1
|
Zhou A, Subramanian PSG, El-Naggar S, Shisler JL, Verma V, Nguyen TH. Capsid and genome damage are the leading inactivation mechanisms of aerosolized porcine respiratory coronavirus at different relative humidities. Appl Environ Microbiol 2025; 91:e0231924. [PMID: 40192313 DOI: 10.1128/aem.02319-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/17/2025] [Indexed: 04/17/2025] Open
Abstract
Relative humidity (RH) varies widely in indoor environments based on temperature, outdoor humidity, heating systems, and other environmental conditions. This study explored how RH affects aerosolized porcine respiratory coronavirus (PRCV), a model for coronaviruses, over a time range from 0 min to a maximum of 1 h, and the molecular mechanism behind viral infectivity reduction. These questions were answered by quantifying: (i) viral-host receptor interactions, (ii) capsid integrity, (iii) viral genome integrity, and (iv) virus infectivity. We found RH did not alter PRCV-receptor interactions. RHs 45-55% and 65-75% damaged viral genomes (2 log10 reduction and 1 log10 reduction, respectively, in terms of median sample value), whereas RHs 55-65% decreased capsid integrity (2 log10 reduction). No apparent virion damage was observed in RH 75-85%. Two assays were used to quantify virus presence: qPCR for detecting the viral genomes and plaque-forming unit assay for detecting the virus replication. Our results indicated that the qPCR assay overestimated the concentrations of infectious viruses, and RNase treatment with long-range RT-qPCR performed better than one-step RT-qPCR. We propose that understanding the influence of RH on the stability of aerosolized viruses provides critical information for detecting and preventing the indoor transmission of coronaviruses. IMPORTANCE Indoor environments can impact the stability of respiratory viruses, which can then affect the transmission rates. The mechanisms of how relative humidity (RH) affects virus infectivity still remain unclear. This study found RH inactivates porcine respiratory coronavirus by damaging its capsid and genome. The finding highlights the potential role of controlling indoor RH levels as a strategy to reduce the risk of coronavirus transmission.
Collapse
Affiliation(s)
- Aijia Zhou
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
- The Grainger College of Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - P S Ganesh Subramanian
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Salma El-Naggar
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Joanna L Shisler
- Department of Microbiology, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Vishal Verma
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
- The Grainger College of Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
- Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
- Carle Illinois College of Medicine, Urbana, Illinois, USA
| |
Collapse
|
2
|
Wohlgemuth R. Enzyme Catalysis for Sustainable Value Creation Using Renewable Biobased Resources. Molecules 2024; 29:5772. [PMID: 39683928 DOI: 10.3390/molecules29235772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Enzyme catalysis was traditionally used by various human cultures to create value long before its basic concepts were uncovered. This was achieved by transforming the raw materials available from natural resources into useful products. Tremendous scientific and technological progress has been made globally in understanding what constitutes an enzyme; what reactions enzymes can catalyze; and how to search, develop, apply, and improve enzymes to make desired products. The useful properties of enzymes as nature's preferred catalysts, such as their high selectivity, diversity, and adaptability, enable their optimal function, whether in single or multiple reactions. Excellent opportunities for the resource-efficient manufacturing of compounds are provided by the actions of enzymes working in reaction cascades and pathways within the same reaction space, like molecular robots along a production line. Enzyme catalysis plays an increasingly prominent role in industrial innovation and responsible production in various areas, such as green and sustainable chemistry and industrial or white biotechnology. Sources of inspiration include current manufacturing or supply chain challenges, the treasure of natural enzymes, and opportunities to engineer tailor-made enzymes. Making the best use of the power of enzyme catalysis is essential for changing how current products are manufactured; how renewable biobased resources can replace fossil-based resources; and improving the safety, health, and environmental aspects of manufacturing processes to support cleaner and more sustainable production.
Collapse
Affiliation(s)
- Roland Wohlgemuth
- Faculty of Chemistry, Lodz University of Technology, Zeromskiego Street 116, 90-924 Lodz, Poland
- Swiss Coordination Committee Biotechnology (SKB), 8021 Zurich, Switzerland
- European Society of Applied Biocatalysis (ESAB), 1000 Brussels, Belgium
| |
Collapse
|
3
|
Meng J, Guo Q, Zhai X, Yang S, Wang S, Wang P, Ji D. A phosphamide nucleotide analog: a substrate for polymerase synthesis of DNA. Org Biomol Chem 2024; 22:2963-2967. [PMID: 38529657 DOI: 10.1039/d4ob00089g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
A type of modified nucleotide, deoxynucleotide γ-amidotriphosphates (dNTPγNH2s), exhibited around five times higher stability than dNTPs. These phosphamide nucleotides can be utilized by several DNA polymerases, and the amplification of a 10 kb DNA fragment through the polymerase chain reaction (PCR) can be accomplished even under conditions of high temperature, extended storage, or repeated freeze-thaw cycles. However, the control PCR with standard dNTPs was unsuccessful. These results indicate that dNTPγNH2s have the potential to substitute dNTPs in PCR.
Collapse
Affiliation(s)
- Jiong Meng
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Qiaqia Guo
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Xiaona Zhai
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Song Yang
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Shuai Wang
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Pengcheng Wang
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Debin Ji
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
4
|
Mikhaylova V, Rzepka M, Kawamura T, Xia Y, Chang PL, Zhou S, Paasch A, Pham L, Modi N, Yao L, Perez-Agustin A, Pagans S, Boles TC, Lei M, Wang Y, Garcia-Bassets I, Chen Z. Targeted phasing of 2-200 kilobase DNA fragments with a short-read sequencer and a single-tube linked-read library method. Sci Rep 2024; 14:7988. [PMID: 38580715 PMCID: PMC10997766 DOI: 10.1038/s41598-024-58733-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 04/02/2024] [Indexed: 04/07/2024] Open
Abstract
In the human genome, heterozygous sites refer to genomic positions with a different allele or nucleotide variant on the maternal and paternal chromosomes. Resolving these allelic differences by chromosomal copy, also known as phasing, is achievable on a short-read sequencer when using a library preparation method that captures long-range genomic information. TELL-Seq is a library preparation that captures long-range genomic information with the aid of molecular identifiers (barcodes). The same barcode is used to tag the reads derived from the same long DNA fragment within a range of up to 200 kilobases (kb), generating linked-reads. This strategy can be used to phase an entire genome. Here, we introduce a TELL-Seq protocol developed for targeted applications, enabling the phasing of enriched loci of varying sizes, purity levels, and heterozygosity. To validate this protocol, we phased 2-200 kb loci enriched with different methods: CRISPR/Cas9-mediated excision coupled with pulse-field electrophoresis for the longest fragments, CRISPR/Cas9-mediated protection from exonuclease digestion for mid-size fragments, and long PCR for the shortest fragments. All selected loci have known clinical relevance: BRCA1, BRCA2, MLH1, MSH2, MSH6, APC, PMS2, SCN5A-SCN10A, and PKI3CA. Collectively, the analyses show that TELL-Seq can accurately phase 2-200 kb targets using a short-read sequencer.
Collapse
Affiliation(s)
| | - Madison Rzepka
- Universal Sequencing Technology Corp., Carlsbad, CA, 92011, USA
| | | | - Yu Xia
- Universal Sequencing Technology Corp., Carlsbad, CA, 92011, USA
| | - Peter L Chang
- Universal Sequencing Technology Corp., Carlsbad, CA, 92011, USA
| | | | - Amber Paasch
- Universal Sequencing Technology Corp., Carlsbad, CA, 92011, USA
| | - Long Pham
- Universal Sequencing Technology Corp., Carlsbad, CA, 92011, USA
| | - Naisarg Modi
- Universal Sequencing Technology Corp., Carlsbad, CA, 92011, USA
| | - Likun Yao
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Adrian Perez-Agustin
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Sara Pagans
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | | | - Ming Lei
- Universal Sequencing Technology Corp., Canton, MA, 02021, USA
| | - Yong Wang
- Universal Sequencing Technology Corp., Canton, MA, 02021, USA
| | | | - Zhoutao Chen
- Universal Sequencing Technology Corp., Carlsbad, CA, 92011, USA.
| |
Collapse
|
5
|
Quail MA, Corton C, Uphill J, Keane J, Gu Y. Identifying the best PCR enzyme for library amplification in NGS. Microb Genom 2024; 10. [PMID: 38578268 DOI: 10.1099/mgen.0.001228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
Background. PCR amplification is a necessary step in many next-generation sequencing (NGS) library preparation methods [1, 2]. Whilst many PCR enzymes are developed to amplify single targets efficiently, accurately and with specificity, few are developed to meet the challenges imposed by NGS PCR, namely unbiased amplification of a wide range of different sizes and GC content. As a result PCR amplification during NGS library prep often results in bias toward GC neutral and smaller fragments. As NGS has matured, optimized NGS library prep kits and polymerase formulations have emerged and in this study we have tested a wide selection of available enzymes for both short-read Illumina library preparation and long fragment amplification ahead of long-read sequencing.We tested over 20 different hi-fidelity PCR enzymes/NGS amplification mixes on a range of Illumina library templates of varying GC content and composition, and find that both yield and genome coverage uniformity characteristics of the commercially available enzymes varied dramatically. Three enzymes Quantabio RepliQa Hifi Toughmix, Watchmaker Library Amplification Hot Start Master Mix (2X) 'Equinox' and Takara Ex Premier were found to give a consistent performance, over all genomes, that mirrored closely that observed for PCR-free datasets. We also test a range of enzymes for long-read sequencing by amplifying size fractionated S. cerevisiae DNA of average size 21.6 and 13.4 kb, respectively.The enzymes of choice for short-read (Illumina) library fragment amplification are Quantabio RepliQa Hifi Toughmix, Watchmaker Library Amplification Hot Start Master Mix (2X) 'Equinox' and Takara Ex Premier, with RepliQa also being the best performing enzyme from the enzymes tested for long fragment amplification prior to long-read sequencing.
Collapse
Affiliation(s)
| | - Craig Corton
- Wellcome Sanger Institute, Hinxton, Cambs., CB10 1SA, UK
| | - James Uphill
- Wellcome Sanger Institute, Hinxton, Cambs., CB10 1SA, UK
| | - Jacqueline Keane
- Department of Medicine, University of Cambridge, Cambridge, Cambs., CB2 1TN, UK
| | - Yong Gu
- Wellcome Sanger Institute, Hinxton, Cambs., CB10 1SA, UK
| |
Collapse
|
6
|
Quan ZJ, Li SA, Yang ZX, Zhao JJ, Li GH, Zhang F, Wen W, Cheng T, Zhang XB. GREPore-seq: A Robust Workflow to Detect Changes After Gene Editing Through Long-range PCR and Nanopore Sequencing. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:1221-1236. [PMID: 35752289 PMCID: PMC11082256 DOI: 10.1016/j.gpb.2022.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 05/19/2022] [Accepted: 06/13/2022] [Indexed: 05/09/2023]
Abstract
To achieve the enormous potential of gene-editing technology in clinical therapies, one needs to evaluate both the on-target efficiency and unintended editing consequences comprehensively. However, there is a lack of a pipelined, large-scale, and economical workflow for detecting genome editing outcomes, in particular insertion or deletion of a large fragment. Here, we describe an approach for efficient and accurate detection of multiple genetic changes after CRISPR/Cas9 editing by pooled nanopore sequencing of barcoded long-range PCR products. Recognizing the high error rates of Oxford nanopore sequencing, we developed a novel pipeline to capture the barcoded sequences by grepping reads of nanopore amplicon sequencing (GREPore-seq). GREPore-seq can assess nonhomologous end-joining (NHEJ)-mediated double-stranded oligodeoxynucleotide (dsODN) insertions with comparable accuracy to Illumina next-generation sequencing (NGS). GREPore-seq also reveals a full spectrum of homology-directed repair (HDR)-mediated large gene knock-in, correlating well with the fluorescence-activated cell sorting (FACS) analysis results. Of note, we discovered low-level fragmented and full-length plasmid backbone insertion at the CRISPR cutting site. Therefore, we have established a practical workflow to evaluate various genetic changes, including quantifying insertions of short dsODNs, knock-ins of long pieces, plasmid insertions, and large fragment deletions after CRISPR/Cas9-mediated editing. GREPore-seq is freely available at GitHub (https://github.com/lisiang/GREPore-seq) and the National Genomics Data Center (NGDC) BioCode (https://ngdc.cncb.ac.cn/biocode/tools/BT007293).
Collapse
Affiliation(s)
- Zi-Jun Quan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Si-Ang Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Zhi-Xue Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Juan-Juan Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Guo-Hua Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Feng Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Wei Wen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin 300020, China; Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China.
| | - Xiao-Bing Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.
| |
Collapse
|
7
|
Du X, McManus DP, French JD, Sivakumaran H, Johnston RL, Kondrashova O, Fogarty CE, Jones MK, You H. Lentiviral Transduction-based CRISPR/Cas9 Editing of Schistosoma mansoni Acetylcholinesterase. Curr Genomics 2023; 24:155-170. [PMID: 38178986 PMCID: PMC10761339 DOI: 10.2174/1389202924666230823094608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/02/2023] [Accepted: 07/17/2023] [Indexed: 01/06/2024] Open
Abstract
Background Recent studies on CRISPR/Cas9-mediated gene editing in Schistosoma mansoni have shed new light on the study and control of this parasitic helminth. However, the gene editing efficiency in this parasite is modest. Methods To improve the efficiency of CRISPR/Cas9 genome editing in schistosomes, we used lentivirus, which has been effectively used for gene editing in mammalian cells, to deliver plasmid DNA encoding Cas9 nuclease, a sgRNA targeting acetylcholinesterase (SmAChE) and a mCherry fluorescence marker into schistosomes. Results MCherry fluorescence was observed in transduced eggs, schistosomula, and adult worms, indicating that the CRISPR components had been delivered into these parasite stages by lentivirus. In addition, clearly changed phenotypes were observed in SmAChE-edited parasites, including decreased SmAChE activity, reduced hatching ability of edited eggs, and altered behavior of miracidia hatched from edited eggs. Next-generation sequencing analysis demonstrated that the lentiviral transduction-based CRISPR/Cas9 gene modifications in SmAChE-edited schistosomes were homology-directed repair predominant but with much lower efficiency than that obtained using electroporation (data previously published by our laboratory) for the delivery of CRISPR components. Conclusion Taken together, electroporation is more efficient than lentiviral transduction in the delivery of CRISPR/Cas9 into schistosomes for programmed genome editing. The exploration of tactics for enhancing CRISPR/Cas9 gene editing provides the basis for the future improvement of programmed genome editing in S. mansoni.
Collapse
Affiliation(s)
- Xiaofeng Du
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Donald P. McManus
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Juliet D. French
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Haran Sivakumaran
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Rebecca L. Johnston
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Olga Kondrashova
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Conor E. Fogarty
- Centre for Bioinnovation, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
| | - Malcolm K. Jones
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Hong You
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| |
Collapse
|
8
|
Hook PW, Timp W. Beyond assembly: the increasing flexibility of single-molecule sequencing technology. Nat Rev Genet 2023; 24:627-641. [PMID: 37161088 PMCID: PMC10169143 DOI: 10.1038/s41576-023-00600-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/11/2023]
Abstract
The maturation of high-throughput short-read sequencing technology over the past two decades has shaped the way genomes are studied. Recently, single-molecule, long-read sequencing has emerged as an essential tool in deciphering genome structure and function, including filling gaps in the human reference genome, measuring the epigenome and characterizing splicing variants in the transcriptome. With recent technological developments, these single-molecule technologies have moved beyond genome assembly and are being used in a variety of ways, including to selectively sequence specific loci with long reads, measure chromatin state and protein-DNA binding in order to investigate the dynamics of gene regulation, and rapidly determine copy number variation. These increasingly flexible uses of single-molecule technologies highlight a young and fast-moving part of the field that is leading to a more accessible era of nucleic acid sequencing.
Collapse
Affiliation(s)
- Paul W Hook
- Department of Biomedical Engineering, Molecular Biology and Genetics, and Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Winston Timp
- Department of Biomedical Engineering, Molecular Biology and Genetics, and Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
9
|
Liu L, Huang Y, Wang HH. Fast and efficient template-mediated synthesis of genetic variants. Nat Methods 2023; 20:841-848. [PMID: 37127666 PMCID: PMC12066172 DOI: 10.1038/s41592-023-01868-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Efficient methods for the generation of specific mutations enable the study of functional variations in natural populations and lead to advances in genetic engineering applications. Here, we present a new approach, mutagenesis by template-guided amplicon assembly (MEGAA), for the rapid construction of kilobase-sized DNA variants. With this method, many mutations can be generated at a time to a DNA template at more than 90% efficiency per target in a predictable manner. We devised a robust and iterative protocol for an open-source laboratory automation robot that enables desktop production and long-read sequencing validation of variants. Using this system, we demonstrated the construction of 31 natural SARS-CoV2 spike gene variants and 10 recoded Escherichia coli genome fragments, with each 4 kb region containing up to 150 mutations. Furthermore, 125 defined combinatorial adeno-associated virus-2 cap gene variants were easily built using the system, which exhibited viral packaging enhancements of up to 10-fold compared with wild type. Thus, the MEGAA platform enables generation of multi-site sequence variants quickly, cheaply, and in a scalable manner for diverse applications in biotechnology.
Collapse
Affiliation(s)
- Liyuan Liu
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Yiming Huang
- Department of Systems Biology, Columbia University, New York, NY, USA
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA
| | - Harris H Wang
- Department of Systems Biology, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
10
|
Chowdhary MR, Gupta N. Long-range PCR in next generation sequencing: A low cost approach for large & complex genes. Indian J Med Res 2023; 157:591-592. [PMID: 37530314 PMCID: PMC10466485 DOI: 10.4103/ijmr.ijmr_2373_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Indexed: 08/03/2023] Open
Affiliation(s)
- Madhumita Roy Chowdhary
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Neerja Gupta
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110 029, India
| |
Collapse
|
11
|
Vanaja MC, Jain JMN, Dalal A, Ranganath P. Long-range PCR amplification-based targeted enrichment & next generation sequencing: A cost-effective testing strategy for lysosomal storage disorders. Indian J Med Res 2023; 157:577-590. [PMID: 37530313 PMCID: PMC10466493 DOI: 10.4103/ijmr.ijmr_2707_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Indexed: 07/08/2023] Open
Abstract
Background & objectives Lysosomal storage disorders (LSDs) are genetic metabolic disorders which result from deficiency of lysosomal enzymes or defects in other lysosomal components. Molecular genetic testing of LSDs is required for diagnostic confirmation when lysosomal enzyme assays are not available or not feasible to perform, and for the identification of the disease causing genetic variants. The aim of this study was to develop a cost-effective, readily customizable and scalable molecular genetic testing strategy for LSDs. Methods A testing method was designed based on the in-house creation of selective amplicons through long range PCR amplification for targeted capture and enrichment of different LSD genes of interest, followed by next generation sequencing of pooled samples. Results In the first phase of the study, standardization and validation of the study protocol were done using 28 samples of affected probands and/or carrier parents (group A) with previously identified variants in seven genes, and in the second phase of the study, 30 samples of enzymatically confirmed or biopsy-proven patients with LSDs and/or their carrier parents who had not undergone any prior mutation analysis (group B) were tested and the sequence variants identified in them through the study method were validated by targeted Sanger sequencing. Interpretation & conclusions This testing approach was found to be reliable, easily customizable and cost-effective for the molecular genetic evaluation of LSDs. The same strategy may be applicable, especially in resource poor settings, for developing cost-effective multigene panel tests for other conditions with genetic heterogeneity.
Collapse
Affiliation(s)
- Maria Celestina Vanaja
- Diagnostics Division, Centre for DNA Fingerprinting & Diagnostics, Hyderabad, Telangana, India
| | | | - Ashwin Dalal
- Diagnostics Division, Centre for DNA Fingerprinting & Diagnostics, Hyderabad, Telangana, India
| | - Prajnya Ranganath
- Diagnostics Division, Centre for DNA Fingerprinting & Diagnostics, Hyderabad, Telangana, India
- Department of Medical Genetics, Nizam’s Institute of Medical Sciences, Hyderabad, Telangana, India
| |
Collapse
|
12
|
Petersons A, Carlson J, Mathieson W. Improving Yields in Multi-analyte Extractions by Utilizing Post-homogenized Tissue Debris. J Histochem Cytochem 2023; 71:273-288. [PMID: 37119238 PMCID: PMC10227881 DOI: 10.1369/00221554231172823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/06/2023] [Indexed: 05/01/2023] Open
Abstract
In multi-analyte extractions, tissue is typically homogenized in a lysis buffer, and then DNA, RNA, and protein are purified from the supernatant. However, yields are typically lower than in dedicated, single-analyte extractions. In a two-part experiment, we assessed whether yields could be improved by revisiting the normally discarded, post-homogenized tissue debris. We initially performed additional homogenizations, each followed by a simultaneous extraction. These yielded no additional RNA, 13% additional DNA (which became progressively more degraded), and 161.7% additional protein (which changed in proteome when analyzed using SDS-PAGE). We then digested post-homogenized tissue debris from a simultaneous extraction using proteinase K and extracted DNA using silica spin columns or alcohol precipitation. An average additional DNA yield of 27.1% (silica spin columns) or 203.9% (alcohol precipitation) was obtained with/without compromising DNA integrity (assessment by long-range PCR, DNA Integrity Numbers, and size at peak fluorescence of electropherogram). Validation using a cohort of 65 tissue blocks returned an average additional DNA yield of 31.6% (silica columns) and 54.8% (alcohol precipitation). Users can therefore refreeze the homogenized remnants of tissue blocks rather than disposing of them and then perform additional DNA extractions if yields in the initial multi-analyte extractions were low.
Collapse
Affiliation(s)
- Ala Petersons
- Integrated Biobank of Luxembourg, Dudelange,
Luxembourg
- Laboratoire National de Santé, Dudelange,
Luxembourg
| | - Joseph Carlson
- Karolinska University Hospital, Radiumhemmet,
Stockholm, Sweden
| | | |
Collapse
|
13
|
Mikhaylova V, Rzepka M, Kawamura T, Xia Y, Chang PL, Zhou S, Pham L, Modi N, Yao L, Perez-Agustin A, Pagans S, Boles TC, Lei M, Wang Y, Garcia-Bassets I, Chen Z. Targeted Phasing of 2-200 Kilobase DNA Fragments with a Short-Read Sequencer and a Single-Tube Linked-Read Library Method. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.05.531179. [PMID: 36945366 PMCID: PMC10028795 DOI: 10.1101/2023.03.05.531179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
In the human genome, heterozygous sites are genomic positions with different alleles inherited from each parent. On average, there is a heterozygous site every 1-2 kilobases (kb). Resolving whether two alleles in neighboring heterozygous positions are physically linked-that is, phased-is possible with a short-read sequencer if the sequencing library captures long-range information. TELL-Seq is a library preparation method based on millions of barcoded micro-sized beads that enables instrument-free phasing of a whole human genome in a single PCR tube. TELL-Seq incorporates a unique molecular identifier (barcode) to the short reads generated from the same high-molecular-weight (HMW) DNA fragment (known as 'linked-reads'). However, genome-scale TELL-Seq is not cost-effective for applications focusing on a single locus or a few loci. Here, we present an optimized TELL-Seq protocol that enables the cost-effective phasing of enriched loci (targets) of varying sizes, purity levels, and heterozygosity. Targeted TELL-Seq maximizes linked-read efficiency and library yield while minimizing input requirements, fragment collisions on microbeads, and sequencing burden. To validate the targeted protocol, we phased seven 180-200 kb loci enriched by CRISPR/Cas9-mediated excision coupled with pulse-field electrophoresis, four 20 kb loci enriched by CRISPR/Cas9-mediated protection from exonuclease digestion, and six 2-13 kb loci amplified by PCR. The selected targets have clinical and research relevance (BRCA1, BRCA2, MLH1, MSH2, MSH6, APC, PMS2, SCN5A-SCN10A, and PKI3CA). These analyses reveal that targeted TELL-Seq provides a reliable way of phasing allelic variants within targets (2-200 kb in length) with the low cost and high accuracy of short-read sequencing.
Collapse
Affiliation(s)
| | - Madison Rzepka
- Universal Sequencing Technology Corp., Carlsbad, CA 92011, USA
| | | | - Yu Xia
- Universal Sequencing Technology Corp., Carlsbad, CA 92011, USA
| | - Peter L. Chang
- Universal Sequencing Technology Corp., Carlsbad, CA 92011, USA
| | | | - Long Pham
- Universal Sequencing Technology Corp., Carlsbad, CA 92011, USA
| | - Naisarg Modi
- Universal Sequencing Technology Corp., Carlsbad, CA 92011, USA
| | - Likun Yao
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093 USA
| | - Adrian Perez-Agustin
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Sara Pagans
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | | | - Ming Lei
- Universal Sequencing Technology Corp., Canton, MA 02021, USA
| | - Yong Wang
- Universal Sequencing Technology Corp., Canton, MA 02021, USA
| | | | - Zhoutao Chen
- Universal Sequencing Technology Corp., Carlsbad, CA 92011, USA
| |
Collapse
|
14
|
Optimization of long-range PCR protocol to prepare filaggrin exon 3 libraries for PacBio long-read sequencing. Mol Biol Rep 2023; 50:3119-3127. [PMID: 36692677 PMCID: PMC10042914 DOI: 10.1007/s11033-022-08170-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/01/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND The filaggrin (FLG) protein, encoded by the FLG gene, is an intermediate filament-associated protein that plays a crucial role in the terminal stages of human epidermal differentiation. Loss-of-function mutations in the FLG exon 3 have been associated with skin diseases. The identification of causative mutations is challenging, due to the high sequence homology within its exon 3 (12,753 bp), which includes 10 to 12 filaggrin tandem repeats. With this study we aimed to obtain the whole FLG exon 3 sequence through PacBio technology, once 13-kb amplicons have been generated. METHODS AND RESULTS For the preparation of SMRTbell libraries to be sequenced using PacBio technology, we focused on optimizing a 2-step long-range PCR protocol to generate 13-kb amplicons covering the whole FLG exon 3 sequence. The performance of three long-range DNA polymerases was assessed in an attempt to improve the PCR conditions required for the enzymes to function properly. We focused on optimization of the input template DNA concentration and thermocycling parameters to correctly amplify the entire FLG exon 3 sequence, minimizing non-specific amplification. CONCLUSIONS Taken together, our findings suggested that the PrimeSTAR protocol is suitable for producing the amplicons of the 13-kb FLG whole exon 3 to prepare SMRTbell libraries. We suggest that sequencing the generated amplicons may be useful for identifying LoF variants that are causative of the patients' disorders.
Collapse
|
15
|
Wu D, Zhang L, Qiang Y, Wang K. Improved detection of SBDS gene mutation by a new method of next-generation sequencing analysis based on the Chinese mutation spectrum. PLoS One 2022; 17:e0269029. [PMID: 36512530 PMCID: PMC9747038 DOI: 10.1371/journal.pone.0269029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 05/13/2022] [Indexed: 12/15/2022] Open
Abstract
Next-generation sequencing (NGS) is a useful molecular diagnostic tool for genetic diseases. However, due to the presence of highly homologous pseudogenes, it is challenging to use short-read NGS for analyzing mutations of the Shwachman-Bodian-Diamond syndrome (SBDS) gene. The SBDS mutation spectrum was analyzed in the Chinese population, which revealed that SBDS variants were primarily from sequence exchange between SBDS and its pseudogene at the base-pair level, predominantly in the coding region and splice junction of exon two. The c.258+2T>C and c.185_184TA>GT variants were the two most common pathogenic SBDS variants in the Chinese population, resulting in a total carrier frequency of 1.19%. When analyzing pathogenic variants in the SBDS gene from the NGS data, the misalignment was identified as a common issue, and there were different probabilities of misalignment for different pathogenic variants. Here, we present a novel mathematical method for identifying pathogenic variants in the SBDS gene from the NGS data, which utilizes read-depth of the paralogous sequence variant (PSV) loci of SBDS and its pseudogene. Combined with PCR and STR orthogonal experiments, SBDS gene mutation analysis results were improved in 40% of clinical samples, and various types of mutations such as homozygous, compound heterozygous, and uniparental diploid were explored. The findings effectively reduce the impact of misalignment in NGS-based SBDS mutation analysis and are helpful for the clinical diagnosis of SBDS-related diseases, the research into population variation, and the carrier screening.
Collapse
Affiliation(s)
- Dong Wu
- Department of Obstetrics and Gynecology, 900 Hospital of the Joint Logistics Team or Dongfang Hospital, Fuzhou, Fujian, People’s Republic of China
| | - Li Zhang
- Fulgent (Fujian) Technologies, Fuzhou, Fujian, People’s Republic of China
| | - Yuzhen Qiang
- Fulgent (Fujian) Technologies, Fuzhou, Fujian, People’s Republic of China
| | - Kaiyu Wang
- Fulgent (Fujian) Technologies, Fuzhou, Fujian, People’s Republic of China
- * E-mail:
| |
Collapse
|
16
|
Ahmad E, Ali A, Nimisha, Kumar Sharma A, Ahmed F, Mehdi Dar G, Mohan Singh A, Apurva, Kumar A, Athar A, Parveen F, Mahajan B, Singh Saluja S. Molecular approaches in cancer. Clin Chim Acta 2022; 537:60-73. [DOI: https:/doi.org/10.1016/j.cca.2022.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
|
17
|
Rendtorff ND, Karstensen HG, Lodahl M, Tolmie J, McWilliam C, Bak M, Tommerup N, Nazaryan-Petersen L, Kunst H, Wong M, Joss S, Carelli V, Tranebjærg L. Identification and analysis of deletion breakpoints in four Mohr-Tranebjærg syndrome (MTS) patients. Sci Rep 2022; 12:14959. [PMID: 36056138 PMCID: PMC9440042 DOI: 10.1038/s41598-022-18040-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 08/04/2022] [Indexed: 11/25/2022] Open
Abstract
Mohr-Tranebjærg syndrome is an X-linked syndrome characterized by sensorineural hearing impairment in childhood, followed by progressive neurodegeneration leading to a broad phenotypic spectrum. Genetically MTS is caused by pathogenic variants in the TIMM8A gene, including gene deletions and larger contiguous gene deletions. Some of the latter involve the neighboring gene BTK, resulting in agammaglobulinemia. By next-generation mate-pair sequencing we have mapped the chromosomal deletion breakpoints of one MTS case and three XLA-MTS cases and used breakpoint-spanning PCR to fine map the breakpoints by Sanger sequencing. Two of the XLA-MTS cases presented with large deletions (63.5 and 27.2 kb), and the junctional regions were characterized by long stretches of microhomology, indicating that the events have emerged through homologous recombination. Conversely, the MTS case exhibited a small 2 bp region of microhomology, and the regions were not characterized by extensive microhomology. The third XLA-MTS case had a more complex breakpoint, including a 59 bp inverted insertion, thus at least four breakpoints were involved in this event. In conclusion, mate-pair library generation combined with next-generation sequencing is an efficient method for breakpoint identification, also in regions characterized by repetitive elements.
Collapse
Affiliation(s)
- Nanna Dahl Rendtorff
- Department of Clinical Genetics, Center of Diagnostics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Helena Gásdal Karstensen
- Department of Clinical Genetics, Center of Diagnostics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Marianne Lodahl
- Department of Clinical Genetics, Center of Diagnostics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - John Tolmie
- Clinical Genetics Service, Laboratory Medicine Building, Southern General Hospital, Glasgow, Scotland
| | - Catherine McWilliam
- Clinical Genetics, Human Genetics Unit, Ninewells Hospital, Dundee, Scotland
| | - Mads Bak
- Department of Clinical Genetics, Center of Diagnostics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Wilhelm Johannsen Center for Functional Genome Research, University of Copenhagen, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Niels Tommerup
- Wilhelm Johannsen Center for Functional Genome Research, University of Copenhagen, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lusine Nazaryan-Petersen
- Wilhelm Johannsen Center for Functional Genome Research, University of Copenhagen, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- Center for Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Henricus Kunst
- Department of Otorhinolaryngology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Otorhinolaryngology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Melanie Wong
- Department of Allergy and Immunology, The Children's Hospital at Westmead, Sydney, Australia
| | - Shelagh Joss
- West of Scotland Centre for Genomic Medicine, Queen Elizabeth University Hospital, Glasgow, UK
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
- Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Lisbeth Tranebjærg
- Department of Clinical Genetics, Center of Diagnostics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
18
|
Target Enrichment Approaches for Next-Generation Sequencing Applications in Oncology. Diagnostics (Basel) 2022; 12:diagnostics12071539. [PMID: 35885445 PMCID: PMC9318977 DOI: 10.3390/diagnostics12071539] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022] Open
Abstract
Screening for genomic sequence variants in genes of predictive and prognostic significance is an integral part of precision medicine. Next-generation sequencing (NGS) technologies are progressively becoming platforms of choice to facilitate this, owing to their massively parallel sequencing capability, which can be used to simultaneously screen multiple markers in multiple samples for a variety of variants (single nucleotide and multi nucleotide variants, insertions and deletions, gene copy number variations, and fusions). A crucial step in the workflow of targeted NGS is the enrichment of the genomic regions of interest to be sequenced, against the whole genomic background. This ensures that the NGS effort is focused to predominantly screen target regions of interest with minimal off-target sequencing, making it more accurate and economical. Polymerase chain reaction-based (PCR, or amplicon-based) and hybridization capture-based methodologies are the two prominent approaches employed for target enrichment. This review summarizes the basic principles of target enrichment utilized by these methods, their multiple variations that have evolved over time, automation approaches, overall comparison of their advantages and drawbacks, and commercially available choices for these methodologies.
Collapse
|
19
|
Budharaju H, Zennifer A, Sethuraman S, Paul A, Sundaramurthi D. Designer DNA biomolecules as a defined biomaterial for 3D bioprinting applications. MATERIALS HORIZONS 2022; 9:1141-1166. [PMID: 35006214 DOI: 10.1039/d1mh01632f] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
DNA has excellent features such as the presence of functional and targeted molecular recognition motifs, tailorability, multifunctionality, high-precision molecular self-assembly, hydrophilicity, and outstanding biocompatibility. Due to these remarkable features, DNA has emerged as a leading next-generation biomaterial of choice to make hydrogels by self-assembly. In recent times, novel routes for the chemical synthesis of DNA, advances in tailorable designs, and affordable production ways have made DNA as a building block material for various applications. These advanced features have made researchers continuously explore the interesting properties of pure and hybrid DNA for 3D bioprinting and other biomedical applications. This review article highlights the topical advancements in the use of DNA as an ideal bioink for the bioprinting of cell-laden three-dimensional tissue constructs for regenerative medicine applications. Various bioprinting techniques and emerging design approaches such as self-assembly, nucleotide sequence, enzymes, and production cost to use DNA as a bioink for bioprinting applications are described. In addition, various types and properties of DNA hydrogels such as stimuli responsiveness and mechanical properties are discussed. Further, recent progress in the applications of DNA in 3D bioprinting are emphasized. Finally, the current challenges and future perspectives of DNA hydrogels in 3D bioprinting and other biomedical applications are discussed.
Collapse
Affiliation(s)
- Harshavardhan Budharaju
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India.
| | - Allen Zennifer
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India.
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India.
| | - Arghya Paul
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Dhakshinamoorthy Sundaramurthi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India.
| |
Collapse
|
20
|
Chen H, Xue J, Zhang Z, Zhang G, Xu X, Li H, Zhang R, Ullah N, Chen L, Amanullah, Zang Z, Lai S, He X, Li W, Guan M, Li J, Chen L, Deng C. High-speed rail model reveals the gene tandem amplification mediated by short repeated sequence in eukaryote. Sci Rep 2022; 12:2289. [PMID: 35145182 PMCID: PMC8831618 DOI: 10.1038/s41598-022-06250-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/24/2022] [Indexed: 02/08/2023] Open
Abstract
The occurrence of gene duplication/amplification (GDA) provide potential material for adaptive evolution with environmental stress. Several molecular models have been proposed to explain GDA, recombination via short stretches of sequence similarity plays a crucial role. By screening genomes for such events, we propose a “SRS (short repeated sequence) *N + unit + SRS*N” amplified unit under USCE (unequal sister-chromatid exchange) for tandem amplification mediated by SRS with different repeat numbers in eukaryotes. The amplified units identified from 2131 well-organized amplification events that generate multi gene/element copy amplified with subsequent adaptive evolution in the respective species. Genomic data we analyzed showed dynamic changes among related species or subspecies or plants from different ecotypes/strains. This study clarifies the characteristics of variable copy number SRS on both sides of amplified unit under USCE mechanism, to explain well-organized gene tandem amplification under environmental stress mediated by SRS in all eukaryotes.
Collapse
Affiliation(s)
- Haidi Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, 210023, China
| | - Jingwen Xue
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, 210023, China
| | - Zhenghou Zhang
- The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Geyu Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, 210023, China
| | - Xinyuan Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, 210023, China
| | - He Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, 210023, China
| | - Ruxue Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, 210023, China
| | - Najeeb Ullah
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, 210023, China
| | - Lvxing Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, 210023, China
| | - Amanullah
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, 210023, China
| | - Zhuqing Zang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, 210023, China
| | - Shanshan Lai
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, 210023, China
| | - Ximiao He
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Wei Li
- Department of Dermatovenereology, Institutes for Systems Genetics, Rare Disease Center, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang Street, Chengdu, 610041, Sichuan, China
| | - Miao Guan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, 210023, China.
| | - Jingyi Li
- M.D. Department of Dermatology and Venereology, West China Hospital of Sichuan University, No. 37 Guo Xue Lane, Chengdu, 610041, China.
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Institute of Experimental Pathology, Shanghai Ocean University, Shanghai, 201306, China.
| | - Cheng Deng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, 210023, China.
| |
Collapse
|
21
|
PCR enhancers: Types, mechanisms, and applications in long-range PCR. Biochimie 2022; 197:130-143. [DOI: 10.1016/j.biochi.2022.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/06/2022] [Accepted: 02/24/2022] [Indexed: 12/21/2022]
|
22
|
Long range PCR reveals the genetic cargo of IncP-1 plasmids in the complex microbial community of an on-farm biopurification system treating pesticide contaminated wastewater. Appl Environ Microbiol 2021; 88:e0164821. [PMID: 34878814 DOI: 10.1128/aem.01648-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Promiscuous plasmids like IncP-1 plasmids play an important role in the bacterial adaptation to pollution by acquiring and distributing xenobiotic catabolic genes. However, most information comes from isolates and the role of plasmids in governing community-wide bacterial adaptation to xenobiotics and other adaptive forces is not fully understood. Current information on the contribution of IncP-1 plasmids in community adaptation is limited because methods are lacking that directly isolate and identify the plasmid borne adaptive functions in whole-community DNA. In this study, we optimized long range PCR to directly access and identify the cargo carried by IncP-1 plasmids in environmental DNA. The DNA between the IncP-1 backbone genes trbP and traC, a main insertion site of adaptive trait determinants, is amplified and its content analysed by high-throughput sequencing. The method was applied to DNA of an on-farm biopurification system (BPS), treating pesticide contaminated wastewater, to examine whether horizontal gene exchange of catabolic functions by IncP-1 plasmids is a main driver of community adaptation in BPS. The cargo recovered from BPS community DNA, encoded catabolic but also resistance traits and various other (un)known functions. Unexpectedly, catabolic traits composed only a minor fraction of the cargo, indicating that the IncP-1 region between trbP and traC is not a major contributor to catabolic adaptation of the BPS microbiome. Instead, it contains a functionally diverse set of genes which either may assist biodegradation functions, be remnants of random gene recruitment, or confer other crucial functions for proliferation in the BPS environment. IMPORTANCE This study presents a long range PCR for direct and cultivation-independent access to the identity of the cargo of a major insertion hot spot of adaptive genes in IncP-1 plasmids and hence a new mobilome tool for understanding the role of IncP-1 plasmids in complex communities. The method was applied to DNA of an on-farm biopurification system (BPS) treating pesticide-contaminated wastewater, aiming at new insights on whether horizontal exchange of catabolic functions by IncP-1 plasmids is a main driver of community adaptation in BPS. Unexpectedly, catabolic functions represented a small fraction of the cargo genes while multiple other gene functions were recovered. These results show that the cargo of the target insertion hot spot in IncP-1 plasmids in a community, not necessarily relates to the main selective trait imposed on that community. Instead these functions might contribute to adaptation to unknown selective forces or represent remnants of random gene recruitment.
Collapse
|
23
|
Fitzpatrick AH, Rupnik A, O'Shea H, Crispie F, Keaveney S, Cotter P. High Throughput Sequencing for the Detection and Characterization of RNA Viruses. Front Microbiol 2021; 12:621719. [PMID: 33692767 PMCID: PMC7938315 DOI: 10.3389/fmicb.2021.621719] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
This review aims to assess and recommend approaches for targeted and agnostic High Throughput Sequencing of RNA viruses in a variety of sample matrices. HTS also referred to as deep sequencing, next generation sequencing and third generation sequencing; has much to offer to the field of environmental virology as its increased sequencing depth circumvents issues with cloning environmental isolates for Sanger sequencing. That said however, it is important to consider the challenges and biases that method choice can impart to sequencing results. Here, methodology choices from RNA extraction, reverse transcription to library preparation are compared based on their impact on the detection or characterization of RNA viruses.
Collapse
Affiliation(s)
- Amy H. Fitzpatrick
- Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
- Shellfish Microbiology, Marine Institute, Oranmore, Ireland
- Biological Sciences, Munster Technological University, Cork, Ireland
| | | | - Helen O'Shea
- Biological Sciences, Munster Technological University, Cork, Ireland
| | - Fiona Crispie
- Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
| | | | - Paul Cotter
- Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
| |
Collapse
|
24
|
Phylogeographic Genetic Diversity in the White Sucker Hepatitis B Virus across the Great Lakes Region and Alberta, Canada. Viruses 2021; 13:v13020285. [PMID: 33673082 PMCID: PMC7918172 DOI: 10.3390/v13020285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B viruses belong to a family of circular, double-stranded DNA viruses that infect a range of organisms, with host responses that vary from mild infection to chronic infection and cancer. The white sucker hepatitis B virus (WSHBV) was first described in the white sucker (Catostomus commersonii), a freshwater teleost, and belongs to the genus Parahepadnavirus. At present, the host range of WSHBV and its impact on fish health are unknown, and neither genetic diversity nor association with fish health have been studied in any parahepadnavirus. Given the relevance of genomic diversity to disease outcome for the orthohepadnaviruses, we sought to characterize genomic variation in WSHBV and determine how it is structured among watersheds. We identified WSHBV-positive white sucker inhabiting tributaries of Lake Michigan, Lake Superior, Lake Erie (USA), and Lake Athabasca (Canada). Copy number in plasma and in liver tissue was estimated via qPCR. Templates from 27 virus-positive fish were amplified and sequenced using a primer-specific, circular long-range amplification method coupled with amplicon sequencing on the Illumina MiSeq. Phylogenetic analysis of the WSHBV genome identified phylogeographical clustering reminiscent of that observed with human hepatitis B virus genotypes. Notably, most non-synonymous substitutions were found to cluster in the pre-S/spacer overlap region, which is relevant for both viral entry and replication. The observed predominance of p1/s3 mutations in this region is indicative of adaptive change in the polymerase open reading frame (ORF), while, at the same time, the surface ORF is under purifying selection. Although the levels of variation we observed do not meet the criteria used to define sub/genotypes of human and avian hepadnaviruses, we identified geographically associated genome variation in the pre-S and spacer domain sufficient to define five WSHBV haplotypes. This study of WSHBV genetic diversity should facilitate the development of molecular markers for future identification of genotypes and provide evidence in future investigations of possible differential disease outcomes.
Collapse
|
25
|
Togi S, Ura H, Niida Y. Optimization and Validation of Multimodular, Long-Range PCR-Based Next-Generation Sequencing Assays for Comprehensive Detection of Mutation in Tuberous Sclerosis Complex. J Mol Diagn 2021; 23:424-446. [PMID: 33486073 DOI: 10.1016/j.jmoldx.2020.12.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/01/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
The genetic diagnosis of tuberous sclerosis complex is difficult because of its broad spectrum of mutations. In addition to point mutations in coding regions, intragenic or chromosomal-level large deletions, deep intronic splicing mutations, and mosaic mutations represent a significant proportion of the mutations. In this study, multimodular, long-range PCR-based next-generation sequencing assays were optimized and validated using >100 samples with known TSC1 and TSC2 variants. Multiplex, long-range PCR covering the entire genomic region of both genes detected all 138 known variants; however, it also yielded false-positive results. Intragenic large deletions were detected with accurate breakpoint sequences. Chromosomal-level deletions were estimated by discordant allele segregation in the family and confirmed by DNA microarray. Deep intronic mutations were verified using a combination of long-range DNA PCR and full-length mRNA sequencing. DNA samples were mixed to simulate mosaic mutations, and most variants were detected but could not be distinguished from equivalently detected false-positive results. Repeated false-positive results were classified, and the strategy of selecting the common variants detected in the duplicate analysis and eliminating known false-positive results improved the sensitivity (85.2%) and positive predictive value (96.6%) of a 10% mosaic simulation. Long-range PCRbased next-generation sequencing is a highly versatile genetic test; however, confirmation tests remain necessary for clinical use because false-positive results cannot be completely eliminated from single experiments.
Collapse
Affiliation(s)
- Sumihito Togi
- Center for Clinical Genomics, Kanazawa Medical University, Uchinada, Japan
| | - Hiroki Ura
- Center for Clinical Genomics, Kanazawa Medical University, Uchinada, Japan
| | - Yo Niida
- Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan.
| |
Collapse
|
26
|
Fazzini F, Fendt L, Schönherr S, Forer L, Schöpf B, Streiter G, Losso JL, Kloss-Brandstätter A, Kronenberg F, Weissensteiner H. Analyzing Low-Level mtDNA Heteroplasmy-Pitfalls and Challenges from Bench to Benchmarking. Int J Mol Sci 2021; 22:ijms22020935. [PMID: 33477827 PMCID: PMC7832847 DOI: 10.3390/ijms22020935] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/05/2021] [Accepted: 01/15/2021] [Indexed: 12/27/2022] Open
Abstract
Massive parallel sequencing technologies are promising a highly sensitive detection of low-level mutations, especially in mitochondrial DNA (mtDNA) studies. However, processes from DNA extraction and library construction to bioinformatic analysis include several varying tasks. Further, there is no validated recommendation for the comprehensive procedure. In this study, we examined potential pitfalls on the sequencing results based on two-person mtDNA mixtures. Therefore, we compared three DNA polymerases, six different variant callers in five mixtures between 50% and 0.5% variant allele frequencies generated with two different amplification protocols. In total, 48 samples were sequenced on Illumina MiSeq. Low-level variant calling at the 1% variant level and below was performed by comparing trimming and PCR duplicate removal as well as six different variant callers. The results indicate that sensitivity, specificity, and precision highly depend on the investigated polymerase but also vary based on the analysis tools. Our data highlight the advantage of prior standardization and validation of the individual laboratory setup with a DNA mixture model. Finally, we provide an artificial heteroplasmy benchmark dataset that can help improve somatic variant callers or pipelines, which may be of great interest for research related to cancer and aging.
Collapse
Affiliation(s)
- Federica Fazzini
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (F.F.); (L.F.); (S.S.); (L.F.); (B.S.); (G.S.); (J.L.L.); (A.K.-B.); (F.K.)
| | - Liane Fendt
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (F.F.); (L.F.); (S.S.); (L.F.); (B.S.); (G.S.); (J.L.L.); (A.K.-B.); (F.K.)
| | - Sebastian Schönherr
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (F.F.); (L.F.); (S.S.); (L.F.); (B.S.); (G.S.); (J.L.L.); (A.K.-B.); (F.K.)
| | - Lukas Forer
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (F.F.); (L.F.); (S.S.); (L.F.); (B.S.); (G.S.); (J.L.L.); (A.K.-B.); (F.K.)
| | - Bernd Schöpf
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (F.F.); (L.F.); (S.S.); (L.F.); (B.S.); (G.S.); (J.L.L.); (A.K.-B.); (F.K.)
| | - Gertraud Streiter
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (F.F.); (L.F.); (S.S.); (L.F.); (B.S.); (G.S.); (J.L.L.); (A.K.-B.); (F.K.)
| | - Jamie Lee Losso
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (F.F.); (L.F.); (S.S.); (L.F.); (B.S.); (G.S.); (J.L.L.); (A.K.-B.); (F.K.)
| | - Anita Kloss-Brandstätter
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (F.F.); (L.F.); (S.S.); (L.F.); (B.S.); (G.S.); (J.L.L.); (A.K.-B.); (F.K.)
- Carinthia University of Applied Sciences, A-9524 Villach, Austria
| | - Florian Kronenberg
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (F.F.); (L.F.); (S.S.); (L.F.); (B.S.); (G.S.); (J.L.L.); (A.K.-B.); (F.K.)
| | - Hansi Weissensteiner
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (F.F.); (L.F.); (S.S.); (L.F.); (B.S.); (G.S.); (J.L.L.); (A.K.-B.); (F.K.)
- Correspondence: ; Tel.: +43-512-9003-70564
| |
Collapse
|
27
|
Resolving misalignment interference for NGS-based clinical diagnostics. Hum Genet 2020; 140:477-492. [PMID: 32915251 DOI: 10.1007/s00439-020-02216-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/31/2020] [Indexed: 01/18/2023]
Abstract
Next-generation sequencing (NGS) is an incredibly useful tool for genetic disease diagnosis. However, the most commonly used bioinformatics methods for analyzing sequence reads insufficiently discriminate genomic regions with extensive sequence identity, such as gene families and pseudogenes, complicating diagnostics. This problem has been recognized for specific genes, including many involved in human disease, and diagnostic labs must perform additional costly steps to guarantee accurate diagnosis in these cases. Here we report a new data analysis method based on the comparison of read depth between highly homologous regions to identify misalignment. Analyzing six clinically important genes-CYP21A2, GBA, HBA1/2, PMS2, and SMN1-each exhibiting misalignment issues related to homology, we show that our technique can correctly identify potential misalignment events and be used to make appropriate calls. Combined with long-range PCR and/or MLPA orthogonal testing, our clinical laboratory can improve variant calling with minimal additional cost. We propose an accurate and cost-efficient NGS testing procedure that will benefit disease diagnostics, carrier screening, and research-based population studies.
Collapse
|
28
|
Stockton JD, Nieto T, Wroe E, Poles A, Inston N, Briggs D, Beggs AD. Rapid, highly accurate and cost-effective open-source simultaneous complete HLA typing and phasing of class I and II alleles using nanopore sequencing. HLA 2020; 96:163-178. [PMID: 32419382 DOI: 10.1111/tan.13926] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 02/02/2023]
Abstract
Accurate rapid genotyping of the genes within the HLA region presents many difficulties because of the complexity of this region. Here we present the results of our proof of concept nanopore-based long read polymerase chain reaction (PCR) solution for HLA genotyping. For 15 HLA anthropology-based samples and 13 NHS Blood and Transplant derived samples 40 ng of genomic DNA underwent long-range PCR for class I and II HLA alleles. Pooled PCR products were sequenced on the Oxford Nanopore MinIoON R9.4.1 flow cell. Sequenced reads had HLA genotype assigned with HLA-LA. Called genotypes were compared with reference derived from a combination of short-read next-generation sequencing, Sanger sequence and/or single-site polymorphism (SSP) typing. For concordance, accuracy was 100%, 98.4%, 97.5% and 95.1% for the first, second, third and fourth fields, respectively, to four field accuracy where it was available, otherwise three field in 28 samples for class I calls and 17 samples for class II calls. Phasing of maternal and paternal alleles, as well as phasing based identification of runs of homozygosity, was shown successfully. Time for assay run was 8 hours and the reconstruction of HLA typing data was 15 minutes. Assay cost was £55 ($80USD)/sample. We have developed a rapid and cost-effective long-range PCR and nanopore sequencing-based assay that can genotype the genes within HLA region to up to four field accuracy, identify runs of homozygosity in HLA, reconstruct maternal and paternal haplotypes and can be scaled from multi-sample runs to a single sample.
Collapse
Affiliation(s)
- Joanne D Stockton
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Thomas Nieto
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | | | | | | | | | - Andrew D Beggs
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
29
|
Zhigalina DI, Skryabin NA, Vasilieva OY, Lopatkina ME, Vasiliev SA, Sivokha VM, Belyaeva EO, Savchenko RR, Nazarenko LP, Lebedev IN. FISH Diagnostics of Chromosomal Translocation with the Technology of Synthesis of Locus-Specific DNA Probes Based on Long-Range PCR. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420060150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Fichou Y, Berlivet I, Richard G, Tournamille C, Castilho L, Férec C. Defining Blood Group Gene Reference Alleles by Long-Read Sequencing: Proof of Concept in the ACKR1 Gene Encoding the Duffy Antigens. Transfus Med Hemother 2019; 47:23-32. [PMID: 32110191 DOI: 10.1159/000504584] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/01/2019] [Indexed: 01/31/2023] Open
Abstract
Background In the novel era of blood group genomics, (re-)defining reference gene/allele sequences of blood group genes has become an important goal to achieve, both for diagnostic and research purposes. As novel potent sequencing technologies are available, we thought to investigate the variability encountered in the three most common alleles of ACKR1, the gene encoding the clinically relevant Duffy antigens, at the haplotype level by a long-read sequencing approach. Materials and Methods After long-range PCR amplification spanning the whole ACKR1 gene locus (∼2.5 kilobases), amplicons generated from 81 samples with known genotypes were sequenced in a single read by using the Pacific Biosciences (PacBio) single molecule, real-time (SMRT) sequencing technology. Results High-quality sequencing reads were obtained for the 162 alleles (accuracy >0.999). Twenty-two nucleotide variations reported in databases were identified, defining 19 haplotypes: four, eight, and seven haplotypes in 46 ACKR1*01, 63 ACKR1*02, and 53 ACKR1*02N.01 alleles, respectively. Discussion Overall, we have defined a subset of reference alleles by third-generation (long-read) sequencing. This technology, which provides a "longitudinal" overview of the loci of interest (several thousand base pairs) and is complementary to the second-generation (short-read) next-generation sequencing technology, is of critical interest for resolving novel, rare, and null alleles.
Collapse
Affiliation(s)
- Yann Fichou
- EFS, Inserm, Univ Brest, UMR 1078, GGB, Brest, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | | | | | - Christophe Tournamille
- Laboratoire d'Excellence GR-Ex, Paris, France.,IMRB-Inserm U955 Equipe 2 Transfusion et Maladies du Globule Rouge, EFS Ile-de-France, Créteil, France
| | | | - Claude Férec
- EFS, Inserm, Univ Brest, UMR 1078, GGB, Brest, France.,Laboratoire de Génétique Moléculaire et d'Histocompatibilité, CHU Morvan, Brest, France
| |
Collapse
|
31
|
Shin G, Greer SU, Xia LC, Lee H, Zhou J, Boles TC, Ji HP. Targeted short read sequencing and assembly of re-arrangements and candidate gene loci provide megabase diplotypes. Nucleic Acids Res 2019; 47:e115. [PMID: 31350896 PMCID: PMC6821272 DOI: 10.1093/nar/gkz661] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 07/02/2019] [Accepted: 07/18/2019] [Indexed: 11/12/2022] Open
Abstract
The human genome is composed of two haplotypes, otherwise called diplotypes, which denote phased polymorphisms and structural variations (SVs) that are derived from both parents. Diplotypes place genetic variants in the context of cis-related variants from a diploid genome. As a result, they provide valuable information about hereditary transmission, context of SV, regulation of gene expression and other features which are informative for understanding human genetics. Successful diplotyping with short read whole genome sequencing generally requires either a large population or parent-child trio samples. To overcome these limitations, we developed a targeted sequencing method for generating megabase (Mb)-scale haplotypes with short reads. One selects specific 0.1-0.2 Mb high molecular weight DNA targets with custom-designed Cas9-guide RNA complexes followed by sequencing with barcoded linked reads. To test this approach, we designed three assays, targeting the BRCA1 gene, the entire 4-Mb major histocompatibility complex locus and 18 well-characterized SVs, respectively. Using an integrated alignment- and assembly-based approach, we generated comprehensive variant diplotypes spanning the entirety of the targeted loci and characterized SVs with exact breakpoints. Our results were comparable in quality to long read sequencing.
Collapse
Affiliation(s)
- GiWon Shin
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stephanie U Greer
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Li C Xia
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - HoJoon Lee
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jun Zhou
- Sage Science, Inc., Beverly, MA 01915, USA
| | | | - Hanlee P Ji
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA
| |
Collapse
|
32
|
Ishige T, Itoga S, Kawasaki K, Utsuno E, Beppu M, Sawai S, Nishimura M, Ichikawa T, Nomura F, Matsushita K. Evaluation of analytical factors associated with targeted MEFV gene sequencing using long-range PCR/massively parallel sequencing of whole blood DNA for molecular diagnosis of Familial Mediterranean fever. Clin Chim Acta 2019; 495:562-569. [DOI: 10.1016/j.cca.2019.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/27/2019] [Accepted: 06/03/2019] [Indexed: 10/26/2022]
|
33
|
Long-range PCR and high-throughput sequencing of Ostreid herpesvirus 1 indicate high genetic diversity and complex evolution process. Virology 2019; 526:81-90. [DOI: 10.1016/j.virol.2018.09.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/29/2018] [Accepted: 09/29/2018] [Indexed: 12/11/2022]
|
34
|
Cui W, Li X, Hull L, Xiao M. Measuring radiation-induced DNA damage in Cryptococcus neoformans and Saccharomyces cerevisiae using long range quantitative PCR. PLoS One 2018; 13:e0207071. [PMID: 30408089 PMCID: PMC6224075 DOI: 10.1371/journal.pone.0207071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/24/2018] [Indexed: 11/19/2022] Open
Abstract
DNA damage has been considered to be the universal critical lesion in cells after exposure to ionizing radiation. Measuring radiation-induced DNA damage is important to understand the mechanisms of radiation-induced toxicity and monitor DNA damage repairs. Currently the most widely used methods to measure DNA damage are pulsed-field gel electrophoresis (PFGF) and single-cell gel electrophoresis (also known as the comet assay), both of which are technically challenging and time consuming. Long range quantitative polymerase chain reaction (LR-QPCR) has been used successfully to measure nuclear and mitochondrial DNA damage in mammalian and several model organism cells. The principle of this assay is that DNA lesions will slow down or block the progression of DNA polymerase. Therefore, the amplification efficiency of DNA with fewer lesions will be higher than DNA with more lesions under the same reaction condition. Here, we developed the LR-QPCR assay primers and reaction conditions to quantify DNA damage in Cryptococcus neoformans (C. neoformans) and Saccharomyces cerevisiae (S. cerevisiae) after gamma ray exposure. Under these conditions, long DNA targets of C. neoformans H99 and S. cerevisiae BY4741 (17.6 and 16.4 kb for nuclear DNA and 15.3 and 14.6 kb for mitochondrial DNA) were quantitatively amplified using extracted DNA templates, respectively. Two short mitochondrial DNA targets of these two species (207 bp and 154 bp) were also quantitatively amplified and used to monitor the number of mitochondria. Using the LR-QPCR method, we showed that the frequency of radiation-induced mitochondrial and nuclear DNA lesions had a significant linear correlation with the radiation doses (from 500 Gy to 3000 Gy) in both species. Furthermore, the faster disappearance of DNA damage detected in C. neoformans H99S strain compared to H99 strain may help to explain the different radiation sensitivity of these two strains. In summary, we developed a simple, sensitive method to measure radiation-induced DNA damage, which can greatly facilitate the study of radiation-induced toxicity and can be widely used as a dosimetry in radiation-induced cell damage.
Collapse
Affiliation(s)
- Wanchang Cui
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - XiangHong Li
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Lisa Hull
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Mang Xiao
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|
35
|
Walczak M, Skrzypczak-Zielinska M, Plucinska M, Zakerska-Banaszak O, Marszalek D, Lykowska-Szuber L, Stawczyk-Eder K, Dobrowolska A, Slomski R. Long-range PCR libraries and next-generation sequencing for pharmacogenetic studies of patients treated with anti-TNF drugs. THE PHARMACOGENOMICS JOURNAL 2018; 19:358-367. [PMID: 30293984 DOI: 10.1038/s41397-018-0058-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 08/06/2018] [Accepted: 08/14/2018] [Indexed: 12/30/2022]
Abstract
Biological therapy with anti-tumor necrosis factor-α (anti-TNF-α) monoclonal antibodies significantly increased the effectiveness of autoimmune disease treatment compared with conventional medicines. However, anti-TNF-α drugs are relatively expensive and a response to the therapy is reported in only 60-70% of patients. Moreover, in up to 5% of patients adverse drug reactions occur. The various effects of biological treatment may be a potential consequence of interindividual genetic variability. Only a few studies have been conducted in this field and which refer to single gene loci. Our aim was to design and optimize a methodology for a broader application of pharmacogenetic studies in patients undergoing anti-TNF-α treatment. Based on the current knowledge, we selected 16 candidate genes: TNFRSF1A, TNFRSF1B, ADAM17, CASP9, FCGR3A, LTA, TNF, FAS, IL1B, IL17A, IL6, MMP1, MMP3, S100A8, S100A9, and S100A12, which are potentially involved in the response to anti-TNF-α therapy. As a research model, three DNA samples from Crohn's disease (CD) patients were used. Targeted genomic regions were amplified in 23 long-range (LR) PCR reactions and after enzymatic fragmentation amplicon libraries were prepared and analyzed by next-generation sequencing (NGS). Our results indicated 592 sequence variations located in all fragments with coverage range of 5-1089. We demonstrate a highly sensitive, flexible, rapid, and economical approach to the pharmacogenetic investigation of anti-TNF-α therapy using amplicon libraries and NGS technology.
Collapse
Affiliation(s)
- Michal Walczak
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | | | - Marianna Plucinska
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland
| | - Oliwia Zakerska-Banaszak
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - Daria Marszalek
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - Liliana Lykowska-Szuber
- Department of Gastroenterology, Dietetics and Internal Diseases, University of Medical Sciences, Przybyszewskiego 49, 60-355, Poznan, Poland
| | - Kamila Stawczyk-Eder
- Department of Gastroenterology, Dietetics and Internal Diseases, University of Medical Sciences, Przybyszewskiego 49, 60-355, Poznan, Poland
| | - Agnieszka Dobrowolska
- Department of Gastroenterology, Dietetics and Internal Diseases, University of Medical Sciences, Przybyszewskiego 49, 60-355, Poznan, Poland
| | - Ryszard Slomski
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland.,Department of Biochemistry and Biotechnology, University of Life Sciences, Dojazd 11, 60-632, Poznan, Poland
| |
Collapse
|
36
|
Isaacs SR, Kim KW, Cheng JX, Bull RA, Stelzer-Braid S, Luciani F, Rawlinson WD, Craig ME. Amplification and next generation sequencing of near full-length human enteroviruses for identification and characterisation from clinical samples. Sci Rep 2018; 8:11889. [PMID: 30089864 PMCID: PMC6082906 DOI: 10.1038/s41598-018-30322-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/19/2018] [Indexed: 12/16/2022] Open
Abstract
More than 100 different enterovirus (EV) genotypes infect humans and contribute to substantial morbidity. However, current methods for characterisation of full-length genomes are based on Sanger sequencing of short genomic regions, which are labour-intensive and do not enable comprehensive characterisation of viral populations. Here, we describe a simple and sensitive protocol for the amplification and sequencing of near full-length genomes of human EV species using next generation sequencing. EV genomes were amplified from 89% of samples tested, with Ct values ranging between 15.7 and 39.3. These samples included 7 EV-A genotypes (CVA2, 5–7, 10, 16 and EV71), 19 EV-B genotypes (CVA9, CVB1-6, ECHO3, 4, 6, 7, 9, 11, 16, 18, 25, 29, 30, and EV69), 3 EV-C genotypes (CVA19 and PV2, 3) and 1 EV-D genotype (EV70). We characterised 70 EVs from 58 clinical stool samples and eight reference strains, with a minimum of 100X depth. We found evidence of co-infection in four clinical specimens, each containing two distinct EV genotypes (CVB3/ECHO7, CVB3/ECHO18 and ECHO9/30). Characterisation of the complete genome provided conclusive genotyping of EVs, which can be applied to investigate the intra-host virus evolution of EVs, and allows further identification and investigation of EV outbreaks.
Collapse
Affiliation(s)
- Sonia R Isaacs
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia.,Virology Research Laboratory, Prince of Wales Hospital, Sydney, NSW, 2031, Australia
| | - Ki Wook Kim
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia.,Virology Research Laboratory, Prince of Wales Hospital, Sydney, NSW, 2031, Australia
| | - Junipearl X Cheng
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rowena A Bull
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia.,Systems Medicine, Inflammation and Infection Research Centre, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sacha Stelzer-Braid
- Virology Research Laboratory, Prince of Wales Hospital, Sydney, NSW, 2031, Australia.,School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Fabio Luciani
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia.,Systems Medicine, Inflammation and Infection Research Centre, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - William D Rawlinson
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia.,Virology Research Laboratory, Prince of Wales Hospital, Sydney, NSW, 2031, Australia.,School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia.,Serology and Virology Division (SAViD), NSW Health Pathology East, Department of Microbiology, Prince of Wales Hospital, Sydney, NSW, 2031, Australia.,School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Maria E Craig
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia. .,Virology Research Laboratory, Prince of Wales Hospital, Sydney, NSW, 2031, Australia. .,Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, NSW, 2145, Australia. .,Discipline of Child and Adolescent Health, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
37
|
Liu H, Cai S, Liu J, Zhang H. Comparative mitochondrial genomic analyses of three chemosynthetic vesicomyid clams from deep-sea habitats. Ecol Evol 2018; 8:7261-7272. [PMID: 30151147 PMCID: PMC6106168 DOI: 10.1002/ece3.4153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/04/2018] [Accepted: 04/09/2018] [Indexed: 11/06/2022] Open
Abstract
Vesicomyid clams of the subfamily Pliocardinae are among the dominant chemosymbiotic bivalves found in sulfide-rich deep-sea habitats. Plastic morphologies and present molecular data could not resolve taxonomic uncertainties. The complete mitochondrial (mt) genomes will provide more data for comparative studies on molecular phylogeny and systematics of this taxonomically uncertain group, and help to clarify generic classifications. In this study, we analyze the features and evolutionary dynamics of mt genomes from three Archivesica species (Archivesica sp., Ar. gigas and Ar. pacifica) pertaining to subfamily Pliocardinae. Sequence coverage is nearly complete for the three newly sequenced mt genomes, with only the control region and some tRNA genes missing. Gene content, base composition, and codon usage are highly conserved in these pliocardiin species. Comparative analysis revealed the vesicomyid have a relatively lower ratio of Ka/Ks, and all 13 protein-coding genes (PGCs) are under strong purifying selection with a ratio of Ka/Ks far lower than one. Minimal changes in gene arrangement among vesicomyid species are due to the translocation trnaG in Isorropodon fossajaponicum. Additional tRNA genes were detected between trnaG and nad2 in Abyssogena mariana (trnaL3), Ab. phaseoliformis (trnaS3), and Phreagena okutanii (trnaM2), and display high similarity to other pliocardiin sequences at the same location. Single base insertion in multiple sites of this location could result in new tRNA genes, suggesting a possible tRNA arising from nongeneic sequence. Phylogenetic analysis based on 12 PCGs (excluding atp8) supports the monophyly of Pliocardiinae. These nearly complete mitogenomes provide relevant data for further comparative studies on molecular phylogeny and systematics of this taxonomically uncertain group of chemosymbiotic bivalves.
Collapse
Affiliation(s)
- Helu Liu
- Institute of Deep‐sea Science and EngineeringChinese Academy of SciencesSanyaChina
| | - Shanya Cai
- Institute of Deep‐sea Science and EngineeringChinese Academy of SciencesSanyaChina
| | - Jun Liu
- Institute of Deep‐sea Science and EngineeringChinese Academy of SciencesSanyaChina
| | - Haibin Zhang
- Institute of Deep‐sea Science and EngineeringChinese Academy of SciencesSanyaChina
| |
Collapse
|
38
|
Arbeithuber B, Heissl A, Tiemann-Boege I. Haplotyping of Heterozygous SNPs in Genomic DNA Using Long-Range PCR. Methods Mol Biol 2018; 1551:3-22. [PMID: 28138838 DOI: 10.1007/978-1-4939-6750-6_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
To study meiotic recombination products, cis- or trans-association of disease polymorphisms, or allele-specific expression patterns, it is necessary to phase heterozygous polymorphisms separated by several kilobases. Haplotyping using long-range polymerase chain reaction (PCR) is a powerful, cost-effective method to directly obtain the phase of multiple heterozygous sites with standard laboratory equipment in a handful of loci for many samples. The method is based on the amplification of large genomic DNA regions (up to ~40 kb) with a reaction mixture that combines a proofreading polymerase with allele-specific primer pairs that preferentially amplify matched templates. The analysis of two heterozygous SNPs requires four reactions, each containing one of the four possible allele-specific primer combinations (two forward and two reverse primers), with the mismatches occurring at the 3' ends of the primers. The two correct primer combinations will more efficiently elongate the matching alleles than the alternative alleles, and the difference in amplification efficiency can be monitored with real-time PCR.
Collapse
Affiliation(s)
- Barbara Arbeithuber
- Institute of Biophysics, Johannes Kepler University, Gruberstraße 40, Linz, 4020, Austria
| | - Angelika Heissl
- Institute of Biophysics, Johannes Kepler University, Gruberstraße 40, Linz, 4020, Austria
| | - Irene Tiemann-Boege
- Institute of Biophysics, Johannes Kepler University, Gruberstraße 40, Linz, 4020, Austria.
| |
Collapse
|
39
|
Fuselli S, Baptista RP, Panziera A, Magi A, Guglielmi S, Tonin R, Benazzo A, Bauzer LG, Mazzoni CJ, Bertorelle G. A new hybrid approach for MHC genotyping: high-throughput NGS and long read MinION nanopore sequencing, with application to the non-model vertebrate Alpine chamois (Rupicapra rupicapra). Heredity (Edinb) 2018; 121:293-303. [PMID: 29572469 PMCID: PMC6133961 DOI: 10.1038/s41437-018-0070-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/24/2018] [Accepted: 02/25/2018] [Indexed: 12/13/2022] Open
Abstract
The major histocompatibility complex (MHC) acts as an interface between the immune system and infectious diseases. Accurate characterization and genotyping of the extremely variable MHC loci are challenging especially without a reference sequence. We designed a combination of long-range PCR, Illumina short-reads, and Oxford Nanopore MinION long-reads approaches to capture the genetic variation of the MHC II DRB locus in an Italian population of the Alpine chamois (Rupicapra rupicapra). We utilized long-range PCR to generate a 9 Kb fragment of the DRB locus. Amplicons from six different individuals were fragmented, tagged, and simultaneously sequenced with Illumina MiSeq. One of these amplicons was sequenced with the MinION device, which produced long reads covering the entire amplified fragment. A pipeline that combines short and long reads resolved several short tandem repeats and homopolymers and produced a de novo reference, which was then used to map and genotype the short reads from all individuals. The assembled DRB locus showed a high level of polymorphism and the presence of a recombination breakpoint. Our results suggest that an amplicon-based NGS approach coupled with single-molecule MinION nanopore sequencing can efficiently achieve both the assembly and the genotyping of complex genomic regions in multiple individuals in the absence of a reference sequence.
Collapse
Affiliation(s)
- S Fuselli
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, Ferrara, 44121, Italy.
| | - R P Baptista
- Center for Tropical & Emerging Global Diseases, University of Georgia, 107 Paul D. Coverdell Center, 500 D. W. Brooks Drive, Athens, GA, 30602-7394, USA
| | - A Panziera
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, Ferrara, 44121, Italy.,Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach 1, San Michele all'Adige, I-38010, Italy
| | - A Magi
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla, Florence, 3-50134, Italy
| | - S Guglielmi
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, Ferrara, 44121, Italy
| | - R Tonin
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, Ferrara, 44121, Italy.,Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, Bolzano, Italy
| | - A Benazzo
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, Ferrara, 44121, Italy
| | - L G Bauzer
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil.,Berlin Center for Genomics in Biodiversity Research, Königin-Luise-Str. 6-8, Berlin, 14195, Germany
| | - C J Mazzoni
- Berlin Center for Genomics in Biodiversity Research, Königin-Luise-Str. 6-8, Berlin, 14195, Germany
| | - G Bertorelle
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, Ferrara, 44121, Italy
| |
Collapse
|
40
|
Ramamurthy M, Sankar S, Kannangai R, Nandagopal B, Sridharan G. Application of viromics: a new approach to the understanding of viral infections in humans. Virusdisease 2017; 28:349-359. [PMID: 29291225 DOI: 10.1007/s13337-017-0415-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/17/2017] [Indexed: 12/19/2022] Open
Abstract
This review is focused at exploring the strengths of modern technology driven data compiled in the areas of virus gene sequencing, virus protein structures and their implication to viral diagnosis and therapy. The information for virome analysis (viromics) is generated by the study of viral genomes (entire nucleotide sequence) and viral genes (coding for protein). Presently, the study of viral infectious diseases in terms of etiopathogenesis and development of newer therapeutics is undergoing rapid changes. Currently, viromics relies on deep sequencing, next generation sequencing (NGS) data and public domain databases like GenBank and unique virus specific databases. Two commonly used NGS platforms: Illumina and Ion Torrent, recommend maximum fragment lengths of about 300 and 400 nucleotides for analysis respectively. Direct detection of viruses in clinical samples is now evolving using these methods. Presently, there are a considerable number of good treatment options for HBV/HIV/HCV. These viruses however show development of drug resistance. The drug susceptibility regions of the genomes are sequenced and the prediction of drug resistance is now possible from 3 public domains available on the web. This has been made possible through advances in the technology with the advent of high throughput sequencing and meta-analysis through sophisticated and easy to use software and the use of high speed computers for bioinformatics. More recently NGS technology has been improved with single-molecule real-time sequencing. Here complete long reads can be obtained with less error overcoming a limitation of the NGS which is inherently prone to software anomalies that arise in the hands of personnel without adequate training. The development in understanding the viruses in terms of their genome, pathobiology, transcriptomics and molecular epidemiology constitutes viromics. It could be stated that these developments will bring about radical changes and advancement especially in the field of antiviral therapy and diagnostic virology.
Collapse
Affiliation(s)
- Mageshbabu Ramamurthy
- Sri Sakthi Amma Institute of Biomedical Research, Sri Narayani Hospital and Research Centre, Sripuram, Vellore, Tamil Nadu 632 055 India
| | - Sathish Sankar
- Sri Sakthi Amma Institute of Biomedical Research, Sri Narayani Hospital and Research Centre, Sripuram, Vellore, Tamil Nadu 632 055 India
| | - Rajesh Kannangai
- Department of Clinical Virology, Christian Medical College and Hospital, Vellore, Tamil Nadu 632 004 India
| | - Balaji Nandagopal
- Sri Sakthi Amma Institute of Biomedical Research, Sri Narayani Hospital and Research Centre, Sripuram, Vellore, Tamil Nadu 632 055 India
| | - Gopalan Sridharan
- Sri Sakthi Amma Institute of Biomedical Research, Sri Narayani Hospital and Research Centre, Sripuram, Vellore, Tamil Nadu 632 055 India
| |
Collapse
|
41
|
Mikheikin A, Olsen A, Leslie K, Russell-Pavier F, Yacoot A, Picco L, Payton O, Toor A, Chesney A, Gimzewski JK, Mishra B, Reed J. DNA nanomapping using CRISPR-Cas9 as a programmable nanoparticle. Nat Commun 2017; 8:1665. [PMID: 29162844 PMCID: PMC5698298 DOI: 10.1038/s41467-017-01891-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/24/2017] [Indexed: 01/26/2023] Open
Abstract
Progress in whole-genome sequencing using short-read (e.g., <150 bp), next-generation sequencing technologies has reinvigorated interest in high-resolution physical mapping to fill technical gaps that are not well addressed by sequencing. Here, we report two technical advances in DNA nanotechnology and single-molecule genomics: (1) we describe a labeling technique (CRISPR-Cas9 nanoparticles) for high-speed AFM-based physical mapping of DNA and (2) the first successful demonstration of using DVD optics to image DNA molecules with high-speed AFM. As a proof of principle, we used this new “nanomapping” method to detect and map precisely BCL2–IGH translocations present in lymph node biopsies of follicular lymphoma patents. This HS-AFM “nanomapping” technique can be complementary to both sequencing and other physical mapping approaches. Physical mapping of DNA can be used to detect structural variants and for whole-genome haplotype assembly. Here, the authors use CRISPR-Cas9 and high-speed atomic force microscopy to ‘nanomap’ single molecules of DNA.
Collapse
Affiliation(s)
- Andrey Mikheikin
- Department of Physics, Virginia Commonwealth University, Richmond, 23284, VA, USA
| | - Anita Olsen
- Department of Physics, Virginia Commonwealth University, Richmond, 23284, VA, USA
| | - Kevin Leslie
- Department of Physics, Virginia Commonwealth University, Richmond, 23284, VA, USA
| | - Freddie Russell-Pavier
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, Middlesex, UK.,Interface Analysis Centre, H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, UK
| | - Andrew Yacoot
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, Middlesex, UK
| | - Loren Picco
- Interface Analysis Centre, H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, UK
| | - Oliver Payton
- Interface Analysis Centre, H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, UK
| | - Amir Toor
- Department of Internal Medicine, VCU School of Medicine, Richmond, 23284, VA, USA.,VCU Massey Cancer Center, Richmond, 23284, VA, USA
| | - Alden Chesney
- VCU Massey Cancer Center, Richmond, 23284, VA, USA.,Department of Pathology, VCU School of Medicine, Richmond, 23284, VA, USA
| | - James K Gimzewski
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, 90095, CA, USA
| | - Bud Mishra
- Departments of Computer Science and Mathematics, Courant Institute of Mathematical Sciences, New York University, New York, 10012, NY, USA
| | - Jason Reed
- Department of Physics, Virginia Commonwealth University, Richmond, 23284, VA, USA. .,VCU Massey Cancer Center, Richmond, 23284, VA, USA.
| |
Collapse
|
42
|
Longrange PCR-based next-generation sequencing in pharmacokinetics and pharmacodynamics study of propofol among patients under general anaesthesia. Sci Rep 2017; 7:15399. [PMID: 29133890 PMCID: PMC5684313 DOI: 10.1038/s41598-017-15657-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 10/30/2017] [Indexed: 11/10/2022] Open
Abstract
The individual response of patients to propofol results from the influence of genetic factors. However, the state of knowledge in this matter still remains insufficient. The aim of our study was to determine genetic predictors of variable pharmacokinetics and pharmacodynamics of propofol within selected 9 genes coding for propofol biotransformation enzymes, receptors and transporters. Our studies are the first extensive pharmaocgenetics research of propofol using high throughput sequencing technology. After the design and optimization of long range PCR-based next-generation sequencing experiment, we screened promoter and coding sequences of all genes analyzed among 87 Polish patients undergoing general anaesthesia with propofol. Initially we found that two variants, c.516 G > T in the CYP2B6 gene and c.2677 T > G in the ABCB1 gene, significantly correlate with propofol’s metabolic profile, however after Bonferroni correction the P-values were not statistically significant. Our results suggest, that variants within the CYP2B6 and ABCB1 genes correlate stronger with propofol’s metabolic profile compared to other 7 genes. CYP2B6 and ABCB1 variants can play a potentially important role in response to this anaesthetic and they are promising object for further studies.
Collapse
|
43
|
Yuda J, Miyamoto T, Odawara J, Ohkawa Y, Semba Y, Hayashi M, Miyamura K, Tanimoto M, Yamamoto K, Taniwaki M, Akashi K. Persistent detection of alternatively spliced BCR-ABL variant results in a failure to achieve deep molecular response. Cancer Sci 2017; 108:2204-2212. [PMID: 28801986 PMCID: PMC5666036 DOI: 10.1111/cas.13353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 01/04/2023] Open
Abstract
Treatment with tyrosine kinase inhibitors (TKI) may sequentially induce TKI‐resistant BCR‐ABL mutants in chronic myeloid leukemia (CML). Conventional PCR monitoring of BCR‐ABL is an important indicator to determine therapeutic intervention for preventing disease progression. However, PCR cannot separately quantify amounts of BCR‐ABL and its mutants, including alternatively spliced BCR‐ABL with an insertion of 35 intronic nucleotides (BCR‐ABLIns35bp) between ABL exons 8 and 9, which introduces the premature termination and loss of kinase activity. To assess the clinical impact of BCR‐ABL mutants, we performed deep sequencing analysis of BCR‐ABL transcripts of 409 samples from 37 patients with suboptimal response to frontline imatinib who were switched to nilotinib. At baseline, TKI‐resistant mutations were documented in 3 patients, whereas BCR‐ABLIns35bp was detected in all patients. After switching to nilotinib, both BCR‐ABL and BCR‐ABLIns35bp became undetectable in 3 patients who attained complete molecular response (CMR), whereas in the remaining all 34 patients, BCR‐ABLIns35bp was persistently detected, and minimal residual disease (MRD) fluctuated at low but detectable levels. PCR monitoring underestimated molecular response in 5 patients whose BCR‐ABLIns35bp was persisted, although BCR‐ABLIns35bp does not definitively mark TKI resistance. Therefore, quantification of BCR‐ABLIns35bp is useful for evaluating “functional” MRD and determining the effectiveness of TKI with accuracy.
Collapse
Affiliation(s)
- Junichiro Yuda
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Toshihiro Miyamoto
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Jun Odawara
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science, Fukuoka, Japan.,Department of Advanced Medical Initiatives, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuyuki Ohkawa
- Department of Advanced Medical Initiatives, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuichiro Semba
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science, Fukuoka, Japan.,Department of Advanced Medical Initiatives, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masayasu Hayashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science, Fukuoka, Japan.,Department of Advanced Medical Initiatives, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichi Miyamura
- Department of Hematology, Japanese Red Cross Nagoya Daiichi Hospital, Nagoya, Japan
| | - Mitsune Tanimoto
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | - Kazuhito Yamamoto
- Department of Clinical Research and Department of Hematology and Cell Therapy, Aichi Cancer Center, Nagoya, Japan
| | - Masafumi Taniwaki
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| |
Collapse
|
44
|
Najm J, Rath M, Schröder W, Felbor U. Diagnostic single gene analyses beyond Sanger. Hamostaseologie 2017; 38:158-165. [DOI: 10.5482/hamo-17-01-0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
45
|
Chang PH, Juhrend B, Olson TM, Marrs CF, Wigginton KR. Degradation of Extracellular Antibiotic Resistance Genes with UV 254 Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:6185-6192. [PMID: 28475324 DOI: 10.1021/acs.est.7b01120] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Disinfected wastewater effluent contains a complex mixture of biomolecules including DNA. If intact genes conveying antibiotic resistance survive the disinfection process, environmental bacteria may take them up. We treated plasmid pWH1266, which contains ampicillin resistance gene blaTEM-1 and tetracycline resistance gene tetA, with UV254 doses up to 430 mJ/cm2 and studied the ability of those genes to be acquired by Acinetobacter baylyi. The plasmids required approximately 20-25 mJ/cm2 per log10 loss of transformation efficiency. We monitored plasmid DNA degradation using gel electrophoresis and qPCR with both short amplicons (∼200 bps, representative of ARG amplicon lengths commonly used for environmental monitoring) and long amplicons (800-1200 bps, designed to cover the entire resistance genes). The rate of transformability loss due to UV254 treatment was approximately 20× and 2× larger than the rate of gene degradation measured with the short and long amplicons qPCR, respectively. When extrapolated to account for the length of the entire pWH1266 plasmid, the qPCR rate constants were 2-7× larger than the rate constants measured with transformation assays. Gel electrophoresis results confirmed that DNA cleavage was not a major inactivating mechanism. Overall, our results demonstrate that qPCR conservatively measures the potential for a gene to be transformed by environmental bacteria following UV254 treatment.
Collapse
Affiliation(s)
- Pin Hsuan Chang
- Department of Civil and Environmental Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Brianna Juhrend
- Department of Civil and Environmental Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Terese M Olson
- Department of Civil and Environmental Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Carl F Marrs
- Epidemiology Department, University of Michigan , 1415 Washington Heights, Ann Arbor, Michigan 48109, United States
| | - Krista R Wigginton
- Department of Civil and Environmental Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
46
|
Tong YQ, Liu B, Fu CH, Zheng HY, Gu J, Liu H, Luo HB, Li Y. Genetic analysis of the PKHD1 gene with long-rang PCR sequencing. ACTA ACUST UNITED AC 2016; 36:758-766. [PMID: 27752906 DOI: 10.1007/s11596-016-1658-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/26/2016] [Indexed: 12/13/2022]
Abstract
PKHD1 gene mutations are found responsible for autosomal recessive polycystic kidney disease (ARPKD). However, it is inconvenient to detect the mutations by common polymerase chain reaction (PCR) because the open reading frame of PKHD1 is very long. Recently, long-range (LR) PCR is demonstrated to be a more sensitive mutation screening method for PKHD1 by directly sequencing. In this study, the entire PKHD1 coding region was amplified by 29 reactions to avoid the specific PCR amplification of individual exons, which generated the size of 1 to 7 kb products by LR PCR. This method was compared to the screening method with standard direct sequencing of each individual exon of the gene by a reference laboratory in 15 patients with ARPKD. The results showed that a total of 37 genetic changes were detected with LR PCR sequencing, which included 33 variations identified by the reference laboratory with standard direct sequencing. LR PCR sequencing had 100% sensitivity, 96% specificity, and 97.0% accuracy, which were higher than those with standard direct sequencing method. In conclusion, LR PCR sequencing is a reliable method with high sensitivity, specificity and accuracy for detecting genetic variations. It also has more intronic coverage and lower cost, and is an applicable clinical method for complex genetic analyses.
Collapse
Affiliation(s)
- Yong-Qing Tong
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bei Liu
- Department of Pathology, Affiliated Tianyou Hospital of Wuhan University of Science and Technology, Wuhan, 430064, China
| | - Chao-Hong Fu
- Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Shiyan, 442008, China
| | - Hong-Yun Zheng
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jian Gu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hang Liu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hong-Bo Luo
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Yan Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
47
|
Tosto G, Reitz C. Genomics of Alzheimer's disease: Value of high-throughput genomic technologies to dissect its etiology. Mol Cell Probes 2016; 30:397-403. [PMID: 27618776 DOI: 10.1016/j.mcp.2016.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/08/2016] [Accepted: 09/08/2016] [Indexed: 12/31/2022]
Abstract
Late-onset Alzheimer's disease (AD), the most common neurodegenerative disorder in western countries, is clinically defined by progressive worsening in cognitive functions along with function and behavioral impairment. This ultimately results in complete incapacity and death. AD is a clinically and pathologically heterogeneous disease, and this is reflected by the numerous genetic findings that point to several diverse molecular mechanisms and pathways. Linkage, genome-wide association and next-generation sequencing studies have led to the identification of more than 20 novel susceptibility loci for AD. While these observations have significantly increased the knowledge of pathogenic mechanisms and potential therapeutic targets, a large part of the genetic component underlying AD is still unexplained. This review will summarize and discuss the major genetic findings and their potential impact on AD diagnosis and prediction of prognosis.
Collapse
Affiliation(s)
- Giuseppe Tosto
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA; The Gertrude H. Sergievsky Center, Columbia University, New York, NY, USA; The Department of Neurology, Columbia University, New York, NY, USA
| | - Christiane Reitz
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA; The Gertrude H. Sergievsky Center, Columbia University, New York, NY, USA; The Department of Neurology, Columbia University, New York, NY, USA; The Dept. of Epidemiology, Columbia University, New York, NY, USA.
| |
Collapse
|
48
|
Macintyre G, Ylstra B, Brenton JD. Sequencing Structural Variants in Cancer for Precision Therapeutics. Trends Genet 2016; 32:530-542. [PMID: 27478068 DOI: 10.1016/j.tig.2016.07.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 12/18/2022]
Abstract
The identification of mutations that guide therapy selection for patients with cancer is now routine in many clinical centres. The majority of assays used for solid tumour profiling use DNA sequencing to interrogate somatic point mutations because they are relatively easy to identify and interpret. Many cancers, however, including high-grade serous ovarian, oesophageal, and small-cell lung cancer, are driven by somatic structural variants that are not measured by these assays. Therefore, there is currently an unmet need for clinical assays that can cheaply and rapidly profile structural variants in solid tumours. In this review we survey the landscape of 'actionable' structural variants in cancer and identify promising detection strategies based on massively-parallel sequencing.
Collapse
Affiliation(s)
- Geoff Macintyre
- Cancer Research UK Cambridge Institute, University of Cambridge, UK
| | - Bauke Ylstra
- Department of Pathology, VU University Medical Center, PO Box 7057, 1007 MB Amsterdam, The Netherlands
| | - James D Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, UK.
| |
Collapse
|
49
|
Lopez GH, McGowan EC, McGrath KA, Abaca‐Cleopas ME, Schoeman EM, Millard GM, O'Brien H, Liew Y, Flower RL, Hyland CA. A D+ blood donor with a novelRHD*D‐CE(5‐6)‐Dgene variant exhibits the low‐frequency antigen RH23 (DW) characteristic of the partial DVa phenotype. Transfusion 2016; 56:2322-30. [DOI: 10.1111/trf.13713] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Genghis H. Lopez
- Clinical Services and ResearchAustralian Red Cross Blood ServiceKelvin Grove Queensland Australia
| | - Eunike C. McGowan
- Clinical Services and ResearchAustralian Red Cross Blood ServiceKelvin Grove Queensland Australia
| | - Kelli A. McGrath
- Red Cell Reference LaboratoryAustralian Red Cross Blood ServiceKelvin Grove Queensland Australia
| | - Maria E. Abaca‐Cleopas
- Red Cell Reference LaboratoryAustralian Red Cross Blood ServiceKelvin Grove Queensland Australia
| | - Elizna M. Schoeman
- Clinical Services and ResearchAustralian Red Cross Blood ServiceKelvin Grove Queensland Australia
| | - Glenda M. Millard
- Clinical Services and ResearchAustralian Red Cross Blood ServiceKelvin Grove Queensland Australia
| | - Helen O'Brien
- Clinical Services and ResearchAustralian Red Cross Blood ServiceKelvin Grove Queensland Australia
| | - Yew‐Wah Liew
- Red Cell Reference LaboratoryAustralian Red Cross Blood ServiceKelvin Grove Queensland Australia
| | - Robert L. Flower
- Clinical Services and ResearchAustralian Red Cross Blood ServiceKelvin Grove Queensland Australia
| | - Catherine A. Hyland
- Clinical Services and ResearchAustralian Red Cross Blood ServiceKelvin Grove Queensland Australia
| |
Collapse
|
50
|
SeqMule: automated pipeline for analysis of human exome/genome sequencing data. Sci Rep 2015; 5:14283. [PMID: 26381817 PMCID: PMC4585643 DOI: 10.1038/srep14283] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 08/21/2015] [Indexed: 11/16/2022] Open
Abstract
Next-generation sequencing (NGS) technology has greatly helped us identify disease-contributory variants for Mendelian diseases. However, users are often faced with issues such as software compatibility, complicated configuration, and no access to high-performance computing facility. Discrepancies exist among aligners and variant callers. We developed a computational pipeline, SeqMule, to perform automated variant calling from NGS data on human genomes and exomes. SeqMule integrates computational-cluster-free parallelization capability built on top of the variant callers, and facilitates normalization/intersection of variant calls to generate consensus set with high confidence. SeqMule integrates 5 alignment tools, 5 variant calling algorithms and accepts various combinations all by one-line command, therefore allowing highly flexible yet fully automated variant calling. In a modern machine (2 Intel Xeon X5650 CPUs, 48 GB memory), when fast turn-around is needed, SeqMule generates annotated VCF files in a day from a 30X whole-genome sequencing data set; when more accurate calling is needed, SeqMule generates consensus call set that improves over single callers, as measured by both Mendelian error rate and consistency. SeqMule supports Sun Grid Engine for parallel processing, offers turn-key solution for deployment on Amazon Web Services, allows quality check, Mendelian error check, consistency evaluation, HTML-based reports. SeqMule is available at http://seqmule.openbioinformatics.org.
Collapse
|