1
|
Agnihotri TG, Gomte SS, Jain A. Emerging theranostics to combat cancer: a perspective on metal-based nanomaterials. Drug Dev Ind Pharm 2022; 48:585-601. [PMID: 36448770 DOI: 10.1080/03639045.2022.2153862] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
OBJECTIVE Theranostics, encompassing diagnostics and therapeutics, has emerged as a critical component of cancer treatment. Metal-based theranostics is one such next-generation nanotechnology-based drug delivery system with a myriad of benefits in pre-clinical and clinical medication for the deadly diseases like cancer, where early detection can actually be life-saving. SIGNIFICANCE Metal theranostics have shown promising outcomes in terms of anticancer medication monitoring, targeted drug delivery, and simultaneous detection and treatment of early-stage cancer. METHODS For collection of literature data, different search engines including Google scholar, SciFinder, PubMed, ScienceDirect have been employed. With key words like, cancer, theranostics, metal nanoparticles relevant and appropriate data have been generated. RESULTS Noninvasive administration of the active drug is made possible by theranostics nanoparticulate systems' ability to aggregate at the tumor site and offer morphological and biochemical characteristics of the tumor site. The recent advancement of metal-based theranostics including metallic nanoparticles, metal oxides, metal sulfides, nanocomposites, etc. has been explored at length in this article. CONCLUSION The review highlights emerging applications in terms of molecular imaging, targeted therapy and different diagnostic approaches of metal theranostics. Possible challenges faced by nanotheranostics in terms of clinical immersion and toxicological aspects which need to be addressed at depth are also discussed at the end.
Collapse
Affiliation(s)
- Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India
| | - Shyam Sudhakar Gomte
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India
| |
Collapse
|
2
|
Khlebtsov NG, Lin L, Khlebtsov BN, Ye J. Gap-enhanced Raman tags: fabrication, optical properties, and theranostic applications. Theranostics 2020; 10:2067-2094. [PMID: 32089735 PMCID: PMC7019156 DOI: 10.7150/thno.39968] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/11/2019] [Indexed: 01/15/2023] Open
Abstract
Gap-enhanced Raman tags (GERTs) are emerging probes of surface-enhanced Raman scattering (SERS) spectroscopy that have found promising analytical, bioimaging, and theranostic applications. Because of their internal location, Raman reporter molecules are protected from unwanted external environments and particle aggregation and demonstrate superior SERS responses owing to the strongly enhanced electromagnetic fields in the gaps between metal core-shell structures. In this review, we discuss recent progress in the synthesis, simulation, and experimental studies of the optical properties and biomedical applications of novel spherically symmetrical and anisotropic GERTs fabricated with common plasmonic metals—gold (Au) and silver (Ag). Our discussion is focused on the design and synthetic strategies that ensure the optimal parameters and highest enhancement factors of GERTs for sensing and theranostics. In particular, we consider various core-shell structures with build-in nanogaps to explain why they would benefit the plasmonic GERTs as a superior SERS tag and how this would help future research in clinical analytics and therapeutics.
Collapse
|
3
|
Joseph MM, Narayanan N, Nair JB, Karunakaran V, Ramya AN, Sujai PT, Saranya G, Arya JS, Vijayan VM, Maiti KK. Exploring the margins of SERS in practical domain: An emerging diagnostic modality for modern biomedical applications. Biomaterials 2018; 181:140-181. [PMID: 30081304 DOI: 10.1016/j.biomaterials.2018.07.045] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/16/2018] [Accepted: 07/25/2018] [Indexed: 12/30/2022]
Abstract
Excellent multiplexing capability, molecular specificity, high sensitivity and the potential of resolving complex molecular level biological compositions augmented the diagnostic modality of surface-enhanced Raman scattering (SERS) in biology and medicine. While maintaining all the merits of classical Raman spectroscopy, SERS provides a more sensitive and selective detection and quantification platform. Non-invasive, chemically specific and spatially resolved analysis facilitates the exploration of SERS-based nano probes in diagnostic and theranostic applications with improved clinical outcomes compared to the currently available so called state-of-art technologies. Adequate knowledge on the mechanism and properties of SERS based nano probes are inevitable in utilizing the full potential of this modality for biomedical applications. The safety and efficiency of metal nanoparticles and Raman reporters have to be critically evaluated for the successful translation of SERS in to clinics. In this context, the present review attempts to give a comprehensive overview about the selected medical, biomedical and allied applications of SERS while highlighting recent and relevant outcomes ranging from simple detection platforms to complicated clinical applications.
Collapse
Affiliation(s)
- Manu M Joseph
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Nisha Narayanan
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Jyothi B Nair
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Varsha Karunakaran
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Adukkadan N Ramya
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Palasseri T Sujai
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Giridharan Saranya
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Jayadev S Arya
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Vineeth M Vijayan
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Kaustabh Kumar Maiti
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India.
| |
Collapse
|
4
|
Ma D, Huang C, Zheng J, Tang J, Li J, Yang J, Yang R. Quantitative detection of exosomal microRNA extracted from human blood based on surface-enhanced Raman scattering. Biosens Bioelectron 2017; 101:167-173. [PMID: 29073517 DOI: 10.1016/j.bios.2017.08.062] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/15/2017] [Accepted: 08/30/2017] [Indexed: 10/18/2022]
Abstract
Since the nature of the exosomal lipid bilayer can allow miRNAs to be protected from degradation by cellular RNAses in body fluids, exosomal microRNA (miRNA) has become an ideal source of non-invasive biomarkers for the early diagnosis and prognosis. In this paper, a new surface-enhanced Raman scattering (SERS) analysis strategy combining stable SERS reporter element and duplex-specific nuclease (DSN)-assisted signal amplification for quantitative detection of exosomal miRNA extracted from human blood is proposed. Firstly, we prepared SERS signal reporter of Au@R6G@AgAu nanoparticles (R6G attachment on the gold nanoparticles, then encapsulated in AgAu alloy shell nanoparticles named as ARANPs) with an inter small nanogap to generate stable SERS signal. Then, ARANPs and separating substrate of silicon microbead (SiMB) were then covalently attached to the 3'- and 5'- end of capture probe (CP) targeting exosomal miRNA. Upon target miRNA binding, DNA in heteroduplexes could be specifically cleaved by DSN and resulted in the release of ARANPs from the surface of SiMB. Meanwhile, target miRNA remained intact and subsequently involved in the next round of target-recycling amplification. The combination of stable SERS intensity and signal amplification significantly improved the sensitivity of the sensing systems, resulting in detection limits of 5 fM. More importantly, this method also could be used for the detection of exosomal miRNAs extracted from the blood collected from patients of recurrence in non-small-cell lung cancer (NSCLC), with a detection of 5.0μL of sample volume, which has potential for point-of-care testing (POCT) in clinical analysis.
Collapse
Affiliation(s)
- Dandan Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Caixia Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Jing Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
| | - Jianru Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Jishan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Jinfeng Yang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Ronghua Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China; School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
5
|
Jin X, Khlebtsov BN, Khanadeev VA, Khlebtsov NG, Ye J. Rational Design of Ultrabright SERS Probes with Embedded Reporters for Bioimaging and Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:30387-30397. [PMID: 28825458 DOI: 10.1021/acsami.7b08733] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plasmonic nanoparticles can be utilized as surface-enhanced Raman scattering (SERS) probes for bioimaging and as photothermal (PT) agents for cancer therapy. Typically, their SERS and PT efficiencies reach maximal values under the on-resonant condition, when the excitation wavelength overlaps the localized surface plasmon resonance (LSPR) wavelength preferably in the near-infrared (NIR) biological window. However, the photogenerated heat may inevitably disturb or even destroy biological samples during the imaging process. Herein, we develop ultrabright SERS probes composed of metallic Au@Ag core-shell rodlike nanomatryoshkas (RNMs) with embedded Raman reporters. By rationally controlling the Ag shell thickness, the LSPR of RNMs can be tuned from UV to NIR range, resulting in highly tunable SERS and PT properties. As bright NIR SERS imaging nanoprobes, RNMs with a thick Ag shell are designed for minimal PT damage to the biological targets under the off-resonance condition, as illustrated through monitoring the changes in mitochondrial membrane potential of cancer cells during SERS imaging procedure. By contrast, RNMs with a thin Ag shell are designed as multifunctional NIR theranostic probes that combine enhanced photothermal therapy capability, as exemplified by efficient PT killing of cancer cells, with reduced yet still efficient imaging properties at the on-resonance excitation.
Collapse
Affiliation(s)
| | - Boris N Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences , 13 Prospekt Entuziastov, Saratov 410049, Russia
| | - Vitaly A Khanadeev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences , 13 Prospekt Entuziastov, Saratov 410049, Russia
| | - Nikolai G Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences , 13 Prospekt Entuziastov, Saratov 410049, Russia
- Saratov National Research State University , 83 Ulitsa Astrakhanskaya, Saratov 410012, Russia
| | | |
Collapse
|
6
|
Darrigues E, Dantuluri V, Nima ZA, Vang-Dings KB, Griffin RJ, Biris AR, Ghosh A, Biris AS. Raman spectroscopy using plasmonic and carbon-based nanoparticles for cancer detection, diagnosis, and treatment guidance. Part 2: Treatment. Drug Metab Rev 2017; 49:253-283. [DOI: 10.1080/03602532.2017.1307387] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Emilie Darrigues
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - Vijayalakshmi Dantuluri
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - Zeid A. Nima
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - Kieng Bao Vang-Dings
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - Robert J. Griffin
- Arkansas Nanomedicine Center, Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Alexandru R. Biris
- National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Anindya Ghosh
- Department of Chemistry, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - Alexandru S. Biris
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, USA
| |
Collapse
|
7
|
Krafft C, Schmitt M, Schie IW, Cialla-May D, Matthäus C, Bocklitz T, Popp J. Markerfreie molekulare Bildgebung biologischer Zellen und Gewebe durch lineare und nichtlineare Raman-spektroskopische Ansätze. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201607604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Christoph Krafft
- Leibniz-Institut für Photonische Technologien; Albert-Einstein-Straße 9 07745 Jena Deutschland
| | - Michael Schmitt
- Institut für Physikalische Chemie und Abbe Center of Photonics; Friedrich-Schiller-Universität Jena; Helmholtzweg 4 07743 Jena Deutschland
| | - Iwan W. Schie
- Leibniz-Institut für Photonische Technologien; Albert-Einstein-Straße 9 07745 Jena Deutschland
| | - Dana Cialla-May
- Leibniz-Institut für Photonische Technologien; Albert-Einstein-Straße 9 07745 Jena Deutschland
- Institut für Physikalische Chemie und Abbe Center of Photonics; Friedrich-Schiller-Universität Jena; Helmholtzweg 4 07743 Jena Deutschland
| | - Christian Matthäus
- Leibniz-Institut für Photonische Technologien; Albert-Einstein-Straße 9 07745 Jena Deutschland
- Institut für Physikalische Chemie und Abbe Center of Photonics; Friedrich-Schiller-Universität Jena; Helmholtzweg 4 07743 Jena Deutschland
| | - Thomas Bocklitz
- Leibniz-Institut für Photonische Technologien; Albert-Einstein-Straße 9 07745 Jena Deutschland
- Institut für Physikalische Chemie und Abbe Center of Photonics; Friedrich-Schiller-Universität Jena; Helmholtzweg 4 07743 Jena Deutschland
| | - Jürgen Popp
- Leibniz-Institut für Photonische Technologien; Albert-Einstein-Straße 9 07745 Jena Deutschland
- Institut für Physikalische Chemie und Abbe Center of Photonics; Friedrich-Schiller-Universität Jena; Helmholtzweg 4 07743 Jena Deutschland
| |
Collapse
|
8
|
Krafft C, Schmitt M, Schie IW, Cialla-May D, Matthäus C, Bocklitz T, Popp J. Label-Free Molecular Imaging of Biological Cells and Tissues by Linear and Nonlinear Raman Spectroscopic Approaches. Angew Chem Int Ed Engl 2017; 56:4392-4430. [PMID: 27862751 DOI: 10.1002/anie.201607604] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/04/2016] [Indexed: 12/20/2022]
Abstract
Raman spectroscopy is an emerging technique in bioanalysis and imaging of biomaterials owing to its unique capability of generating spectroscopic fingerprints. Imaging cells and tissues by Raman microspectroscopy represents a nondestructive and label-free approach. All components of cells or tissues contribute to the Raman signals, giving rise to complex spectral signatures. Resonance Raman scattering and surface-enhanced Raman scattering can be used to enhance the signals and reduce the spectral complexity. Raman-active labels can be introduced to increase specificity and multimodality. In addition, nonlinear coherent Raman scattering methods offer higher sensitivities, which enable the rapid imaging of larger sampling areas. Finally, fiber-based imaging techniques pave the way towards in vivo applications of Raman spectroscopy. This Review summarizes the basic principles behind medical Raman imaging and its progress since 2012.
Collapse
Affiliation(s)
- Christoph Krafft
- Leibniz-Institut für Photonische Technologien, Albert-Einstein-Strasse 9, 07745, Jena, Germany
| | - Michael Schmitt
- Institut für Physikalische Chemie und Abbe Center für Photonics, Friedrich Schiller Universität Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Iwan W Schie
- Leibniz-Institut für Photonische Technologien, Albert-Einstein-Strasse 9, 07745, Jena, Germany
| | - Dana Cialla-May
- Leibniz-Institut für Photonische Technologien, Albert-Einstein-Strasse 9, 07745, Jena, Germany.,Institut für Physikalische Chemie und Abbe Center für Photonics, Friedrich Schiller Universität Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Christian Matthäus
- Leibniz-Institut für Photonische Technologien, Albert-Einstein-Strasse 9, 07745, Jena, Germany.,Institut für Physikalische Chemie und Abbe Center für Photonics, Friedrich Schiller Universität Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Thomas Bocklitz
- Leibniz-Institut für Photonische Technologien, Albert-Einstein-Strasse 9, 07745, Jena, Germany.,Institut für Physikalische Chemie und Abbe Center für Photonics, Friedrich Schiller Universität Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Jürgen Popp
- Leibniz-Institut für Photonische Technologien, Albert-Einstein-Strasse 9, 07745, Jena, Germany.,Institut für Physikalische Chemie und Abbe Center für Photonics, Friedrich Schiller Universität Jena, Helmholtzweg 4, 07743, Jena, Germany
| |
Collapse
|
9
|
Sun L, Zhang M, Natarajan V, Yu X, Zhang X, Zhan J. Au@Ag core–shell nanoparticles with a hidden internal reference promoted quantitative solid phase microextraction-surface enhanced Raman spectroscopy detection. RSC Adv 2017. [DOI: 10.1039/c7ra03164e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Structural representation of the SPME-SERS fiber with an internal reference and the SERS detection.
Collapse
Affiliation(s)
- Lei Sun
- Key Laboratory for Colloid & Interface Chemistry of Education Ministry
- Department of Chemistry
- Shandong University
- Jinan
- P. R. China
| | - Min Zhang
- Key Laboratory for Colloid & Interface Chemistry of Education Ministry
- Department of Chemistry
- Shandong University
- Jinan
- P. R. China
| | - Vinothkumar Natarajan
- Key Laboratory for Colloid & Interface Chemistry of Education Ministry
- Department of Chemistry
- Shandong University
- Jinan
- P. R. China
| | - Xiaofei Yu
- Key Laboratory for Colloid & Interface Chemistry of Education Ministry
- Department of Chemistry
- Shandong University
- Jinan
- P. R. China
| | - Xiaoli Zhang
- Key Laboratory for Colloid & Interface Chemistry of Education Ministry
- Department of Chemistry
- Shandong University
- Jinan
- P. R. China
| | - Jinhua Zhan
- Key Laboratory for Colloid & Interface Chemistry of Education Ministry
- Department of Chemistry
- Shandong University
- Jinan
- P. R. China
| |
Collapse
|
10
|
Yang T, Jiang J. Embedding Raman Tags between Au Nanostar@Nanoshell for Multiplex Immunosensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4980-4985. [PMID: 27273763 DOI: 10.1002/smll.201600532] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/21/2016] [Indexed: 06/06/2023]
Abstract
Novel Raman tags with various reporter molecules embedded in between gold nanostar (AuNS) and gold nanoshell are developed, showing significantly enhanced surface-enhanced Raman scattering intensity compared to gold nanoparticle-based composites. Immunoassay using these AuNS@tag@shell structures is highly specific with sensitivity down to 0.1 pg mL-1 , and is capable of multiplex detection, making them highly promising for biosensing applications.
Collapse
Affiliation(s)
- Ting Yang
- i-Lab and Division of Nanobiomedicine, CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jiang Jiang
- i-Lab and Division of Nanobiomedicine, CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
11
|
D’Hollander A, Mathieu E, Jans H, Vande Velde G, Stakenborg T, Van Dorpe P, Himmelreich U, Lagae L. Development of nanostars as a biocompatible tumor contrast agent: toward in vivo SERS imaging. Int J Nanomedicine 2016; 11:3703-14. [PMID: 27536107 PMCID: PMC4977103 DOI: 10.2147/ijn.s91340] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The need for sensitive imaging techniques to detect tumor cells is an important issue in cancer diagnosis and therapy. Surface-enhanced Raman scattering (SERS), realized by chemisorption of compounds suitable for Raman spectroscopy onto gold nanoparticles, is a new method for detecting a tumor. As a proof of concept, we studied the use of biocompatible gold nanostars as sensitive SERS contrast agents targeting an ovarian cancer cell line (SKOV3). Due to a high intracellular uptake of gold nanostars after 6 hours of exposure, they could be detected and located with SERS. Using these nanostars for passive targeting after systemic injection in a xenograft mouse model, a detectable signal was measured in the tumor and liver in vivo. These signals were confirmed by ex vivo SERS measurements and darkfield microscopy. In this study, we established SERS nanostars as a highly sensitive contrast agent for tumor detection, which opens the potential for their use as a theranostic agent against cancer.
Collapse
Affiliation(s)
- Antoine D’Hollander
- Department of Life Science Technology, Imec
- Department of Imaging and Pathology, Faculty of Medicine, Biomedical MRI Unit
- Faculty of Medicine, Molecular Small Animal Imaging Center (MoSAIC)
| | - Evelien Mathieu
- Department of Life Science Technology, Imec
- Department of Physics, Faculty of Sciences, Laboratory of Solid State Physics and Magnetism, KU Leuven, Leuven, Belgium
| | - Hilde Jans
- Department of Life Science Technology, Imec
| | - Greetje Vande Velde
- Department of Imaging and Pathology, Faculty of Medicine, Biomedical MRI Unit
- Faculty of Medicine, Molecular Small Animal Imaging Center (MoSAIC)
| | | | - Pol Van Dorpe
- Department of Life Science Technology, Imec
- Department of Physics, Faculty of Sciences, Laboratory of Solid State Physics and Magnetism, KU Leuven, Leuven, Belgium
| | - Uwe Himmelreich
- Department of Imaging and Pathology, Faculty of Medicine, Biomedical MRI Unit
- Faculty of Medicine, Molecular Small Animal Imaging Center (MoSAIC)
| | - Liesbet Lagae
- Department of Life Science Technology, Imec
- Department of Physics, Faculty of Sciences, Laboratory of Solid State Physics and Magnetism, KU Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Ngo HT, Gandra N, Fales AM, Taylor SM, Vo-Dinh T. Sensitive DNA detection and SNP discrimination using ultrabright SERS nanorattles and magnetic beads for malaria diagnostics. Biosens Bioelectron 2016; 81:8-14. [PMID: 26913502 PMCID: PMC4835027 DOI: 10.1016/j.bios.2016.01.073] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/23/2016] [Accepted: 01/28/2016] [Indexed: 12/18/2022]
Abstract
One of the major obstacles to implement nucleic acid-based molecular diagnostics at the point-of-care (POC) and in resource-limited settings is the lack of sensitive and practical DNA detection methods that can be seamlessly integrated into portable platforms. Herein we present a sensitive yet simple DNA detection method using a surface-enhanced Raman scattering (SERS) nanoplatform: the ultrabright SERS nanorattle. The method, referred to as the nanorattle-based method, involves sandwich hybridization of magnetic beads that are loaded with capture probes, target sequences, and ultrabright SERS nanorattles that are loaded with reporter probes. Upon hybridization, a magnet was applied to concentrate the hybridization sandwiches at a detection spot for SERS measurements. The ultrabright SERS nanorattles, composed of a core and a shell with resonance Raman reporters loaded in the gap space between the core and the shell, serve as SERS tags for signal detection. Using this method, a specific DNA sequence of the malaria parasite Plasmodium falciparum could be detected with a detection limit of approximately 100 attomoles. Single nucleotide polymorphism (SNP) discrimination of wild type malaria DNA and mutant malaria DNA, which confers resistance to artemisinin drugs, was also demonstrated. These test models demonstrate the molecular diagnostic potential of the nanorattle-based method to both detect and genotype infectious pathogens. Furthermore, the method's simplicity makes it a suitable candidate for integration into portable platforms for POC and in resource-limited settings applications.
Collapse
Affiliation(s)
- Hoan T Ngo
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Naveen Gandra
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Andrew M Fales
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Steve M Taylor
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA; Department of Medicine & Duke Global Health Institute, Duke University, Durham, NC 27708, USA
| | - Tuan Vo-Dinh
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Department of Chemistry, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
13
|
Xing R, Jiao T, Ma K, Ma G, Möhwald H, Yan X. Regulating Cell Apoptosis on Layer-by-Layer Assembled Multilayers of Photosensitizer-Coupled Polypeptides and Gold Nanoparticles. Sci Rep 2016; 6:26506. [PMID: 27211344 PMCID: PMC4876451 DOI: 10.1038/srep26506] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/04/2016] [Indexed: 01/20/2023] Open
Abstract
The design of advanced, nanostructured materials by layer-by-layer (LbL) assembly at the molecular level is of great interest because of the broad application of these materials in the biomedical field especially in regulating cell growth, adhesion, movement, differentiation and detachment. Here, we fabricated functional hybrid multilayer films by LbL assembly of biocompatible photosensitizer-coupled polypeptides and collagen-capped gold nanoparticles. The resulting multilayer film can well accommodate cells for adhesion, growth and proliferation. Most significantly, controlled cell apoptosis (detachment) and patterning of the multilayer film is achieved by a photochemical process yielding reactive oxygen species (ROS). Moreover, the site and shape of apoptotic cells can be controlled easily by adjusting the location and shape of the laser beam. The LbL assembled multilayer film with integration of functions provides an efficient platform for regulating cell growth and apoptosis (detachment).
Collapse
Affiliation(s)
- Ruirui Xing
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Kai Ma
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Guanghui Ma
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Helmuth Möhwald
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D-14476, Potsdam/Golm, Germany
| | - Xuehai Yan
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
14
|
Chen J, Shi YE, Zhang M, Zhan J. Diethyldithiocarbamate (DDTC) induced formation of positively charged silver nanoparticles for rapid in situ identification of inorganic explosives by surface enhanced Raman spectroscopy. RSC Adv 2016. [DOI: 10.1039/c6ra06111g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Diethyldithiocarbamate could induce the generation of positively charged silver nanoparticles for rapidin situdetection of the explosives with a portable Raman spectrometer.
Collapse
Affiliation(s)
- Juan Chen
- National Engineering Research Center for Colloidal Materials
- Key Laboratory for Colloid and Interface Chemistry of Ministry of Education
- Department of Chemistry
- Shandong University
- Jinan 250100
| | - Yu-e Shi
- National Engineering Research Center for Colloidal Materials
- Key Laboratory for Colloid and Interface Chemistry of Ministry of Education
- Department of Chemistry
- Shandong University
- Jinan 250100
| | - Min Zhang
- National Engineering Research Center for Colloidal Materials
- Key Laboratory for Colloid and Interface Chemistry of Ministry of Education
- Department of Chemistry
- Shandong University
- Jinan 250100
| | - Jinhua Zhan
- National Engineering Research Center for Colloidal Materials
- Key Laboratory for Colloid and Interface Chemistry of Ministry of Education
- Department of Chemistry
- Shandong University
- Jinan 250100
| |
Collapse
|
15
|
Huang Z, Qi Y, Yu D, Zhan J. Radar-like MoS2 nanoparticles as a highly efficient 808 nm laser-induced photothermal agent for cancer therapy. RSC Adv 2016. [DOI: 10.1039/c6ra03226e] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Radar-like MoS2 nanoparticles were demonstrated and used as highly efficient photothermal therapy for cancer in vitro and in vivo.
Collapse
Affiliation(s)
- Zichen Huang
- National Engineering Research Center for Colloidal Materials
- Key Laboratory for Colloid and Interface Chemistry of Ministry of Education
- Department of Chemistry
- Shandong University
- Jinan 250100
| | - Yafei Qi
- Qilu Hospital of Shandong University
- Jinan 250100
- China
| | - Dexin Yu
- Qilu Hospital of Shandong University
- Jinan 250100
- China
| | - Jinhua Zhan
- National Engineering Research Center for Colloidal Materials
- Key Laboratory for Colloid and Interface Chemistry of Ministry of Education
- Department of Chemistry
- Shandong University
- Jinan 250100
| |
Collapse
|
16
|
Freitag I, Matthäus C, Csaki A, Clement JH, Cialla-May D, Weber K, Krafft C, Popp J. Differentiation of MCF-7 tumor cells from leukocytes and fibroblast cells using epithelial cell adhesion molecule targeted multicore surface-enhanced Raman spectroscopy labels. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:55002. [PMID: 25938206 DOI: 10.1117/1.jbo.20.5.055002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/03/2015] [Indexed: 06/04/2023]
Abstract
Identification of tumor and normal cells is a promising application of Raman spectroscopy. The throughput of Raman-assisted cell sorting is limited by low sensitivity. Surface-enhanced Raman spectroscopy (SERS) is a well-recognized candidate to increase the intensity of Raman signals of cells. First, different strategies are summarized to detect tumor cells using targeted SERS probes. Then, a protocol is described to prepare multicore-SERS-labels (MSLs) by aggregating gold nanoparticles, coating with a reporter molecule and a thin silver shell to further boost enhancement, encapsulating with a stable silica layer, and functionalizing by epithelial cell adhesion molecule (EpCAM) antibodies. Raman, dark field and fluorescence microscopy proved the specific and nonspecific binding of functionalized and nonfunctionalized MSLs to MCF-7 tumor cells, leukocytes from blood, and nontransformed human foreskin fibroblasts. Raman imaging and dark field microscopy indicated no uptake of MSLs, yet binding to the cellular membrane. Viability tests were performed with living tumor cells to demonstrate the low toxicity of MSL-EpCAM. The SERS signatures were detected from cells with exposure times down to 25 ms at 785-nm laser excitation. The prospects of these MSLs in multiplex assays, for enumeration and sorting of circulating tumor cells in microfluidic chips, are discussed.
Collapse
Affiliation(s)
- Isabel Freitag
- Leibniz Institute of Photonic Technology, Albert-Einstein-Street 9, Jena 07745, Germany
| | - Christian Matthäus
- Leibniz Institute of Photonic Technology, Albert-Einstein-Street 9, Jena 07745, GermanybUniversity of Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, Jena 07743, Germany
| | - Andrea Csaki
- Leibniz Institute of Photonic Technology, Albert-Einstein-Street 9, Jena 07745, Germany
| | - Joachim H Clement
- Jena University Hospital, Department of Haematology and Medical Oncology, Erlanger Allee 101, Jena 07747, Germany
| | - Dana Cialla-May
- Leibniz Institute of Photonic Technology, Albert-Einstein-Street 9, Jena 07745, GermanybUniversity of Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, Jena 07743, Germany
| | - Karina Weber
- Leibniz Institute of Photonic Technology, Albert-Einstein-Street 9, Jena 07745, GermanybUniversity of Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, Jena 07743, Germany
| | - Christoph Krafft
- Leibniz Institute of Photonic Technology, Albert-Einstein-Street 9, Jena 07745, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Albert-Einstein-Street 9, Jena 07745, GermanybUniversity of Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, Jena 07743, Germany
| |
Collapse
|