1
|
Yang S, Hong C, Zhu G, Anyika T, Hong I, Ndukaife JC. Recent Advancements in Nanophotonics for Optofluidics. ADVANCES IN PHYSICS: X 2024; 9:2416178. [PMID: 39554474 PMCID: PMC11563312 DOI: 10.1080/23746149.2024.2416178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 10/08/2024] [Indexed: 11/19/2024] Open
Abstract
Optofluidics is dedicated to achieving integrated control of particle and fluid motion, particularly on the micrometer scale, by utilizing light to direct fluid flow and particle motion. The field has seen significant growth recently, driven by the concerted efforts of researchers across various scientific disciplines, notably for its successful applications in biomedical science. In this review, we explore a range of optofluidic architectures developed over the past decade, with a primary focus on mechanisms for precise control of micro and nanoscale biological objects and their applications in sensing. Regarding nanoparticle manipulation, we delve into mechanisms based on optical nanotweezers using nanolocalized light fields and light-based hybrid effects with dramatically improved performance and capabilities. In the context of sensing, we emphasize those works that used optofluidics to aggregate molecules or particles to promote sensing and detection. Additionally, we highlight emerging research directions, encompassing both fundamental principles and practical applications in the field.
Collapse
Affiliation(s)
- Sen Yang
- Institute of Physics, Chinese Academy of Sciences/Beijing National Laboratory for Condensed Matter Physics, Beijing 100190, China
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, Tennessee 37240, USA
| | - Chuchuan Hong
- Department of Chemistry and Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Guodong Zhu
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Theodore Anyika
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Ikjun Hong
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Justus C. Ndukaife
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, Tennessee 37240, USA
| |
Collapse
|
2
|
Ming T, Lan T, Yu M, Cheng S, Duan X, Wang H, Deng J, Kong D, Yang S, Shen Z. Advancements in Biosensors for Point-of-Care Testing of Nucleic Acid. Crit Rev Anal Chem 2024:1-16. [PMID: 38889541 DOI: 10.1080/10408347.2024.2366943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Rapid, low-cost and high-specific diagnosis based on nucleic acid detection is pivotal in both detecting and controlling various infectious diseases, effectively curbing their spread. Moreover, the analysis of circulating DNA in whole blood has emerged as a promising noninvasive strategy for cancer diagnosis and monitoring. Although traditional nucleic acid detection methods are reliable, their time-consuming and intricate processes restrict their application in rapid field assays. Consequently, an urgent emphasis on point-of-care testing (POCT) of nucleic acids has arisen. POCT enables timely and efficient detection of specific sequences, acting as a deterrent against infection sources and potential tumor threats. To address this imperative need, it is essential to consolidate key aspects and chart future directions in POCT biosensors development. This review aims to provide an exhaustive and meticulous analysis of recent advancements in POCT devices for nucleic acid diagnosis. It will comprehensively compare these devices across crucial dimensions, encompassing their integrated structures, the synthesized nanomaterials harnessed, and the sophisticated detection principles employed. By conducting a rigorous evaluation of the current research landscape, this review will not only spotlight achievements but also identify limitations, offering valuable insights into the future trajectory of nucleic acid POCT biosensors. Through this comprehensive analysis, the review aspires to serve as an indispensable guide for fostering the development of more potent biosensors, consequently fostering precise and efficient POCT applications for nucleic acids.
Collapse
Affiliation(s)
- Tao Ming
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| | - Tingting Lan
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| | - Mingxing Yu
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| | - Shuhan Cheng
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| | - Xu Duan
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| | - Hong Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Juan Deng
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Deling Kong
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| | - Shuang Yang
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| | - Zhongyang Shen
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
3
|
Stokes K, Clark K, Odetade D, Hardy M, Goldberg Oppenheimer P. Advances in lithographic techniques for precision nanostructure fabrication in biomedical applications. DISCOVER NANO 2023; 18:153. [PMID: 38082047 PMCID: PMC10713959 DOI: 10.1186/s11671-023-03938-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/04/2023] [Indexed: 01/31/2024]
Abstract
Nano-fabrication techniques have demonstrated their vital importance in technological innovation. However, low-throughput, high-cost and intrinsic resolution limits pose significant restrictions, it is, therefore, paramount to continue improving existing methods as well as developing new techniques to overcome these challenges. This is particularly applicable within the area of biomedical research, which focuses on sensing, increasingly at the point-of-care, as a way to improve patient outcomes. Within this context, this review focuses on the latest advances in the main emerging patterning methods including the two-photon, stereo, electrohydrodynamic, near-field electrospinning-assisted, magneto, magnetorheological drawing, nanoimprint, capillary force, nanosphere, edge, nano transfer printing and block copolymer lithographic technologies for micro- and nanofabrication. Emerging methods enabling structural and chemical nano fabrication are categorised along with prospective chemical and physical patterning techniques. Established lithographic techniques are briefly outlined and the novel lithographic technologies are compared to these, summarising the specific advantages and shortfalls alongside the current lateral resolution limits and the amenability to mass production, evaluated in terms of process scalability and cost. Particular attention is drawn to the potential breakthrough application areas, predominantly within biomedical studies, laying the platform for the tangible paths towards the adoption of alternative developing lithographic technologies or their combination with the established patterning techniques, which depends on the needs of the end-user including, for instance, tolerance of inherent limits, fidelity and reproducibility.
Collapse
Affiliation(s)
- Kate Stokes
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Kieran Clark
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - David Odetade
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Mike Hardy
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, BT9 5DL, UK
- Centre for Quantum Materials and Technology, School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, UK
| | - Pola Goldberg Oppenheimer
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Healthcare Technologies Institute, Institute of Translational Medicine, Mindelsohn Way, Birmingham, B15 2TH, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK.
| |
Collapse
|
4
|
Luo B, Wang W, Zhao Y, Zhao Y. Hot-Electron Dynamics Mediated Medical Diagnosis and Therapy. Chem Rev 2023; 123:10808-10833. [PMID: 37603096 DOI: 10.1021/acs.chemrev.3c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Surface plasmon resonance excitation significantly enhances the absorption of light and increases the generation of "hot" electrons, i.e., conducting electrons that are raised from their steady states to excited states. These excited electrons rapidly decay and equilibrate via radiative and nonradiative damping over several hundred femtoseconds. During the hot-electron dynamics, from their generation to the ultimate nonradiative decay, the electromagnetic field enhancement, hot electron density increase, and local heating effect are sequentially induced. Over the past decade, these physical phenomena have attracted considerable attention in the biomedical field, e.g., the rapid and accurate identification of biomolecules, precise synthesis and release of drugs, and elimination of tumors. This review highlights the recent developments in the application of hot-electron dynamics in medical diagnosis and therapy, particularly fully integrated device techniques with good application prospects. In addition, we discuss the latest experimental and theoretical studies of underlying mechanisms. From a practical standpoint, the pioneering modeling analyses and quantitative measurements in the extreme near field are summarized to illustrate the quantification of hot-electron dynamics. Finally, the prospects and remaining challenges associated with biomedical engineering based on hot-electron dynamics are presented.
Collapse
Affiliation(s)
- Bing Luo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Wei Wang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yuxin Zhao
- The State Key Laboratory of Service Behavior and Structural Safety of Petroleum Pipe and Equipment Materials, CNPC Tubular Goods Research Institute (TGRI), Xi'an 710077, People's Republic of China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
5
|
Dey S, Dolci M, Zijlstra P. Single-Molecule Optical Biosensing: Recent Advances and Future Challenges. ACS PHYSICAL CHEMISTRY AU 2023; 3:143-156. [PMID: 36968450 PMCID: PMC10037498 DOI: 10.1021/acsphyschemau.2c00061] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023]
Abstract
In recent years, the sensitivity and specificity of optical sensors has improved tremendously due to improvements in biochemical functionalization protocols and optical detection systems. As a result, single-molecule sensitivity has been reported in a range of biosensing assay formats. In this Perspective, we summarize optical sensors that achieve single-molecule sensitivity in direct label-free assays, sandwich assays, and competitive assays. We describe the advantages and disadvantages of single-molecule assays and summarize future challenges in the field including their optical miniaturization and integration, multimodal sensing capabilities, accessible time scales, and compatibility with real-life matrices such as biological fluids. We conclude by highlighting the possible application areas of optical single-molecule sensors that include not only healthcare but also the monitoring of the environment and industrial processes.
Collapse
Affiliation(s)
- Swayandipta Dey
- Eindhoven University of Technology, Department of Applied Physics, Eindhoven 5600 MB, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven, 5600 MB, The Netherlands
- Eindhoven Hendrik Casimir Institute, Eindhoven, 5600 MB, The Netherlands
| | - Mathias Dolci
- Eindhoven University of Technology, Department of Applied Physics, Eindhoven 5600 MB, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven, 5600 MB, The Netherlands
- Eindhoven Hendrik Casimir Institute, Eindhoven, 5600 MB, The Netherlands
| | - Peter Zijlstra
- Eindhoven University of Technology, Department of Applied Physics, Eindhoven 5600 MB, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven, 5600 MB, The Netherlands
- Eindhoven Hendrik Casimir Institute, Eindhoven, 5600 MB, The Netherlands
| |
Collapse
|
6
|
Tuniz A, Song AY, Della Valle G, de Sterke CM. Plasmonic Sensors beyond the Phase Matching Condition: A Simplified Approach. SENSORS (BASEL, SWITZERLAND) 2022; 22:9994. [PMID: 36560364 PMCID: PMC9785027 DOI: 10.3390/s22249994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
The conventional approach to optimising plasmonic sensors is typically based entirely on ensuring phase matching between the excitation wave and the surface plasmon supported by the metallic structure. However, this leads to suboptimal performance, even in the simplest sensor configuration based on the Otto geometry. We present a simplified coupled mode theory approach for evaluating and optimizing the sensing properties of plasmonic waveguide refractive index sensors. It only requires the calculation of propagation constants, without the need for calculating mode overlap integrals. We apply our method by evaluating the wavelength-, device length- and refractive index-dependent transmission spectra for an example silicon-on-insulator-based sensor of finite length. This reveals all salient spectral features which are consistent with full-field finite element calculations. This work provides a rapid and convenient framework for designing dielectric-plasmonic sensor prototypes-its applicability to the case of fibre plasmonic sensors is also discussed.
Collapse
Affiliation(s)
- Alessandro Tuniz
- Institute of Photonics and Optical Science (IPOS), School of Physics, The University of Sydney, Sydney, NSW 2006, Australia
- University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alex Y. Song
- School of Electrical and Information Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Giuseppe Della Valle
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - C. Martijn de Sterke
- Institute of Photonics and Optical Science (IPOS), School of Physics, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
7
|
Bannur Nanjunda S, Seshadri VN, Krishnan C, Rath S, Arunagiri S, Bao Q, Helmerson K, Zhang H, Jain R, Sundarrajan A, Srinivasan B. Emerging nanophotonic biosensor technologies for virus detection. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:5041-5059. [PMID: 39634299 PMCID: PMC11501160 DOI: 10.1515/nanoph-2022-0571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 12/07/2024]
Abstract
Highly infectious viral diseases are a serious threat to mankind as they can spread rapidly among the community, possibly even leading to the loss of many lives. Early diagnosis of a viral disease not only increases the chance of quick recovery, but also helps prevent the spread of infections. There is thus an urgent need for accurate, ultrasensitive, rapid, and affordable diagnostic techniques to test large volumes of the population to track and thereby control the spread of viral diseases, as evidenced during the COVID-19 and other viral pandemics. This review paper critically and comprehensively reviews various emerging nanophotonic biosensor mechanisms and biosensor technologies for virus detection, with a particular focus on detection of the SARS-CoV-2 (COVID-19) virus. The photonic biosensing mechanisms and technologies that we have focused on include: (a) plasmonic field enhancement via localized surface plasmon resonances, (b) surface enhanced Raman scattering, (c) nano-Fourier transform infrared (nano-FTIR) near-field spectroscopy, (d) fiber Bragg gratings, and (e) microresonators (whispering gallery modes), with a particular emphasis on the emerging impact of nanomaterials and two-dimensional materials in these photonic sensing technologies. This review also discusses several quantitative issues related to optical sensing with these biosensing and transduction techniques, notably quantitative factors that affect the limit of detection (LoD), sensitivity, specificity, and response times of the above optical biosensing diagnostic technologies for virus detection. We also review and analyze future prospects of cost-effective, lab-on-a-chip virus sensing solutions that promise ultrahigh sensitivities, rapid detection speeds, and mass manufacturability.
Collapse
Affiliation(s)
- Shivananju Bannur Nanjunda
- Department of Electrical Engineering, Centre of Excellence in Biochemical Sensing and Imaging (CenBioSIm), Indian Institute of Technology Madras, Chennai, India
| | - Venkatesh N. Seshadri
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, India
- Department of Life Science, Indian Academy, Bangalore, India
| | - Chitra Krishnan
- School of Electronics Engineering, Vellore Institute of Technology, Chennai, India
| | - Sweta Rath
- Department of Electrical Engineering, Centre of Excellence in Biochemical Sensing and Imaging (CenBioSIm), Indian Institute of Technology Madras, Chennai, India
| | | | - Qiaoliang Bao
- Department of Materials Science and Engineering, and ARC Centre of Excellence in Future Low Energy Electronics Technologies (FLEET), Monash University, Clayton, VIC, Australia
| | - Kristian Helmerson
- School of Physics and Astronomy, ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Clayton, VIC3800, Australia
| | - Han Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Ravi Jain
- Optical Science and Engineering Program, Center for High Technology Materials, Departments of ECE, Physics Astronomy, and Nanoscience Microsystems, University of New Mexico, Albuquerque, NM87106, USA
| | - Asokan Sundarrajan
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, India
| | - Balaji Srinivasan
- Department of Electrical Engineering, Centre of Excellence in Biochemical Sensing and Imaging (CenBioSIm), Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
8
|
Wu M, Li G, Ye X, Zhou B, Zhou J, Cai J. Ultrasensitive Molecular Detection at Subpicomolar Concentrations by the Diffraction Pattern Imaging with Plasmonic Metasurfaces and Convex Holographic Gratings. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201682. [PMID: 35618447 PMCID: PMC9353501 DOI: 10.1002/advs.202201682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Compact and cost-effective optical devices for highly sensitive detection of trace molecules are significant in many applications, including healthcare, pollutant monitoring and explosive detection. Nanophotonic metasurface-based sensors have been intensively attracting attentions for molecular detection. However, conventional methods often involve spectroscopic characterizations that require bulky, expensive and sophisticated spectrometers. Here, a novel ultrasensitive sensor of plasmonic metasurfaces is designed and fabricated for the detection of trace molecules. The sensor features a convex holographic grating, of which the first-order diffraction pattern of a disposable metasurface is recorded by a monochrome camera.The diffraction pattern changes with the molecules attached to the metasurface, realizing label-free and spectrometer-free molecular detection by imaging and analyzing of the diffraction pattern. By integrating the sensor with a microfluidic setup, the quantitative characterization of rabbit anti-human Immunoglobulin G (IgG) and human IgG biomolecular interactions is demonstrated with an excellent limit of detection (LOD) of 0.6 pm. Moreover, both the metasurface and holographic grating are obtained through vacuum-free solution-processed fabrications, minimizing the manufacturing cost of the sensor. A prototype of the imaging-based sensor, consisting of a white light-emitting diode (LED) and a consumer-level imaging sensor is achieved to demonstrate the potential for on-site detection.
Collapse
Affiliation(s)
- Mingxi Wu
- School of Biomedical EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Guohua Li
- School of Biomedical EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Xiangyi Ye
- School of Biomedical EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Bin Zhou
- School of Biomedical EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Jianhua Zhou
- School of Biomedical EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Jingxuan Cai
- School of Biomedical EngineeringSun Yat‐sen UniversityGuangzhou510275China
| |
Collapse
|
9
|
Manzato G, Giordano MC, Barelli M, Chowdhury D, Centini M, de Mongeot FB. Free-standing plasmonic nanoarrays for leaky optical waveguiding and sensing. OPTICS EXPRESS 2022; 30:17371-17382. [PMID: 36221562 DOI: 10.1364/oe.453135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/22/2022] [Indexed: 06/16/2023]
Abstract
Flat optics nanogratings supported on thin free-standing membranes offer the opportunity to combine narrowband waveguided modes and Rayleigh anomalies for sensitive and tunable biosensing. At the surface of high-refractive index Si3N4 membranes we engineered lithographic nanogratings based on plasmonic nanostripes, demonstrating the excitation of sharp waveguided modes and lattice resonances. We achieved fine tuning of these optical modes over a broadband Visible and Near-Infrared spectrum, in full agreement with numerical calculations. This possibility allowed us to select sharp waveguided modes supporting strong near-field amplification, extending for hundreds of nanometres out of the grating and enabling versatile biosensing applications. We demonstrate the potential of this flat-optics platform by devising a proof-of-concept nanofluidic refractive index sensor exploiting the long-range waveguided mode operating at the sub-picoliter scale. This free-standing device configuration, that could be further engineered at the nanoscale, highlights the strong potential of flat-optics nanoarrays in optofluidics and nanofluidic biosensing.
Collapse
|
10
|
Hamza ME, Othman MA, Swillam MA. Plasmonic Biosensors: Review. BIOLOGY 2022; 11:621. [PMID: 35625349 PMCID: PMC9138269 DOI: 10.3390/biology11050621] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/26/2022] [Accepted: 03/27/2022] [Indexed: 04/26/2023]
Abstract
Biosensors have globally been considered as biomedical diagnostic tools required in abundant areas including the development of diseases, detection of viruses, diagnosing ecological pollution, food monitoring, and a wide range of other diagnostic and therapeutic biomedical research. Recently, the broadly emerging and promising technique of plasmonic resonance has proven to provide label-free and highly sensitive real-time analysis when used in biosensing applications. In this review, a thorough discussion regarding the most recent techniques used in the design, fabrication, and characterization of plasmonic biosensors is conducted in addition to a comparison between those techniques with regard to their advantages and possible drawbacks when applied in different fields.
Collapse
Affiliation(s)
| | | | - Mohamed A. Swillam
- Nanophotonics Research Laboratory, Department of Physics, The American University in Cairo, Cairo 11835, Egypt; (M.E.H.); (M.A.O.)
| |
Collapse
|
11
|
Park JH, Cho YW, Kim TH. Recent Advances in Surface Plasmon Resonance Sensors for Sensitive Optical Detection of Pathogens. BIOSENSORS 2022; 12:180. [PMID: 35323450 PMCID: PMC8946561 DOI: 10.3390/bios12030180] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 05/06/2023]
Abstract
The advancement of science and technology has led to the recent development of highly sensitive pathogen biosensing techniques. The effective treatment of pathogen infections requires sensing technologies to not only be sensitive but also render results in real-time. This review thus summarises the recent advances in optical surface plasmon resonance (SPR) sensor technology, which possesses the aforementioned advantages. Specifically, this technology allows for the detection of specific pathogens by applying nano-sized materials. This review focuses on various nanomaterials that are used to ensure the performance and high selectivity of SPR sensors. This review will undoubtedly accelerate the development of optical biosensing technology, thus allowing for real-time diagnosis and the timely delivery of appropriate treatments as well as preventing the spread of highly contagious pathogens.
Collapse
Affiliation(s)
| | | | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Korea; (J.-H.P.); (Y.-W.C.)
| |
Collapse
|
12
|
Liang J, Zhang W, Qin Y, Li Y, Liu GL, Hu W. Applying Machine Learning with Localized Surface Plasmon Resonance Sensors to Detect SARS-CoV-2 Particles. BIOSENSORS 2022; 12:173. [PMID: 35323443 PMCID: PMC8946137 DOI: 10.3390/bios12030173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
The sudden outbreak of COVID-19 rapidly developed into a global pandemic, which caused tens of millions of infections and millions of deaths. Although SARS-CoV-2 is known to cause COVID-19, effective approaches to detect SARS-CoV-2 using a convenient, rapid, accurate, and low-cost method are lacking. To date, most of the diagnostic methods for patients with early infections are limited to the detection of viral nucleic acids via polymerase chain reaction (PCR), or antigens, using an enzyme-linked immunosorbent assay or a chemiluminescence immunoassay. This study developed a novel method that uses localized surface plasmon resonance (LSPR) sensors, optical imaging, and artificial intelligence methods to directly detect the SARS-CoV-2 virus particles without any sample preparation. The virus concentration can be qualitatively and quantitatively detected in the range of 125.28 to 106 vp/mL through a few steps within 12 min with a limit of detection (LOD) of 100 vp/mL. The accuracy of the SARS-CoV-2 positive or negative assessment was found to be greater than 97%, and this was demonstrated by establishing a regression machine learning model for the virus concentration prediction (R2 > 0.95).
Collapse
|
13
|
Beiderman M, Ashkenazy A, Segal E, Motiei M, Salomon A, Sadan T, Fixler D, Popovtzer R. Optimization of Gold Nanorod Features for the Enhanced Performance of Plasmonic Nanocavity Arrays. ACS OMEGA 2021; 6:29071-29077. [PMID: 34746596 PMCID: PMC8567385 DOI: 10.1021/acsomega.1c04301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Nanoplasmonic biosensors incorporating noble metal nanocavity arrays are widely used for the detection of various biomarkers. Gold nanorods (GNRs) have unique properties that can enhance spectroscopic detection capabilities of such nanocavity-based biosensors. However, the contribution of the physical properties of multiple GNRs to resonance enhancement of gold nanocavity arrays requires further characterization and elucidation. In this work, we study how GNR aspect ratio (AR) and surface area (SA) modify the plasmonic resonance spectrum of a gold triangular nanocavity array by both simulations and experiments. The finite integration technique (FIT) simulated the extinction spectrum of the gold nanocavity array with 300 nm periodicity onto which the GNRs of different ARs and SAs are placed. Simulations showed that matching of the GNRs longitudinal peak, which is affected by AR, to the nanocavity array's spectrum minima can optimize signal suppression and shifting. Moreover, increasing SA of the matched GNRs increased the spectral variations of the array. Experiments confirmed that GNRs conjugated to a gold triangular nanocavity array of 300 nm periodicity caused spectrum suppression and redshift. Our findings demonstrate that tailoring of the GNR AR and SA parameters to nanoplasmonic arrays has the potential to greatly improve spectral variations for enhanced plasmonic biosensing.
Collapse
Affiliation(s)
- Marianna Beiderman
- Faculty
of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Ariel Ashkenazy
- Faculty
of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Elad Segal
- Department
of Chemistry, Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Menachem Motiei
- Faculty
of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Adi Salomon
- Department
of Chemistry, Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Tamar Sadan
- Faculty
of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Dror Fixler
- Faculty
of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Rachela Popovtzer
- Faculty
of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
14
|
Cetin AE, Kocer ZA, Topkaya SN, Yazici ZA. Handheld plasmonic biosensor for virus detection in field-settings. SENSORS AND ACTUATORS. B, CHEMICAL 2021; 344:130301. [PMID: 34149185 PMCID: PMC8206576 DOI: 10.1016/j.snb.2021.130301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/31/2021] [Accepted: 06/13/2021] [Indexed: 05/02/2023]
Abstract
After World Health Organization (WHO) announced COVID-19 outbreak a pandemic, we all again realized the importance of developing rapid diagnostic kits. In this article, we introduced a lightweight and field-portable biosensor employing a plasmonic chip based on nanohole arrays integrated to a lensfree-imaging framework for label-free detection of viruses in field-settings. The platform utilizes a CMOS (complementary metal-oxide-semiconductor) camera with high quantum efficiency in the spectral window of interest to monitor diffraction field patterns of nanohole arrays under the uniform illumination of an LED (light-emitting diode) source which is spectrally tuned to the plasmonic mode supported by the nanohole arrays. As an example for the applicability of our biosensor for virus detection, we could successfully demonstrate the label-free detection of H1N1 viruses, e.g., swine flu, with medically relevant concentrations. We also developed a low-cost and easy-to-use sample preparation kit to prepare the surface of the plasmonic chip for analyte binding, e.g., virus-antibody binding. In order to reveal a complete biosensor technology, we also developed a user friendly Python™ - based graphical user interface (GUI) that allows direct access to biosensor hardware, taking and processing diffraction field images, and provides virus information to the end-user. Employing highly sensitive nanohole arrays and lensfree-imaging framework, our platform could yield an LOD as low as 103 TCID50/mL. Providing accurate and rapid sensing information in a handheld platform, weighing only 70 g and 12 cm tall, without the need for bulky and expensive instrumentation, our biosensor could be a very strong candidate for diagnostic applications in resource-poor settings. As our detection scheme is based on the use of antibodies, it could quickly adapt to the detection of different viral diseases, e.g., COVID-19 or influenza, by simply coating the plasmonic chip surface with an antibody possessing affinity to the virus type of interest. Possessing this ability, our biosensor could be swiftly deployed to the field in need for rapid diagnosis, which may be an important asset to prevent the spread of diseases before turning into a pandemic by isolating patients from the population.
Collapse
Affiliation(s)
- Arif E Cetin
- Izmir Biomedicine and Genome Center, Balcova, Izmir, 35340, Turkey
| | - Zeynep A Kocer
- Izmir Biomedicine and Genome Center, Balcova, Izmir, 35340, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Balcova, Izmir, 35340, Turkey
| | - Seda Nur Topkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Izmir Katip Celebi University, Cigli, Izmir, 35620, Turkey
| | - Ziya Ata Yazici
- Department of Biomedical Engineering, TOBB University of Economics and Technology, Cankaya, Ankara, 06560, Turkey
| |
Collapse
|
15
|
Shen Z, Du M. High-performance refractive index sensing system based on multiple Fano resonances in polarization-insensitive metasurface with nanorings. OPTICS EXPRESS 2021; 29:28287-28296. [PMID: 34614963 DOI: 10.1364/oe.434059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
An optical refractive index sensor is a detection device that can convert changes in the refractive index into detectable optical information. The combination of surface plasmon resonance (SPR) and Fano resonance can improve some key indicators, i. e., sensing sensitivity, figure of merit (FOM), band number, and polarization sensitivity, which are all related to the comprehensive performance for high-precision and multi-band sensing. In our manuscript, we proposed a refractive index sensor composed of a nanoring array and a Fabry-Pérot (F-P) resonant cavity. The coupling of the localized surface plasmon resonances (LSPR) of the nanoring array and the cavity mode of the F-P resonant cavity can produce double Fano resonances. The corresponding sensing sensitivities can reach 621.5 nm/RIU and 906.9 nm/RIU, and the corresponding FOMs can reach 119.7 and 119.0. Then we studied the influence of the structure parameters on the sensitivity and FOM of the sensor through simulation calculation and theoretical analysis and verified the insensitivity of the structure to the polarization of incident light. Our structure has high comprehensive performance, not only polarization insensitivity but also high sensing sensitivity and FOM in both bands, which is more suitable for practical applications.
Collapse
|
16
|
Hassan MM, Sium FS, Islam F, Choudhury SM. A review on plasmonic and metamaterial based biosensing platforms for virus detection. SENSING AND BIO-SENSING RESEARCH 2021; 33:100429. [PMID: 38620669 PMCID: PMC8133828 DOI: 10.1016/j.sbsr.2021.100429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/04/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Due to changes in our climate and constant loss of habitat for animals, new pathogens for humans are constantly erupting. SARS-CoV-2 virus, become so infectious and deadly that they put new challenge to the whole technological advancement of healthcare. Within this very decade, several other deadly virus outbreaks were witnessed by humans such as Zika virus, Ebola virus, MERS-coronavirus etc. and there might be even more infectious and deadlier diseases in the horizon. Though conventional techniques have succeeded in detecting these viruses to some extent, these techniques are time-consuming, costly, and require trained human-resources. Plasmonic metamaterial based biosensors might pave the way to low-cost rapid virus detection. So this review discusses in details, the latest development in plasmonics and metamaterial based biosensors for virus, viral particles and antigen detection and the future direction of research in this field.
Collapse
Affiliation(s)
- Mohammad Muntasir Hassan
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
- Institute of Information and Communication Technology, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Farhan Sadik Sium
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
- Department of Electrical and Electronic Engineering, Daffodil International University, Dhaka, Bangladesh
| | - Fariba Islam
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
- Department of Computer Science and Engineering, BRAC University, Dhaka, Bangladesh
| | - Sajid Muhaimin Choudhury
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| |
Collapse
|
17
|
Microfluidics-Based Plasmonic Biosensing System Based on Patterned Plasmonic Nanostructure Arrays. MICROMACHINES 2021; 12:mi12070826. [PMID: 34357236 PMCID: PMC8303257 DOI: 10.3390/mi12070826] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/27/2021] [Accepted: 07/12/2021] [Indexed: 11/18/2022]
Abstract
This review aims to summarize the recent advances and progress of plasmonic biosensors based on patterned plasmonic nanostructure arrays that are integrated with microfluidic chips for various biomedical detection applications. The plasmonic biosensors have made rapid progress in miniaturization sensors with greatly enhanced performance through the continuous advances in plasmon resonance techniques such as surface plasmon resonance (SPR) and localized SPR (LSPR)-based refractive index sensing, SPR imaging (SPRi), and surface-enhanced Raman scattering (SERS). Meanwhile, microfluidic integration promotes multiplexing opportunities for the plasmonic biosensors in the simultaneous detection of multiple analytes. Particularly, different types of microfluidic-integrated plasmonic biosensor systems based on versatile patterned plasmonic nanostructured arrays were reviewed comprehensively, including their methods and relevant typical works. The microfluidics-based plasmonic biosensors provide a high-throughput platform for the biochemical molecular analysis with the advantages such as ultra-high sensitivity, label-free, and real time performance; thus, they continue to benefit the existing and emerging applications of biomedical studies, chemical analyses, and point-of-care diagnostics.
Collapse
|
18
|
Rasmi Y, Li X, Khan J, Ozer T, Choi JR. Emerging point-of-care biosensors for rapid diagnosis of COVID-19: current progress, challenges, and future prospects. Anal Bioanal Chem 2021; 413:4137-4159. [PMID: 34008124 PMCID: PMC8130795 DOI: 10.1007/s00216-021-03377-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19) pandemic is currently a serious global health threat. While conventional laboratory tests such as quantitative real-time polymerase chain reaction (qPCR), serology tests, and chest computerized tomography (CT) scan allow diagnosis of COVID-19, these tests are time-consuming and laborious, and are limited in resource-limited settings or developing countries. Point-of-care (POC) biosensors such as chip-based and paper-based biosensors are typically rapid, portable, cost-effective, and user-friendly, which can be used for COVID-19 in remote settings. The escalating demand for rapid diagnosis of COVID-19 presents a strong need for a timely and comprehensive review on the POC biosensors for COVID-19 that meet ASSURED criteria: Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment-free, and Deliverable to end users. In the present review, we discuss the importance of rapid and early diagnosis of COVID-19 and pathogenesis of COVID-19 along with the key diagnostic biomarkers. We critically review the most recent advances in POC biosensors which show great promise for the detection of COVID-19 based on three main categories: chip-based biosensors, paper-based biosensors, and other biosensors. We subsequently discuss the key benefits of these biosensors and their use for the detection of antigen, antibody, and viral nucleic acids. The commercial POC biosensors for COVID-19 are critically compared. Finally, we discuss the key challenges and future perspectives of developing emerging POC biosensors for COVID-19. This review would be very useful for guiding strategies for developing and commercializing rapid POC tests to manage the spread of infections.Graphical abstract.
Collapse
Affiliation(s)
- Yousef Rasmi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, 5714783734, Urmia, Iran
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, 5714783734, Urmia, Iran
| | - Xiaokang Li
- Ludwig Institute for Cancer Research, University of Lausanne, Agora Center, 1005, Lausanne, Switzerland
- Department of Oncology, Centre hospitalier universitaire vaudois (CHUV), 1011, Lausanne, Switzerland
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, 11952, Kingdom of Saudi Arabia
| | - Tugba Ozer
- Department of Bioengineering, Faculty of Chemical-Metallurgical Engineering, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Jane Ru Choi
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
- Centre for Blood Research, Life Sciences Centre, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
19
|
Cetin AE, Topkaya SN, Yalcin-Ozuysal O, Khademhosseini A. Refractive Index Sensing for Measuring Single Cell Growth. ACS NANO 2021; 15:10710-10721. [PMID: 34029478 DOI: 10.1021/acsnano.1c04031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Accessing cell growth on adhesive substrates is critical for identifying biophysical properties of cells and their therapeutic response to drug therapies. However, optical techniques have low sensitivity, and their reliability varies with cell type, whereas microfluidic technologies rely on cell suspension. In this paper, we introduced a plasmonic functional assay platform that can precisely measure cell weight and the dynamic change in real-time for adherent cells. Possessing this ability, our platform can determine growth rates of individual cells within only 10 min to map the growth profile of populations in short time intervals. The platform could successfully determine heterogeneity within the growth profile of populations and assess subpopulations exhibiting distinct growth profiles. As a proof of principle, we investigated the growth profile of MCF-7 cells and the effect of two intracellular metabolisms critical for their proliferation. We first investigated the negative effect of serum starvation on cell growth. We then studied ornithine decarboxylase (ODC) activity, a key enzyme which is involved in proliferation, and degraded under low osmolarity that inhibits cell growth. We successfully determined the significant distinction between growth profiles of MCF-7 cells and their ODC-overproducing variants that possess strong resistance to the negative effects of low osmolarity. We also demonstrated that an exogenous parameter, putrescine, could rescue cells from ODC inhibition under hypoosmotic conditions. In addition to the ability of accessing intracellular activities through ex vivo measurements, our platform could also determine therapeutic behaviors of cancer cells in response to drug treatments. Here, we investigated difluoromethylornithine (DFMO), which has antitumor effects on MCF-7 cells by inhibiting ODC activity. We successfully demonstrated the susceptibility of MCF-7 cells to such drug treatment, while its DFMO-resistant subpopulation could survive in the presence of this antigrowth agent. By rapidly determining cell growth kinetics in small samples, our plasmonic platform may be of broad use to basic research and clinical applications.
Collapse
Affiliation(s)
- Arif E Cetin
- Izmir Biomedicine and Genome Center, Balcova, Izmir 35340, Turkey
| | - Seda Nur Topkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Izmir Katip Celebi University, Cigli, Izmir 35620, Turkey
| | - Ozden Yalcin-Ozuysal
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir 35430, Turkey
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| |
Collapse
|
20
|
Xu T, Geng Z, Su Y. A Potential Plasmonic Biosensor Based Asymmetric Metal Ring Cavity with Extremely Narrow Linewidth and High Sensitivity. SENSORS 2021; 21:s21030752. [PMID: 33499375 PMCID: PMC7865613 DOI: 10.3390/s21030752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 01/28/2023]
Abstract
To achieve high sensitivity and multi-mode sensing characteristics based on the plasmon effect, we explored a high-sensitivity refractive index sensor structure with narrow linewidth and high absorption characteristics based on theoretical analysis. The sensor structure is composed of periodic asymmetric ring cavity array, spacer layer and metal thin-film layer. The reflection spectrum of this structure shows six resonance modes in the wavelength range from visible to near-infrared. The sensor performance was optimized based on the change of the sensor structure parameters combining the simulation data, and the results shown that this kind of asymmetric laminated structure sensor has good sensing performance. In theory, it can be combined with microfluidic technology to achieve sensing detection of diverse test samples, multi-mode and multi-component, which has great potential in the field of biosensing.
Collapse
Affiliation(s)
- Tianping Xu
- College of Science, Minzu University of China, Beijing 100081, China;
| | - Zhaoxin Geng
- School of Information Engineering, Minzu University of China, Beijing 100081, China
- State Key Laboratory for Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
- Correspondence: ; Tel.: +86-10-8230-4531
| | - Yue Su
- State Key Laboratory for Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
| |
Collapse
|
21
|
Wang H, Tarriela J, Shiveshwarkar P, Pyayt A. Simulations and experimental demonstration of three different regimes of optofluidic manipulation. APPLIED OPTICS 2021; 60:593-599. [PMID: 33690432 DOI: 10.1364/ao.408577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
It has been demonstrated that optically controlled microcurrents can be used to capture and move around a variety of microscopic objects ranging from cells and nanowires to whole live worms. Here, we present our findings on several new regimes of optofluidic manipulation that can be engineered using careful design of microcurrents. We theoretically optimize these regimes using COMSOL Multiphysics and present three sets of simulations and corresponding optofluidic experiments. In the first regime, we use local fluid heating to create a microcurrent with a symmetric toroid shape capturing particles in the center. In the second regime, the microcurrent shifts and tilts because external fluid flow is introduced into the microfluidic channel. In the third regime, the whole microfluidic channel is tilted, and the resulting microcurrent projects particles in a fan-like fashion. All three configurations provide interesting opportunities to manipulate small particles in fluid droplets and microfluidic channels.
Collapse
|
22
|
Etxebarria-Elezgarai J, Mowat M, Lopez E, Rodríguez C, Olaetxea I, Seifert A. Gaussian Beam Shaping and Multivariate Analysis in Plasmonic Sensing. Anal Chem 2020; 92:16236-16244. [DOI: 10.1021/acs.analchem.0c04105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Miriam Mowat
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, Donostia-San Sebastián 20018, Spain
| | - Eneko Lopez
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, Donostia-San Sebastián 20018, Spain
| | - Carlos Rodríguez
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, Donostia-San Sebastián 20018, Spain
| | - Ion Olaetxea
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, Donostia-San Sebastián 20018, Spain
| | - Andreas Seifert
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, Donostia-San Sebastián 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Euskadi Plaza 5, Bilbao 48009, Spain
| |
Collapse
|
23
|
Nath P, Kabir A, Khoubafarin Doust S, Kreais ZJ, Ray A. Detection of Bacterial and Viral Pathogens Using Photonic Point-of-Care Devices. Diagnostics (Basel) 2020; 10:diagnostics10100841. [PMID: 33086578 PMCID: PMC7603237 DOI: 10.3390/diagnostics10100841] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/05/2020] [Accepted: 10/15/2020] [Indexed: 12/15/2022] Open
Abstract
Infectious diseases caused by bacteria and viruses are highly contagious and can easily be transmitted via air, water, body fluids, etc. Throughout human civilization, there have been several pandemic outbreaks, such as the Plague, Spanish Flu, Swine-Flu, and, recently, COVID-19, amongst many others. Early diagnosis not only increases the chance of quick recovery but also helps prevent the spread of infections. Conventional diagnostic techniques can provide reliable results but have several drawbacks, including costly devices, lengthy wait time, and requirement of trained professionals to operate the devices, making them inaccessible in low-resource settings. Thus, a significant effort has been directed towards point-of-care (POC) devices that enable rapid diagnosis of bacterial and viral infections. A majority of the POC devices are based on plasmonics and/or microfluidics-based platforms integrated with mobile readers and imaging systems. These techniques have been shown to provide rapid, sensitive detection of pathogens. The advantages of POC devices include low-cost, rapid results, and portability, which enables on-site testing anywhere across the globe. Here we aim to review the recent advances in novel POC technologies in detecting bacteria and viruses that led to a breakthrough in the modern healthcare industry.
Collapse
|
24
|
Zhu Z, Ding Y, Wang Z, Cheng C, Li D, Chen H. High-performance plasmonic refractive index sensors via synergy between annealed nanoparticles and thin films. NANOTECHNOLOGY 2020; 31:255503. [PMID: 32045901 DOI: 10.1088/1361-6528/ab7531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plasmonic nanostructure-based refractive index (RI) sensors are the core component of biosensor systems and play an increasingly important role in the diagnosis of human disease. However, the costs of traditional plasmonic RI sensors are not acceptable to everyone due to their expensive fabrication process. Here, a novel low-cost and high-performance visible-light RI sensor with a particle-on-film configuration was experimentally demonstrated. The sensor was fabricated by transferring annealed Au nanoparticles (NPs) onto a thin gold film with polymethyl methacrylate (PMMA) as a support. RI sensitivities of approximately 209 nm/RIU and 369 nm/RIU were achieved by reflection and transmission spectrum measurements, respectively. The high sensitivity is due to the strong plasmon-mediated energy confinement within the interface between the particles and the film. The possibility of wafer-scale production and high working stability achieved by the transfer process, together with the high sensitivity to the environmental RI, provides an extensive impact on the realization of universal biosensors for biological applications.
Collapse
Affiliation(s)
- Zhaowei Zhu
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | | | | | | | | | | |
Collapse
|
25
|
Puiu M, Bala C. Microfluidics-integrated biosensing platforms as emergency tools for on-site field detection of foodborne pathogens. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115831] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Nair S, Gomez-Cruz J, Manjarrez-Hernandez Á, Ascanio G, Sabat RG, Escobedo C. Rapid label-free detection of intact pathogenic bacteria in situ via surface plasmon resonance imaging enabled by crossed surface relief gratings. Analyst 2020; 145:2133-2142. [PMID: 32076690 DOI: 10.1039/c9an02339a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The unique plasmonic energy exchange occurring within metallic crossed surface relief gratings (CSRGs) has recently motivated their use as biosensors. However, CSRG-based biosensing has been limited to spectroscopic techniques, failing to harness their potential for integration with ubiquitous portable electronics. Here, we introduce biosensing via surface plasmon resonance imaging (SPRi) enabled by CSRGs. The SPRi platform is fully integrated including optics and electronics, has bulk sensitivity of 613 Pixel Intensity Unit (PIU)/Refractive Index Unit (RIU), a resolution of 10-6 RIU and a signal-to-noise ratio of ∼33 dB. Finite-Difference Time-Domain (FDTD) simulations confirm that CSRG-enabled SPRi is supported by an electric field intensity enhancement of ∼30 times, due to plasmon resonance at the metal-dielectric interface. In the context of real-world biosensing applications, we demonstrate the rapid (<35 min) and label-free detection of uropathogenic E. coli (UPEC) in PBS and human urine samples for concentrations ranging from 103 to 109 CFU mL-1. The detection limit of the platform is ∼100 CFU mL-1, three orders of magnitude lower than the clinical detection limit for diagnosis of urinary tract infection. This work presents a new avenue for CSRGs as SPRi-based biosensing platforms and their great potential for integration with portable electronics for applications requiring in situ detection.
Collapse
Affiliation(s)
- Srijit Nair
- Department of Chemical Engineering, Queen's University, K7L 3N6, Kingston, ON, Canada.
| | | | | | | | | | | |
Collapse
|
27
|
Librizzi P, Biswas A, Chang R, Kong XT, Moocarme M, Ahuja G, Kretzschmar I, Vuong LT. Broadband chiral hybrid plasmon modes on nanofingernail substrates. NANOSCALE 2020; 12:3827-3833. [PMID: 31995089 DOI: 10.1039/c9nr07394a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
There is significant interest in the utility of asymmetric nanoaperture arrays as substrates for the surface-enhanced detection, fluorescence, and imaging of individual molecules. This work introduces obliquely-cut, out-of-plane, coaxial layered structures on an aperture edge. We refer to these structures as nanofingernails, which emphasizes their curved, oblique, and out-of-plane features. Broadband coupling into chiral hybrid plasmon modes and helicity-dependent near-field scattering without circular dichroism are demonstrated. The unusually-broadband, multipolar modes of nanofingernail micropore structures exhibit phase retardation effects that may be useful for achieving spatial overlap at different frequencies. The nanofingernail geometry shows new potential for simultaneous polarization-enhanced hyperspectral imaging on apertured, plasmonic surfaces.
Collapse
Affiliation(s)
- Paulina Librizzi
- Department of Chemical Engineering, City College of New York of the City University of New York (CUNY), New York, New York 10031, USA.
| | - Aneek Biswas
- Department of Physics, Graduate Center of the City University of New York (CUNY), New York, New York 10016, USA. and Department of Physics, Queens College of the City University of New York (CUNY), Queens, New York 11367, USA
| | - Roger Chang
- Department of Chemical Engineering, City College of New York of the City University of New York (CUNY), New York, New York 10031, USA.
| | - Xiang-Tian Kong
- Department of Mechanical Engineering, Bourns Hall, University of California at Riverside, Riverside, California 92521, USA
| | - Matthew Moocarme
- Department of Physics, Graduate Center of the City University of New York (CUNY), New York, New York 10016, USA. and Department of Physics, Queens College of the City University of New York (CUNY), Queens, New York 11367, USA
| | - Gaurav Ahuja
- Department of Mechanical Engineering, Bourns Hall, University of California at Riverside, Riverside, California 92521, USA
| | - Ilona Kretzschmar
- Department of Chemical Engineering, City College of New York of the City University of New York (CUNY), New York, New York 10031, USA.
| | - Luat T Vuong
- Department of Physics, Graduate Center of the City University of New York (CUNY), New York, New York 10016, USA. and Department of Physics, Queens College of the City University of New York (CUNY), Queens, New York 11367, USA and Department of Mechanical Engineering, Bourns Hall, University of California at Riverside, Riverside, California 92521, USA
| |
Collapse
|
28
|
Single Cell Analysis of Neutrophils NETs by Microscopic LSPR Imaging System. MICROMACHINES 2019; 11:mi11010052. [PMID: 31906070 PMCID: PMC7019790 DOI: 10.3390/mi11010052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/27/2019] [Accepted: 12/29/2019] [Indexed: 01/01/2023]
Abstract
A simple microengraving cell monitoring method for neutrophil extracellular traps (NETs) released from single neutrophils has been realized using a polydimethylsiloxane (PDMS) microwell array (MWA) sheet on a plasmon chip platform. An imbalance between NETs formation and the succeeding degradation (NETosis) are considered associated with autoimmune disease and its pathogenesis. Thus, an alternative platform that can conduct monitoring of this activity on single cell level at minimum cost but with great sensitivity is greatly desired. The developed MWA plasmon chips allow single cell isolation of neutrophils from 150 µL suspension (6.0 × 105 cells/mL) with an efficiency of 36.3%; 105 microwells with single cell condition. To demonstrate the utility of the chip, trapped cells were incubated between 2 to 4 h after introducing with 100 nM phorbol 12-myristate 13-acetate (PMA) before measurement. Under observation using a hyperspectral imaging system that allows high-throughput screening, the neutrophils stimulated by PMA solution show a significant release of fibrils and NETs after 4 h, with observed maximum areas between 314–758 µm2. An average absorption peak wavelength shows a redshift of Δλ = 1.5 nm as neutrophils release NETs.
Collapse
|
29
|
Oh SY, Heo NS, Bajpai VK, Jang SC, Ok G, Cho Y, Huh YS. Development of a Cuvette-Based LSPR Sensor Chip Using a Plasmonically Active Transparent Strip. Front Bioeng Biotechnol 2019; 7:299. [PMID: 31737618 PMCID: PMC6839135 DOI: 10.3389/fbioe.2019.00299] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/15/2019] [Indexed: 01/22/2023] Open
Abstract
This research demonstrates the development of a transmission-mode localized surface plasmon resonance (LSPR) sensor chip using a cuvette cell system for the sensitive detection of a biomolecule marker such as C-reactive protein (CRP). In order to develop a highly sensitive LSPR sensor chip, plasmonically active gold nanoparticles (AuNPs) were decorated onto various transparent substrates in the form of a uniform, high-density single layer using a self-assembly process. The transparent substrate surface was modified with amine functional groups via (3-Aminopropyl)triethoxysilane (APTES) treatment, and the ligand concentration and temperature (0.5% APTES at 60°C) were then optimized to control the binding energy with AuNPs. The optimized plasmonically active strip was subsequently prepared by dipping the amine-functionalized substrate into AuNPs for 8 h. The optimized plasmonic strip functionalized with anti-CRP was transformed into a portable LSPR sensor chip by placing it inside a cuvette cell system, and its detection performance was evaluated using CRP as a model sample. The detection limit for CRP using our LSPR sensor chip was 0.01 μg/mL, and the detection dynamic range was 0.01–10 μg/mL with a %CV of <10%, thus confirming its selectivity and good reproducibility. These findings illustrate that the highly sensitive portable LSPR biosensor developed in this study is expected to be widely used in a diverse range of fields such as diagnosis, medical care, environmental monitoring, and food quality control.
Collapse
Affiliation(s)
- Seo Yeong Oh
- Department of Biological Engineering, Inha University, Incheon, South Korea
| | - Nam Su Heo
- Department of Biological Engineering, Inha University, Incheon, South Korea.,Division of Electron Microscopic Research, Korea Basic Science Institute, Daejeon, South Korea
| | - Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, South Korea
| | - Sung-Chan Jang
- Department of Biological Engineering, Inha University, Incheon, South Korea.,Radwaste Management Center, Korea Atomic Energy Research Institute, Daejeon, South Korea
| | - Gyeongsik Ok
- Research Group of Consumer Safety, Korea Food Research Institute, Wanju-gun, South Korea
| | - Youngjin Cho
- Research Group of Consumer Safety, Korea Food Research Institute, Wanju-gun, South Korea
| | - Yun Suk Huh
- Department of Biological Engineering, Inha University, Incheon, South Korea
| |
Collapse
|
30
|
Cetin AE, Topkaya SN. Photonic crystal and plasmonic nanohole based label-free biodetection. Biosens Bioelectron 2019; 132:196-202. [DOI: 10.1016/j.bios.2019.02.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/14/2019] [Accepted: 02/25/2019] [Indexed: 11/27/2022]
|
31
|
Shakoor A, Grant J, Grande M, Cumming DRS. Towards Portable Nanophotonic Sensors. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1715. [PMID: 30974832 PMCID: PMC6479635 DOI: 10.3390/s19071715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/05/2019] [Accepted: 04/07/2019] [Indexed: 01/02/2023]
Abstract
A range of nanophotonic sensors composed of different materials and device configurations have been developed over the past two decades. These sensors have achieved high performance in terms of sensitivity and detection limit. The size of onchip nanophotonic sensors is also small and they are regarded as a strong candidate to provide the next generation sensors for a range of applications including chemical and biosensing for point-of-care diagnostics. However, the apparatus used to perform measurements of nanophotonic sensor chips is bulky, expensive and requires experts to operate them. Thus, although integrated nanophotonic sensors have shown high performance and are compact themselves their practical applications are limited by the lack of a compact readout system required for their measurements. To achieve the aim of using nanophotonic sensors in daily life it is important to develop nanophotonic sensors which are not only themselves small, but their readout system is also portable, compact and easy to operate. Recognizing the need to develop compact readout systems for onchip nanophotonic sensors, different groups around the globe have started to put efforts in this direction. This review article discusses different works carried out to develop integrated nanophotonic sensors with compact readout systems, which are divided into two categories; onchip nanophotonic sensors with monolithically integrated readout and onchip nanophotonic sensors with separate but compact readout systems.
Collapse
Affiliation(s)
- Abdul Shakoor
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK.
| | - James Grant
- School of Engineering, University of Glasgow, Glasgow G12 8LT, UK.
| | - Marco Grande
- Dipartimento di Ingegneria Elettrica e dell'Informazione, Politecnico di Bari, 70125 Bari, Italy.
| | | |
Collapse
|
32
|
Prasad A, Choi J, Jia Z, Park S, Gartia MR. Nanohole array plasmonic biosensors: Emerging point-of-care applications. Biosens Bioelectron 2019; 130:185-203. [PMID: 30738247 PMCID: PMC6475599 DOI: 10.1016/j.bios.2019.01.037] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/03/2019] [Accepted: 01/18/2019] [Indexed: 01/18/2023]
Abstract
Point-of-care (POC) applications have expanded hugely in recent years and is likely to continue, with an aim to deliver cheap, portable, and reliable devices to meet the demands of healthcare industry. POC devices are designed, prototyped, and assembled using numerous strategies but the key essential features that biosensing devices require are: (1) sensitivity, (2) selectivity, (3) specificity, (4) repeatability, and (5) good limit of detection. Overall the fabrication and commercialization of the nanohole array (NHA) setup to the outside world still remains a challenge. Here, we review the various methods of NHA fabrication, the design criteria, the geometrical features, the effects of surface plasmon resonance (SPR) on sensing as well as current state-of-the-art of existing NHA sensors. This review also provides easy-to-understand examples of NHA-based POC biosensing applications, its current status, challenges, and future prospects.
Collapse
Affiliation(s)
- Alisha Prasad
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Junseo Choi
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; NIH Center for BioModular Multiscale Systems for Precision Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Zheng Jia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; NIH Center for BioModular Multiscale Systems for Precision Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Sunggook Park
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; NIH Center for BioModular Multiscale Systems for Precision Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
33
|
Rectangular plasmonic interferometer for high sensitive glycerol sensor. Sci Rep 2019; 9:1378. [PMID: 30718632 PMCID: PMC6361946 DOI: 10.1038/s41598-018-37499-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/10/2018] [Indexed: 12/29/2022] Open
Abstract
A novel plasmonic interferometric sensor intended for application to biochemical sensing has been investigated experimentally and theoretically. The sensor was included a slit surrounded by rectangular grooves using a thick gold film. A three-dimensional finite difference time-domain commercial software package was applied to simulate the structure. The Focused ion beam milling has been used as a mean to fabricate series of rectangular plasmonic interferometer with varying slit-groove distance L. Oscillation behavior is shown by transmission spectra in a broadband wavelength range between 400 nm and 800 nm in the distance between slit and grooves. Red-shifted interference spectrum is the result of increasing refractive indices. The proposed structure is functional from visible to near-infrared wavelength range and yields a sensitivity of 4923 nm/RIU and a figure of merit as high as 214 at 729 nm wavelength. In conclusion, this study indicates the possibility of fabricating a low cost, compact, and real-time high-throughput plasmonic interferometer.
Collapse
|
34
|
Zeng X, Yang Y, Zhang N, Ji D, Gu X, Jornet J, Wu Y, Gan Q. Plasmonic Interferometer Array Biochip as a New Mobile Medical Device for Cancer Detection. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2019; 25:7201707. [PMID: 30983848 PMCID: PMC6456910 DOI: 10.1109/jstqe.2018.2865418] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We report a plasmonic interferometer array (PIA) sensor and demonstrate its ability to detect circulating exosomal proteins in real-time with high sensitivity and low cost to enable the early detection of cancer. Specifically, a surface plasmon wave launched by the nano-groove rings interferes with the free-space light at the output of central nano-aperture and results in an intensity interference pattern. Under the single-wavelength illumination, when the target exosomal proteins are captured by antibodies bound on the surface, the biomediated change in the refractive index between the central aperture and groove rings causes the intensity change in transmitted light. By recording the intensity changes in real-time, one can effectively screen biomolecular binding events and analyze the binding kinetics. By integrating signals from multiple sensor pairs to enhance the signal-to-noise ratio, superior sensing resolutions of 1.63×10-6 refractive index unit (RIU) in refractive index change and 3.86×108 exosomes/mL in exosome detection were realized, respectively. Importantly, this PIA sensor can be imaged by a miniaturized microscope system coupled with a smart phone to realize a portable and highly sensitive healthcare device. The sensing resolution of 9.72×109 exosomes/mL in exosome detection was realized using the portable sensing system building upon a commercial smartphone.
Collapse
Affiliation(s)
- Xie Zeng
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY
14260, USA
| | - Yunchen Yang
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY
14260, USA
| | - Nan Zhang
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY
14260, USA
| | - Dengxin Ji
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY
14260, USA
| | - Xiaodong Gu
- Huashan Hospital, Fudan University, Shanghai 200433, China
| | - Josep Jornet
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY
14260, USA
| | - Yun Wu
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY
14260, USA
| | - Qiaoqiang Gan
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY
14260, USA
| |
Collapse
|
35
|
Mauriz E, Dey P, Lechuga LM. Advances in nanoplasmonic biosensors for clinical applications. Analyst 2019; 144:7105-7129. [DOI: 10.1039/c9an00701f] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Plasmonic biosensors can be conveniently used as portable diagnostic devices for attaining timely and cost-effective clinical outcomes. Nanoplasmonics technology opens the way for sensor miniaturization, multiplexing and point of care testing.
Collapse
Affiliation(s)
- Elba Mauriz
- Department of Nursing and Physiotherapy
- Universidad de León
- 24071 León
- Spain
| | - Priyanka Dey
- Nanobiosensors and Bioanalytical Applications Group
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)
- CSIC
- BIST
- and CIBER-BBN
| | - Laura M. Lechuga
- Nanobiosensors and Bioanalytical Applications Group
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)
- CSIC
- BIST
- and CIBER-BBN
| |
Collapse
|
36
|
Kim S, Lee Y, Kim JY, Yang JH, Kwon HJ, Hwang JY, Moon C, Jang JE. Color-sensitive and spectrometer-free plasmonic sensor for biosensing applications. Biosens Bioelectron 2018; 126:743-750. [PMID: 30553104 DOI: 10.1016/j.bios.2018.11.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/14/2018] [Accepted: 11/27/2018] [Indexed: 10/27/2022]
Abstract
A color-sensitive and spectrometer-free sensing method using plasmonic nanohole arrays and the color components, L* , a* , and b* , of the CIELAB defined by the international commission on illumination (CIE) is introduced for the analysis of optically transparent materials in the visible range. Spectral analysis based on plasmonic nanoparticles or nanostructures can be applied to real-time bio-detection, but complex optical instrumentations and low spatial resolution have limited the sensing ability. Therefore, we take an advantage of color image processing instead of spectral analysis which induces the distinctive color information of plasmonic nanohole arrays with different transparent materials. It guarantees high spatial resolution which is essential to bio-detection such as living cells. To establish our sensing platform, the color components, L* , a* , and b* , were extracted from photo images by an image sensor, statistically processed using a JAVA program, and finally utilized as three individual sensing factors. Additionally, our study on a correlation between the spacing of plasmonic sensors and the color sensitivity to the refractive index reveals geometrically optimal conditions of nanohole arrays. The weighted mean calculation with the three individual sensing factors offers an enhanced distinction of the optical difference for transparent materials. In this work, a color sensitivity of 156.94 RIU-1 and a minimum mean absolute error of 1.298×10-4 RIU were achieved. The difference in the refractive index can be recognized up to 10-4 level with the suggested sensing platform and the signal process. This unique color-sensitive sensing method enables a simple, easy-to-control, and highly accurate analysis without complicated measurement systems including a spectrometer. Therefore, our sensing platform can be applied as a very powerful tool to in-situ label-free bio-detection fields.
Collapse
Affiliation(s)
- Seunguk Kim
- Department of Information and Communication Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea.
| | | | - Jae Yeon Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea.
| | - Jae Hoon Yang
- Department of Information and Communication Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea.
| | - Hyuk-Jun Kwon
- Department of Information and Communication Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea.
| | - Jae Youn Hwang
- Department of Information and Communication Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea.
| | - Cheil Moon
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea.
| | - Jae Eun Jang
- Department of Information and Communication Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea.
| |
Collapse
|
37
|
Soler M, Huertas CS, Lechuga LM. Label-free plasmonic biosensors for point-of-care diagnostics: a review. Expert Rev Mol Diagn 2018; 19:71-81. [PMID: 30513011 DOI: 10.1080/14737159.2019.1554435] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Introduction: Optical biosensors, particularly those based on nanoplasmonics technology, have emerged in recent decades as a potential solution for disease diagnostics and therapy follow-up at the point-of-care (POC). These biosensor platforms could overcome some of the challenges faced in conventional diagnosis techniques offering label-free assays with immediate results and employing small and user-friendly devices. Areas covered: In this review, we will provide a critical overview of the recent advances in the development of nanoplasmonic biosensors for the POC diagnostics. We focus on those systems with demonstrated capabilities for integration in portable platforms, highlighting some of the most relevant diagnostics applications targeting proteins, nucleic acids, and cells as disease biomarkers. Expert commentary: Despite the attractive features of label-free nanoplasmonic sensors in terms of miniaturization and analytical robustness, the route toward an effective clinical implementation involves the integration of fully automated microfluidic systems for sample processing and analysis, and the optimization of surface biofunctionalization procedures. Additionally, the development of multiplexed sensors for high-throughput analysis and including specific neoantigens and novel biomarkers in detection panels will provide the means for delivering a powerful analytical technology for an accurate and improved medical diagnosis.
Collapse
Affiliation(s)
- Maria Soler
- a Nanobiosensors and Bioanalytical Applications Group , Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and CIBER-BBN , Bellaterra , Barcelona , Spain
| | - Cesar S Huertas
- a Nanobiosensors and Bioanalytical Applications Group , Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and CIBER-BBN , Bellaterra , Barcelona , Spain.,b School of Engineering , RMIT University , Melbourne , Australia
| | - Laura M Lechuga
- a Nanobiosensors and Bioanalytical Applications Group , Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and CIBER-BBN , Bellaterra , Barcelona , Spain
| |
Collapse
|
38
|
Resonant position tracking method for smartphone-based surface plasmon sensor. Anal Chim Acta 2018; 1032:99-106. [DOI: 10.1016/j.aca.2018.05.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/02/2018] [Accepted: 05/10/2018] [Indexed: 11/17/2022]
|
39
|
Yavas O, Aćimović SS, Garcia-Guirado J, Berthelot J, Dobosz P, Sanz V, Quidant R. Self-Calibrating On-Chip Localized Surface Plasmon Resonance Sensing for Quantitative and Multiplexed Detection of Cancer Markers in Human Serum. ACS Sens 2018; 3:1376-1384. [PMID: 29947221 DOI: 10.1021/acssensors.8b00305] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The need for point-of-care devices able to detect diseases early and monitor their status, out of a lab environment, has stimulated the development of compact biosensing configurations. Whereas localized surface plasmon resonance (LSPR) sensing integrated into a state-of-the-art microfluidic chip stands as a promising approach to meet this demand, its implementation into an operating sensing platform capable of quantitatively detecting a set of molecular biomarkers in an unknown biological sample is only in its infancy. Here, we present an on-chip LSPR sensor capable of performing automatic, quantitative, and multiplexed screening of biomarkers. We demonstrate its versatility by programming it to detect and quantify in human serum four relevant human serum protein markers associated with breast cancer.
Collapse
Affiliation(s)
- Ozlem Yavas
- ICFO-Institut de Ciéncies Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Srdjan S. Aćimović
- ICFO-Institut de Ciéncies Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Jose Garcia-Guirado
- ICFO-Institut de Ciéncies Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Johann Berthelot
- ICFO-Institut de Ciéncies Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Paulina Dobosz
- ICFO-Institut de Ciéncies Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Vanesa Sanz
- ICFO-Institut de Ciéncies Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Romain Quidant
- ICFO-Institut de Ciéncies Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
40
|
Yu T, Wei Q. Plasmonic molecular assays: Recent advances and applications for mobile health. NANO RESEARCH 2018; 11:5439-5473. [PMID: 32218913 PMCID: PMC7091255 DOI: 10.1007/s12274-018-2094-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 05/15/2023]
Abstract
Plasmonics-based biosensing assays have been extensively employed for biomedical applications. Significant advancements in use of plasmonic assays for the construction of point-of-care (POC) diagnostic methods have been made to provide effective and urgent health care of patients, especially in resourcelimited settings. This rapidly progressive research area, centered on the unique surface plasmon resonance (SPR) properties of metallic nanostructures with exceptional absorption and scattering abilities, has greatly facilitated the development of cost-effective, sensitive, and rapid strategies for disease diagnostics and improving patient healthcare in both developed and developing worlds. This review highlights the recent advances and applications of plasmonic technologies for highly sensitive protein and nucleic acid biomarker detection. In particular, we focus on the implementation and penetration of various plasmonic technologies in conventional molecular diagnostic assays, and discuss how such modification has resulted in simpler, faster, and more sensitive alternatives that are suited for point-of-use. Finally, integration of plasmonic molecular assays with various portable POC platforms for mobile health applications are highlighted.
Collapse
Affiliation(s)
- Tao Yu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Campus Box 7905, Raleigh, NC 27695 USA
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Campus Box 7905, Raleigh, NC 27695 USA
| |
Collapse
|
41
|
Belushkin A, Yesilkoy F, Altug H. Nanoparticle-Enhanced Plasmonic Biosensor for Digital Biomarker Detection in a Microarray. ACS NANO 2018; 12:4453-4461. [PMID: 29715005 DOI: 10.1021/acsnano.8b00519] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Nanoplasmonic devices have become a paradigm for biomolecular detection enabled by enhanced light-matter interactions in the fields from biological and pharmaceutical research to medical diagnostics and global health. In this work, we present a bright-field imaging plasmonic biosensor that allows visualization of single subwavelength gold nanoparticles (NPs) on large-area gold nanohole arrays (Au-NHAs). The sensor generates image heatmaps that reveal the locations of single NPs as high-contrast spikes, enabling the detection of individual NP-labeled molecules. We implemented the proposed method in a sandwich immunoassay for the detection of biotinylated bovine serum albumin (bBSA) and human C-reactive protein (CRP), a clinical biomarker of acute inflammatory diseases. Our method can detect 10 pg/mL of bBSA and 27 pg/mL CRP in 2 h, which is at least 4 orders of magnitude lower than the clinically relevant concentrations. Our sensitive and rapid detection approach paired with the robust large-area plasmonic sensor chips, which are fabricated using scalable and low-cost manufacturing, provides a powerful platform for multiplexed biomarker detection in various settings.
Collapse
Affiliation(s)
- Alexander Belushkin
- Institute of BioEngineering , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Filiz Yesilkoy
- Institute of BioEngineering , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Hatice Altug
- Institute of BioEngineering , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| |
Collapse
|
42
|
Ballard ZS, Brown C, Ozcan A. Mobile Technologies for the Discovery, Analysis, and Engineering of the Global Microbiome. ACS NANO 2018; 12:3065-3082. [PMID: 29553706 DOI: 10.1021/acsnano.7b08660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The microbiome has been heralded as a gauge of and contributor to both human health and environmental conditions. Current challenges in probing, engineering, and harnessing the microbiome stem from its microscopic and nanoscopic nature, diversity and complexity of interactions among its members and hosts, as well as the spatiotemporal sampling and in situ measurement limitations induced by the restricted capabilities and norm of existing technologies, leaving some of the constituents of the microbiome unknown. To facilitate significant progress in the microbiome field, deeper understanding of the constituents' individual behavior, interactions with others, and biodiversity are needed. Also crucial is the generation of multimodal data from a variety of subjects and environments over time. Mobile imaging and sensing technologies, particularly through smartphone-based platforms, can potentially meet some of these needs in field-portable, cost-effective, and massively scalable manners by circumventing the need for bulky, expensive instrumentation. In this Perspective, we outline how mobile sensing and imaging technologies could lead the way to unprecedented insight into the microbiome, potentially shedding light on various microbiome-related mysteries of today, including the composition and function of human, animal, plant, and environmental microbiomes. Finally, we conclude with a look at the future, propose a computational microbiome engineering and optimization framework, and discuss its potential impact and applications.
Collapse
|
43
|
La Spada L, Vegni L. Electromagnetic Nanoparticles for Sensing and Medical Diagnostic Applications. MATERIALS 2018; 11:ma11040603. [PMID: 29652853 PMCID: PMC5951487 DOI: 10.3390/ma11040603] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/04/2018] [Accepted: 04/09/2018] [Indexed: 11/16/2022]
Abstract
A modeling and design approach is proposed for nanoparticle-based electromagnetic devices. First, the structure properties were analytically studied using Maxwell's equations. The method provides us a robust link between nanoparticles electromagnetic response (amplitude and phase) and their geometrical characteristics (shape, geometry, and dimensions). Secondly, new designs based on "metamaterial" concept are proposed, demonstrating great performances in terms of wide-angle range functionality and multi/wide behavior, compared to conventional devices working at the same frequencies. The approach offers potential applications to build-up new advanced platforms for sensing and medical diagnostics. Therefore, in the final part of the article, some practical examples are reported such as cancer detection, water content measurements, chemical analysis, glucose concentration measurements and blood diseases monitoring.
Collapse
Affiliation(s)
- Luigi La Spada
- School of Computing, Electronics and Mathematics, Coventry University, Coventry CV1 5FB, UK.
| | - Lucio Vegni
- Department of Engineering, University of Roma Tre, Via Vito Volterra 62, 00146 Rome, Italy.
| |
Collapse
|
44
|
Cetin AE, Iyidogan P, Hayashi Y, Wallen M, Vijayan K, Tu E, Nguyen M, Oliphant A. Plasmonic Sensor Could Enable Label-Free DNA Sequencing. ACS Sens 2018; 3:561-568. [PMID: 29488377 DOI: 10.1021/acssensors.7b00957] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We demonstrated a proof-of-principle concept of a label-free platform that enables nucleic acid sequencing by binding methodology. The system utilizes gold surfaces having high fidelity plasmonic nanohole arrays which are very sensitive to minute changes of local refractive indices. Our novel surface chemistry approach ensures accurate identification of correct bases at individual positions along a targeted DNA sequence on the gold surface. Binding of the correct base on the gold sensing surface triggers strong spectral variations within the nanohole optical response, which provides a high signal-to-noise ratio and accurate sequence data. Integrating our label-free sequencing platform with a lens-free imaging-based device, we reliably determined targeted DNA sequences by monitoring the changes within the plasmonic diffraction images. Consequently, this new label-free surface chemistry technique, integrated with plasmonic lens-free imaging platform, will enable monitoring multiple biomolecular binding events, which could initiate new avenues for high-throughput nucleic acid sequencing.
Collapse
Affiliation(s)
- Arif E. Cetin
- Omniome, Inc., 10575 Roselle Street, San Diego, California 92121, United States
| | - Pinar Iyidogan
- Omniome, Inc., 10575 Roselle Street, San Diego, California 92121, United States
| | - Yuki Hayashi
- Omniome, Inc., 10575 Roselle Street, San Diego, California 92121, United States
| | - Mark Wallen
- Omniome, Inc., 10575 Roselle Street, San Diego, California 92121, United States
| | - Kandaswamy Vijayan
- Omniome, Inc., 10575 Roselle Street, San Diego, California 92121, United States
| | - Eugene Tu
- Omniome, Inc., 10575 Roselle Street, San Diego, California 92121, United States
| | - Michael Nguyen
- Omniome, Inc., 10575 Roselle Street, San Diego, California 92121, United States
| | - Arnold Oliphant
- Omniome, Inc., 10575 Roselle Street, San Diego, California 92121, United States
| |
Collapse
|
45
|
Jackman JA, Rahim Ferhan A, Cho NJ. Nanoplasmonic sensors for biointerfacial science. Chem Soc Rev 2018; 46:3615-3660. [PMID: 28383083 DOI: 10.1039/c6cs00494f] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In recent years, nanoplasmonic sensors have become widely used for the label-free detection of biomolecules across medical, biotechnology, and environmental science applications. To date, many nanoplasmonic sensing strategies have been developed with outstanding measurement capabilities, enabling detection down to the single-molecule level. One of the most promising directions has been surface-based nanoplasmonic sensors, and the potential of such technologies is still emerging. Going beyond detection, surface-based nanoplasmonic sensors open the door to enhanced, quantitative measurement capabilities across the biointerfacial sciences by taking advantage of high surface sensitivity that pairs well with the size of medically important biomacromolecules and biological particulates such as viruses and exosomes. The goal of this review is to introduce the latest advances in nanoplasmonic sensors for the biointerfacial sciences, including ongoing development of nanoparticle and nanohole arrays for exploring different classes of biomacromolecules interacting at solid-liquid interfaces. The measurement principles for nanoplasmonic sensors based on utilizing the localized surface plasmon resonance (LSPR) and extraordinary optical transmission (EOT) phenomena are first introduced. The following sections are then categorized around different themes within the biointerfacial sciences, specifically protein binding and conformational changes, lipid membrane fabrication, membrane-protein interactions, exosome and virus detection and analysis, and probing nucleic acid conformations and binding interactions. Across these themes, we discuss the growing trend to utilize nanoplasmonic sensors for advanced measurement capabilities, including positional sensing, biomacromolecular conformation analysis, and real-time kinetic monitoring of complex biological interactions. Altogether, these advances highlight the rich potential of nanoplasmonic sensors and the future growth prospects of the community as a whole. With ongoing development of commercial nanoplasmonic sensors and analytical models to interpret corresponding measurement data in the context of biologically relevant interactions, there is significant opportunity to utilize nanoplasmonic sensing strategies for not only fundamental biointerfacial science, but also translational science applications related to clinical medicine and pharmaceutical drug development among countless possibilities.
Collapse
Affiliation(s)
- Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| | | | | |
Collapse
|
46
|
Abstract
Rapid detection of foodborne pathogens at an early stage is imperative for preventing the outbreak of foodborne diseases, known as serious threats to human health. Conventional bacterial culturing methods for foodborne pathogen detection are time consuming, laborious, and with poor pathogen diagnosis competences. This has prompted researchers to call the current status of detection approaches into question and leverage new technologies for superior pathogen sensing outcomes. Novel strategies mainly rely on incorporating all the steps from sample preparation to detection in miniaturized devices for online monitoring of pathogens with high accuracy and sensitivity in a time-saving and cost effective manner. Lab on chip is a blooming area in diagnosis, which exploits different mechanical and biological techniques to detect very low concentrations of pathogens in food samples. This is achieved through streamlining the sample handling and concentrating procedures, which will subsequently reduce human errors and enhance the accuracy of the sensing methods. Integration of sample preparation techniques into these devices can effectively minimize the impact of complex food matrix on pathogen diagnosis and improve the limit of detections. Integration of pathogen capturing bio-receptors on microfluidic devices is a crucial step, which can facilitate recognition abilities in harsh chemical and physical conditions, offering a great commercial benefit to the food-manufacturing sector. This article reviews recent advances in current state-of-the-art of sample preparation and concentration from food matrices with focus on bacterial capturing methods and sensing technologies, along with their advantages and limitations when integrated into microfluidic devices for online rapid detection of pathogens in foods and food production line.
Collapse
|
47
|
Yesilkoy F, Terborg RA, Pello J, Belushkin AA, Jahani Y, Pruneri V, Altug H. Phase-sensitive plasmonic biosensor using a portable and large field-of-view interferometric microarray imager. LIGHT, SCIENCE & APPLICATIONS 2018; 7:17152. [PMID: 30839537 PMCID: PMC6060062 DOI: 10.1038/lsa.2017.152] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 05/03/2023]
Abstract
Nanophotonics, and more specifically plasmonics, provides a rich toolbox for biomolecular sensing, since the engineered metasurfaces can enhance light-matter interactions to unprecedented levels. So far, biosensing associated with high-quality factor plasmonic resonances has almost exclusively relied on detection of spectral shifts and their associated intensity changes. However, the phase response of the plasmonic resonances have rarely been exploited, mainly because this requires a more sophisticated optical arrangement. Here we present a new phase-sensitive platform for high-throughput and label-free biosensing enhanced by plasmonics. It employs specifically designed Au nanohole arrays and a large field-of-view interferometric lens-free imaging reader operating in a collinear optical path configuration. This unique combination allows the detection of atomically thin (angstrom-level) topographical features over large areas, enabling simultaneous reading of thousands of microarray elements. As the plasmonic chips are fabricated using scalable techniques and the imaging reader is built with low-cost off-the-shelf consumer electronic and optical components, the proposed platform is ideal for point-of-care ultrasensitive biomarker detection from small sample volumes. Our research opens new horizons for on-site disease diagnostics and remote health monitoring.
Collapse
Affiliation(s)
- Filiz Yesilkoy
- Institute of BioEngineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Roland A Terborg
- ICFO—Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Josselin Pello
- ICFO—Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Alexander A Belushkin
- Institute of BioEngineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Yasaman Jahani
- Institute of BioEngineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Valerio Pruneri
- ICFO—Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- ICREA—Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Hatice Altug
- Institute of BioEngineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
48
|
Ahn H, Song H, Choi JR, Kim K. A Localized Surface Plasmon Resonance Sensor Using Double-Metal-Complex Nanostructures and a Review of Recent Approaches. SENSORS (BASEL, SWITZERLAND) 2017; 18:E98. [PMID: 29301238 PMCID: PMC5795798 DOI: 10.3390/s18010098] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/21/2017] [Accepted: 12/29/2017] [Indexed: 12/14/2022]
Abstract
From active developments and applications of various devices to acquire outside and inside information and to operate based on feedback from that information, the sensor market is growing rapidly. In accordance to this trend, the surface plasmon resonance (SPR) sensor, an optical sensor, has been actively developed for high-sensitivity real-time detection. In this study, the fundamentals of SPR sensors and recent approaches for enhancing sensing performance are reported. In the section on the fundamentals of SPR sensors, a brief description of surface plasmon phenomena, SPR, SPR-based sensing applications, and several configuration types of SPR sensors are introduced. In addition, advanced nanotechnology- and nanofabrication-based techniques for improving the sensing performance of SPR sensors are proposed: (1) localized SPR (LSPR) using nanostructures or nanoparticles; (2) long-range SPR (LRSPR); and (3) double-metal-layer SPR sensors for additional performance improvements. Consequently, a high-sensitivity, high-biocompatibility SPR sensor method is suggested. Moreover, we briefly describe issues (miniaturization and communication technology integration) for future SPR sensors.
Collapse
Affiliation(s)
- Heesang Ahn
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea.
| | - Hyerin Song
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea.
| | - Jong-Ryul Choi
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea.
| | - Kyujung Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea.
- Department of Optics and Mechatronics Engineering, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
49
|
A Route to Terahertz Metamaterial Biosensor Integrated with Microfluidics for Liver Cancer Biomarker Testing in Early Stage. Sci Rep 2017; 7:16378. [PMID: 29180650 PMCID: PMC5704020 DOI: 10.1038/s41598-017-16762-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/16/2017] [Indexed: 01/15/2023] Open
Abstract
Engineered Terahertz (THz) metamaterials presented an unique characteristics for biosensing application due to their accurately tunable resonance frequency, which is in accord with vibrational frequency of some important biomolecules such as cancer biomarker. However, water absorption in THz regime is an obstacle to extend application in trace biomolecules of cancer antibody or antigen. Here, to overcome water absorption and enhance the THz biosensing sensitivity, two kinds of THz metamaterials biosensor integrated with microfluidics were fabricated and used to detect the Alpha fetoprotein (AFP) and Glutamine transferase isozymes II (GGT-II) of liver cancer biomarker in early stage. There were about 19 GHz resonance shift (5 mu/ml) and 14.2 GHz resonance shift (0.02524 μg/ml) for GGT-II and AFP with a two-gap-metamaterial, respectively, which agreed with simulation results. Those results demonstrated the power and usefulness of metamaterial-assisted THz spectroscopy in trace cancer biomarker molecular detection for biological and chemical sensing. Moreover, for a particular cancer biomarker, the sensitivity could be further improved by optimizing the metamaterial structure and decreasing the permittivity of the substrate. This method might be powerful and potential for special recognition of cancer molecules in the early stage.
Collapse
|
50
|
Flexible and Tunable 3D Gold Nanocups Platform as Plasmonic Biosensor for Specific Dual LSPR-SERS Immuno-Detection. Sci Rep 2017; 7:14240. [PMID: 29079816 PMCID: PMC5660151 DOI: 10.1038/s41598-017-14694-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/16/2017] [Indexed: 12/18/2022] Open
Abstract
Early medical diagnostic in nanomedicine requires the implementation of innovative nanosensors with highly sensitive, selective, and reliable biomarker detection abilities. In this paper, a dual Localized Surface Plasmon Resonance - Surface Enhanced Raman Scattering (LSPR- SERS) immunosensor based on a flexible three-dimensional (3D) gold (Au) nanocups platform has been implemented for the first time to operate as a relevant “proof-of-concept” for the specific detection of antigen-antibody binding events, using the human IgG - anti-human IgG recognition interaction as a model. Specifically, polydimethylsilane (PDMS) elastomer mold coated with a thin Au film employed for pattern replication of hexagonally close-packed monolayer of polystyrene nanospheres configuration has been employed as plasmonic nanoplatform to convey both SERS and LSPR readout signals, exhibiting both well-defined LSPR response and enhanced 3D electromagnetic field. Synergistic LSPR and SERS sensing use the same reproducible and large-area plasmonic nanoplatform providing complimentary information not only on the presence of anti-human IgG (by LSPR) but also to identify its specific molecular signature by SERS. The development of such smart flexible healthcare nanosensor platforms holds promise for mass production, opening thereby the doors for the next generation of portable point-of-care devices.
Collapse
|