinho ES, Santos HS, de Vasconcelos MA. Antimicrobial, Antibiofilm Activities and Synergic Effect of Triterpene 3β,6β,16β-trihydroxyilup-20(29)-ene Isolated from Combretum leprosum Leaves Against Staphylococcus Strains. Curr Microbiol 2023; 80:176. [PMID: 37029832 DOI: 10.1007/s00284-023-03284-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 03/23/2023] [Indexed: 04/09/2023]
Abstract
Antimicrobial resistance is a natural phenomenon and is becoming a huge global public health problem, since some microorganisms not respond to the treatment of several classes of antibiotics. The objective of the present study was to evaluate the antibacterial, antibiofilm, and synergistic effect of triterpene 3β,6β,16β-trihydroxyilup-20(29)-ene (CLF1) against Staphylococcus aureus and Staphylococcus epidermidis strains. Bacterial susceptibility to CLF1 was evaluated by minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) assay. In addition, the effect combined with antibiotics (ampicillin and tetracycline) was verified by the checkerboard method. The biofilms susceptibility was assessed by enumeration of colony-forming units (CFUs) and quantification of total biomass by crystal violet staining. The compound showed bacteriostatic and bactericidal activity against all Staphylococcal strains tested. The synergistic effect with ampicillin was observed only for S. epidermidis strains. Moreover, CLF1 significantly inhibited the biofilm formation and disrupted preformed biofilm of the all strains. Scanning electron microscopy (SEM) images showed changes in the cell morphology and structure of S. aureus ATCC 700698 biofilms (a methicillin-resistant S. aureus strain). Molecular docking simulations showed that CLF1 has a more favorable interaction energy than the antibiotic ampicillin on penicillin-binding protein (PBP) 2a of MRSA, coupled in different regions of the protein. Based on the results obtained, CLF1 proved to be a promising antimicrobial compound against Staphylococcus biofilms.
Collapse
Affiliation(s)
- Edson Holanda Teixeira
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brazil.
| | - Alexandre Lopes Andrade
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Rafael Pereira
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Livia Pontes Farias
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Gabrieli Sobral Monteiro
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Marcia Machado Marinho
- Faculdade de Educação, Ciência e Letras de Iguatu, Universidade Estadual do Ceará, Iguatu, Ceará, Brazil
| | - Emmanuel Silva Marinho
- Faculdade de Filosofia Dom Aureliano Matos, Universidade Estadual do Ceará, Limoeiro do Norte, Ceará, Brazil
| | - Hélcio Silva Santos
- Centro de Ciências Exatas e Tecnologia, Universidade Estadual Vale do Acaraú, Sobral, Ceará, Brazil
| | - Mayron Alves de Vasconcelos
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brazil
- Universidade do Estado de Minas Gerais, Unidade de Divinopolis, Divinopolis, MG, 35501-179, Brazil
- Faculdade de Ciências Exatas e Naturais, Universidade do Estado do Rio Grande do Norte, Mossoró, RN, 59610-210, Brazil
| |
Collapse
|
28
|
Qin T, Chen K, Xi B, Pan L, Xie J, Lu L, Liu K. In Vitro Antibiofilm Activity of Resveratrol against Aeromonas hydrophila. Antibiotics (Basel) 2023; 12:antibiotics12040686. [PMID: 37107048 PMCID: PMC10135085 DOI: 10.3390/antibiotics12040686] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Aeromonas hydrophila is a Gram-negative bacterium that widely exists in various aquatic environments and causes septicemia in fish and humans. Resveratrol, a natural polyterpenoid product, has potential chemo-preventive and antibacterial properties. In this study, we investigated the effect of resveratrol on A. hydrophila biofilm formation and motility. The results demonstrated that resveratrol, at sub-MIC levels, can significantly inhibit the biofilm formation of A. hydrophila, and the biofilm was decreased with increasing concentrations. The motility assay showed that resveratrol could diminish the swimming and swarming motility of A. hydrophila. Transcriptome analyses (RNA-seq) showed that A. hydrophila treated with 50 and 100 μg/mL resveratrol, respectively, presented 230 and 308 differentially expressed genes (DEGs), including 90 or 130 upregulated genes and 130 or 178 downregulated genes. Among them, genes related to flagellar, type IV pilus and chemotaxis were significantly repressed. In addition, mRNA of virulence factors OmpA, extracellular proteases, lipases and T6SS were dramatically suppressed. Further analysis revealed that the major DEGs involved in flagellar assembly and bacterial chemotaxis pathways could be regulated by cyclic-di-guanosine monophosphate (c-di-GMP)- and LysR-Type transcriptional regulator (LTTR)-dependent quorum sensing (QS) systems. Overall, our results indicate that resveratrol can inhibit A. hydrophila biofilm formation by disturbing motility and QS systems, and can be used as a promising candidate drug against motile Aeromonad septicemia.
Collapse
|
29
|
Liu Y, Yan Y, Yang K, Yang X, Dong P, Wu H, Luo X, Zhang Y, Zhu L. Inhibitory mechanism of Salmonella Derby biofilm formation by sub-inhibitory concentrations of clove and oregano essential oil: A global transcriptomic study. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
30
|
Cheruvanachari P, Pattnaik S, Mishra M, Pragyandipta P, Pattnaik A, Naik PK. Deciphering the antibiofilm potential of 2-Phenylethyl methyl ether (PEME), a bioactive compound of Kewda essential oil against Staphylococcus aureus. Microb Pathog 2023; 179:106093. [PMID: 37004966 DOI: 10.1016/j.micpath.2023.106093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Opportunistic pathogenic bacteria and their pathogenicity linked with biofilm infections become a severe issue as they resist the actions of multiple antimicrobial drugs. Naturally derived drugs having antibiofilm properties are more effective than chemically synthesized drugs. The plant derived essential oils are a rich source of phytoconstituents with widespread pharmacological values. In the present investigation, a major phytoconstituent, 2-Phenyl Ethyl Methyl Ether (PEME) of Kewda essential oil extracted from the flowers of Pandanus odorifer was explored for its prospective antimicrobial and anti-biofilm properties against ESKAPE pathogenic bacterial strain, Staphylococcus aureus and MTCC 740. The minimum inhibitory concentration (MIC) of PEME was found to be 50 mM against the tested bacterial strains. A gradual decrease in biofilm production was observed when PEME was treated with the sub-MIC concentration. The reduction in biofilm formation was noticeable from qualitative assay i.e., Congo Red Agar Assay (CRA) and further quantified by crystal violet staining assay. The decline in exopolysaccharides production was quantified, with the highest inhibition against MTCC 740 with a decrease of 71.76 ± 4.56% compared to untreated control. From the microscopic analysis (light and microscopic fluorescence method), PEME exhibited inhibitory effect on biofilm formation on the polystyrene surface. The In silico studies stated that PEME could invariably bind to biofilm associated target proteins. Further, transcriptomic data analysis suggested the role of PEME in the down-regulation of specific genes, agrA, sarA, norA and mepR, which are critically associated with bacterial virulence, biofilm dynamics and drug resistance patterns in S. aureus. Further, qRT-PCR analysis validated the role of PEME on biofilm inhibition by relative downregulation of agrA, sarA, norA and mepR genes. Further, advanced in silico methodologies could be employed in future investigations to validate its candidature as promising anti-biofilm agent.
Collapse
|
31
|
Lila ASA, Rajab AAH, Abdallah MH, Rizvi SMD, Moin A, Khafagy ES, Tabrez S, Hegazy WAH. Biofilm Lifestyle in Recurrent Urinary Tract Infections. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010148. [PMID: 36676100 PMCID: PMC9865985 DOI: 10.3390/life13010148] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
Urinary tract infections (UTIs) represent one of the most common infections that are frequently encountered in health care facilities. One of the main mechanisms used by bacteria that allows them to survive hostile environments is biofilm formation. Biofilms are closed bacterial communities that offer protection and safe hiding, allowing bacteria to evade host defenses and hide from the reach of antibiotics. Inside biofilm communities, bacteria show an increased rate of horizontal gene transfer and exchange of resistance and virulence genes. Additionally, bacterial communication within the biofilm allows them to orchestrate the expression of virulence genes, which further cements the infestation and increases the invasiveness of the infection. These facts stress the necessity of continuously updating our information and understanding of the etiology, pathogenesis, and eradication methods of this growing public health concern. This review seeks to understand the role of biofilm formation in recurrent urinary tact infections by outlining the mechanisms underlying biofilm formation in different uropathogens, in addition to shedding light on some biofilm eradication strategies.
Collapse
Affiliation(s)
- Amr S. Abu Lila
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Correspondence: (A.S.A.L.); (W.A.H.H.)
| | - Azza A. H. Rajab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Marwa H. Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Wael A. H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat 113, Oman
- Correspondence: (A.S.A.L.); (W.A.H.H.)
| |
Collapse
|
32
|
Vivero-Lopez M, Pereira-da-Mota AF, Carracedo G, Huete-Toral F, Parga A, Otero A, Concheiro A, Alvarez-Lorenzo C. Phosphorylcholine-Based Contact Lenses for Sustained Release of Resveratrol: Design, Antioxidant and Antimicrobial Performances, and In Vivo Behavior. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55431-55446. [PMID: 36495267 PMCID: PMC9782386 DOI: 10.1021/acsami.2c18217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Design of advanced contact lenses (CLs) demands materials that are safe and comfortable for the wearers and that preserve the normal eye microbiota, avoiding chronic inflammation and biofilm development. This work aimed to combine the natural antibiofouling phosphorylcholine and the antioxidant and prebiotic resveratrol as integral components of CLs that may have the additional performance of preventing oxidative-stress related eye diseases. Different from previous uses of 2-methacryloyloxyethyl phosphorylcholine (MPC) as coating, we explored the feasibility of adding MPC at high proportions as a comonomer of 2-hydroxyethyl methacrylate (HEMA)-based hydrogels while still allowing for the loading of the hydrophobic resveratrol. Homogeneous distribution of MPC along the hydrogel depth (confirmed by Raman spectroscopy) notably increased solvent uptake and the proportion of free water while it decreased Young's modulus. Relevantly, MPC did not hinder the uptake of resveratrol by CLs (>10 mg/g), which indeed showed network/water partition coefficients of >100. Protocols for CLs sterilization and loading of resveratrol under aseptic conditions were implemented, and the effects of tear proteins on resveratrol release rate were investigated. CLs sustained resveratrol release for more than 24 h in vitro, and sorption of albumin onto the hydrogel, although attenuated by MPC, slowed down the release. The combination of MPC and resveratrol reduced P. aeruginosa and S. aureus growth as tested in a novel hydrogel disk-agar interface biofilm growth setup. The developed CLs showed excellent anti-inflammatory properties and biocompatibility in in ovo and rabbit tests and provided higher and more prolonged levels of resveratrol in tear fluid, which favored resveratrol biodistribution in anterior and posterior eye segments compared to eye drops. Correlations between the release profiles of resveratrol in vitro and in vivo were assessed. Relevantly, the CLs preserved the antioxidant properties of resveratrol during the entire 8 h of wearing. In sum, CLs prepared with high proportion in MPC may help address safety and comfort requirements while having drug releasing capabilities.
Collapse
Affiliation(s)
- Maria Vivero-Lopez
- Departamento
de Farmacología, Farmacia y Tecnología Farmacéutica,
I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales
(iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782Santiago
de Compostela, Spain
| | - Ana F. Pereira-da-Mota
- Departamento
de Farmacología, Farmacia y Tecnología Farmacéutica,
I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales
(iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782Santiago
de Compostela, Spain
| | - Gonzalo Carracedo
- Ocupharm
Research Group, Faculty of Optics and Optometry, Complutense University of Madrid, C/Arcos del Jalon 118, 28037Madrid, Spain
- Department
of Optometry and Vision, Faculty of Optics and Optometry, Complutense University of Madrid, C/Arcos del Jalon 118, 28037Madrid, Spain
| | - Fernando Huete-Toral
- Ocupharm
Research Group, Faculty of Optics and Optometry, Complutense University of Madrid, C/Arcos del Jalon 118, 28037Madrid, Spain
| | - Ana Parga
- Departamento
de Microbiología y Parasitología, Facultad de Biología,
Edificio CIBUS, Universidade de Santiago
de Compostela, 15782Santiago de Compostela, Spain
| | - Ana Otero
- Departamento
de Microbiología y Parasitología, Facultad de Biología,
Edificio CIBUS, Universidade de Santiago
de Compostela, 15782Santiago de Compostela, Spain
| | - Angel Concheiro
- Departamento
de Farmacología, Farmacia y Tecnología Farmacéutica,
I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales
(iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782Santiago
de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento
de Farmacología, Farmacia y Tecnología Farmacéutica,
I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales
(iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782Santiago
de Compostela, Spain
| |
Collapse
|
33
|
Zhang M, Han W, Gu J, Qiu C, Jiang Q, Dong J, Lei L, Li F. Recent advances on the regulation of bacterial biofilm formation by herbal medicines. Front Microbiol 2022; 13:1039297. [PMID: 36425031 PMCID: PMC9679158 DOI: 10.3389/fmicb.2022.1039297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/18/2022] [Indexed: 09/29/2023] Open
Abstract
Biofilm formation is a fundamental part of life cycles of bacteria which affects various aspects of bacterial-host interactions including the development of drug resistance and chronic infections. In clinical settings, biofilm-related infections are becoming increasingly difficult to treat due to tolerance to antibiotics. Bacterial biofilm formation is regulated by different external and internal factors, among which quorum sensing (QS) signals and nucleotide-based second messengers play important roles. In recent years, different kinds of anti-biofilm agents have been discovered, among which are the Chinese herbal medicines (CHMs). CHMs or traditional Chinese medicines have long been utilized to combat various diseases around the world and many of them have the ability to inhibit, impair or decrease bacterial biofilm formation either through regulation of bacterial QS system or nucleotide-based second messengers. In this review, we describe the research progresses of different chemical classes of CHMs on the regulation of bacterial biofilm formation. Though the molecular mechanisms on the regulation of bacterial biofilm formation by CHMs have not been fully understood and there are still a lot of work that need to be performed, these studies contribute to the development of effective biofilm inhibitors and will provide a novel treatment strategy to control biofilm-related infections.
Collapse
Affiliation(s)
- Meimei Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenyu Han
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jingmin Gu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Cao Qiu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qiujie Jiang
- Jilin Animal Disease Control Center, Changchun, China
| | - Jianbao Dong
- Department of Veterinary Medical, Shandong Vocational Animal Science and Veterinary College, Weifang, China
| | - Liancheng Lei
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Fengyang Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
34
|
Sycz Z, Wojnicz D, Tichaczek-Goska D. Does Secondary Plant Metabolite Ursolic Acid Exhibit Antibacterial Activity against Uropathogenic Escherichia coli Living in Single- and Multispecies Biofilms? Pharmaceutics 2022; 14:pharmaceutics14081691. [PMID: 36015317 PMCID: PMC9415239 DOI: 10.3390/pharmaceutics14081691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/18/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Multispecies bacterial biofilms are the often cause of chronic recurrent urinary tract infections within the human population. Eradicating such a complex bacterial consortium with standard pharmacotherapy is often unsuccessful. Therefore, plant-derived compounds are currently being researched as an alternative strategy to antibiotic therapy for preventing bacterial biofilm formation and facilitating its eradication. Therefore, our research aimed to determine the effect of secondary plant metabolite ursolic acid (UA) on the growth and survival, the quantity of exopolysaccharides formed, metabolic activity, and morphology of uropathogenic Gram-negative rods living in single- and mixed-species biofilms at various stages of their development. Spectrophotometric methods were used for biofilm mass formation and metabolic activity determination. The survival of bacteria was established using the serial dilution assay. The decrease in survival and inhibition of biofilm creation, both single- and multispecies, as well as changes in the morphology of bacterial cells were noticed. As UA exhibited better activity against young biofilms, the use of UA-containing formulations, especially during the initial steps of urinary tract infection, seems to be reasonable. However, the future direction should be a thorough understanding of the mechanisms of UA activity as a bioactive substance.
Collapse
|
35
|
Liu K, Abouelhassan Y, Zhang Y, Jin S, Huigens Iii RW. Transcript Profiling of Nitroxoline-Treated Biofilms Shows Rapid Up-regulation of Iron Acquisition Gene Clusters. ACS Infect Dis 2022; 8:1594-1605. [PMID: 35830188 PMCID: PMC10549994 DOI: 10.1021/acsinfecdis.2c00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacterial biofilms are surface-attached communities of slow- or non-replicating cells embedded within a protective matrix of biomolecules. Unlike free-floating planktonic bacteria, biofilms are innately tolerant to conventional antibiotics and are prevalent in recurring and chronic infections. Nitroxoline, a broad-spectrum biofilm-eradicating agent, was used to probe biofilm viability. Transcript profiling (RNA-seq) showed that 452 of 2594 genes (17.4%) in methicillin-resistant Staphylococcus aureus (MRSA) biofilms were differentially expressed after a 2 h treatment of nitroxoline. WoPPER analysis and time-course validation (RT-qPCR) revealed that gene clusters involved in iron acquisition (sbn, isd, MW2101, MW0695, fhu, and feo) were rapidly up-regulated following nitroxoline treatment, which is indicative of iron starvation in MRSA biofilms. In addition, genes related to oligopeptide transporters and riboflavin biosynthesis were found to be up-regulated, while genes related to carotenoid biosynthesis and nitrate assimilation were down-regulated. RT-qPCR experiments revealed that iron uptake transcripts were also up-regulated in established Staphylococcus epidermidis and Acinetobacter baumannii biofilms following nitroxoline treatment. Overall, we show RNA-seq to be an ideal platform to define cellular pathways critical for biofilm survival, in addition to demonstrating the need these bacterial communities have for iron.
Collapse
Affiliation(s)
- Ke Liu
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Yasmeen Abouelhassan
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Yanping Zhang
- Interdisciplinary Center for Biotechnology Research (ICBR), Gene Expression and Genotyping, University of Florida, Gainesville, Florida 32610, United States
| | - Shouguang Jin
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Robert W Huigens Iii
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
36
|
Zeng YX, Liu JS, Wang YJ, Tang S, Wang DY, Deng SM, Jia AQ. Actinomycin D: a novel Pseudomonas aeruginosa quorum sensing inhibitor from the endophyte Streptomyces cyaneochromogenes RC1. World J Microbiol Biotechnol 2022; 38:170. [PMID: 35904625 DOI: 10.1007/s11274-022-03360-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/15/2022] [Indexed: 10/16/2022]
Abstract
The infections caused by Pseudomonas aeruginosa are difficult to treat due to its multidrug resistance. A promising strategy for controlling P. aeruginosa infection is targeting the quorum sensing (QS) system. Actinomycin D isolated from the metabolite of endophyte Streptomyces cyaneochromogenes RC1 exhibited good anti-QS activity against P. aeruginosa PAO1. Actinomycin D (50, 100, and 200 μg/mL) significantly inhibited the motility as well as reduced the production of multiple virulence factors including pyocyanin, protease, rhamnolipid, and siderophores. The images of confocal laser scanning microscopy and scanning electron microscopy revealed that the treatment of actinomycin D resulted in a looser and flatter biofilm structure. Real-time quantitative PCR analysis showed that the expression of QS-related genes lasI, rhlI, rhlR, pqsR, pslA, and pilA were downregulated dramatically. The production of QS signaling molecules N-(3-oxododecanoyl)-L-homoserine lactone and N-butanoyl-L-homoserine lactone were also decreased by actinomycin D. These findings suggest that actinomycin D, a potent in vitro anti-virulence agent, is a promising candidate to treat P. aeruginosa infection by interfering with the QS systems.
Collapse
Affiliation(s)
- Yue-Xiang Zeng
- School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China.,State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Jun-Sheng Liu
- School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China.,State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Ying-Jie Wang
- School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Shi Tang
- School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China.,State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Da-Yong Wang
- School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Shi-Ming Deng
- School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Ai-Qun Jia
- School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China. .,State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China. .,One Health Institute, Hainan University, Haikou, 570228, China.
| |
Collapse
|
37
|
Wang F, Yuan J, Li J, Liu H, Wei F, Xuan H. Antibacterial activity of Chinese propolis and its synergy with β-lactams against methicillin-resistant Staphylococcus aureus. Braz J Microbiol 2022; 53:1789-1797. [PMID: 35902505 PMCID: PMC9679054 DOI: 10.1007/s42770-022-00807-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/23/2022] [Indexed: 02/08/2023] Open
Abstract
Propolis has exhibited effective antibacterial activities in preventing the growth of multiple pathogenic bacteria. However, the antibacterial activity of Chinese propolis against methicillin-resistant Staphylococcus aureus (MRSA) is almost unknown. The present study aimed to explore the antibacterial activity and action mechanism of Chinese propolis ethanol extract (CPEE) against MRSA. Thirteen compounds of CPEE were identified using HPLC-DAD/Q-TOF-MS, and none of them showed better anti-MRSA activity than CPEE. The diameter of inhibition zone (DIZ) of CPEE was 20.1 mm. The minimal inhibitory concentration (MIC) of CPEE was 32 mg/L, while the minimal bactericidal concentration (MBC) against MRSA was 64 mg/L. Moreover, CPEE showed significant synergistic effects with β-lactam antibiotics (ampicillin and oxacillin). Nucleic acid and protein leakage assays showed that CPEE can stimulate the release of intracellular macromolecules by damaging the cell membrane integrity of MRSA. Live/dead-staining and SDS-PAGE assays further confirmed that CPEE could inhibit bacterial activities by disrupting the membrane. The reduction in PBP2a expression and β-lactamase activity, as shown by western blot and β-lactamase detection assays, suggested that CPEE was able to reverse the drug resistance of MRSA. These results demonstrated the anti-MRSA activity of CPEE was mainly due to changing the cell membrane and reversing resistance, which indicates that CPEE could be an attractive candidate for use in future food and medical applications.
Collapse
Affiliation(s)
- Fei Wang
- grid.411351.30000 0001 1119 5892School of Life Science, Liaocheng University, Liaocheng, 252059 China
| | - Jie Yuan
- grid.411351.30000 0001 1119 5892School of Life Science, Liaocheng University, Liaocheng, 252059 China
| | - Junya Li
- grid.411351.30000 0001 1119 5892School of Life Science, Liaocheng University, Liaocheng, 252059 China
| | - Hui Liu
- grid.411351.30000 0001 1119 5892School of Life Science, Liaocheng University, Liaocheng, 252059 China
| | - Fuyao Wei
- grid.411351.30000 0001 1119 5892School of Pharmacy, Liaocheng University, Liaocheng, 252059 China
| | - Hongzhuan Xuan
- grid.411351.30000 0001 1119 5892School of Life Science, Liaocheng University, Liaocheng, 252059 China
| |
Collapse
|
38
|
Terpenes Combinations Inhibit Biofilm Formation in Staphyloccocus aureus by Interfering with Initial Adhesion. Microorganisms 2022; 10:microorganisms10081527. [PMID: 36013945 PMCID: PMC9415918 DOI: 10.3390/microorganisms10081527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/02/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
The biofilm is a conglomerate of cells surrounded by an extracellular matrix, which contributes to the persistence of infections. The difficulty in removing the biofilm drives the research for new therapeutic options. In this work, the effect of terpenes (−)-trans-Caryophyllene, (S)-cis-Verbenol, (S)-(−)-Limonene, (R)-(+)-Limonene, and Linalool was evaluated, individually and in combinations on bacterial growth, by assay with resazurin; the formation of biofilm, by assay with violet crystal; and the expression of associated genes, by real-time PCR, in two clinical isolates of Staphyloccocus aureus, ST30-t019 and ST5-t311, responsible for more than 90% of pediatric infections by this pathogen in Paraguay. All combinations of terpenes can inhibit biofilm formation in more than 50% without affecting bacterial growth. The most effective combination was (−)-trans-Caryophyllene and Linalool at a 500 μg/mL concentration for each, with an inhibition percentage of 88%. This combination decreased the expression levels of the sdrD, spa, agr, and hld genes associated with the initial cell adhesion stage and quorum sensing. At the same time, it increased the expression levels of the cap5B and cap5C genes related to the production of capsular polysaccharides. The combinations of compounds tested are promising alternatives to inhibit biofilm formation in S. aureus.
Collapse
|
39
|
Sionov RV, Steinberg D. Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Microorganisms 2022; 10:1239. [PMID: 35744757 PMCID: PMC9228545 DOI: 10.3390/microorganisms10061239] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic and recurrent bacterial infections are frequently associated with the formation of biofilms on biotic or abiotic materials that are composed of mono- or multi-species cultures of bacteria/fungi embedded in an extracellular matrix produced by the microorganisms. Biofilm formation is, among others, regulated by quorum sensing (QS) which is an interbacterial communication system usually composed of two-component systems (TCSs) of secreted autoinducer compounds that activate signal transduction pathways through interaction with their respective receptors. Embedded in the biofilms, the bacteria are protected from environmental stress stimuli, and they often show reduced responses to antibiotics, making it difficult to eradicate the bacterial infection. Besides reduced penetration of antibiotics through the intricate structure of the biofilms, the sessile biofilm-embedded bacteria show reduced metabolic activity making them intrinsically less sensitive to antibiotics. Moreover, they frequently express elevated levels of efflux pumps that extrude antibiotics, thereby reducing their intracellular levels. Some efflux pumps are involved in the secretion of QS compounds and biofilm-related materials, besides being important for removing toxic substances from the bacteria. Some efflux pump inhibitors (EPIs) have been shown to both prevent biofilm formation and sensitize the bacteria to antibiotics, suggesting a relationship between these processes. Additionally, QS inhibitors or quenchers may affect antibiotic susceptibility. Thus, targeting elements that regulate QS and biofilm formation might be a promising approach to combat antibiotic-resistant biofilm-related bacterial infections.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research, The Faculty of Dental Medicine, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel;
| | | |
Collapse
|
40
|
Qiu M, Feng L, Zhao C, Gao S, Bao L, Zhao Y, Fu Y, Hu X. Commensal Bacillus subtilis from cow milk inhibits Staphylococcus aureus biofilm formation and mastitis in mice. FEMS Microbiol Ecol 2022; 98:6596871. [PMID: 35648454 DOI: 10.1093/femsec/fiac065] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/15/2022] [Accepted: 05/30/2022] [Indexed: 11/12/2022] Open
Abstract
The colonization and virulence production of Staphylococcus aureus (S. aureus), a known pathogen that induces mastitis, depend on its quorum-sensing (QS) system and biofilm formation. It has been reported that Bacillus can inhibit the QS system of S. aureus, thereby reducing S. aureus colonization in the intestine. However, whether Bacillus affects S. aureus biofilm formation and consequent colonization during mastitis is still unknown. In this study, the differences in the colonization of S. aureus and Bacillus were first analyzed by isolating and culturing bacteria from milk samples. It was found that the colonization of Bacillus and S. aureus in cow mammary glands was negatively correlated. Secondly, we found that although Bacillus did not affect S. aureus growth, it inhibited the biofilm formation of S. aureus by interfering its QS signaling. The most significant anti-biofilm effect was found in Bacillus subtilis H28 (B. subtilis H28). Finally, we found that B. subtilis H28 treatment alleviated S. aureus-induced mastitis in a mice model. Our results rerealed that bovine milk derived commensal Bacillus inhibited S. aureus colonization and alleviated S. aureus-induced mastitis by influencing biofilm formation, suggesting a potential targeted strategy to limit the colonization of S. aureus in vivo.
Collapse
Affiliation(s)
- Min Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Lianjun Feng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Siyuan Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Lijuan Bao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Yihong Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| |
Collapse
|
41
|
Xu KZ, Tan XJ, Chang ZY, Li JJ, Jia AQ. 2-tert-Butyl-1,4-benzoquinone, a food additive oxidant, reduces virulence factors of Chromobacterium violaceum. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113569] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Kang JE, Yoo N, Jeon BJ, Kim BS, Chung EH. Resveratrol Oligomers, Plant-Produced Natural Products With Anti-virulence and Plant Immune-Priming Roles. FRONTIERS IN PLANT SCIENCE 2022; 13:885625. [PMID: 35712595 PMCID: PMC9197177 DOI: 10.3389/fpls.2022.885625] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic resistance has become increasingly prevalent in the environment. Many alternative strategies have been proposed for the treatment and prevention of diverse diseases in agriculture. Among them, the modulation of bacterial virulence to bypass antibiotic resistance or boost plant innate immunity can be considered a promising drug target. Plant-produced natural products offer a broad spectrum of stereochemistry and a wide range of pharmacophores, providing a great diversity of biological activities. Here, we present a perspective on the putative role of plant-produced resveratrol oligomers as anti-virulence and plant-immune priming agents for efficient disease management. Resveratrol oligomers can decrease (1) bacterial motility directly and (2) indirectly by attenuating the bacterial type III secretion system (TT3S). They induce enhanced local immune responses mediated by two-layered plant innate immunity, demonstrating (3) a putative plant immune priming role.
Collapse
Affiliation(s)
- Ji Eun Kang
- Institute of Life Science and Natural Resources, Korea University, Seoul, South Korea
| | - Nayeon Yoo
- Department of Plant Biotechnology, Graduate School, Korea University, Seoul, South Korea
| | - Byeong Jun Jeon
- Smart Farm Research Center, Korea Institute of Science and Technology, Gangneung Institute, Gangneung, South Korea
| | - Beom Seok Kim
- Institute of Life Science and Natural Resources, Korea University, Seoul, South Korea
- Department of Plant Biotechnology, Graduate School, Korea University, Seoul, South Korea
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Eui-Hwan Chung
- Institute of Life Science and Natural Resources, Korea University, Seoul, South Korea
- Department of Plant Biotechnology, Graduate School, Korea University, Seoul, South Korea
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
43
|
Comparative Transcriptome Analysis Reveals Differentially Expressed Genes Related to Antimicrobial Properties of Lysostaphin in Staphylococcus aureus. Antibiotics (Basel) 2022; 11:antibiotics11020125. [PMID: 35203727 PMCID: PMC8868216 DOI: 10.3390/antibiotics11020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 11/17/2022] Open
Abstract
Comparative transcriptome analysis and de novo short-read assembly of S. aureus Newman strains revealed significant transcriptional changes in response to the exposure to triple-acting staphylolytic peptidoglycan hydrolase (PGH) 1801. Most altered transcriptions were associated with the membrane, cell wall, and related genes, including amidase, peptidase, holin, and phospholipase D/transphosphatidylase. The differential expression of genes obtained from RNA-seq was confirmed by reverse transcription quantitative PCR. Moreover, some of these gene expression changes were consistent with the observed structural perturbations at the DNA and RNA levels. These structural changes in the genes encoding membrane/cell surface proteins and altered gene expressions are the candidates for resistance to these novel antimicrobials. The findings in this study could provide insight into the design of new antimicrobial agents.
Collapse
|
44
|
Sycz Z, Tichaczek-Goska D, Wojnicz D. Anti-Planktonic and Anti-Biofilm Properties of Pentacyclic Triterpenes-Asiatic Acid and Ursolic Acid as Promising Antibacterial Future Pharmaceuticals. Biomolecules 2022; 12:98. [PMID: 35053246 PMCID: PMC8774094 DOI: 10.3390/biom12010098] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 01/27/2023] Open
Abstract
Due to the ever-increasing number of multidrug-resistant bacteria, research concerning plant-derived compounds with antimicrobial mechanisms of action has been conducted. Pentacyclic triterpenes, which have a broad spectrum of medicinal properties, are one of such groups. Asiatic acid (AA) and ursolic acid (UA), which belong to this group, exhibit diverse biological activities that include antioxidant, anti-inflammatory, diuretic, and immunostimulatory. Some of these articles usually contain only a short section describing the antibacterial effects of AA or UA. Therefore, our review article aims to provide the reader with a broader understanding of the activity of these acids against pathogenic bacteria. The bacteria in the human body can live in the planktonic form and create a biofilm structure. Therefore, we found it valuable to present the action of AA and UA on both planktonic and biofilm cultures. The article also presents mechanisms of the biological activity of these substances against microorganisms.
Collapse
Affiliation(s)
| | - Dorota Tichaczek-Goska
- Department of Biology and Medical Parasitology, Wroclaw Medical University, 50-345 Wroclaw, Poland; (Z.S.); (D.W.)
| | | |
Collapse
|
45
|
Duan J, Guo W. The cold adaption profiles of Pseudoalteromonas shioyasakiensis D1497 from Yap trench to cope with cold. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 32:e00689. [PMID: 34987981 PMCID: PMC8711050 DOI: 10.1016/j.btre.2021.e00689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/01/2021] [Accepted: 11/11/2021] [Indexed: 01/08/2023]
Abstract
P. shioyasakiensis D1497converted more substrate into biomass at low temperature. P. shioyasakiensis D1497 prefered to use codons with A/T in the third position. The energy metabolism related genes were down regulated in cold environment. P. shioyasakiensis D1497 presented an energy saving metabolism strategy to cope with cold.
Genome sequencing of Pseudoalteromonas shioyasakiensis D1497, a psychrophile from the Yap trench, revealed that it contained a circle chromosome of 3,631,285 bp with 40.94% GC content and prefered to use codons with A/T in the third position. Additionally, the relative synonymous codon usage (RSCU) values indicated the codons with A and T in the third position were always the most used. Cultivation of P. shioyasakiensis D1497 presented lower substrate consumption rate, higher ATP pool and higher conversion rate of biomass per unit substrate consumed at low temperature (15 °C) than that of the room temperature (25 °C) culture. Comparative transcriptomic analysis revealed that the mRNA abundance of energy metabolism related genes was decreased in 15 °C culture compared with that of 25 °C culture. In addition to its codon usage biases profile, P. shioyasakiensis D1497 presented an energy saving metabolism strategy to cope with cold, converting more carbon source into biomass in cold environment.
Collapse
Affiliation(s)
- Jingjing Duan
- College of Environment and Ecology, Xiamen University, Xiamen 361005, Fujian, China
| | - Wenbin Guo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, Fujian, China
| |
Collapse
|
46
|
Schito AM, Caviglia D, Piatti G, Zorzoli A, Marimpietri D, Zuccari G, Schito GC, Alfei S. Efficacy of Ursolic Acid-Enriched Water-Soluble and Not Cytotoxic Nanoparticles against Enterococci. Pharmaceutics 2021; 13:1976. [PMID: 34834390 PMCID: PMC8625572 DOI: 10.3390/pharmaceutics13111976] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
Ursolic acid (UA), a pentacyclic triterpenoid acid found in many medicinal plants and aromas, is known for its antibacterial effects against multi-drug-resistant (MDR) Gram-positive bacteria, which seriously threaten human health. Unfortunately, UA water-insolubility, low bioavailability, and systemic toxicity limit the possibilities of its application in vivo. Consequently, the beneficial activities of UA observed in vitro lose their potential clinical relevance unless water-soluble, not cytotoxic UA formulations are developed. With a nano-technologic approach, we have recently prepared water-soluble UA-loaded dendrimer nanoparticles (UA-G4K NPs) non-cytotoxic on HeLa cells, with promising physicochemical properties for their clinical applications. In this work, with the aim of developing a new antibacterial agent based on UA, UA-G4K has been tested on different strains of the Enterococcus genus, including marine isolates, toward which UA-G4K has shown minimum inhibitory concentrations (MICs) very low (0.5-4.3 µM), regardless of their resistance to antibiotics. Time-kill experiments, in addition to confirming the previously reported bactericidal activity of UA against E. faecium, also established it for UA-G4K. Furthermore, cytotoxicity experiments on human keratinocytes revealed that nanomanipulation of UA significantly reduced the cytotoxicity of UA, providing UA-G4K NPs with very high LD50 (96.4 µM) and selectivity indices, which were in the range 22.4-192.8, depending on the enterococcal strain tested. Due to its physicochemical and biological properties, UA-G4K could be seriously evaluated as a novel oral-administrable therapeutic option for tackling difficult-to-treat enterococcal infections.
Collapse
Affiliation(s)
- Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (A.M.S.); (D.C.); (G.P.); (G.C.S.)
| | - Debora Caviglia
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (A.M.S.); (D.C.); (G.P.); (G.C.S.)
| | - Gabriella Piatti
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (A.M.S.); (D.C.); (G.P.); (G.C.S.)
| | - Alessia Zorzoli
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, via Gerolamo Gaslini 5, 16147 Genoa, Italy; (A.Z.); (D.M.)
| | - Danilo Marimpietri
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, via Gerolamo Gaslini 5, 16147 Genoa, Italy; (A.Z.); (D.M.)
| | - Guendalina Zuccari
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy;
| | - Gian Carlo Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (A.M.S.); (D.C.); (G.P.); (G.C.S.)
| | - Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy;
| |
Collapse
|
47
|
da Silva Costa Guimarães S, Tavares DG, Monteiro MCP, Pedroso MP, Nunes CA, Mourão B, Silva e Carvalho I, Bardají DKR, Camargo ILBC, de Paula Lana UG, Gomes EA, de Queiroz MV, Pereira OL, Cardoso PG. Polyphasic characterization and antimicrobial properties of Induratia species isolated from Coffea arabica in Brazil. Mycol Prog 2021. [DOI: 10.1007/s11557-021-01743-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
48
|
Santos CA, Lima EMF, Franco BDGDM, Pinto UM. Exploring Phenolic Compounds as Quorum Sensing Inhibitors in Foodborne Bacteria. Front Microbiol 2021; 12:735931. [PMID: 34594318 PMCID: PMC8477669 DOI: 10.3389/fmicb.2021.735931] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
The emergence of multidrug-resistant bacteria stimulates the search for new substitutes to traditional antimicrobial agents, especially molecules with antivirulence properties, such as those that interfere with quorum sensing (QS). This study aimed to evaluate the potential of phenolic compounds for QS inhibition in a QS biosensor strain (Chromobacterium violaceum) and three foodborne bacterial species (Aeromonas hydrophila, Salmonella enterica serovar Montevideo, and Serratia marcescens). Initially, an in silico molecular docking study was performed to select the compounds with the greatest potential for QS inhibition, using structural variants of the CviR QS regulator of C. violaceum as target. Curcumin, capsaicin, resveratrol, gallic acid, and phloridizin presented good affinity to at least four CviR structural variants. These phenolic compounds were tested for antimicrobial activity, inhibition of biofilm formation, and anti-QS activity. The antimicrobial activity when combined with kanamycin was also assessed. Curcumin, capsaicin, and resveratrol inhibited up to 50% of violacein production by C. violaceum. Biofilm formation was inhibited by resveratrol up to 80% in A. hydrophila, by capsaicin and curcumin up to 40% in S. Montevideo and by resveratrol and capsaicin up to 60% in S. marcescens. Curcumin completely inhibited swarming motility in S. marcescens. Additionally, curcumin and resveratrol increased the sensitivity of the tested bacteria to kanamycin. These results indicate that curcumin and resveratrol at concentrations as low as 6μM are potential quorum sensing inhibitors besides having antimicrobial properties at higher concentrations, encouraging applications in the food and pharmaceutical industries.
Collapse
Affiliation(s)
| | | | | | - Uelinton Manoel Pinto
- Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
49
|
Guo N, Bai X, Shen Y, Zhang T. Target-based screening for natural products against Staphylococcus aureus biofilms. Crit Rev Food Sci Nutr 2021; 63:2216-2230. [PMID: 34491124 DOI: 10.1080/10408398.2021.1972280] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As a notorious food-borne pathogen, Staphylococcus aureus can readily cause diseases in humans via contaminated food. Biofilm formation on various surfaces can increase the capacity of viable S. aureus cells for self-protection due to the stubborn structure of the biofilm matrix. Increased disease risk and economic losses caused by biofilm contamination in the food industry necessitate the urgent development of effective strategies for the inhibition and removal of S. aureus biofilms. Natural products have been extensively used as important sources of "eco-friendly" antibiofilm agents to avoid the side effects of conventional strategies on human health and the environment. This review discusses biofilm formation of S. aureus in food industries and focuses on providing an overview of potential promising target-oriented natural products and their mechanisms of S. aureus biofilm inhibition or removal. Hoping to provide valuable information of attractive research targets or potential undeveloped targets to screen potent natural anti-biofilm agents in food industries.
Collapse
Affiliation(s)
- Na Guo
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Xue Bai
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Yong Shen
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
50
|
Chlumsky O, Purkrtova S, Michova H, Sykorova H, Slepicka P, Fajstavr D, Ulbrich P, Viktorova J, Demnerova K. Antimicrobial Properties of Palladium and Platinum Nanoparticles: A New Tool for Combating Food-Borne Pathogens. Int J Mol Sci 2021; 22:ijms22157892. [PMID: 34360657 PMCID: PMC8346086 DOI: 10.3390/ijms22157892] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 01/12/2023] Open
Abstract
Although some metallic nanoparticles (NPs) are commonly used in the food processing plants as nanomaterials for food packaging, or as coatings on the food handling equipment, little is known about antimicrobial properties of palladium (PdNPs) and platinum (PtNPs) nanoparticles and their potential use in the food industry. In this study, common food-borne pathogens Salmonella enterica Infantis, Escherichia coli, Listeria monocytogenes and Staphylococcus aureus were tested. Both NPs reduced viable cells with the log10 CFU reduction of 0.3–2.4 (PdNPs) and 0.8–2.0 (PtNPs), average inhibitory rates of 55.2–99% for PdNPs and of 83.8–99% for PtNPs. However, both NPs seemed to be less effective for biofilm formation and its reduction. The most effective concentrations were evaluated to be 22.25–44.5 mg/L for PdNPs and 50.5–101 mg/L for PtNPs. Furthermore, the interactions of tested NPs with bacterial cell were visualized by transmission electron microscopy (TEM). TEM visualization confirmed that NPs entered bacteria and caused direct damage of the cell walls, which resulted in bacterial disruption. The in vitro cytotoxicity of individual NPs was determined in primary human renal tubular epithelial cells (HRTECs), human keratinocytes (HaCat), human dermal fibroblasts (HDFs), human epithelial kidney cells (HEK 293), and primary human coronary artery endothelial cells (HCAECs). Due to their antimicrobial properties on bacterial cells and no acute cytotoxicity, both types of NPs could potentially fight food-borne pathogens.
Collapse
Affiliation(s)
- Ondrej Chlumsky
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 5, 166 28 Prague 6, Czech Republic; (S.P.); (H.M.); (H.S.); (P.U.); (J.V.); (K.D.)
- Correspondence:
| | - Sabina Purkrtova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 5, 166 28 Prague 6, Czech Republic; (S.P.); (H.M.); (H.S.); (P.U.); (J.V.); (K.D.)
| | - Hana Michova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 5, 166 28 Prague 6, Czech Republic; (S.P.); (H.M.); (H.S.); (P.U.); (J.V.); (K.D.)
| | - Hana Sykorova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 5, 166 28 Prague 6, Czech Republic; (S.P.); (H.M.); (H.S.); (P.U.); (J.V.); (K.D.)
| | - Petr Slepicka
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28 Prague 6, Czech Republic; (P.S.); (D.F.)
| | - Dominik Fajstavr
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28 Prague 6, Czech Republic; (P.S.); (D.F.)
| | - Pavel Ulbrich
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 5, 166 28 Prague 6, Czech Republic; (S.P.); (H.M.); (H.S.); (P.U.); (J.V.); (K.D.)
| | - Jitka Viktorova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 5, 166 28 Prague 6, Czech Republic; (S.P.); (H.M.); (H.S.); (P.U.); (J.V.); (K.D.)
| | - Katerina Demnerova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 5, 166 28 Prague 6, Czech Republic; (S.P.); (H.M.); (H.S.); (P.U.); (J.V.); (K.D.)
| |
Collapse
|