1
|
Mohammed TA, Zalzala MH. Synergistic action of cilnidipine and bexarotene in mitigating cholestatic liver damage: role of FXR signaling cascade. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04061-7. [PMID: 40244450 DOI: 10.1007/s00210-025-04061-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 03/13/2025] [Indexed: 04/18/2025]
Abstract
Cholestasis, a condition characterized by impaired bile flow, can lead to severe liver damage if left untreated. Current therapeutic options are limited, necessitating the development of novel treatment strategies. This study investigated the synergistic action of cilnidipine, a calcium channel blocker, and bexarotene, a retinoid X receptor (RXR) agonist, in mitigating cholestatic liver damage induced by alpha-naphthyl isothiocyanate (ANIT) in rats. The study aimed to elucidate the role of the farnesoid X receptor (FXR) signaling cascade in the protective effects of the combined treatment. Rats were divided into three groups: a negative control group, an ANIT-treated group, and a group pretreated with cilnidipine and bexarotene before ANIT administration. Biochemical markers of liver function, oxidative stress, and inflammation were assessed, along with histological examination of liver tissue. The expression of genes related to the FXR signaling pathway was also evaluated using quantitative polymerase chain reaction (qPCR). The results demonstrated that pretreatment with cilnidipine and bexarotene significantly attenuated ANIT-induced cholestatic liver damage, as evidenced by improved liver function markers, reduced oxidative stress and inflammation, and ameliorated histological changes. Furthermore, the combined treatment upregulated the expression of FXR and its target genes, suggesting that the protective effects may be mediated through the activation of the FXR signaling cascade. These findings highlight the potential of cilnidipine and bexarotene as a novel therapeutic approach for the management of cholestatic liver disorders and provide insights into the underlying molecular mechanisms involving the FXR signaling pathway.
Collapse
Affiliation(s)
| | - Munaf H Zalzala
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
2
|
Yang Y, Jiao L, Guo F, Sun Y, Cui H, Lei X, Hu J, Wan Y. Protein-Affinity Guided Nontargeted Analysis Reveals the Widespread FXR-Antagonistic Pollutants in Surface Water and Source Water Along the Yangtze River and Yellow River. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2368-2377. [PMID: 39870506 DOI: 10.1021/acs.est.4c07569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Metabolism-disrupting chemicals (MDCs) have attracted widespread attention due to their contributions to the prevalence of metabolic diseases worldwide. The farnesoid X receptor (FXR) is a typical lipid-sensing nuclear receptor and plays a crucial role in the development of metabolic diseases. However, few studies have examined the FXR activities of environmental samples and the corresponding MDCs. In this study, we found FXR-antagonistic activities in 93.6% of source water, surface water, and wastewater samples (n = 78) collected from the Yangtze River and Yellow River. An FXR protein-affinity guided nontargeted analysis was performed and identified 79 potential FXR-active pollutants in samples from these two rivers. Nine of these pollutants exhibited strong FXR-antagonistic activities (IC50: 2.39-141.9 μM), and 6 pollutants, including triphenyl phosphate (TPHP), 4,4'-sulfonylbis[2-(2-propenyl) phenol (TGSA), tonalid (AHTN), dichlorophen, etoxazole (ETX), and loratadine, were identified to be FXR antagonists for the first time. The total concentrations of the nine FXR-antagonistic pollutants were relatively high in the middle and downstream reaches of the Yellow River and the downstream reaches of the Yangtze River, and two pollutants (TGSA and ETX) have not previously been found in aquatic environments. A risk prioritization analysis revealed that TPHP, TGSA, and AHTN are priority pollutants with the potential to affect the FXR. Appropriate management of these priority pollutants would reduce the health risks of metabolic disruptions associated with exposure to these MDCs.
Collapse
Affiliation(s)
- Yi Yang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Ling Jiao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Fusheng Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yibin Sun
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hongyang Cui
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jianying Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Santos KPED, Ferreira Silva I, Mano-Sousa BJ, Duarte-Almeida JM, Castro WVD, Azambuja Ribeiro RIMD, Santos HB, Thomé RG. Abamectin promotes behavior changes and liver injury in zebrafish. CHEMOSPHERE 2023; 311:136941. [PMID: 36272627 DOI: 10.1016/j.chemosphere.2022.136941] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The indiscriminate use of pesticides is a worldwide concern due to the environment contamination since it can cause deleterious effects to non-target organisms including the fishes. The effects of abamectin, a pesticide from the avermectin family, were evaluated in adult zebrafish (Danio rerio) after exposure to a commercial formula commonly used in Brazil. The animals were submitted to acute (96 h) and to a short-term chronic exposure (15 days) of distinct concentrations of abamectin. LC50 was determined and a histological study followed by an immunohistochemistry analysis for P-gp and HSP70 identification were performed on livers of the animals submitted to the acute and chronic treatment, respectively. Moreover, behavior patterns were observed daily in both trials. A LC50 value of 105.68 μg/L was determined. The histological analysis revealed a morphological alteration of the hepatocytes, glycogen accumulation, degeneration, and disorganization of the cytoplasm, and a pyknotic, irregular, and laterally located nuclei. The immunohistochemistry for HSP70 and P-gp showed strong staining in the hepatocytes of the control groups and progressive decrease as the concentration of abamectin increased. Changes were observed in body posture, movement around the aquarium, opercular activity, body color and search for food in the groups treated with abamectin. The results presented suggest that abamectin can affect the behavioral pattern of the animals, promote morphological changes, and decrease the expression of HSP70 and P-gp in zebrafish liver.
Collapse
Affiliation(s)
- Keiza Priscila Enes Dos Santos
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Laboratório de Processamento de Tecidos, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Isabella Ferreira Silva
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Laboratório de Processamento de Tecidos, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Brayan Jonas Mano-Sousa
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Laboratório de Farmacognosia, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Joaquim Maurício Duarte-Almeida
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Laboratório de Farmacognosia, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Whocely Victor de Castro
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Laboratório Central Analítica, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Rosy Iara Maciel de Azambuja Ribeiro
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Laboratório de Patologia Experimental, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Hélio Batista Santos
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Laboratório de Processamento de Tecidos, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Ralph Gruppi Thomé
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Laboratório de Processamento de Tecidos, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, Minas Gerais, Brazil.
| |
Collapse
|
4
|
Confirmation of high-throughput screening data and novel mechanistic insights into FXR-xenobiotic interactions by orthogonal assays. Curr Res Toxicol 2022; 3:100092. [PMID: 36353521 PMCID: PMC9637864 DOI: 10.1016/j.crtox.2022.100092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/06/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022] Open
Abstract
Toxicology in the 21st Century (Tox21) is a federal collaboration employing a high-throughput robotic screening system to test 10,000 environmental chemicals. One of the primary goals of the program is prioritizing toxicity evaluations through in vitro high-throughput screening (HTS) assays for large numbers of chemicals already in commercial use for which little or no toxicity data is available. Within the Tox21 screening program, disruption in nuclear receptor (NR) signaling represents a particular area of interest. Given the role of NR's in modulating a wide range of biological processes, alterations of their activity can have profound biological impacts. Farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily that has demonstrated importance in bile acid homeostasis, glucose metabolism, lipid homeostasis and hepatic regeneration. In this study, we re-evaluated 24 FXR agonists and antagonists identified through Tox21 using select orthogonal assays. In transient transactivation assays, 7/8 putative agonists and 4/4 putative inactive compounds were confirmed. Likewise, we confirmed 9/12 antagonists tested. Using a mammalian two hybrid approach we demonstrate that both FXR agonists and antagonists facilitate FXRα-coregulator interactions suggesting that differential coregulator recruitment may mediate activation/repression of FXRα mediated transcription. Additionally, we tested the ability of select FXR agonists and antagonists to facilitate hepatic transcription of FXR gene targets Shp and Bsep in a teleost (Medaka) model. Through application of in vitro cell-based assays, in silico modeling and in vivo gene expressions, we demonstrated the molecular complexity of FXR:ligand interactions and confirmed the ability of diverse ligands to modulate FXRα, facilitate differential coregulator recruitment and activate/repress receptor-mediated transcription. Overall, we suggest a multiplicative approach to assessment of nuclear receptor function may facilitate a greater understanding of the biological and mechanistic complexities of nuclear receptor activities and further our ability to interpret broad HTS outcomes.
Collapse
Key Words
- Bsep, bile salt export pump
- CDCA, chenodeoxycholic acid
- DMSO, dimethyl sulfoxide
- EPA, U.S. Environmental Protection Agency
- FXR, Farnesoid X receptor
- Farnesoid X receptor
- High-throughput screening
- M2H, mammalian two-hybrid
- Medaka
- RXR, retinoid X receptor
- Shp, small heterodimer partner
- Teleost models
- Tox21, Toxicology in the 21st Century
- ToxCast
- qHTS, quantitative high-throughput screening
Collapse
|
5
|
Sakamuru S, Huang R, Xia M. Use of Tox21 Screening Data to Evaluate the COVID-19 Drug Candidates for Their Potential Toxic Effects and Related Pathways. Front Pharmacol 2022; 13:935399. [PMID: 35910344 PMCID: PMC9333127 DOI: 10.3389/fphar.2022.935399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/16/2022] [Indexed: 12/15/2022] Open
Abstract
Currently, various potential therapeutic agents for coronavirus disease-2019 (COVID-19), a global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are being investigated worldwide mainly through the drug repurposing approach. Several anti-viral, anti-bacterial, anti-malarial, and anti-inflammatory drugs were employed in randomized trials and observational studies for developing new therapeutics for COVID-19. Although an increasing number of repurposed drugs have shown anti-SARS-CoV-2 activities in vitro, so far only remdesivir has been approved by the US FDA to treat COVID-19, and several other drugs approved for Emergency Use Authorization, including sotrovimab, tocilizumab, baricitinib, paxlovid, molnupiravir, and other potential strategies to develop safe and effective therapeutics for SARS-CoV-2 infection are still underway. Many drugs employed as anti-viral may exert unwanted side effects (i.e., toxicity) via unknown mechanisms. To quickly assess these drugs for their potential toxicological effects and mechanisms, we used the Tox21 in vitro assay datasets generated from screening ∼10,000 compounds consisting of approved drugs and environmental chemicals against multiple cellular targets and pathways. Here we summarize the toxicological profiles of small molecule drugs that are currently under clinical trials for the treatment of COVID-19 based on their in vitro activities against various targets and cellular signaling pathways.
Collapse
|
6
|
Ngan DK, Xu T, Xia M, Zheng W, Huang R. Repurposing drugs as COVID-19 therapies: a toxicity evaluation. Drug Discov Today 2022; 27:1983-1993. [PMID: 35395401 PMCID: PMC8983078 DOI: 10.1016/j.drudis.2022.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/17/2022] [Accepted: 04/01/2022] [Indexed: 12/24/2022]
Abstract
Drug repurposing is an appealing method to address the Coronavirus 2019 (COVID-19) pandemic because of the low cost and efficiency. We analyzed our in-house database of approved drug screens and compared their activity profiles with results from a severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) cytopathic effect (CPE) assay. The activity profiles of the human ether-à-go-go-related gene (hERG), phospholipidosis (PLD), and many cytotoxicity screens were found significantly correlated with anti-SARS-CoV-2 activity. hERG inhibition is a nonspecific off-target effect that has contributed to promiscuous drug interactions, whereas drug-induced PLD is an undesirable effect linked to hERG blockers. Thus, this study identifies preferred drug candidates as well as chemical structures that should be avoided because of their potential to induce toxicity. Lastly, we highlight the hERG liability of anti-SARS-CoV-2 drugs currently enrolled in clinical trials.
Collapse
Affiliation(s)
- Deborah K Ngan
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Tuan Xu
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Menghang Xia
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Wei Zheng
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Ruili Huang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA.
| |
Collapse
|
7
|
Huang R. A Quantitative High-Throughput Screening Data Analysis Pipeline for Activity Profiling. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2474:133-145. [PMID: 35294762 DOI: 10.1007/978-1-0716-2213-1_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The U.S. Tox21 program has developed in vitro assays to test large collections of environmental chemicals in a quantitative high-throughput screening (qHTS) format, using triplicate 15-dose titrations to generate over 100 million data points to date. Counterscreens are also employed to minimize interferences from non-target-specific assay artifacts, such as compound autofluorescence and cytotoxicity. New data analysis approaches are needed to integrate these data and characterize the activities observed from these assays. Here, we describe a complete analysis pipeline that evaluates these qHTS data for technical quality in terms of signal reproducibility. We integrate signals from repeated assay runs, primary readouts and counterscreens to produce a final call on on-target compound activity.
Collapse
Affiliation(s)
- Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Mukherjee A, Su A, Rajan K. Deep Learning Model for Identifying Critical Structural Motifs in Potential Endocrine Disruptors. J Chem Inf Model 2021; 61:2187-2197. [PMID: 33872000 DOI: 10.1021/acs.jcim.0c01409] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This paper aims to identify structural motifs within a molecule that contribute the most toward a chemical being an endocrine disruptor. We have developed a deep neural network-based toolkit toward this aim. The trained model can virtually assess a synthetic chemical's potential to be an endocrine disruptor using machine-readable molecular representation, simplified molecular input line entry system (SMILES). Our proposed toolkit is a multilabel or multioutput classification model that combines both convolution and long short-term memory (LSTM) architectures. The toolkit leverages the advantages of an active learning-based framework that combines multiple sources of data. Class activation maps (CAMs) generated from the feature-extraction layers can identify the structural alerts and the chemical environment that determines the specificity of the structural alerts.
Collapse
Affiliation(s)
- Arpan Mukherjee
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, New York 14260-1660, United States
| | - An Su
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, New York 14260-1660, United States
| | - Krishna Rajan
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, New York 14260-1660, United States
| |
Collapse
|
9
|
Ngan DK, Ye L, Wu L, Xia M, Rossoshek A, Simeonov A, Huang R. Bioactivity Signatures of Drugs vs. Environmental Chemicals Revealed by Tox21 High-Throughput Screening Assays. Front Big Data 2019; 2:50. [PMID: 33693373 PMCID: PMC7931954 DOI: 10.3389/fdata.2019.00050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/29/2019] [Indexed: 01/13/2023] Open
Abstract
Humans are exposed to tens of thousands of chemicals over the course of a lifetime, yet there remains inadequate data on the potential harmful effects of these substances on human health. Using quantitative high-throughput screening (qHTS), we can test these compounds for potential toxicity in a more efficient and cost-effective way compared to traditional animal studies. Tox21 has developed a library of ~10,000 chemicals (Tox21 10K) comprising one-third approved and investigational drugs and two-thirds environmental chemicals. In this study, the Tox21 10K was screened in a qHTS format against a panel of 70 cell-based assays with 213 readouts covering a broad range of biological pathways. Activity profiles were compared with chemical structure to assess their ability to differentiate drugs from environmental chemicals, and structure was found to be a better predictor of which chemicals are likely to be drugs. Drugs and environmental chemicals were further analyzed for diversity in structure and biological response space and showed distinguishable, but not distinct, responses in the Tox21 assays. Inclusion of other targets and pathways to further diversify the biological response space covered by these assays is likely required to better evaluate the safety profile of drugs and environmental chemicals to prioritize for in-depth toxicological studies.
Collapse
Affiliation(s)
- Deborah K. Ngan
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, United States
| | - Lin Ye
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, United States
| | - Leihong Wu
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, United States
| | - Menghang Xia
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, United States
| | - Anna Rossoshek
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, United States
| | - Anton Simeonov
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, United States
| | - Ruili Huang
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, United States
| |
Collapse
|
10
|
Garcia M, Thirouard L, Monrose M, Holota H, De Haze A, Caira F, Beaudoin C, Volle DH. Farnesoid X receptor alpha (FXRα) is a critical actor of the development and pathologies of the male reproductive system. Cell Mol Life Sci 2019; 76:4849-4859. [PMID: 31407019 PMCID: PMC11105758 DOI: 10.1007/s00018-019-03247-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 12/01/2022]
Abstract
The farnesoid-X-receptorα (FXRα; NR1H4) is one of the main bile acid (BA) receptors. During the last decades, through the use of pharmalogical approaches and transgenic mouse models, it has been demonstrated that the nuclear receptor FXRα controls numerous physiological functions such as glucose or energy metabolisms. It is also involved in the etiology or the development of several pathologies. Here, we will review the unexpected roles of FXRα on the male reproductive tract. FXRα has been demonstrated to play functions in the regulation of testicular and prostate homeostasis. Even though additional studies are needed to confirm these findings in humans, the reviewed reports open new field of research to better define the effects of bile acid-FXRα signaling pathways on fertility disorders and cancers.
Collapse
Affiliation(s)
- Manon Garcia
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, 28 Place Henri Dunant, 63001, Clermont-Ferrand, France
| | - Laura Thirouard
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, 28 Place Henri Dunant, 63001, Clermont-Ferrand, France
| | - Mélusine Monrose
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, 28 Place Henri Dunant, 63001, Clermont-Ferrand, France
| | - Hélène Holota
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, 28 Place Henri Dunant, 63001, Clermont-Ferrand, France
| | - Angélique De Haze
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, 28 Place Henri Dunant, 63001, Clermont-Ferrand, France
| | - Françoise Caira
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, 28 Place Henri Dunant, 63001, Clermont-Ferrand, France
| | - Claude Beaudoin
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, 28 Place Henri Dunant, 63001, Clermont-Ferrand, France.
| | - David H Volle
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, 28 Place Henri Dunant, 63001, Clermont-Ferrand, France.
| |
Collapse
|
11
|
Huang R, Grishagin I, Wang Y, Zhao T, Greene J, Obenauer JC, Ngan D, Nguyen DT, Guha R, Jadhav A, Southall N, Simeonov A, Austin CP. The NCATS BioPlanet - An Integrated Platform for Exploring the Universe of Cellular Signaling Pathways for Toxicology, Systems Biology, and Chemical Genomics. Front Pharmacol 2019; 10:445. [PMID: 31133849 PMCID: PMC6524730 DOI: 10.3389/fphar.2019.00445] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/08/2019] [Indexed: 12/16/2022] Open
Abstract
Chemical genomics aims to comprehensively define, and ultimately predict, the effects of small molecule compounds on biological systems. Chemical activity profiling approaches must consider chemical effects on all pathways operative in mammalian cells. To enable a strategic and maximally efficient chemical profiling of pathway space, we have created the NCATS BioPlanet, a comprehensive integrated pathway resource that incorporates the universe of 1,658 human pathways sourced from publicly available, manually curated sources, which have been subjected to thorough redundancy and consistency cross-evaluation. BioPlanet supports interactive browsing, retrieval, and analysis of pathways, exploration of pathway connections, and pathway search by gene targets, category, and availability of corresponding bioactivity assay, as well as visualization of pathways on a 3-dimensional globe, in which the distance between any two pathways is proportional to their degree of gene component overlap. Using this resource, we propose a strategy to identify a minimal set of 362 biological assays that can interrogate the universe of human pathways. The NCATS BioPlanet is a public resource, which will be continually expanded and updated, for systems biology, toxicology, and chemical genomics, available at http://tripod.nih.gov/bioplanet/.
Collapse
Affiliation(s)
- Ruili Huang
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | | | - Yuhong Wang
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Tongan Zhao
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Jon Greene
- Rancho BioSciences, San Diego, CA, United States
| | | | - Deborah Ngan
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Dac-Trung Nguyen
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Rajarshi Guha
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Ajit Jadhav
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Noel Southall
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Anton Simeonov
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Christopher P Austin
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
12
|
Lynch C, Zhao J, Sakamuru S, Zhang L, Huang R, Witt KL, Merrick BA, Teng CT, Xia M. Identification of Compounds That Inhibit Estrogen-Related Receptor Alpha Signaling Using High-Throughput Screening Assays. Molecules 2019; 24:E841. [PMID: 30818834 PMCID: PMC6429183 DOI: 10.3390/molecules24050841] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/19/2019] [Accepted: 02/23/2019] [Indexed: 12/20/2022] Open
Abstract
The nuclear receptor, estrogen-related receptor alpha (ERRα; NR3B1), plays a pivotal role in energy homeostasis. Its expression fluctuates with the demands of energy production in various tissues. When paired with the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), the PGC/ERR pathway regulates a host of genes that participate in metabolic signaling networks and in mitochondrial oxidative respiration. Unregulated overexpression of ERRα is found in many cancer cells, implicating a role in cancer progression and other metabolism-related diseases. Using high throughput screening assays, we screened the Tox21 10K compound library in stably transfected HEK293 cells containing either the ERRα-reporter or the reporter plus PGC-1α expression plasmid. We identified two groups of antagonists that were potent inhibitors of ERRα activity and/or the PGC/ERR pathway: nine antineoplastic agents and thirteen pesticides. Results were confirmed using gene expression studies. These findings suggest a novel mechanism of action on bioenergetics for five of the nine antineoplastic drugs. Nine of the thirteen pesticides, which have not been investigated previously for ERRα disrupting activity, were classified as such. In conclusion, we demonstrated that high-throughput screening assays can be used to reveal new biological properties of therapeutic and environmental chemicals, broadening our understanding of their modes of action.
Collapse
Affiliation(s)
- Caitlin Lynch
- National Center for Advancing Translational Sciences, National Institutes of Health (NIH), Bethesda, MD 20814, USA.
| | - Jinghua Zhao
- National Center for Advancing Translational Sciences, National Institutes of Health (NIH), Bethesda, MD 20814, USA.
| | - Srilatha Sakamuru
- National Center for Advancing Translational Sciences, National Institutes of Health (NIH), Bethesda, MD 20814, USA.
| | - Li Zhang
- National Center for Advancing Translational Sciences, National Institutes of Health (NIH), Bethesda, MD 20814, USA.
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health (NIH), Bethesda, MD 20814, USA.
| | - Kristine L Witt
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA.
| | - B Alex Merrick
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA.
| | - Christina T Teng
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA.
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health (NIH), Bethesda, MD 20814, USA.
| |
Collapse
|
13
|
van de Wiel SMW, Bijsmans ITGW, van Mil SWC, van de Graaf SFJ. Identification of FDA-approved drugs targeting the Farnesoid X Receptor. Sci Rep 2019; 9:2193. [PMID: 30778102 PMCID: PMC6379390 DOI: 10.1038/s41598-019-38668-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/21/2018] [Indexed: 12/25/2022] Open
Abstract
The farnesoid X receptor (FXR) belongs to the nuclear receptor family and is activated by bile acids. Multiple, chemically rather diverse, FXR agonists have been developed and several of these compounds are currently tested in clinical trials for NAFLD and cholestasis. Here, we investigated possible FXR-agonism or antagonism of existing FDA/EMA-approved drugs. By using our recently developed FRET-sensor, containing the ligand binding domain of FXR (FXR-LBD), 1280 FDA-approved drugs were screened for their ability to activate FXR in living cells using flow cytometry. Fifteen compounds induced the sensor for more than twenty percent above background. Real-time confocal microscopy confirmed that avermectin B1a, gliquidone, nicardipine, bepridil and triclosan activated the FRET sensor within two minutes. These compounds, including fluticasone, increased mRNA expression of FXR target genes OSTα and OSTβ in Huh7 cells, and in most cases also of MRP2, SHP and FGF19. Finally, avermectin B1a, gliquidone, nicardipine and bepridil significantly increased IBABP promoter activity in a luciferase reporter assay in a dose-dependent manner. In conclusion, six FDA/EMA-approved drugs currently used in the clinical practice exhibit moderate agonistic FXR activity. This may on the one hand explain (undesired) side-effects, but on the other hand may form an opportunity for polypharmacology.
Collapse
Affiliation(s)
- Sandra M W van de Wiel
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ingrid T G W Bijsmans
- Center for Molecular Medicine, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Saskia W C van Mil
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Center for Molecular Medicine, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Lynch C, Mackowiak B, Huang R, Li L, Heyward S, Sakamuru S, Wang H, Xia M. Identification of Modulators That Activate the Constitutive Androstane Receptor From the Tox21 10K Compound Library. Toxicol Sci 2019; 167:282-292. [PMID: 30247703 PMCID: PMC6657574 DOI: 10.1093/toxsci/kfy242] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The constitutive androstane receptor (CAR; NR1I3) is a nuclear receptor involved in all phases of drug metabolism and disposition. However, recently it's been implicated in energy metabolism, tumor progression, and cancer therapy as well. It is, therefore, important to identify compounds that induce human CAR (hCAR) activation to predict drug-drug interactions and potential therapeutic usage. In this study, we screen the Tox21 10,000 compound collection to characterize hCAR activators. A potential novel structural cluster of compounds was identified, which included nitazoxanide and tenonitrozole, whereas known structural clusters, such as flavones and prazoles, were also detected. Four compounds, neticonazole, diphenamid, phenothrin, and rimcazole, have been identified as novel hCAR activators, one of which, rimcazole, shows potential selectivity toward hCAR over its sister receptor, the pregnane X receptor (PXR). All 4 compounds translocated hCAR from the cytoplasm into the nucleus demonstrating the first step to CAR activation. Profiling these compounds as hCAR activators would enable an estimation of drug-drug interactions, as well as identify prospective therapeutically beneficial drugs.
Collapse
Affiliation(s)
- Caitlin Lynch
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland 20892
| | - Bryan Mackowiak
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - Ruili Huang
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland 20892
| | - Linhao Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | | | - Srilatha Sakamuru
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland 20892
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - Menghang Xia
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
15
|
Massafra V, Pellicciari R, Gioiello A, van Mil SW. Progress and challenges of selective Farnesoid X Receptor modulation. Pharmacol Ther 2018; 191:162-177. [DOI: 10.1016/j.pharmthera.2018.06.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Chen Y, Yang H, Wu Z, Liu G, Tang Y, Li W. Prediction of Farnesoid X Receptor Disruptors with Machine Learning Methods. Chem Res Toxicol 2018; 31:1128-1137. [DOI: 10.1021/acs.chemrestox.8b00162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yue Chen
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Hongbin Yang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zengrui Wu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Guixia Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weihua Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
17
|
Xia M, Huang R, Shi Q, Boyd WA, Zhao J, Sun N, Rice JR, Dunlap PE, Hackstadt AJ, Bridge MF, Smith MV, Dai S, Zheng W, Chu PH, Gerhold D, Witt KL, DeVito M, Freedman JH, Austin CP, Houck KA, Thomas RS, Paules RS, Tice RR, Simeonov A. Comprehensive Analyses and Prioritization of Tox21 10K Chemicals Affecting Mitochondrial Function by in-Depth Mechanistic Studies. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:077010. [PMID: 30059008 PMCID: PMC6112376 DOI: 10.1289/ehp2589] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 06/15/2018] [Accepted: 06/16/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND A central challenge in toxicity testing is the large number of chemicals in commerce that lack toxicological assessment. In response, the Tox21 program is re-focusing toxicity testing from animal studies to less expensive and higher throughput in vitro methods using target/pathway-specific, mechanism-driven assays. OBJECTIVES Our objective was to use an in-depth mechanistic study approach to prioritize and characterize the chemicals affecting mitochondrial function. METHODS We used a tiered testing approach to prioritize for more extensive testing 622 compounds identified from a primary, quantitative high-throughput screen of 8,300 unique small molecules, including drugs and industrial chemicals, as potential mitochondrial toxicants by their ability to significantly decrease the mitochondrial membrane potential (MMP). Based on results from secondary MMP assays in HepG2 cells and rat hepatocytes, 34 compounds were selected for testing in tertiary assays that included formation of reactive oxygen species (ROS), upregulation of p53 and nuclear erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE), mitochondrial oxygen consumption, cellular Parkin translocation, and larval development and ATP status in the nematode Caenorhabditis elegans. RESULTS A group of known mitochondrial complex inhibitors (e.g., rotenone) and uncouplers (e.g., chlorfenapyr), as well as potential novel complex inhibitors and uncouplers, were detected. From this study, we identified four not well-characterized potential mitochondrial toxicants (lasalocid, picoxystrobin, pinacyanol, and triclocarban) that merit additional in vivo characterization. CONCLUSIONS The tier-based approach for identifying and mechanistically characterizing mitochondrial toxicants can potentially reduce animal use in toxicological testing. https://doi.org/10.1289/EHP2589.
Collapse
Affiliation(s)
- Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland, USA
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland, USA
| | - Qiang Shi
- Division of Systems Biology, National Center for Toxicological Research, U. S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Windy A Boyd
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Jinghua Zhao
- National Center for Advancing Translational Sciences, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland, USA
| | - Nuo Sun
- National Heart, Lung, and Blood Institute, NIH, DHHS, Bethesda, Maryland, USA
| | - Julie R Rice
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Paul E Dunlap
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | | | - Matt F Bridge
- Social & Scientific Systems, Inc., Durham, North Carolina, USA
| | | | - Sheng Dai
- National Center for Advancing Translational Sciences, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland, USA
| | - Pei-Hsuan Chu
- National Center for Advancing Translational Sciences, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland, USA
| | - David Gerhold
- National Center for Advancing Translational Sciences, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland, USA
| | - Kristine L Witt
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Michael DeVito
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Jonathan H Freedman
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Christopher P Austin
- National Center for Advancing Translational Sciences, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland, USA
| | - Keith A Houck
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Russell S Thomas
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Richard S Paules
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Raymond R Tice
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland, USA
| |
Collapse
|
18
|
Mahapatra D, Franzosa JA, Roell K, Kuenemann MA, Houck KA, Reif DM, Fourches D, Kullman SW. Confirmation of high-throughput screening data and novel mechanistic insights into VDR-xenobiotic interactions by orthogonal assays. Sci Rep 2018; 8:8883. [PMID: 29891985 PMCID: PMC5995905 DOI: 10.1038/s41598-018-27055-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/30/2018] [Indexed: 01/21/2023] Open
Abstract
High throughput screening (HTS) programs have demonstrated that the Vitamin D receptor (VDR) is activated and/or antagonized by a wide range of structurally diverse chemicals. In this study, we examined the Tox21 qHTS data set generated against VDR for reproducibility and concordance and elucidated functional insights into VDR-xenobiotic interactions. Twenty-one potential VDR agonists and 19 VDR antagonists were identified from a subset of >400 compounds with putative VDR activity and examined for VDR functionality utilizing select orthogonal assays. Transient transactivation assay (TT) using a human VDR plasmid and Cyp24 luciferase reporter construct revealed 20/21 active VDR agonists and 18/19 active VDR antagonists. Mammalian-2-hybrid assay (M2H) was then used to evaluate VDR interactions with co-activators and co-regulators. With the exception of a select few compounds, VDR agonists exhibited significant recruitment of co-regulators and co-activators whereas antagonists exhibited considerable attenuation of recruitment by VDR. A unique set of compounds exhibiting synergistic activity in antagonist mode and no activity in agonist mode was identified. Cheminformatics modeling of VDR-ligand interactions were conducted and revealed selective ligand VDR interaction. Overall, data emphasizes the molecular complexity of ligand-mediated interactions with VDR and suggest that VDR transactivation may be a target site of action for diverse xenobiotics.
Collapse
Affiliation(s)
- Debabrata Mahapatra
- Comparative Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Jill A Franzosa
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, RTP, Raleigh, North Carolina, USA
| | - Kyle Roell
- Department of Chemistry, Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| | - Melaine Agnes Kuenemann
- Department of Chemistry, Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| | - Keith A Houck
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, RTP, Raleigh, North Carolina, USA
| | - David M Reif
- Department of Chemistry, Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| | - Denis Fourches
- Department of Chemistry, Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| | - Seth W Kullman
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA. .,Program in Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina, USA.
| |
Collapse
|
19
|
Cellular and Biophysical Pipeline for the Screening of Peroxisome Proliferator-Activated Receptor Beta/Delta Agonists: Avoiding False Positives. PPAR Res 2018; 2018:3681590. [PMID: 29849537 PMCID: PMC5924986 DOI: 10.1155/2018/3681590] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/22/2018] [Accepted: 02/05/2018] [Indexed: 02/06/2023] Open
Abstract
Peroxisome proliferator-activated receptor beta/delta (PPARß/δ) is considered a therapeutic target for metabolic disorders, cancer, and cardiovascular diseases. Here, we developed one pipeline for the screening of PPARß/δ agonists, which reduces the cost, time, and false-positive hits. The first step is an optimized 3-day long cellular transactivation assay based on reporter-gene technology, which is supported by automated liquid-handlers. This primary screening is followed by a confirmatory transactivation assay and by two biophysical validation methods (thermal shift assay (TSA) and (ANS) fluorescence quenching), which allow the calculation of the affinity constant, giving more information about the selected hits. All of the assays were validated using well-known commercial agonists providing trustworthy data. Furthermore, to validate and test this pipeline, we screened a natural extract library (560 extracts), and we found one plant extract that might be interesting for PPARß/δ modulation. In conclusion, our results suggested that we developed a cheaper and more robust pipeline that goes beyond the single activation screening, as it also evaluates PPARß/δ tertiary structure stabilization and the ligand affinity constant, selecting only molecules that directly bind to the receptor. Moreover, this approach might improve the effectiveness of the screening for agonists that target PPARß/δ for drug development.
Collapse
|
20
|
Huang R, Xia M, Sakamuru S, Zhao J, Lynch C, Zhao T, Zhu H, Austin CP, Simeonov A. Expanding biological space coverage enhances the prediction of drug adverse effects in human using in vitro activity profiles. Sci Rep 2018; 8:3783. [PMID: 29491351 PMCID: PMC5830476 DOI: 10.1038/s41598-018-22046-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 02/15/2018] [Indexed: 12/11/2022] Open
Abstract
In vitro assay data have recently emerged as a potential alternative to traditional animal toxicity studies to aid in the prediction of adverse effects of chemicals on humans. Here we evaluate the data generated from a battery of quantitative high-throughput screening (qHTS) assays applied to a large and diverse collection of chemicals, including approved drugs, for their capacity in predicting human toxicity. Models were built with animal in vivo toxicity data, in vitro human cell-based assay data, as well as in combination with chemical structure and/or drug-target information to predict adverse effects observed for drugs in humans. Interestingly, we found that the models built with the human cell-based assay data performed close to those of the models based on animal in vivo toxicity data. Furthermore, expanding the biological space coverage of assays by including additional drug-target annotations was shown to significantly improve model performance. We identified a small set of targets, which, when added to the current suite of in vitro human cell-based assay data, result in models that greatly outperform those built with the existing animal toxicity data. Assays can be developed for this set of targets to screen compounds for construction of robust models for human toxicity prediction.
Collapse
Affiliation(s)
- Ruili Huang
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, 20850, USA.
| | - Menghang Xia
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, 20850, USA
| | - Srilatha Sakamuru
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, 20850, USA
| | - Jinghua Zhao
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, 20850, USA
| | - Caitlin Lynch
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, 20850, USA
| | - Tongan Zhao
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, 20850, USA
| | - Hu Zhu
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, 20850, USA
| | - Christopher P Austin
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, 20850, USA
| | - Anton Simeonov
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, 20850, USA
| |
Collapse
|
21
|
Lynch C, Zhao J, Huang R, Kanaya N, Bernal L, Hsieh JH, Auerbach SS, Witt KL, Merrick BA, Chen S, Teng CT, Xia M. Identification of Estrogen-Related Receptor α Agonists in the Tox21 Compound Library. Endocrinology 2018; 159:744-753. [PMID: 29216352 PMCID: PMC5774247 DOI: 10.1210/en.2017-00658] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/28/2017] [Indexed: 12/17/2022]
Abstract
The estrogen-related receptor α (ERRα) is an orphan nuclear receptor (NR) that plays a role in energy homeostasis and controls mitochondrial oxidative respiration. Increased expression of ERRα in certain ovarian, breast, and colon cancers has a negative prognosis, indicating an important role for ERRα in cancer progression. An interaction between ERRα and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) has also recently been shown to regulate an enzyme in the β-oxidation of free fatty acids, thereby suggesting that ERRα plays an important role in obesity and type 2 diabetes. Therefore, it would be prudent to identify compounds that can act as activators of ERRα. In this study, we screened ∼10,000 (8311 unique) compounds, known as the Tox21 10K collection, to identify agonists of ERRα. We performed this screen using two stably transfected HEK 293 cell lines, one with the ERRα-reporter alone and the other with both ERRα-reporter and PGC-1α expression vectors. After the primary screening, we identified more than five agonist clusters based on compound structural similarity analysis (e.g., statins). By examining the activities of the confirmed ERRα modulators in other Tox21 NR assays, eliminating those with promiscuous NR activity, and performing follow-up assays (e.g., small interfering RNA knockdown), we identified compounds that might act as endocrine disrupters through effects on ERRα signaling. To our knowledge, this study is the first comprehensive analysis in discovering potential endocrine disrupters that affect the ERRα signaling pathway.
Collapse
Affiliation(s)
- Caitlin Lynch
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland 20892
| | - Jinghua Zhao
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland 20892
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland 20892
| | - Noriko Kanaya
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | - Lauren Bernal
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | - Jui-Hua Hsieh
- Kelly Government Solutions, Durham, North Carolina 27560
| | - Scott S. Auerbach
- Division of the National Toxicology Program, Biomolecular Screening Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Kristine L. Witt
- Division of the National Toxicology Program, Biomolecular Screening Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - B. Alex Merrick
- Division of the National Toxicology Program, Biomolecular Screening Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | - Christina T. Teng
- Division of the National Toxicology Program, Biomolecular Screening Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
22
|
Abstract
The new strategy for chemical toxicity testing and modeling is to use in vitro human cell-based assays in conjunction with quantitative high-throughput screening (qHTS) technology, to identify molecular mechanisms and predict in vivo responses. Stem cells are more physiologically relevant than immortalized cell lines because of their unique proliferation and differentiation potentials. We established a robust two stem cells-two lineages assay system, encompassing human mesenchymal stem cells (hMSCs) along osteogenesis and human induced pluripotent stem cells (hiPSCs) along hepatogenesis. We performed qHTS phenotypic screening of LOPAC1280 and identified 38 preliminary hits for hMSCs. This was followed by validation of a selected number of hits and determination of their IC50 values and mechanistic studies of idarubicin and cantharidin treatments using proteomics and bioinformatics. In general, hiPSCs were more sensitive than hMSCs to chemicals, and differentiated progenies were less sensitive than their progenitors. We showed that chemical toxicity depends on both stem cell types and their differentiation stages. Proteomics identified and quantified over 3000 proteins for both stem cells. Bioinformatics identified apoptosis and G2/M as the top pathways conferring idarubicin toxicity. Our Omics-based assays of stem cells provide mechanistic insights into chemical toxicity and may help prioritize chemicals for in-depth toxicological evaluations.
Collapse
Affiliation(s)
- Yan Han
- Newomics Inc., Emeryville, California, USA
| | - Jinghua Zhao
- National Center for Advancing Translational Sciences, Bethesda, Maryland, USA
| | - Ruili Huang
- National Center for Advancing Translational Sciences, Bethesda, Maryland, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, Bethesda, Maryland, USA
| | | |
Collapse
|
23
|
Abstract
Ligand-activated nuclear receptors, including peroxisome proliferator-activated receptor alpha (PPARα), pregnane X receptor, and constitutive androstane receptor, were first identified as key regulators of the responses against chemical toxicants. However, numerous studies using mouse disease models and human samples have revealed critical roles for these receptors and others, such as PPARβ/δ, PPARγ, farnesoid X receptor (FXR), and liver X receptor (LXR), in maintaining nutrient/energy homeostasis in part through modulation of the gut-liver-adipose axis. Recently, disorders associated with disrupted nutrient/energy homeostasis, e.g., obesity, metabolic syndrome, and non-alcoholic fatty liver disease (NAFLD), are increasing worldwide. Notably, in NAFLD, a progressive subtype exists, designated as non-alcoholic steatohepatitis (NASH) that is characterized by typical histological features resembling alcoholic steatohepatitis (ASH), and NASH/ASH are recognized as major causes of hepatitis virus-unrelated liver cirrhosis and hepatocellular carcinoma. Since hepatic steatosis is basically caused by an imbalance between fat/energy influx and utilization, abnormal signaling of these nuclear receptors contribute to the pathogenesis of fatty liver disease. Standard therapeutic interventions have not been fully established for fatty liver disease, but some new agents that activate or inhibit nuclear receptor signaling have shown promise as possible therapeutic targets. In this review, we summarize recent findings on the roles of nuclear receptors in fatty liver disease and discuss future perspectives to develop promising pharmacological strategies targeting nuclear receptors for NAFLD/NASH.
Collapse
Affiliation(s)
- Naoki Tanaka
- Department of Metabolic Regulation, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan.
| | - Toshifumi Aoyama
- Department of Metabolic Regulation, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan
| | - Shioko Kimura
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
24
|
Lynch C, Sakamuru S, Huang R, Stavreva DA, Varticovski L, Hager GL, Judson RS, Houck KA, Kleinstreuer NC, Casey W, Paules RS, Simeonov A, Xia M. Identifying environmental chemicals as agonists of the androgen receptor by using a quantitative high-throughput screening platform. Toxicology 2017; 385:48-58. [PMID: 28478275 PMCID: PMC6135100 DOI: 10.1016/j.tox.2017.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 03/27/2017] [Accepted: 05/03/2017] [Indexed: 01/08/2023]
Abstract
The androgen receptor (AR, NR3C4) is a nuclear receptor whose main function is acting as a transcription factor regulating gene expression for male sexual development and maintaining accessory sexual organ function. It is also a necessary component of female fertility by affecting the functionality of ovarian follicles and ovulation. Pathological processes involving AR include Kennedy's disease and Klinefelter's syndrome, as well as prostate, ovarian, and testicular cancer. Strict regulation of sex hormone signaling is required for normal reproductive organ development and function. Therefore, testing small molecules for their ability to modulate AR is a first step in identifying potential endocrine disruptors. We screened the Tox21 10K compound library in a quantitative high-throughput format to identify activators of AR using two reporter gene cell lines, AR β-lactamase (AR-bla) and AR-luciferase (AR-luc). Seventy-five compounds identified through the primary assay were characterized as potential agonists or inactives through confirmation screens and secondary assays. Biochemical binding and AR nuclear translocation assays were performed to confirm direct binding and activation of AR from these compounds. The top seventeen compounds identified were found to bind to AR, and sixteen of them translocated AR from the cytoplasm into the nucleus. Five potentially novel or not well-characterized AR agonists were discovered through primary and follow-up studies. We have identified multiple AR activators, including known AR agonists such as testosterone, as well as novel/not well-known compounds such as prulifloxacin. The information gained from the current study can be directly used to prioritize compounds for further in-depth toxicological evaluations, as well as their potential to disrupt the endocrine system via AR activation.
Collapse
Affiliation(s)
- Caitlin Lynch
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Srilatha Sakamuru
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Diana A Stavreva
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lyuba Varticovski
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Richard S Judson
- National Center for Computational Toxicology, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Keith A Houck
- National Center for Computational Toxicology, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Nicole C Kleinstreuer
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health,Research Triangle Park, NC, USA
| | - Warren Casey
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health,Research Triangle Park, NC, USA
| | - Richard S Paules
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health,Research Triangle Park, NC, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
25
|
Le Magueresse-Battistoni B, Labaronne E, Vidal H, Naville D. Endocrine disrupting chemicals in mixture and obesity, diabetes and related metabolic disorders. World J Biol Chem 2017; 8:108-119. [PMID: 28588754 PMCID: PMC5439162 DOI: 10.4331/wjbc.v8.i2.108] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/25/2017] [Accepted: 05/05/2017] [Indexed: 02/05/2023] Open
Abstract
Obesity and associated metabolic disorders represent a major societal challenge in health and quality of life with large psychological consequences in addition to physical disabilities. They are also one of the leading causes of morbidity and mortality. Although, different etiologic factors including excessive food intake and reduced physical activity have been well identified, they cannot explain the kinetics of epidemic evolution of obesity and diabetes with prevalence rates reaching pandemic proportions. Interestingly, convincing data have shown that environmental pollutants, specifically those endowed with endocrine disrupting activities, could contribute to the etiology of these multifactorial metabolic disorders. Within this review, we will recapitulate characteristics of endocrine disruption. We will demonstrate that metabolic disorders could originate from endocrine disruption with a particular focus on convincing data from the literature. Eventually, we will present how handling an original mouse model of chronic exposition to a mixture of pollutants allowed demonstrating that a mixture of pollutants each at doses beyond their active dose could induce substantial deleterious effects on several metabolic end-points. This proof-of-concept study, as well as other studies on mixtures of pollutants, stresses the needs for revisiting the current threshold model used in risk assessment which does not take into account potential effects of mixtures containing pollutants at environmental doses, e.g., the real life exposure. Certainly, more studies are necessary to better determine the nature of the chemicals to which humans are exposed and at which level, and their health impact. As well, research studies on substitute products are essential to identify harmless molecules.
Collapse
|
26
|
Cote I, Andersen ME, Ankley GT, Barone S, Birnbaum LS, Boekelheide K, Bois FY, Burgoon LD, Chiu WA, Crawford-Brown D, Crofton KM, DeVito M, Devlin RB, Edwards SW, Guyton KZ, Hattis D, Judson RS, Knight D, Krewski D, Lambert J, Maull EA, Mendrick D, Paoli GM, Patel CJ, Perkins EJ, Poje G, Portier CJ, Rusyn I, Schulte PA, Simeonov A, Smith MT, Thayer KA, Thomas RS, Thomas R, Tice RR, Vandenberg JJ, Villeneuve DL, Wesselkamper S, Whelan M, Whittaker C, White R, Xia M, Yauk C, Zeise L, Zhao J, DeWoskin RS. The Next Generation of Risk Assessment Multi-Year Study-Highlights of Findings, Applications to Risk Assessment, and Future Directions. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:1671-1682. [PMID: 27091369 PMCID: PMC5089888 DOI: 10.1289/ehp233] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 10/30/2015] [Accepted: 03/29/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND The Next Generation (NexGen) of Risk Assessment effort is a multi-year collaboration among several organizations evaluating new, potentially more efficient molecular, computational, and systems biology approaches to risk assessment. This article summarizes our findings, suggests applications to risk assessment, and identifies strategic research directions. OBJECTIVE Our specific objectives were to test whether advanced biological data and methods could better inform our understanding of public health risks posed by environmental exposures. METHODS New data and methods were applied and evaluated for use in hazard identification and dose-response assessment. Biomarkers of exposure and effect, and risk characterization were also examined. Consideration was given to various decision contexts with increasing regulatory and public health impacts. Data types included transcriptomics, genomics, and proteomics. Methods included molecular epidemiology and clinical studies, bioinformatic knowledge mining, pathway and network analyses, short-duration in vivo and in vitro bioassays, and quantitative structure activity relationship modeling. DISCUSSION NexGen has advanced our ability to apply new science by more rapidly identifying chemicals and exposures of potential concern, helping characterize mechanisms of action that influence conclusions about causality, exposure-response relationships, susceptibility and cumulative risk, and by elucidating new biomarkers of exposure and effects. Additionally, NexGen has fostered extensive discussion among risk scientists and managers and improved confidence in interpreting and applying new data streams. CONCLUSIONS While considerable uncertainties remain, thoughtful application of new knowledge to risk assessment appears reasonable for augmenting major scope assessments, forming the basis for or augmenting limited scope assessments, and for prioritization and screening of very data limited chemicals. Citation: Cote I, Andersen ME, Ankley GT, Barone S, Birnbaum LS, Boekelheide K, Bois FY, Burgoon LD, Chiu WA, Crawford-Brown D, Crofton KM, DeVito M, Devlin RB, Edwards SW, Guyton KZ, Hattis D, Judson RS, Knight D, Krewski D, Lambert J, Maull EA, Mendrick D, Paoli GM, Patel CJ, Perkins EJ, Poje G, Portier CJ, Rusyn I, Schulte PA, Simeonov A, Smith MT, Thayer KA, Thomas RS, Thomas R, Tice RR, Vandenberg JJ, Villeneuve DL, Wesselkamper S, Whelan M, Whittaker C, White R, Xia M, Yauk C, Zeise L, Zhao J, DeWoskin RS. 2016. The Next Generation of Risk Assessment multiyear study-highlights of findings, applications to risk assessment, and future directions. Environ Health Perspect 124:1671-1682; http://dx.doi.org/10.1289/EHP233.
Collapse
Affiliation(s)
- Ila Cote
- National Center for Environmental Assessment, U.S. Environmental Protection Agency (EPA), Washington, District of Columbia, USA
- Address correspondence to I. Cote, U.S. Environmental Protection Agency, Region 8, Room 8152, 1595 Wynkoop St., Denver, CO 80202-1129 USA. Telephone: (202) 288-9539. E-mail:
| | | | - Gerald T. Ankley
- National Health and Environmental Effects Research Laboratory, U.S. EPA, Duluth, Minnesota, USA
| | - Stanley Barone
- Office of Chemical Safety and Pollution Prevention, U.S. EPA, Washington, District of Columbia, USA
| | - Linda S. Birnbaum
- National Institute of Environmental Health Sciences, and
- National Toxicology Program, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Kim Boekelheide
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Frederic Y. Bois
- Unité Modèles pour l’Écotoxicologie et la Toxicologie, Institut National de l’Environnement Industriel et des Risques, Verneuil en Halatte, France
| | - Lyle D. Burgoon
- U.S. Army Engineer Research and Development Center, Research Triangle Park, North Carolina, USA
| | - Weihsueh A. Chiu
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | | | | | - Michael DeVito
- National Institute of Environmental Health Sciences, and
- National Toxicology Program, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Robert B. Devlin
- National Health and Environmental Effects Research Laboratory, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Stephen W. Edwards
- National Health and Environmental Effects Research Laboratory, U.S. EPA, Research Triangle Park, North Carolina, USA
| | | | - Dale Hattis
- George Perkins Marsh Institute, Clark University, Worcester, Massachusetts, USA
| | | | - Derek Knight
- European Chemicals Agency, Annankatu, Helsinki, Finland
| | - Daniel Krewski
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Ontario, Canada
| | - Jason Lambert
- National Center for Environmental Assessment, U.S. EPA, Cincinnati, Ohio, USA
| | - Elizabeth Anne Maull
- National Institute of Environmental Health Sciences, and
- National Toxicology Program, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Donna Mendrick
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas, USA
| | | | - Chirag Jagdish Patel
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Edward J. Perkins
- U.S. Army Engineer Research and Development Center, Vicksburg, Mississippi, USA
| | - Gerald Poje
- Grant Consulting Group, Washington, District of Columbia, USA
| | | | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Paul A. Schulte
- Education and Information Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, Ohio, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, NIH, DHHS, Bethesda, Maryland, USA
| | - Martyn T. Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Kristina A. Thayer
- National Institute of Environmental Health Sciences, and
- National Toxicology Program, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | | | - Reuben Thomas
- Gladstone Institutes, University of California, San Francisco, San Francisco, California, USA
| | - Raymond R. Tice
- National Institute of Environmental Health Sciences, and
- National Toxicology Program, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - John J. Vandenberg
- National Center for Environmental Assessment, U.S. Environmental Protection Agency (EPA), Washington, District of Columbia, USA
| | - Daniel L. Villeneuve
- National Health and Environmental Effects Research Laboratory, U.S. EPA, Duluth, Minnesota, USA
| | - Scott Wesselkamper
- National Center for Environmental Assessment, U.S. EPA, Cincinnati, Ohio, USA
| | - Maurice Whelan
- Systems Toxicology Unit, European Commission Joint Research Centre, Ispra, Italy
| | - Christine Whittaker
- Education and Information Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, Ohio, USA
| | - Ronald White
- Center for Effective Government, Washington, District of Columbia, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, NIH, DHHS, Bethesda, Maryland, USA
| | - Carole Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California EPA, Oakland, California, USA
| | - Jay Zhao
- National Center for Environmental Assessment, U.S. EPA, Cincinnati, Ohio, USA
| | - Robert S. DeWoskin
- National Center for Environmental Assessment, U.S. Environmental Protection Agency (EPA), Washington, District of Columbia, USA
| |
Collapse
|
27
|
Hsu CW, Hsieh JH, Huang R, Pijnenburg D, Khuc T, Hamm J, Zhao J, Lynch C, van Beuningen R, Chang X, Houtman R, Xia M. Differential modulation of FXR activity by chlorophacinone and ivermectin analogs. Toxicol Appl Pharmacol 2016; 313:138-148. [PMID: 27773686 DOI: 10.1016/j.taap.2016.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/10/2016] [Accepted: 10/18/2016] [Indexed: 02/02/2023]
Abstract
Chemicals that alter normal function of farnesoid X receptor (FXR) have been shown to affect the homeostasis of bile acids, glucose, and lipids. Several structural classes of environmental chemicals and drugs that modulated FXR transactivation were previously identified by quantitative high-throughput screening (qHTS) of the Tox21 10K chemical collection. In the present study, we validated the FXR antagonist activity of selected structural classes, including avermectin anthelmintics, dihydropyridine calcium channel blockers, 1,3-indandione rodenticides, and pyrethroid pesticides, using in vitro assay and quantitative structural-activity relationship (QSAR) analysis approaches. (Z)-Guggulsterone, chlorophacinone, ivermectin, and their analogs were profiled for their ability to alter CDCA-mediated FXR binding using a panel of 154 coregulator motifs and to induce or inhibit transactivation and coactivator recruitment activities of constitutive androstane receptor (CAR), liver X receptor alpha (LXRα), or pregnane X receptor (PXR). Our results showed that chlorophacinone and ivermectin had distinct modes of action (MOA) in modulating FXR-coregulator interactions and compound selectivity against the four aforementioned functionally-relevant nuclear receptors. These findings collectively provide mechanistic insights regarding compound activities against FXR and possible explanations for in vivo toxicological observations of chlorophacinone, ivermectin, and their analogs.
Collapse
Affiliation(s)
- Chia-Wen Hsu
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Jui-Hua Hsieh
- National Toxicology Program, National Institutes of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Ruili Huang
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Dirk Pijnenburg
- PamGene International B.V., Wolvenhoek 10, 5211 HH 's-Hertogenbosch, The Netherlands
| | - Thai Khuc
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Jon Hamm
- Integrated Laboratory System, Inc., Morrisville, NC, USA
| | - Jinghua Zhao
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Caitlin Lynch
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Rinie van Beuningen
- PamGene International B.V., Wolvenhoek 10, 5211 HH 's-Hertogenbosch, The Netherlands
| | - Xiaoqing Chang
- Integrated Laboratory System, Inc., Morrisville, NC, USA
| | - René Houtman
- PamGene International B.V., Wolvenhoek 10, 5211 HH 's-Hertogenbosch, The Netherlands
| | - Menghang Xia
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
28
|
Conformational modulation of the farnesoid X receptor by prenylflavonoids: Insights from hydrogen deuterium exchange mass spectrometry (HDX-MS), fluorescence titration and molecular docking studies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1667-1677. [PMID: 27596062 DOI: 10.1016/j.bbapap.2016.08.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/29/2016] [Accepted: 08/31/2016] [Indexed: 12/20/2022]
Abstract
We report on the molecular interactions of the farnesoid X receptor (FXR) with prenylflavonoids, an emerging class of FXR modulators. FXR is an attractive therapeutic target for mitigating metabolic syndromes (MetS) because FXR activates the inhibitory nuclear receptor, small heterodimer partner (SHP), thereby inhibiting both gluconeogenesis and de novo lipogenesis. We and others have shown that xanthohumol (XN), the principal prenylflavonoid of the hop plant (Humulus lupulus L.), is a FXR agonist based on its ability to affect lipid and glucose metabolism in vivo and to induces FXR target genes in biliary carcinoma cells and HEK293 cells. However, studies are currently lacking to rationalize the molecular mechanisms of FXR modulation by prenylflavonoids. We addressed this deficiency and report the first systematic study of FXR prenylflavonoid interactions. We combined hydrogen deuterium exchange mass spectrometry (HDX-MS) with computational studies for dissecting molecular recognition and conformational impact of prenylflavonoid interactions on the ligand binding domain (LBD) of human FXR. Four prenylflavonoids were tested: xanthohumol, a prenylated chalcone, two prenylated flavonones, namely isoxanthohumol (IX) and 8-prenylnaringenin (8PN), and a semisynthetic prenylflavonoid derivative, tetrahydroxanthohumol (TX). Enhancement of the HDX protection profile data by in silico predicted models of FXR prenylflavonoid complexes resulted in mapping of the prenylflavonoid interactions within the canonical ligand binding pocket. Our findings provide a foundation for the exploration of the chemical scaffolds of prenylated chalcones and flavanones as leads for future structure activity studies of this important nuclear receptor with potential relevance for ameliorating lipid metabolic disorders associated with obesity and MetS.
Collapse
|
29
|
Judson R, Houck K, Martin M, Richard AM, Knudsen TB, Shah I, Little S, Wambaugh J, Woodrow Setzer R, Kothiya P, Phuong J, Filer D, Smith D, Reif D, Rotroff D, Kleinstreuer N, Sipes N, Xia M, Huang R, Crofton K, Thomas RS. Editor's Highlight: Analysis of the Effects of Cell Stress and Cytotoxicity on In Vitro Assay Activity Across a Diverse Chemical and Assay Space. Toxicol Sci 2016; 152:323-39. [PMID: 27208079 DOI: 10.1093/toxsci/kfw092] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Chemical toxicity can arise from disruption of specific biomolecular functions or through more generalized cell stress and cytotoxicity-mediated processes. Here, responses of 1060 chemicals including pharmaceuticals, natural products, pesticidals, consumer, and industrial chemicals across a battery of 815 in vitro assay endpoints from 7 high-throughput assay technology platforms were analyzed in order to distinguish between these types of activities. Both cell-based and cell-free assays showed a rapid increase in the frequency of responses at concentrations where cell stress/cytotoxicity responses were observed in cell-based assays. Chemicals that were positive on at least 2 viability/cytotoxicity assays within the concentration range tested (typically up to 100 μM) activated a median of 12% of assay endpoints whereas those that were not cytotoxic in this concentration range activated 1.3% of the assays endpoints. The results suggest that activity can be broadly divided into: (1) specific biomolecular interactions against one or more targets (eg, receptors or enzymes) at concentrations below which overt cytotoxicity-associated activity is observed; and (2) activity associated with cell stress or cytotoxicity, which may result from triggering specific cell stress pathways, chemical reactivity, physico-chemical disruption of proteins or membranes, or broad low-affinity non-covalent interactions. Chemicals showing a greater number of specific biomolecular interactions are generally designed to be bioactive (pharmaceuticals or pesticidal active ingredients), whereas intentional food-use chemicals tended to show the fewest specific interactions. The analyses presented here provide context for use of these data in ongoing studies to predict in vivo toxicity from chemicals lacking extensive hazard assessment.
Collapse
Affiliation(s)
- Richard Judson
- *U.S. EPA, National Center for Computational Toxicology, Research Triangle Park, North Carolina;
| | - Keith Houck
- *U.S. EPA, National Center for Computational Toxicology, Research Triangle Park, North Carolina
| | - Matt Martin
- *U.S. EPA, National Center for Computational Toxicology, Research Triangle Park, North Carolina
| | - Ann M Richard
- *U.S. EPA, National Center for Computational Toxicology, Research Triangle Park, North Carolina
| | - Thomas B Knudsen
- *U.S. EPA, National Center for Computational Toxicology, Research Triangle Park, North Carolina
| | - Imran Shah
- *U.S. EPA, National Center for Computational Toxicology, Research Triangle Park, North Carolina
| | - Stephen Little
- *U.S. EPA, National Center for Computational Toxicology, Research Triangle Park, North Carolina
| | - John Wambaugh
- *U.S. EPA, National Center for Computational Toxicology, Research Triangle Park, North Carolina
| | - R Woodrow Setzer
- *U.S. EPA, National Center for Computational Toxicology, Research Triangle Park, North Carolina
| | - Parth Kothiya
- Contractor to the U.S. EPA National Center for Computational Toxicology, Research Triangle Park, North Carolina
| | - Jimmy Phuong
- Contractor to the U.S. EPA National Center for Computational Toxicology, Research Triangle Park, North Carolina
| | - Dayne Filer
- ORISE Fellow at the U.S. EPA National Center for Computational Toxicology, Research Triangle Park, North Carolina
| | - Doris Smith
- *U.S. EPA, National Center for Computational Toxicology, Research Triangle Park, North Carolina
| | - David Reif
- Department of Statistics, North Carolina State University, Raleigh, North Carolina
| | - Daniel Rotroff
- Department of Statistics, North Carolina State University, Raleigh, North Carolina
| | | | - Nisha Sipes
- National Toxicology Program, Research Triangle Park, North Carolina
| | - Menghang Xia
- NIH National Center for Advancing Translational Sciences, Rockville, Maryland
| | - Ruili Huang
- NIH National Center for Advancing Translational Sciences, Rockville, Maryland
| | - Kevin Crofton
- *U.S. EPA, National Center for Computational Toxicology, Research Triangle Park, North Carolina
| | - Russell S Thomas
- *U.S. EPA, National Center for Computational Toxicology, Research Triangle Park, North Carolina
| |
Collapse
|
30
|
Cave MC, Clair HB, Hardesty JE, Falkner KC, Feng W, Clark BJ, Sidey J, Shi H, Aqel BA, McClain CJ, Prough RA. Nuclear receptors and nonalcoholic fatty liver disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1083-1099. [PMID: 26962021 DOI: 10.1016/j.bbagrm.2016.03.002] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 02/08/2023]
Abstract
Nuclear receptors are transcription factors which sense changing environmental or hormonal signals and effect transcriptional changes to regulate core life functions including growth, development, and reproduction. To support this function, following ligand-activation by xenobiotics, members of subfamily 1 nuclear receptors (NR1s) may heterodimerize with the retinoid X receptor (RXR) to regulate transcription of genes involved in energy and xenobiotic metabolism and inflammation. Several of these receptors including the peroxisome proliferator-activated receptors (PPARs), the pregnane and xenobiotic receptor (PXR), the constitutive androstane receptor (CAR), the liver X receptor (LXR) and the farnesoid X receptor (FXR) are key regulators of the gut:liver:adipose axis and serve to coordinate metabolic responses across organ systems between the fed and fasting states. Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease and may progress to cirrhosis and even hepatocellular carcinoma. NAFLD is associated with inappropriate nuclear receptor function and perturbations along the gut:liver:adipose axis including obesity, increased intestinal permeability with systemic inflammation, abnormal hepatic lipid metabolism, and insulin resistance. Environmental chemicals may compound the problem by directly interacting with nuclear receptors leading to metabolic confusion and the inability to differentiate fed from fasting conditions. This review focuses on the impact of nuclear receptors in the pathogenesis and treatment of NAFLD. Clinical trials including PIVENS and FLINT demonstrate that nuclear receptor targeted therapies may lead to the paradoxical dissociation of steatosis, inflammation, fibrosis, insulin resistance, dyslipidemia and obesity. Novel strategies currently under development (including tissue-specific ligands and dual receptor agonists) may be required to separate the beneficial effects of nuclear receptor activation from unwanted metabolic side effects. The impact of nuclear receptor crosstalk in NAFLD is likely to be profound, but requires further elucidation. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
Affiliation(s)
- Matthew C Cave
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; The Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA; The KentuckyOne Health Jewish Hospital Liver Transplant Program, Louisville, KY 40202, USA.
| | - Heather B Clair
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Josiah E Hardesty
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - K Cameron Falkner
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Wenke Feng
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Barbara J Clark
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Jennifer Sidey
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Hongxue Shi
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Bashar A Aqel
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Scottsdale, AZ 85054, USA
| | - Craig J McClain
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; The Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA; The KentuckyOne Health Jewish Hospital Liver Transplant Program, Louisville, KY 40202, USA
| | - Russell A Prough
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
31
|
Huang R, Xia M, Sakamuru S, Zhao J, Shahane SA, Attene-Ramos M, Zhao T, Austin CP, Simeonov A. Modelling the Tox21 10 K chemical profiles for in vivo toxicity prediction and mechanism characterization. Nat Commun 2016; 7:10425. [PMID: 26811972 PMCID: PMC4777217 DOI: 10.1038/ncomms10425] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/10/2015] [Indexed: 02/06/2023] Open
Abstract
Target-specific, mechanism-oriented in vitro assays post a promising alternative to traditional animal toxicology studies. Here we report the first comprehensive analysis of the Tox21 effort, a large-scale in vitro toxicity screening of chemicals. We test ∼ 10,000 chemicals in triplicates at 15 concentrations against a panel of nuclear receptor and stress response pathway assays, producing more than 50 million data points. Compound clustering by structure similarity and activity profile similarity across the assays reveals structure-activity relationships that are useful for the generation of mechanistic hypotheses. We apply structural information and activity data to build predictive models for 72 in vivo toxicity end points using a cluster-based approach. Models based on in vitro assay data perform better in predicting human toxicity end points than animal toxicity, while a combination of structural and activity data results in better models than using structure or activity data alone. Our results suggest that in vitro activity profiles can be applied as signatures of compound mechanism of toxicity and used in prioritization for more in-depth toxicological testing.
Collapse
Affiliation(s)
- Ruili Huang
- Division of Pre-clinical Innovation, National Center for
Advancing Translational Sciences, National Institutes of Health, 9800 Medical
Center Drive, Rockville, Maryland
20850, USA
| | - Menghang Xia
- Division of Pre-clinical Innovation, National Center for
Advancing Translational Sciences, National Institutes of Health, 9800 Medical
Center Drive, Rockville, Maryland
20850, USA
| | - Srilatha Sakamuru
- Division of Pre-clinical Innovation, National Center for
Advancing Translational Sciences, National Institutes of Health, 9800 Medical
Center Drive, Rockville, Maryland
20850, USA
| | - Jinghua Zhao
- Division of Pre-clinical Innovation, National Center for
Advancing Translational Sciences, National Institutes of Health, 9800 Medical
Center Drive, Rockville, Maryland
20850, USA
| | - Sampada A. Shahane
- Division of Pre-clinical Innovation, National Center for
Advancing Translational Sciences, National Institutes of Health, 9800 Medical
Center Drive, Rockville, Maryland
20850, USA
| | - Matias Attene-Ramos
- Division of Pre-clinical Innovation, National Center for
Advancing Translational Sciences, National Institutes of Health, 9800 Medical
Center Drive, Rockville, Maryland
20850, USA
| | - Tongan Zhao
- Division of Pre-clinical Innovation, National Center for
Advancing Translational Sciences, National Institutes of Health, 9800 Medical
Center Drive, Rockville, Maryland
20850, USA
| | - Christopher P. Austin
- Division of Pre-clinical Innovation, National Center for
Advancing Translational Sciences, National Institutes of Health, 9800 Medical
Center Drive, Rockville, Maryland
20850, USA
| | - Anton Simeonov
- Division of Pre-clinical Innovation, National Center for
Advancing Translational Sciences, National Institutes of Health, 9800 Medical
Center Drive, Rockville, Maryland
20850, USA
| |
Collapse
|
32
|
Hsu CWA, Zhao J, Xia M. Transactivation and Coactivator Recruitment Assays for Measuring Farnesoid X Receptor Activity. Methods Mol Biol 2016; 1473:43-53. [PMID: 27518622 DOI: 10.1007/978-1-4939-6346-1_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The farnesoid X receptor (FXR) is a nuclear receptor responsible for homeostasis of bile acids, lipids, and glucose. Compounds that alter endogenous FXR signaling can be used as therapeutic candidates or identified as potentially hazardous compounds depending on exposure doses and health states. Therefore, there is an increasing need for high-throughput screening assays of FXR activity to profile large numbers of environmental chemicals and drugs. This chapter describes a workflow of FXR modulator identification and characterization. To identify compounds that modulate FXR transactivation at the cellular level, we first screen compounds from the Tox21 10 K compound library in an FXR-driven beta-lactamase reporter gene assay multiplexed with a cell viability assay in the same well of the 1536-well plates. The selected compounds are then tested biochemically for their ability to modulate FXR-coactivator binding interactions using a time-resolved fluorescence resonance energy transfer (TR-FRET) coactivator assay. The assay results from the workflow can be used to prioritize compounds for more extensive investigations.
Collapse
Affiliation(s)
- Chia-Wen Amy Hsu
- National Center for Advancing Translational Sciences, National Institutes of Health, Building C, MSC: 3375, 9800 Medical Center Drive, Bethesda, MD, 20892, USA
| | - Jinghua Zhao
- National Center for Advancing Translational Sciences, National Institutes of Health, Building C, MSC: 3375, 9800 Medical Center Drive, Bethesda, MD, 20892, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Building C, MSC: 3375, 9800 Medical Center Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
33
|
Huang R. A Quantitative High-Throughput Screening Data Analysis Pipeline for Activity Profiling. Methods Mol Biol 2016; 1473:111-22. [PMID: 27518629 DOI: 10.1007/978-1-4939-6346-1_12] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The US Tox21 program has developed in vitro assays to test large collections of environmental chemicals in a quantitative high-throughput screening (qHTS) format, using triplicate 15-dose titrations to generate over 50 million data points to date. Counter screens are also employed to minimize interferences from non-target-specific assay artifacts, such as compound auto fluorescence and cytotoxicity. New data analysis approaches are needed to integrate these data and characterize the activities observed from these assays. Here, we describe a complete analysis pipeline that evaluates these qHTS data for technical quality in terms of signal reproducibility. We integrate signals from repeated assay runs, primary readouts, and counter screens to produce a final call on on-target compound activity.
Collapse
Affiliation(s)
- Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Building B, MSC: 3370, 9800 Medical Center Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
34
|
The glucocorticoid mometasone furoate is a novel FXR ligand that decreases inflammatory but not metabolic gene expression. Sci Rep 2015; 5:14086. [PMID: 26369990 PMCID: PMC4572934 DOI: 10.1038/srep14086] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 08/17/2015] [Indexed: 01/06/2023] Open
Abstract
The Farnesoid X receptor (FXR) regulates bile salt, glucose and cholesterol homeostasis by binding to DNA response elements, thereby activating gene expression (direct transactivation). FXR also inhibits the immune response via tethering to NF-κB (tethering transrepression). FXR activation therefore has therapeutic potential for liver and intestinal inflammatory diseases. We aim to identify and develop gene-selective FXR modulators, which repress inflammation, but do not interfere with its metabolic capacity. In a high-throughput reporter-based screen, mometasone furoate (MF) was identified as a compound that reduced NF-κB reporter activity in an FXR-dependent manner. MF reduced mRNA expression of pro-inflammatory cytokines, and induction of direct FXR target genes in HepG2-GFP-FXR cells and intestinal organoids was minor. Computational studies disclosed three putative binding modes of the compound within the ligand binding domain of the receptor. Interestingly, mutation of W469A residue within the FXR ligand binding domain abrogated the decrease in NF-κB activity. Finally, we show that MF-bound FXR inhibits NF-κB subunit p65 recruitment to the DNA of pro-inflammatory genes CXCL2 and IL8. Although MF is not suitable as selective anti-inflammatory FXR ligand due to nanomolar affinity for the glucocorticoid receptor, we show that separation between metabolic and anti-inflammatory functions of FXR can be achieved.
Collapse
|