1
|
Wei D, Liu J, Hu J, Zhang B, Pan Y, Xia Q, Wang F. An NF-κB-regulated cytokine enhances the antiviral resistance of silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2025; 34:426-439. [PMID: 39680673 DOI: 10.1111/imb.12980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024]
Abstract
Insect NF-κB-like factor, Relish, is activated by viral infection and induces the production of antiviral proteins. In this study, we performed a transcriptomic analysis of BmE cells expressing the active form of BmRelish (BmRelishact) and identified BmVago-like as the most strongly-induced secreted-protein. Expression of BmVago-like was specifically triggered by Bombyx mori Nucleo Polyhedro Virus (BmNPV) infection and regulated by BmSTING-BmRelish pathway. Incubating the fresh culture of cells with supernatant medium of BmVago-like expressing cells or recombinant BmVago-like protein (rBmVago-like) significantly increased antiviral resistance. On the contrary, reducing the expression of Bmvago-like by RNA interference (RNAi) in BmE cells as well as in silkworm larvae impaired antiviral response. Furthermore, we constructed transgenic silkworm line over-expressing BmVago-like (BmVago-likeOV) and found they had markedly lower viral load and higher survival rate after BmNPV infection compared with the wild-type control. Co-immunoprecipitation assay showed Bmintegrin β1 interacts with BmVago-like and it was involved in BmVago-like mediated antiviral response. Finally, we found the expression level of signalling molecules in the JAK-STAT pathway increased in rBmVago-like-treated cells and BmVago-likeOV silkworm larvae but decreased in RNAi-treated cells. In summary, our research uncovered an inducible antiviral response in silkworm mediated by cytokine BmVago-like, which is the downstream effector of BmSTING-BmRelish pathway and functions as an antiviral cytokine.
Collapse
Affiliation(s)
- Dongmei Wei
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Jinming Liu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Jie Hu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Beilei Zhang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Yumeng Pan
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Fei Wang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Zou Y, Ye A, Dong M, Zhou Y, Wu W, Tang Y, Hu H, Dai F, Tong X. Silkworm mutagenesis using a ribonucleoprotein-based CRISPR/Cas12a system. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025:104329. [PMID: 40398570 DOI: 10.1016/j.ibmb.2025.104329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/06/2025] [Accepted: 05/18/2025] [Indexed: 05/23/2025]
Abstract
The development of highly efficient genome editing tools has revolutionized developmental biology and genetic studies in silkworm. Although methods based on CRISPR/Cas9 are currently popular, the Cas12a system has emerged as a promising option. However, it has not yet been applied to target the silkworm genome in vivo, and its activity in silkworm has not yet been characterized. In this study, we established a ribonucleoprotein-based CRISPR/Cas12a system, and compared it to the CRISPR/Cas9 system using 19 crRNA and 17 sgRNAs to target three different genes in vivo. Although Cas12a generates mutants less efficiently than Cas9, we used it successfully to generate transmissible indels, and demonstrated its application by targeting the FibH and mp genes to produce mutants with the expected phenotypes. We also assessed the influence of temperature (37 °C vs. 25 °C) on Cas12a activity, and demonstrated that the effects are target dependent. In summary, we have established a ribonucleoprotein-based CRISPR/Cas12a system in silkworm that offers a practical alternative to CRISPR/Cas9 and extends the genome editing tool box available for silkworm research.
Collapse
Affiliation(s)
- Yunlong Zou
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Aijun Ye
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Meixin Dong
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Yuhao Zhou
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Wentao Wu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Yuxia Tang
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Hai Hu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China.
| | - Xiaoling Tong
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
3
|
Guo K, Duan J, Jing X, Zhang X, Ding Q, Dong Z, Xia Q, Zhao P. Silk components and properties of the multilayer cocoon of the greater wax moth, Galleria mellonella. INSECT SCIENCE 2025. [PMID: 40296465 DOI: 10.1111/1744-7917.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/13/2025] [Accepted: 02/26/2025] [Indexed: 04/30/2025]
Abstract
The greater wax moth Galleria mellonella is a major pest of brood combs, and produces large quantities of strong, elastic silk in the environment. However, little research has been conducted on the silk glands (SGs), silk composition and functions of G. mellonella. In this study, we compared the morphologies of the SGs of G. mellonella and Bombyx mori and found that the nuclei of the anterior SGs differ distinctly. We also investigated the protein components and morphology of the G. mellonella cocoon in terms of its multilayer structure. Proteomic analyses identified 158 secretory proteins across the various cocoon layers. Fibroin, sericin, seroin and adhesive proteins were the most abundant proteins. The expression patterns of the major silk genes were investigated, and the results revealed the specific expression of P16 and Seroin3 genes in the anterior SG. Scanning electron microscopy and proteomic analyses of the cocoon layers showed that the sericin contents in the outermost and middle layers were significantly higher than that in the innermost layer. We extracted the soluble proteins from the different cocoon layers and evaluated their antimicrobial activities in vitro. Only the outermost cocoon layer showed antibacterial activity against Escherichia coli. Mechanical property tests showed that G. mellonella silk was stronger than B. mori silk. Our study provides important information on the composition and properties of G. mellonella cocoon silk, and serves as a basis for future research and use.
Collapse
Affiliation(s)
- Kaiyu Guo
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing, China
| | - Jingmin Duan
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing, China
| | - Xinyuan Jing
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing, China
| | - Xiaolu Zhang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing, China
| | - Qiao Ding
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing, China
| | - Zhaoming Dong
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing, China
| | - Qingyou Xia
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing, China
| | - Ping Zhao
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Xie J, Mo Q, Chen L, Zhu Z, Liu X, Smagghe G, Ye M, Li S. Identification and functional study of Fib-L, a major silk fibroin gene component in rice leaf folders. INSECT MOLECULAR BIOLOGY 2025; 34:228-238. [PMID: 39466996 DOI: 10.1111/imb.12965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024]
Abstract
The rice leaf folder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae), is a major migratory pest in rice agriculture. This pest is characterised by its larvae's ability to fold rice leaves using silk, a behaviour that culminates in the formation of a silken cocoon during the pupal stage. The fibroin light chain (CmFib-L) gene is crucial for silk production, yet its specific function in C. medinalis has reminded elusive. This study presents a comprehensive analysis of the CmFib-L gene, revealing its complete open reading frame (ORF) and expression patterns. Notably, the gene is highly expressed in the fifth-instar larvae and the silk gland, which are critical stages for silk production. Our experiments demonstrate that silencing the CmFib-L gene leads to a reduction in pupal weight, an extension of the pupal stage and a disorganised silk cocoon. Furthermore, the larval behaviour of leaf folding and spinning is significantly impaired when the expression of CmFib-L is downregulated. These findings not only show the importance of fibroin light chain in silk production but also reveal a new target gene to regulate and control the behaviour and development of C. medinalis.
Collapse
Affiliation(s)
- Jing Xie
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, China
| | - Qiyao Mo
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, China
| | - Lina Chen
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, China
| | - Zhongyan Zhu
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, China
| | - Xiao Liu
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, China
| | - Guy Smagghe
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, China
| | - Mao Ye
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, China
| | - Shangwei Li
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
5
|
Jangra S, Potts J, Ghosh A, Seal DR. Genome editing: A novel approach to manage insect vectors of plant viruses. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 174:104189. [PMID: 39341259 DOI: 10.1016/j.ibmb.2024.104189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
Insect vectors significantly threaten global agriculture by transmitting numerous plant viruses. Various measures, from conventional insecticides to genetic engineering, are used to mitigate this threat. However, none provide complete resistance. Therefore, researchers are looking for novel control options. In recent years with the advancements in genomic technologies, genomes and transcriptomes of various insect vectors have been generated. However, the lack of knowledge about gene functions hinders the development of novel strategies to restrict virus spread. RNA interference (RNAi) is widely used to elucidate gene functions, but its variable efficacy hampers its use in managing insect vectors and plant viruses. Genome editing has the potential to overcome these challenges and has been extensively used in various insect pest species. This review summarizes the progress and potential of genome editing in plant virus vectors and its application as a functional genomic tool to elucidate virus-vector interactions. We also discuss the major challenges associated with editing genes of interest in insect vectors.
Collapse
Affiliation(s)
- Sumit Jangra
- UF/IFAS Tropical Research and Education Center, Homestead, FL, 33031, USA.
| | - Jesse Potts
- UF/IFAS Tropical Research and Education Center, Homestead, FL, 33031, USA
| | - Amalendu Ghosh
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Dakshina R Seal
- UF/IFAS Tropical Research and Education Center, Homestead, FL, 33031, USA
| |
Collapse
|
6
|
Shirk BD, Heichel DL, Eccles LE, Rodgers LI, Lateef AH, Burke KA, Stoppel WL. Modifying Naturally Occurring, Nonmammalian-Sourced Biopolymers for Biomedical Applications. ACS Biomater Sci Eng 2024; 10:5915-5938. [PMID: 39259773 DOI: 10.1021/acsbiomaterials.4c00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Natural biopolymers have a rich history, with many uses across the fields of healthcare and medicine, including formulations for wound dressings, surgical implants, tissue culture substrates, and drug delivery vehicles. Yet, synthetic-based materials have been more successful in translation due to precise control and regulation achievable during manufacturing. However, there is a renewed interest in natural biopolymers, which offer a diverse landscape of architecture, sustainable sourcing, functional groups, and properties that synthetic counterparts cannot fully replicate as processing and sourcing of these materials has improved. Proteins and polysaccharides derived from various sources (crustaceans, plants, insects, etc.) are highlighted in this review. We discuss the common types of polysaccharide and protein biopolymers used in healthcare and medicine, highlighting methods and strategies to alter structures and intra- and interchain interactions to engineer specific functions, products, or materials. We focus on biopolymers obtained from natural, nonmammalian sources, including silk fibroins, alginates, chitosans, chitins, mucins, keratins, and resilins, while discussing strategies to improve upon their innate properties and sourcing standardization to expand their clinical uses and relevance. Emphasis will be placed on methods that preserve the structural integrity and native biological functions of the biopolymers and their makers. We will conclude by discussing the untapped potential of new technologies to manipulate native biopolymers while controlling their secondary and tertiary structures, offering a perspective on advancing biopolymer utility in novel applications within biomedical engineering, advanced manufacturing, and tissue engineering.
Collapse
Affiliation(s)
- Bryce D Shirk
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Danielle L Heichel
- Department of Chemical Engineering, University of Connecticut, Storrs, Connecticut 06269-3222, United States
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3136, United States
| | - Lauren E Eccles
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Liam I Rodgers
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Ali H Lateef
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Kelly A Burke
- Department of Chemical Engineering, University of Connecticut, Storrs, Connecticut 06269-3222, United States
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3136, United States
| | - Whitney L Stoppel
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
7
|
Jiang W, Guo K, Dong H, Zhang X, Guo Z, Duan J, Jing X, Xia Q, Zhao P. Mutation in the Bombyx mori BmGMC2 gene impacts silk production and silk protein synthesis. Int J Biol Macromol 2024; 274:133400. [PMID: 38925172 DOI: 10.1016/j.ijbiomac.2024.133400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Silk is a natural protein fiber that is predominantly comprised of fibroin and sericin. In addition, it contains seroins, protease inhibitors, enzymes, and other proteins. We found an ecdysone oxidase BmGMC2, notably, which is specifically and highly expressed only in the silk glands of silkworms (Bombyx mori L.). It is also one of the main components of non-cocoon silk, however, its precise function remains unclear. In this study, we examined the spatiotemporal expression pattern of this protein and obtained a homozygous mutant strain (K-GMC2) using the CRISPR-Cas9 system. Compared to the wild-type strain (WT), the silk production and main silk proteins significantly decreased in the larval stage, and the adhesive strength of native silk proteins decreased in the final instar. Proteomic data indicated the abundance of ribosomal proteins decreased significantly in K-GMC2, differentially expressed proteins (DEPs) were enriched in pathways related to neurodegenerative diseases and genetic information processing, indicating that knockout may lead to a certain degree of cell stress, affecting the synthesis of silk proteins. This study investigated the expression pattern and gene function of ecdysone oxidase BmGMC2 in silk and silk glands, laying the groundwork for understanding the role of enzymes in the production of silk fibers.
Collapse
Affiliation(s)
- Wenchao Jiang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Kaiyu Guo
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Haonan Dong
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Xiaolu Zhang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Zhouguanrui Guo
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China
| | - Jingmin Duan
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Xinyuan Jing
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Qingyou Xia
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Ping Zhao
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China.
| |
Collapse
|
8
|
Zhang T, Ma S, Zhang Z, Guo Y, Yang D, Lu W. Overview and Evolution of Insect Fibroin Heavy Chain (FibH). Int J Mol Sci 2024; 25:7179. [PMID: 39000286 PMCID: PMC11241164 DOI: 10.3390/ijms25137179] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
The FibH gene, crucial for silk spinning in insects, encodes a protein that significantly influences silk fiber mechanics. Due to its large size and repetitive sequences, limited known sequences of insect FibH impede comprehensive understanding. Here, we analyzed 114 complete FibH gene sequences from Lepidoptera (71 moths, 24 butterflies) and 13 Trichoptera, revealing single-copy FibH in most species, with 2-3 copies in Hesperinae and Heteropterinae (subfamily of skippers). All FibH genes are structured with two exons and one intron (39-45 bp), with the second exon being notably longer. Moths exhibit higher GC content in FibH compared to butterflies and Trichoptera. The FibH composition varies among species, with moths and butterflies favoring Ala, Gly, Ser, Pro, Gln, and Asn, while Trichoptera FibH is enriched in Gly, Ser, and Arg, and has less Ala. Unique to Trichoptera FibH are Tyr, Val, Arg, and Trp, whereas Lepidoptera FibH is marked by polyAla (polyalanine), polySer (polyserine), and the hexapeptide GAGSGA. A phylogenetic analysis suggests that Lepidoptera FibH evolved from Trichoptera, with skipper FibH evolving from Papilionoidea. This study substantially expands the FibH repertoire, providing a foundation for the development of artificial silk.
Collapse
Affiliation(s)
- Tong Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (T.Z.); (S.M.); (Y.G.); (D.Y.)
| | - Sanyuan Ma
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (T.Z.); (S.M.); (Y.G.); (D.Y.)
| | - Ziyang Zhang
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China;
| | - Yongkang Guo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (T.Z.); (S.M.); (Y.G.); (D.Y.)
| | - Daiying Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (T.Z.); (S.M.); (Y.G.); (D.Y.)
| | - Wei Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (T.Z.); (S.M.); (Y.G.); (D.Y.)
| |
Collapse
|
9
|
Hashimoto S, Yamazaki M, Uehara H, Yamazaki S, Kobayashi M, Yokoyama T, Yazawa K, Shiomi K. Evaluating bio-physicochemical properties of raw powder prepared from whole larvae containing liquid silk of the domestic silkworm. Front Nutr 2024; 11:1404489. [PMID: 38903626 PMCID: PMC11188413 DOI: 10.3389/fnut.2024.1404489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/08/2024] [Indexed: 06/22/2024] Open
Abstract
The domestic silkworm, Bombyx mori, has been widely used in silk production for centuries. It is also used as a bioreactor by the textile and pharmaceutical industries to mass produce recombinant bioactive proteins containing silk-based materials. Furthermore, silkworms are well-known as a source of food and have also been orally administered to prevent and treat several human disorders. In this study, we aimed to investigate the inherent bio-physicochemical properties of edible silkworms to accurately evaluate their clinical and nutritional potential. We prepared raw powder from whole larvae of silkworm. The yield rate of the powder derived from dried larvae was almost 100% (98.1-99.1% in replicates). As "percentage yield" translates to "Budomari" in Japanese, this raw powder was named "B100rw." We further prepared B100dn that was denatured through autoclaving. Thereafter, we examined whether B100rw sustained the original bio-physicochemical properties by comparing it with B100dn. There was no significant difference in nutritional content between B100rw and B100dn. B100rw contained proteins derived from silkworm larvae and mulberry leaves, whereas the proteins of B100dn were mostly degraded. On measuring the enzymatic activity of both powders using trehalase as an indicator enzyme, B100rw was found to maintain trehalase activity. B100rw also maintained a random coil conformation, similar to that of liquid silk. This suggested that B100rw sustained the unique bio-physicochemical properties of living larvae. These findings may facilitate the development of novel food products or orally administered vaccines.
Collapse
Affiliation(s)
- Shusuke Hashimoto
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| | - Maki Yamazaki
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| | - Hiroshi Uehara
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
- Morus Inc., Tokyo, Japan
| | - Shinya Yamazaki
- Department of Food Technology, Nagano Prefecture General Industrial Technology Center, Nagano, Japan
| | - Masakazu Kobayashi
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| | - Takeshi Yokoyama
- Department of United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Kenjiro Yazawa
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| | - Kunihiro Shiomi
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| |
Collapse
|
10
|
Shi R, Lu W, Yang J, Ma S, Wang A, Sun L, Xia Q, Zhao P. Ectopic expression of BmeryCA in Bombyx mori increases silk yield and mechanical properties by altering the pH of posterior silk gland. Int J Biol Macromol 2024; 271:132695. [PMID: 38810858 DOI: 10.1016/j.ijbiomac.2024.132695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/14/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
The silk glands are the specialized tissue where silk protein synthesis, secretion, and conformational transitions take place, with pH playing a critical role in both silk protein synthesis and fiber formation. In the present study, we have identified erythrocyte carbonic anhydrase (BmeryCA) belonging to the α-CA class in the silk gland, which is a Zn2+ dependent metalloenzyme capable of efficiently and reversibly catalyzing the hydrated reaction of CO2 to HCO3-, thus participating in the regulation of acid-base balance. Multiple sequence alignments revealed that the active site of BmeryCA was highly conserved. Tissue expression profiling showed that BmeryCA had relatively high expression levels in hemolymph and epidermis but is barely expressed in the posterior silk gland (PSG). By specifically overexpressing BmeryCA in the PSG, we generated transgenic silkworms. Ion-selective microelectrode (ISM) measurements demonstrated that specifically overexpression of BmeryCA in the PSG led to a shift in pH from weakly alkaline to slightly neutral conditions. Moreover, the resultant PSG-specific BmeryCA overexpression mutant strain displayed a significant increase in both silk yield and silk fiber mechanical properties. Our research provided new insights into enhancing silk yield and improving the mechanical properties of silk fibers.
Collapse
Affiliation(s)
- Run Shi
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Wei Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Jie Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Sanyuan Ma
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Aoming Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Le Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Ping Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China.
| |
Collapse
|
11
|
Sun L, Zhang T, Lan X, Zhang N, Wang R, Ma S, Zhao P, Xia Q. High-Throughput Screening of PAM-Flexible Cas9 Variants for Expanded Genome Editing in the Silkworm ( Bombyx mori). INSECTS 2024; 15:241. [PMID: 38667371 PMCID: PMC11050708 DOI: 10.3390/insects15040241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Genome editing provides novel opportunities for the precise genome engineering of diverse organisms. Significant progress has been made in the development of genome-editing tools for Bombyx mori (B. mori) in recent years. Among these, CRISPR/Cas9, which is currently the most commonly used system in lepidopteran insects, recognizes NGG protospacer adjacent motif (PAM) sequences within the target locus. However, Cas9 lacks the ability to target all gene loci in B. mori, indicating the need for Cas9 variants with a larger editing range. In this study, we developed a high-throughput screening platform to validate Cas9 variants at all possible recognizable and editable PAM sites for target sequences in B. mori. This platform enabled us to identify PAM sites that can be recognized by both xCas9 3.7 and SpCas9-NG variants in B. mori and to assess their editing efficiency. Cas9 shows PAM sites every 13 base pairs in the genome, whereas xCas9 3.7 and SpCas9-NG have an average distance of 3.4 and 3.6 base pairs, respectively, between two specific targeting sites. Combining the two Cas9 variants could significantly expand the targeting range of the genome, accelerate research on the B. mori genome, and extend the high-throughput rapid screening platform to other insects, particularly those lacking suitable NGG PAM sequences.
Collapse
Affiliation(s)
- Le Sun
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (L.S.)
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
- Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, Chongqing 400715, China
| | - Tong Zhang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (L.S.)
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
- Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, Chongqing 400715, China
| | - Xinhui Lan
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (L.S.)
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
- Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, Chongqing 400715, China
| | - Na Zhang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (L.S.)
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
- Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, Chongqing 400715, China
| | - Ruolin Wang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (L.S.)
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
- Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, Chongqing 400715, China
| | - Sanyuan Ma
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (L.S.)
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
- Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, Chongqing 400715, China
| | - Ping Zhao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (L.S.)
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
- Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, Chongqing 400715, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (L.S.)
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
- Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, Chongqing 400715, China
| |
Collapse
|
12
|
Ma S, Zhang T, Wang R, Wang P, Liu Y, Chang J, Wang A, Lan X, Sun L, Sun H, Shi R, Lu W, Liu D, Zhang N, Hu W, Wang X, Xing W, Jia L, Xia Q. High-throughput and genome-scale targeted mutagenesis using CRISPR in a nonmodel multicellular organism, Bombyx mori. Genome Res 2024; 34:134-144. [PMID: 38191205 PMCID: PMC10903940 DOI: 10.1101/gr.278297.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024]
Abstract
Large-scale genetic mutant libraries are powerful approaches to interrogating genotype-phenotype correlations and identifying genes responsible for certain environmental stimuli, both of which are the central goal of life science study. We produced the first large-scale CRISPR-Cas9-induced library in a nonmodel multicellular organism, Bombyx mori We developed a piggyBac-delivered binary genome editing strategy, which can simultaneously meet the requirements of mixed microinjection, efficient multipurpose genetic operation, and preservation of growth-defect lines. We constructed a single-guide RNA (sgRNA) plasmid library containing 92,917 sgRNAs targeting promoters and exons of 14,645 protein-coding genes, established 1726 transgenic sgRNA lines following microinjection of 66,650 embryos, and generated 300 mutant lines with diverse phenotypic changes. Phenomic characterization of mutant lines identified a large set of genes responsible for visual phenotypic or economically valuable trait changes. Next, we performed pooled context-specific positive screens for tolerance to environmental pollutant cadmium exposure, and identified KWMTBOMO12902 as a strong candidate gene for breeding applications in sericulture industry. Collectively, our results provide a novel and versatile approach for functional B. mori genomics, as well as a powerful resource for identifying the potential of key candidate genes for improving various economic traits. This study also shows the effectiveness, practicality, and convenience of large-scale mutant libraries in other nonmodel organisms.
Collapse
Affiliation(s)
- Sanyuan Ma
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China;
| | - Tong Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Ruolin Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Pan Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Yue Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Jiasong Chang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China
| | - Aoming Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Xinhui Lan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Le Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Hao Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Run Shi
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Wei Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Dan Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Na Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Wenbo Hu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Xiaogang Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- China Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Weiqing Xing
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Ling Jia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China;
| |
Collapse
|
13
|
Aramwit P, Jiang Q, Muppuri S, Reddy N. Transgenic modifications of silkworms as a means to obtain therapeutic biomolecules and protein fibers with exceptional properties. Biotechnol Bioeng 2023; 120:2827-2839. [PMID: 37243890 DOI: 10.1002/bit.28455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 04/25/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
Transgenic modification of Bombyx mori silkworms is a benign approach for the production of silk fibers with extraordinary properties and also to generate therapeutic proteins and other biomolecules for various applications. Silk fibers with fluorescence lasting more than a year, natural protein fibers with strength and toughness exceeding that of spider silk, proteins and therapeutic biomolecules with exceptional properties have been developed using transgenic technology. The transgenic modifications have been done primarily by modifying the silk sericin and fibroin genes and also the silk producing glands. Although the genetic modifications were typically performed using the sericin 1 and other genes, newer techniques such as CRISPR/Cas9 have enabled successful modifications of both the fibroin H-chain and L-chain. Such modifications have led to the production of therapeutic proteins and other biomolecules in reasonable quantities at affordable costs for tissue engineering and other medical applications. Transgenically modified silkworms also have distinct and long-lasting fluorescence useful for bioimaging applications. This review presents an overview of the transgenic techniques for modifications of B. mori silkworms and the properties obtained due to such modifications with particular focus on production of growth factors, fluorescent proteins, and high performance protein fibers.
Collapse
Affiliation(s)
- Pornanong Aramwit
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok, Thailand
- The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, Thailand
| | - Qiuran Jiang
- Key Laboratory of Textile Science &Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
- College of Textiles, Donghua University, Shanghai, China
| | - Supritha Muppuri
- Center for Incubation, Innovation, Research and Consultancy, Jyothy Institute of Technology, Thataguni Post, Bengaluru, India
| | - Narendra Reddy
- Center for Incubation, Innovation, Research and Consultancy, Jyothy Institute of Technology, Thataguni Post, Bengaluru, India
| |
Collapse
|
14
|
Takasu Y, Yamada N, Kojima K, Iga M, Yukuhiro F, Iizuka T, Yoshioka T. Fibroin heavy chain gene replacement with a highly ordered synthetic repeat sequence in Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 161:104002. [PMID: 37657611 DOI: 10.1016/j.ibmb.2023.104002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/08/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
The exceptional quality of silkworm silk is attributed to the amino acid sequence of its fibroin heavy chain (Fib-H) protein. The large central domain of Fib-H, which consists of glycine- and alanine-rich crystalline regions interspersed with amorphous motifs of approximately 30 amino acid residues, is considered crucial for fibrilization and determines the properties of the silk fiber. We established a technical platform to modify the Fib-H core region systematically using transcription activator-like effector nuclease-mediated homologous recombination through a somatic and germline gene knockin assay along with PCR-based screening. This efficient knockin system was used to generate a silkworm strain carrying a mutant Fib-H allele, in which the core region was replaced with a highly ordered synthetic repeat sequence of a length comparable with native Fib-H core. Heterozygous knockin mutants produced seemingly normal cocoons, whereas homozygotes did not and exhibited considerable degradation in their posterior silk glands (PSGs). Cross-sectional examination of the PSG lumen and tensile tests conducted on reeled silk threads indicated that the mutant Fib-H, which exhibited reduced stability in the PSG cells and lumen, affected the mechanical properties of the fiber. Thus, sequence manipulation of the Fib-H core domain was identified as a crucial step in successfully creating artificial silk using knockin technology.
Collapse
Affiliation(s)
- Yoko Takasu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan.
| | - Nobuto Yamada
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Katsura Kojima
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Masatoshi Iga
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Fumiko Yukuhiro
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Tetsuya Iizuka
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Taiyo Yoshioka
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| |
Collapse
|
15
|
Guo K, Dong Z, Zhang X, Chen Y, Li Y, Jiang W, Qin L, Zhang Y, Guo Z, Xia Q, Zhao P. Analysis of histomorphometric and proteome dynamics inside the silk gland lumen of Bombyx mori revealed the dynamic change of silk protein during the molt stage. Int J Biol Macromol 2023; 236:123926. [PMID: 36889618 DOI: 10.1016/j.ijbiomac.2023.123926] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/18/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023]
Abstract
Silkworms spin different silks at different growth stages for specific purposes. The silk spun before the end of each instar is stronger than that at the beginning of each instar and cocoon silk. However, the compositional changes in silk proteins during this process are unknown. Consequently, we performed histomorphological and proteomic analyses of the silk gland to characterize changes from the instar end to the next instar beginning. The silk glands were collected on day 3 of third- and fourth-instar larvae (III-3 and IV-3) and the beginning of fourth-instar larvae (IV-0). Proteomic analysis identified 2961 proteins from all silk glands. Silk proteins P25 and Ser5 were significantly more abundant in III-3 and IV-3 than in IV-0, and many cuticular proteins and protease inhibitors increased significantly in IV-0 compared with III-3 and IV-3. This shift may cause mechanical property differences between the instar end and beginning silk. Using section staining, qPCR, and western blotting, we found for the first time that silk proteins were degraded first and then resynthesized during the molting stage. Furthermore, we revealed that fibroinase mediated the changes of silk proteins during molting. Our results provide insights into the molecular mechanisms of silk proteins dynamic regulation during molting.
Collapse
Affiliation(s)
- Kaiyu Guo
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Zhaoming Dong
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Xiaolu Zhang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Yuqing Chen
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China
| | - Yi Li
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Wenchao Jiang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Lixia Qin
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Yan Zhang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Zhouguanrui Guo
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China
| | - Qingyou Xia
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Ping Zhao
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China.
| |
Collapse
|
16
|
Cao J, Zheng HS, Zhang R, Xu YP, Pan H, Li S, Liu C, Cheng TC. Dimmed gene knockout shortens larval growth and reduces silk yield in the silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2023; 32:26-35. [PMID: 36082617 DOI: 10.1111/imb.12810] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The bHLH domain transcription factor, Bombyx mori-derived dimmed (Bmdimm), is directly regulated by the JH-BmMet/BmSRC-BmKr-h1 pathway and plays a key role in regulating the expression of FibH, which codes the main component of silk protein. However, the other roles of Bmdimm in silk protein synthesis remain unclear. Here, we established a Bmdimm knockout (KO) line containing a 7-bp deletion via CRISPR/Cas9 system, which led to the absence of the bHLH domain. The expression level of silk protein genes and silk yield decreased significantly in the Bmdimm KO line. Moreover, knocking out Bmdimm led to shortened larval stages and significant weight loss in larvae and adults. Bmdimm was found to be highly expressed in the silk gland, but it was also expressed in the fat body. The expression level of Bmkr-h1 in the fat body was significantly downregulated in the Bmdimm KO line. Exogenous JHA treatment upregulated Bmkr-h1 and rescued the phenotype of larval growth in the Bmdimm KO line. In conclusion, knocking out Bmdimm led to a shortened larval stage via the inhibition of Bmkr-h1 expression, then reduced silk yield. These findings help to elucidate the regulatory mechanism of fibroin synthesis and larval development in silkworms.
Collapse
Affiliation(s)
- Jun Cao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Hong-Sheng Zheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ran Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yong-Ping Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Huan Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Shan Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Chun Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Ting-Cai Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
17
|
Li Z, You L, Zhang Q, Yu Y, Tan A. A Targeted In-Fusion Expression System for Recombinant Protein Production in Bombyx mori. Front Genet 2022; 12:816075. [PMID: 35058975 PMCID: PMC8763709 DOI: 10.3389/fgene.2021.816075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/30/2021] [Indexed: 11/25/2022] Open
Abstract
The domesticated silkworm, Bombyx mori, is an economically important insect that synthesizes large amounts of silk proteins in its silk gland to make cocoons. In recent years, germline transformation strategies advanced the bioengineering of the silk gland as an ideal bioreactor for mass production of recombinant proteins. However, the yield of exogenous proteins varied largely due to the random insertion and gene drift caused by canonical transposon-based transformation, calling for site-specific and stable expression systems. In the current study, we established a targeted in-fusion expression system by using the transcription activator-like effector nuclease (TALEN)-mediated targeted insertion to target genomic locus of sericin, one of the major silk proteins. We successfully generated chimeric Sericin1-EGFP (Ser-2A-EGFP) transformant, producing up to 3.1% (w/w) of EGFP protein in the cocoon shell. With this strategy, we further expressed the medically important human epidermal growth factor (hEGF) and the protein yield in both middle silk glands, and cocoon shells reached to more than 15-fold higher than the canonical piggyBac-based transgenesis. This natural Sericin1 expression system provides a new strategy for producing recombinant proteins by using the silkworm silk gland as the bioreactor.
Collapse
Affiliation(s)
- Zhiqian Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China.,Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Lang You
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Qichao Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Ye Yu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Anjiang Tan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| |
Collapse
|
18
|
Zabelina V, Takasu Y, Sehadova H, Yonemura N, Nakajima K, Sezutsu H, Sery M, Zurovec M, Sehnal F, Tamura T. Mutation in Bombyx mori fibrohexamerin (P25) gene causes reorganization of rough endoplasmic reticulum in posterior silk gland cells and alters morphology of fibroin secretory globules in the silk gland lumen. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 135:103607. [PMID: 34102294 DOI: 10.1016/j.ibmb.2021.103607] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Larvae of many lepidopteran species produce a mixture of secretory proteins, known as silk, for building protective shelters and cocoons. Silk consists of a water-insoluble silk filament core produced in the posterior silk gland (PSG) and a sticky hydrophilic coating produced by the middle silk gland (MSG). In Bombyx mori, the fiber core comprises three proteins: heavy chain fibroin (Fib-H), light chain fibroin (Fib-L) and fibrohexamerin (Fhx, previously referred to as P25). To learn more about the role of Fhx, we used transcription activator-like effector nuclease (TALEN) mutagenesis and prepared a homozygous line with a null mutation in the Fhx gene. Our characterization of cocoon morphology and silk quality showed that the mutation had very little effect. However, a detailed inspection of the secretory cells in the posterior silk gland (PSG) of mid-last-instar mutant larvae revealed temporary changes in the morphology of the endoplasmic reticulum. We also observed a morphological difference in fibroin secretory globules stored in the PSG lumen of Fhx mutants, which suggests that their fibroin complexes have a slightly lower solubility. Finally, we performed an LC-MS-based quantitative proteomic analysis comparing mutant and wild-type (wt) cocoon proteins and found a high abundance of a 16 kDa secretory protein likely involved in fibroin solubility. Overall, our study shows that whilst Fhx is dispensable for silk formation, it contributes to the stability of fibroin complexes during intracellular transport and affects the morphology of fibroin secretory globules in the PSG lumen.
Collapse
Affiliation(s)
- Valeriya Zabelina
- National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan; Biology Centre of the Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, 370 05, České Budějovice, Czech Republic
| | - Yoko Takasu
- National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Hana Sehadova
- Biology Centre of the Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, 370 05, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branisovska 31, 370 05, Ceske Budejovice, Czech Republic
| | - Naoyuki Yonemura
- National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Kenichi Nakajima
- National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Hideki Sezutsu
- National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Michal Sery
- Biology Centre of the Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, 370 05, České Budějovice, Czech Republic
| | - Michal Zurovec
- Biology Centre of the Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, 370 05, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branisovska 31, 370 05, Ceske Budejovice, Czech Republic.
| | - Frantisek Sehnal
- Biology Centre of the Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, 370 05, České Budějovice, Czech Republic.
| | - Toshiki Tamura
- Institute of Sericulture, Iikura 1053, 300-0324, Ami-machi, Ibaraki, Japan.
| |
Collapse
|
19
|
Function of Polyamines in Regulating Cell Cycle Progression of Cultured Silkworm Cells. INSECTS 2021; 12:insects12070624. [PMID: 34357283 PMCID: PMC8306941 DOI: 10.3390/insects12070624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/03/2021] [Accepted: 07/08/2021] [Indexed: 12/03/2022]
Abstract
Simple Summary The mechanism of the polyamine pathway in the lepidopteran silkworm is largely unknown. In the current study, we aimed to characterize the function of polyamines and polyamine pathway genes in silkworm cells as a regulator of cell cycle progression. For the first time, we identified the homologous genes of the polyamine pathway in silkworm, and analyzed their expression characteristics in different tissues and their subcellular localizations in cultured silkworm cells. We measured the abundant levels of polyamines in silkworm cells by HPLC analysis. We found that exogenous supplementation of spermidine in cells promoted DNA replication and cell cycle progression and, in contrast, treatment with polyamine biosynthesis inhibitors DFMO and MGBG prevented DNA replication and cell cycle progression. Indeed, the mechanism studies indicated that spermidine increased the expression of cell cycle-related genes, whereas this increase could be abolished by treatment with inhibitors. Taken together, our findings highlight that appropriate levels of polyamines have beneficial effects on the progression of the cell cycle by regulating cell cycle genes in silkworm. Abstract Background: Putrescine, spermidine, and spermine are polyamines that are ubiquitously distributed in prokaryotic and eukaryotic cells, which play important roles in cell proliferation and differentiation. Methods: We investigated the expression profiles of polyamine pathway genes by qRT-PCR in different tissues of the lepidopteran silkworm. The polyamine levels in cultured silkworm cells were measured by HPLC. Spermidine and polyamine biosynthetic inhibitors were used for treating the cultured silkworm cells in order to clarify their effects on cell cycle progression. Results: We identified the anabolic and catabolic enzymes that are involved in the polyamine biosynthetic pathway in silkworm. Transcriptional expression showed at least seven genes that were expressed in different silkworm tissues. Treatments of the cultured silkworm cells with spermidine or inhibitor mixtures of DFMO and MGBG induced or inhibited the expression of cell cycle-related genes, respectively, and thus led to changed progression of the cell cycle. Conclusions: The present study is the first to identify the polyamine pathway genes and to demonstrate the roles of polyamines on cell cycle progression via regulation of the expression of cell cycle genes in silkworm.
Collapse
|
20
|
Ye X, Zhao S, Wu M, Ruan J, Tang X, Wang X, Zhong B. Role of sericin 1 in the immune system of silkworms revealed by transcriptomic and proteomic analyses after gene knockout. FEBS Open Bio 2021. [PMID: 34185388 PMCID: PMC8329953 DOI: 10.1002/2211-5463.13239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 12/01/2022] Open
Abstract
The domestic silkworm is a type of lepidopteran insect that feeds on mulberry leaves and has high economic value because of its ability to spin cocoons. Sericin 1 is an important component of silkworm cocoons, accounting for approximately 25% of the material. In this study, CRISPR/Cas9‐mediated gene editing was successfully used to destroy the sericin 1 gene, and homozygous mutants were obtained after continuous screening. Homozygous mutation resulted in premature termination of the translation of sericin 1 protein at 323 amino acids. Comparative transcriptomic and proteomic analyses of middle silk gland cells from wild‐type individuals and mutants were performed on the fourth day of the fifth instar, and the results suggest that sericin 1 plays an important role in the cellular immune system. In addition, the results suggest that sericin 1 has a synergistic effect with some protease inhibitors and that the secretion of these proteins is strictly regulated. These results will provide new insights into the function and expression pattern of sericin 1 and the mechanism of silk secretion.
Collapse
Affiliation(s)
- Xiaogang Ye
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shuo Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Meiyu Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jinghua Ruan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoli Tang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoxiao Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Boxiong Zhong
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
P25 Gene Knockout Contributes to Human Epidermal Growth Factor Production in Transgenic Silkworms. Int J Mol Sci 2021; 22:ijms22052709. [PMID: 33800168 PMCID: PMC7962452 DOI: 10.3390/ijms22052709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/21/2021] [Accepted: 03/04/2021] [Indexed: 12/30/2022] Open
Abstract
Transgenic silkworm expression systems have been applied for producing various recombinant proteins. Knocking out or downregulating an endogenous silk protein is considered a viable strategy for improving the ability of transgenic expression systems to produce exogenous proteins. Here, we report the expression of human epidermal growth factor (hEGF) in a P25 gene knockout silkworm. The hEGF gene regulated by the P25 gene promoter was integrated into a silkworm's genome. Five transgenic positive silkworm lineages were generated with different insertion sites on silkworm chromosomes and the ability to synthesize and secrete proteins into cocoons. Then, a cross-strategy was used to produce transgenic silkworms with a P25 gene knockout background. The results of the protein analysis showed that the loss of an endogenous P25 protein can increase the hEGF production to about 2.2-fold more than normal silkworms. Compared to those of transgenic silkworms with wild type (non-knockout) background, the morphology and secondary structure of cocoon silks were barely changed in transgenic silkworms with a P25 gene knockout background, indicating their similar physical properties of cocoon silks. In conclusion, P25 gene knockout silkworms may become an efficient bioreactor for the production of exogenous proteins and a promising tool for producing various protein-containing silk biomaterials.
Collapse
|
22
|
Transdermal peptide conjugated to human connective tissue growth factor with enhanced cell proliferation and hyaluronic acid synthesis activities produced by a silkworm silk gland bioreactor. Appl Microbiol Biotechnol 2020; 104:9979-9990. [DOI: 10.1007/s00253-020-10836-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/19/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022]
|
23
|
Tang X, Liu H, Shi Z, Chen Q, Kang X, Wang Y, Zhao P. Enhanced silk yield in transgenic silkworm (Bombyx mori) via ectopic expression of BmGT1-L in the posterior silk gland. INSECT MOLECULAR BIOLOGY 2020; 29:452-465. [PMID: 32654295 DOI: 10.1111/imb.12655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/11/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
The silkworm is an economically important insect producing plentiful silk fibre in the silk gland. In this study, we reported a cross-talk between the fat body, silk gland and midgut through a glycine-serine biosynthetic pathway in the silkworm. Amino acid sequence and functional domains of glycine transporter gene BmGT1-L were mapped. Our results indicated that BmGT1-L was specifically expressed in the midgut microvilli and persistently expressed during the feeding stages. RNA interference of BmGT1-L activated glycine biosynthesis, and BmGT1-L overexpression facilitated serine biosynthesis in the BmN4-SID1 cell. In addition, silkworms after FibH gene knock-out or silk gland extirpation showed markedly decreased BmGT1-L transcripts in the midgut and disturbed glycine-serine biosynthesis as silk yield decreased. Finally, BmGT1-L ectopic expression in the posterior silk gland promoted glycine biosynthesis, and enhanced silk yield via increasing fibroin synthesis. These results suggested that cross-talk between tissues can be used for enhancing silk yield in the silkworm.
Collapse
Affiliation(s)
- X Tang
- Biological Science Research Center, Southwest University, Chongqing, China
| | - H Liu
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Z Shi
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Q Chen
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, China
| | - X Kang
- College of Biotechnology, Southwest University, Chongqing, China
| | - Y Wang
- College of Biotechnology, Southwest University, Chongqing, China
| | - P Zhao
- Biological Science Research Center, Southwest University, Chongqing, China
| |
Collapse
|
24
|
Ma SY, Liu YY, Lu W, Wang XG, Sun L, Yu K, Xia QY. Targeted activation of BmCyclinE in Bombyx mori using designer TAL effectors. INSECT SCIENCE 2019; 26:1055-1058. [PMID: 29885202 DOI: 10.1111/1744-7917.12613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/29/2018] [Accepted: 06/05/2018] [Indexed: 06/08/2023]
Affiliation(s)
- San-Yuan Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Yuan-Yuan Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wei Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Xiao-Gang Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Le Sun
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Kai Yu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Qing-You Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| |
Collapse
|
25
|
Ma SY, Smagghe G, Xia QY. Genome editing in Bombyx mori: New opportunities for silkworm functional genomics and the sericulture industry. INSECT SCIENCE 2019; 26:964-972. [PMID: 29845729 DOI: 10.1111/1744-7917.12609] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/29/2018] [Accepted: 05/07/2018] [Indexed: 06/08/2023]
Abstract
In recent years, research in life sciences has been remarkably revolutionized owing to the establishment, development and application of genome editing technologies. Genome editing has not only accelerated fundamental research but has also shown promising applications in agricultural breeding and therapy. In particular, the clustered, regularly interspaced, short palindromic repeat (CRISPR) technology has become an indispensable tool in molecular biology owing to its high efficacy and simplicity. Genome editing tools have also been established in silkworm (Bombyx mori), a model organism of Lepidoptera insects with high economic importance. This has remarkably improved the level and scope of silkworm research and could reveal new mechanisms or targets in basic entomology and pest management studies. In this review, we summarize the progress and potential of genome editing in silkworm and its applications in functional genomic studies for generating novel genetic materials.
Collapse
Affiliation(s)
- San-Yuan Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Qing-You Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| |
Collapse
|
26
|
Liu H, Lin Y, Gu J, Ruan Y, Shen G, Zhang Y, Wang H, Meng Z, Li K, Xia Q. The increase of amino acids induces the expression of vitellogenin after spinning in the silkworm Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2019; 118:103913. [PMID: 31302015 DOI: 10.1016/j.jinsphys.2019.103913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 06/19/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
Silkworms are economically important insects because of the value of their silk. After finishing silk spinning, silkworms begin another important physiological process, vitellogenesis. In this study, we explored the relationship between silk spinning and vitellogenin (BmVg) expression in silkworms. In silkworms with the silk fibroin heavy chain gene knocked-out, the concentration of amino acids in the hemolymph was found to be significantly higher than that in the wild type, and the expression of BmVg was advanced at day 7 of the fifth instar stage and 0 h after spinning. Furthermore, through culturing fat body in vitro with different substances treatment including glucose, trehalose, amino acids, 20-hydroxyecdysone, and insulin, we found that only amino acids could induce BmVg expression. RNA interference of BmTOR1 in female silkworms could down-regulate BmVg transcription, resulting in shortened egg ducts and smaller eggs relative to the control. Therefore, these results showed that amino acids could induce BmVg expression through the TOR signaling pathway. Fat body cultured with amino acids in vitro and experiments involving amino acids injected into the silkworm showed that the majority of main amino acids of silk protein could induce BmVg expression. These results suggested that BmVg expression is related to silk spinning and this study would lay a foundation for elucidating the stage specificity expression of BmVg.
Collapse
Affiliation(s)
- Hongling Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center of Southwest University, Chongqing 400716, China
| | - Ying Lin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center of Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing 400716, China
| | - Jianjian Gu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center of Southwest University, Chongqing 400716, China
| | - Yang Ruan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center of Southwest University, Chongqing 400716, China
| | - Guanwang Shen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center of Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing 400716, China
| | - Yujing Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center of Southwest University, Chongqing 400716, China
| | - Huijuan Wang
- College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Ziwang Meng
- College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Kairong Li
- College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center of Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing 400716, China.
| |
Collapse
|
27
|
Wang Y, Xu S, Wang R, Chen W, Hou K, Tian C, Ji Y, Yang Q, Yu L, Lu Z, Zhao P, Xia Q, Wang F. Genetic fabrication of functional silk mats with improved cell proliferation activity for medical applications. Biomater Sci 2019; 7:4536-4546. [PMID: 31536077 DOI: 10.1039/c9bm01285k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functional silk mats with improved cell proliferation activity are promising medical materials to accelerate damaged wound healing and tissue repair. In this study, novel functional silk mats were fabricated from human fibroblast growth factor (FGF)-containing cocoons generated by expressing human acid FGF1 and basic FGF2 in silkworms. First, functional silk mats containing FGF1 and FGF2 proteins alone or in combination were fabricated by physically cutting genetically engineered cocoons. Compared to those of normal silk mats, the physical properties of these functional silk mats such as silk fibre diameter, internal secondary structure, and mechanical properties were significantly changed. The expressed FGF1 and FGF2 proteins in these silk mats were efficiently and gradually released over 15 days. Moreover, these silk mats significantly promoted NIH/3T3 cell proliferation and growth by activating the extracellular signal-regulated kinase (ERK) pathway, and the silk mat containing FGF1 and FGF2 proteins showed higher cell proliferation. Importantly, this silk mat caused no obvious cytotoxicity or cell inflammation. These results suggest that these functional silk mats have potential medical applications.
Collapse
Affiliation(s)
- Yuancheng Wang
- Biological Science Research Center, Southwest University, Chongqing 400715, People's Republic of China. and Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Sheng Xu
- Biological Science Research Center, Southwest University, Chongqing 400715, People's Republic of China. and Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Riyuan Wang
- Biological Science Research Center, Southwest University, Chongqing 400715, People's Republic of China. and Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Wenjing Chen
- Biological Science Research Center, Southwest University, Chongqing 400715, People's Republic of China. and Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Kai Hou
- Biological Science Research Center, Southwest University, Chongqing 400715, People's Republic of China. and Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Chi Tian
- Biological Science Research Center, Southwest University, Chongqing 400715, People's Republic of China. and Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Yanting Ji
- Biological Science Research Center, Southwest University, Chongqing 400715, People's Republic of China. and Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Qianqian Yang
- Biological Science Research Center, Southwest University, Chongqing 400715, People's Republic of China. and Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Ling Yu
- Institute for Clean Energy & Advanced Materials, Faculty of Materials & Energy, Southwest University, Chongqing, 400715, People's Republic of China
| | - Zhisong Lu
- Institute for Clean Energy & Advanced Materials, Faculty of Materials & Energy, Southwest University, Chongqing, 400715, People's Republic of China
| | - Ping Zhao
- Biological Science Research Center, Southwest University, Chongqing 400715, People's Republic of China. and Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing 400715, People's Republic of China. and Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, People's Republic of China and Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, People's Republic of China
| | - Feng Wang
- Biological Science Research Center, Southwest University, Chongqing 400715, People's Republic of China. and Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, People's Republic of China and Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|
28
|
Hu W, Chen Y, Lin Y, Xia Q. Developmental and transcriptomic features characterize defects of silk gland growth and silk production in silkworm naked pupa mutant. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 111:103175. [PMID: 31150761 DOI: 10.1016/j.ibmb.2019.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/23/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
The silkworm Bombyx mori is a well-characterized model organism for studying the silk gland development and silk production process. Using positional cloning and gene sequencing, we have previously reported that a truncated fibroin heavy chain was responsible for silkworm naked pupa (Nd) mutant. However, the mechanisms by which the mutant FibH causes developmental defects and secretion-deficiency of the silk gland remain to be fully elucidated. Here, silk gland's developmental features, histomorphology, and transcriptome analyses were used to characterize changes in its structure and gene expression patterns between Nd mutant and WT/Dazao. Whole larval stage investigation showed that Nd-PSG undergoes an arrested/delayed development, which eventually resulted in a gland degeneration. By using section staining and transmission electron microscope, a blockade in intracellular vesicle transport from endoplasmic reticulum to Golgi apparatus (secretion-deficiency) and an increased number of autophagosomes and lysosomes were found in Nd-PSG's cytoplasm. Next, by using RNA sequencing and comparative transcriptomic analysis, 2178 differentially expressed genes were identified between Nd-PSG and WT-PSG, among which most of the DEGs associated with cellular stress responses (autophagy, ubiquitin-proteasome system, and heat shock response) were significantly up-regulated in Nd-PSG, suggesting that mutant FibH perturbed cellular homeostasis and resulted in an activation of adaptive responses in PSG cells. These findings reveal the molecular mechanism of the Naked pupa (Nd) mutation and provide insights into silk gland development as well as silk protein production in silkworm Bombyx mori.
Collapse
Affiliation(s)
- Wenbo Hu
- Biological Science Research Center, Southwest University, Chongqing, 400716, PR China; Chongqing Key Laboratory of Sericulture Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Beibei, Chongqing, 400716, PR China
| | - Yulin Chen
- Biological Science Research Center, Southwest University, Chongqing, 400716, PR China; Chongqing Key Laboratory of Sericulture Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Beibei, Chongqing, 400716, PR China
| | - Ying Lin
- Biological Science Research Center, Southwest University, Chongqing, 400716, PR China; Chongqing Key Laboratory of Sericulture Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Beibei, Chongqing, 400716, PR China
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing, 400716, PR China; Chongqing Key Laboratory of Sericulture Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Beibei, Chongqing, 400716, PR China.
| |
Collapse
|
29
|
Hu W, Lu W, Wei L, Zhang Y, Xia Q. Molecular nature of dominant naked pupa mutation reveals novel insights into silk production in Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 109:52-62. [PMID: 30954682 DOI: 10.1016/j.ibmb.2019.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
Silks are natural protein biopolymers with desirable mechanical properties and play crucial roles in insect survival and reproduction. However, the mechanisms by which large amounts of silk fibroin are efficiently secreted from the protein production organs (silk glands) remain elusive. Here, we focus on a dominant silkworm mutation, naked pupa (Nd), which enables carriers to lose spinning behaviors, produce a deficiency of silk fibroin production, and result in degenerate posterior silk gland (PSG). Linkage mapping and sequencing analyses revealed a deletion of 19 bp of the fibroin heavy chain (FibH), which results in a frameshift-caused deletion of the C-terminal domain (CT) responsible for the Nd locus. Immunofluorescence and immunoblot analysis showed that the PSG cells with truncated FibH exhibit blockades in the secretion of all three fibroins (FibH, FibL, and P25) from silk gland cell to silk gland lumen (a secretion-deficiency). By comparing the hereditary characters of three naked silkworm mutations (Nd, Nd-s, and fibH-ko), we explored the relationship between dominant and recessive inheritances in naked silkworms and found that high-molecular-weight/repetitive FibH with secretion-deficiency was in positive correlation with PSG atrophy phenotype, and moreover, the repetitive region of Nd-FibH accounted for the dominant phenotypes of fibroin secretion-deficiency, PSG atrophy, and naked pupa in B. mori. Our results uncovered the molecular nature of the silkworm Nd mutation and significantly improved our understanding of fibroin synthesis and secretion in silk-spinning caterpillars.
Collapse
Affiliation(s)
- Wenbo Hu
- Biological Science Research Center, Southwest University, Chongqing, 400716, PR China; Chongqing Key Laboratory of Sericulture Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Beibei, Chongqing, 400716, PR China
| | - Wei Lu
- Biological Science Research Center, Southwest University, Chongqing, 400716, PR China; Chongqing Key Laboratory of Sericulture Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Beibei, Chongqing, 400716, PR China
| | - Liwan Wei
- Chongqing Key Laboratory of Sericulture Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Beibei, Chongqing, 400716, PR China
| | - Yan Zhang
- Biological Science Research Center, Southwest University, Chongqing, 400716, PR China; Chongqing Key Laboratory of Sericulture Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Beibei, Chongqing, 400716, PR China
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing, 400716, PR China; Chongqing Key Laboratory of Sericulture Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Beibei, Chongqing, 400716, PR China.
| |
Collapse
|
30
|
Chen Y, Bai B, Yan H, Wen F, Qin D, Jander G, Xia Q, Wang G. Systemic disruption of the homeostasis of transfer RNA isopentenyltransferase causes growth and development abnormalities in Bombyx mori. INSECT MOLECULAR BIOLOGY 2019; 28:380-391. [PMID: 30548717 DOI: 10.1111/imb.12561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Isopentenylation at A37 (i6 A37) of some transfer RNAs (tRNAs) plays a vital role in regulating the efficiency and fidelity of protein synthesis. However, whether insects, which are well known for their highly efficient protein synthesis machinery, employ this regulatory mechanism remains uninvestigated. In the current study, a candidate tRNA isopentenyltransferase (IPT) gene with three alternative splicing isoforms (BmIPT1-BmIPT3) was identified in Bombyx mori (silkworm). Only BmIPT1 could complement a yeast mutant lacking tRNA IPT. Phylogenetic analysis showed that silkworm tRNA IPT is conserved in the Lepidoptera. BmIPT was expressed in all B. mori tissues and organs that were investigated, but was expressed at a significantly higher level in silk glands of the fourth instar compared to the first day of the fifth instar. Interestingly, BmIPT was expressed at a significantly higher level in the domesticated silkworm, B. mori, than in wild Bombyx mandarina in multiple tissues and organs. Knock-down of BmIPT by RNA interference caused severe abnormalities in silk spinning and metamorphosis. Constitutive overexpression of BmIPT1 using a cytoplasmic actin 4 promoter in B. mori raised its messenger RNA level more than sixfold compared with nontransgenic insects and led to significant decreases in the body weight and cocoon shell ratio. Together, these results confirm the first functional tRNA IPT in insects and show that a suitable expression level of tRNA IPT is vital for silk spinning, normal growth, and metamorphosis. Thus, i6 A modification at position A37 in tRNA probably plays an important role in B. mori protein synthesis.
Collapse
Affiliation(s)
- Y Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - B Bai
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - H Yan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - F Wen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - D Qin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - G Jander
- Boyce Thompson Institute, Ithaca, NY, USA
| | - Q Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - G Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| |
Collapse
|
31
|
Deep Insight into the Transcriptome of the Single Silk Gland of Bombyx mori. Int J Mol Sci 2019; 20:ijms20102491. [PMID: 31137550 PMCID: PMC6567255 DOI: 10.3390/ijms20102491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/12/2019] [Accepted: 05/14/2019] [Indexed: 12/04/2022] Open
Abstract
The silk gland synthesizes and secretes a large amount of protein and stores liquid silk protein at an extremely high concentration. Interestingly, silk proteins and serine protease inhibitors are orderly arranged in the silk gland lumen and cocoon shells. Silk fiber formation and the spinning mechanism have not been fully elucidated. Therefore, we conducted a comparative transcriptome analysis of seven segments of the single silk gland to characterize internal changes in the silk gland during the 5th instar of mature larvae. In total, 3121 differentially expressed genes were identified in the seven segments. Genes highly expressed in the middle silk gland (MSG) were mainly involved in unsaturated fatty acid biosynthesis, fatty acid metabolism, apoptosis—fly, and lysosome pathways, whereas genes highly expressed in the posterior silk gland (PSG) were mainly involved in ribosome, proteasome, citrate cycle, and glycolysis/gluconeogenesis pathways. Thus, the MSG and PSG differ greatly in energy source use and function. Further, 773 gradually upregulated genes (from PSG to MSG) were involved in energy metabolism, silk protein synthesis, and secretion, suggesting that these genes play an important role in silk fiber formation. Our findings provide insights into the mechanism of silk protein synthesis and transport and silk fiber formation.
Collapse
|
32
|
Zhang X, Xia L, Day BA, Harris TI, Oliveira P, Knittel C, Licon AL, Gong C, Dion G, Lewis RV, Jones JA. CRISPR/Cas9 Initiated Transgenic Silkworms as a Natural Spinner of Spider Silk. Biomacromolecules 2019; 20:2252-2264. [PMID: 31059233 DOI: 10.1021/acs.biomac.9b00193] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using transgenic silkworms with their natural spinning apparatus has proven to be a promising way to spin spider silk-like fibers. The challenges are incorporating native-size spider silk proteins and achieving an inheritable transgenic silkworm strain. In this study, a CRISPR/Cas9 initiated fixed-point strategy was used to successfully incorporate spider silk protein genes into the Bombyx mori genome. Native-size spider silk genes (up to 10 kb) were inserted into an intron of the fibroin heavy or light chain (FibH or FibL) ensuring that any sequence changes induced by the CRISPR/Cas9 would not impact protein production. The resulting fibers are as strong as native spider silks (1.2 GPa tensile strength). The transgenic silkworms have been tracked for several generations with normal inheritance of the transgenes. This strategy demonstrates the feasibility of using silkworms as a natural spider silk spinner for industrial production of high-performance fibers.
Collapse
Affiliation(s)
| | | | | | | | | | - Chelsea Knittel
- College of Engineering , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | | | - Chengliang Gong
- School of Biology & Basic Medical Science , Soochow University , Suzhou 215123 , China
| | - Geneviève Dion
- Westphal College of Media Arts and Design , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | | | | |
Collapse
|
33
|
Xu J, Dong Q, Yu Y, Niu B, Ji D, Li M, Huang Y, Chen X, Tan A. Mass spider silk production through targeted gene replacement in Bombyx mori. Proc Natl Acad Sci U S A 2018; 115:8757-8762. [PMID: 30082397 PMCID: PMC6126722 DOI: 10.1073/pnas.1806805115] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Spider silk is one of the best natural fibers and has superior mechanical properties. However, the large-scale harvesting of spider silk by rearing spiders is not feasible, due to their territorial and cannibalistic behaviors. The silkworm, Bombyx mori, has been the most well known silk producer for thousands of years and has been considered an ideal bioreactor for producing exogenous proteins, including spider silk. Previous attempts using transposon-mediated transgenic silkworms to produce spider silk could not achieve efficient yields, due to variable promoter activities and endogenous silk fibroin protein expression. Here, we report a massive spider silk production system in B. mori by using transcription activator-like effector nuclease-mediated homology-directed repair to replace the silkworm fibroin heavy chain gene (FibH) with the major ampullate spidroin-1 gene (MaSp1) in the spider Nephila clavipes We successfully replaced the ∼16-kb endogenous FibH gene with a 1.6-kb MaSp1 gene fused with a 1.1-kb partial FibH sequence and achieved up to 35.2% chimeric MaSp1 protein amounts in transformed cocoon shells. The presence of the MaSp1 peptide significantly changed the mechanical characteristics of the silk fiber, especially the extensibility. Our study provides a native promoter-driven, highly efficient system for expressing the heterologous spider silk gene instead of the transposon-based, random insertion of the spider gene into the silkworm genome. Targeted MaSp1 integration into silkworm silk glands provides a paradigm for the large-scale production of spider silk protein with genetically modified silkworms, and this approach will shed light on developing new biomaterials.
Collapse
Affiliation(s)
- Jun Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China
| | - Qinglin Dong
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Ye Yu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China
| | - Baolong Niu
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
| | - Dongfeng Ji
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
| | - Muwang Li
- Sericultural Research Institute, Jiangsu University of Science and Technology, 212018 Zhenjiang, Jiangsu, China
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Anjiang Tan
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China;
| |
Collapse
|
34
|
Li Y, Ma S, Sun L, Zhang T, Chang J, Lu W, Chen X, Liu Y, Wang X, Shi R, Zhao P, Xia Q. Programmable Single and Multiplex Base-Editing in Bombyx mori Using RNA-Guided Cytidine Deaminases. G3 (BETHESDA, MD.) 2018; 8:1701-1709. [PMID: 29555822 PMCID: PMC5940161 DOI: 10.1534/g3.118.200134] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 03/12/2018] [Indexed: 01/11/2023]
Abstract
Genome editing using standard tools (ZFN, TALEN, and CRISPR/Cas9) rely on double strand breaks to edit the genome. A series of new CRISPR tools that convert cytidine to thymine (C to T) without the requirement for DNA double-strand breaks was developed recently and quickly applied in a variety of organisms. Here, we demonstrate that CRISPR/Cas9-dependent base editor (BE3) converts C to T with a high frequency in the invertebrate Bombyx mori silkworm. Using BE3 as a knock-out tool, we inactivated exogenous and endogenous genes through base-editing-induced nonsense mutations with an efficiency of up to 66.2%. Furthermore, genome-scale analysis showed that 96.5% of B. mori genes have one or more targetable sites that can be edited by BE3 for inactivation, with a median of 11 sites per gene. The editing window of BE3 reached up to 13 bases (from C1 to C13 in the range of gRNA) in B. mori Notably, up to 14 bases were substituted simultaneously in a single DNA molecule, with a low indel frequency of 0.6%, when 32 gRNAs were co-transfected. Collectively, our data show for the first time that RNA-guided cytidine deaminases are capable of programmable single and multiplex base editing in an invertebrate model.
Collapse
Affiliation(s)
- Yufeng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 P. R. China
| | - Sanyuan Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 P. R. China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China
| | - Le Sun
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 P. R. China
| | - Tong Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 P. R. China
| | - Jiasong Chang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 P. R. China
| | - Wei Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 P. R. China
| | - Xiaoxu Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 P. R. China
| | - Yue Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 P. R. China
| | - Xiaogang Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 P. R. China
| | - Run Shi
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 P. R. China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 P. R. China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 P. R. China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China
| |
Collapse
|
35
|
Cui Y, Zhu Y, Lin Y, Chen L, Feng Q, Wang W, Xiang H. New insight into the mechanism underlying the silk gland biological process by knocking out fibroin heavy chain in the silkworm. BMC Genomics 2018; 19:215. [PMID: 29580211 PMCID: PMC5870212 DOI: 10.1186/s12864-018-4602-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/13/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Exploring whether and how mutation of silk protein contributes to subsequent re-allocation of nitrogen, and impacts on the timing of silk gland degradation, is important to understand silk gland biology. Rapid development and wide application of genome editing approach in the silkworm provide us an opportunity to address these issues. RESULTS Using CRISPR/Cas9 system, we successfully performed genome editing of Bmfib-H. The loss-of-function mutations caused naked pupa and thin cocoon mutant phenotypes. Compared with the wild type, the posterior silk gland of mutant showed obviously degraded into fragments in advance of programmed cell death of silk gland cells. Comparative transcriptomic analyses of silk gland at the fourth day of the fifth instar larval stage(L5D4)identified 1456 differential expressed genes (DEGs) between posterior silk gland (PSG) and mid silk gland (MSG) and 1388 DEGs between the mutant and the wild type. Hierarchical clustering of all the DEGs indicated a remarkable down-regulated and an up-regulated gene clade in the mutant silk glands, respectively. Down-regulated genes were overrepresented in the pathways involved in cancer, DNA replication and cell proliferation. Intriguingly, up-regulated DEGs are significantly enriched in the proteasome. By further comparison on the transcriptome of MSG and PSG between the wild type and the mutant, we consistently observed that up-regulated DEGs in the mutant PSG were enriched in protein degrading activity and proteasome. Meantime, we observed a series of up-regulated genes involved in autophagy. Since these protein degradation processes would be normally occur after the spinning time, the results suggesting that these progresses were activated remarkably ahead of schedule in the mutant. CONCLUSIONS Accumulation of abnormal fib-H protein might arouse the activation of proteasomes as well as autophagy process, to promote the rapid degradation of such abnormal proteins and the silk gland cells. Our study therefore proposes a subsequent process of protein and partial cellular degradation caused by mutation of silk protein, which might be helpful for understanding its impact of the silk gland biological process, and further exploration the re-allocation of nitrogen in the silkworm.
Collapse
Affiliation(s)
- Yong Cui
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yanan Zhu
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yongjian Lin
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Lei Chen
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Qili Feng
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wen Wang
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, 710129, China.
| | - Hui Xiang
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
36
|
QTL analysis of cocoon shell weight identifies BmRPL18 associated with silk protein synthesis in silkworm by pooling sequencing. Sci Rep 2017; 7:17985. [PMID: 29269837 PMCID: PMC5740181 DOI: 10.1038/s41598-017-18277-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 12/07/2017] [Indexed: 01/17/2023] Open
Abstract
Mechanisms that regulate silk protein synthesis provide the basis for silkworm variety breeding and silk gland bioreactor optimization. Here, using the pooling sequencing-based methodology, we deciphered the genetic basis for the varied silk production in different silkworm strains. We identified 8 SNPs, with 6 on chromosome 11 and 1 each on chromosomes 22 and 23, that were linked with silk production. After conducting an association analysis between gene expression pattern, silk gland development and cocoon shell weight (CSW), BMGN011620 was found to be regulating silk production. BMGN011620 encodes the 60S ribosomal protein, L18, which is an indispensable component of the 60S ribosomal subunit; therefore we named it BmRPL18. Moreover, the clustering of linked SNPs on chromosome 11 and the analysis of differentially expressed genes reported in previous Omics studies indicated that the genes regulating silk protein synthesis may exhibit a clustering distribution in the silkworm genome. These results collectively advance our understanding of the regulation of silk production, including the role of ribosomal proteins and the clustered distribution of genes involved in silk protein synthesis.
Collapse
|
37
|
Zhang K, Tan J, Su J, Liang H, Shen L, Li C, Pan G, Yang L, Cui H. Integrin β3 plays a novel role in innate immunity in silkworm, Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:307-317. [PMID: 28826989 DOI: 10.1016/j.dci.2017.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 06/07/2023]
Abstract
Integrins are transmembrane receptors that play essential roles in many physiological and pathological processes through cell-to-cell and cell-to-extracellular matrix (ECM) interactions. In the current study, a 2653-bp full-length cDNA of a novel integrin β subunit (designated Bmintegrin β3) was obtained from silkworm hemocytes. Bmintegrin β3 has the typical conserved structure of the integrin β family. The qRT-PCR results showed that Bmintegrin β3 was specifically expressed in the hematological system and that its expression was significantly increased after challenge with different types of PAMPs and bacteria. The recombinant Bmintegrin β3 protein displayed increased aggregation with S. aureus, suggesting that Bmintegrin β3 might directly bind to PAMPs. Interestingly, Bmintegrin β3 knockdown promoted PPO1, PPO2, BAEE, SPH78, SPH125, and SPH127 expression and accelerated the melanization process. Unexpectedly, the expression of genes related to phagocytosis, the Toll pathway, and the IMD pathway was also up-regulated after Bmintegrin β3 knockdown. Thus, Bmintegrin β3 might be a pattern recognition protein (PRP) for PAMPs and might directly bind to bacteria and enhance the phagocytosis activity of hemocytes. Moreover, Bmintegrin β3 and its ligand might negatively regulate the expression of immune-related genes through an unknown mechanism. In summary, our studies provide new insights into the immune functions of Bmintegrin β3 from the silkworm, Bombyx mori.
Collapse
Affiliation(s)
- Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Juan Tan
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Jingjing Su
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Hanghua Liang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Li Shen
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Chongyang Li
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Guangzhao Pan
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China.
| |
Collapse
|
38
|
Ma S, Xia X, Li Y, Sun L, Liu Y, Liu Y, Wang X, Shi R, Chang J, Zhao P, Xia Q. Increasing the yield of middle silk gland expression system through transgenic knock-down of endogenous sericin-1. Mol Genet Genomics 2017; 292:823-831. [PMID: 28357595 DOI: 10.1007/s00438-017-1311-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/14/2017] [Indexed: 11/29/2022]
Abstract
Various genetically modified bioreactor systems have been developed to meet the increasing demands of recombinant proteins. Silk gland of Bombyx mori holds great potential to be a cost-effective bioreactor for commercial-scale production of recombinant proteins. However, the actual yields of proteins obtained from the current silk gland expression systems are too low for the proteins to be dissolved and purified in a large scale. Here, we proposed a strategy that reducing endogenous sericin proteins would increase the expression yield of foreign proteins. Using transgenic RNA interference, we successfully reduced the expression of BmSer1 to 50%. A total 26 transgenic lines expressing Discosoma sp. red fluorescent protein (DsRed) in the middle silk gland (MSG) under the control of BmSer1 promoter were established to analyze the expression of recombinant. qRT-PCR and western blotting showed that in BmSer1 knock-down lines, the expression of DsRed had significantly increased both at mRNA and protein levels. We did an additional analysis of DsRed/BmSer1 distribution in cocoon and effect of DsRed protein accumulation on the silk fiber formation process. This study describes not only a novel method to enhance recombinant protein expression in MSG bioreactor, but also a strategy to optimize other bioreactor systems.
Collapse
Affiliation(s)
- Sanyuan Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, People's Republic of China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, 2, Tiansheng Road, Beibei, Chongqing, 400716, China
| | - Xiaojuan Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, People's Republic of China
| | - Yufeng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, People's Republic of China
| | - Le Sun
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, People's Republic of China
| | - Yue Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, People's Republic of China
| | - Yuanyuan Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, People's Republic of China
| | - Xiaogang Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, People's Republic of China
| | - Run Shi
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, People's Republic of China
| | - Jiasong Chang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, People's Republic of China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, People's Republic of China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, 2, Tiansheng Road, Beibei, Chongqing, 400716, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, People's Republic of China.
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, 2, Tiansheng Road, Beibei, Chongqing, 400716, China.
| |
Collapse
|
39
|
Bioengineered silkworms with butterfly cytotoxin-modified silk glands produce sericin cocoons with a utility for a new biomaterial. Proc Natl Acad Sci U S A 2017; 114:6740-6745. [PMID: 28607081 DOI: 10.1073/pnas.1703449114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetically manipulated organisms with dysfunction of specific tissues are crucial for the study of various biological applications and mechanisms. However, the bioengineering of model organisms with tissue-specific dysfunction has not progressed because the challenges of expression of proteins, such as cytotoxins, in living cells of individual organisms need to be overcome first. Here, we report the establishment of a transgenic silkworm (Bombyx mori) with posterior silk glands (PSGs) that was designed to express the cabbage butterfly (Pieris rapae) cytotoxin pierisin-1A (P1A). P1A, a homolog of the apoptosis inducer pierisin-1, had relatively lower DNA ADP ribosyltransferase activity than pierisin-1; it also induced the repression of certain protein synthesis when expressed in B. mori-derived cultured cells. The transgene-derived P1A domain harboring enzymatic activity was successfully expressed in the transgenic silkworm PSGs. The glands showed no apoptosis-related morphological changes; however, an abnormal appearance was evident. The introduced truncated P1A resulted in the dysfunction of PSGs in that they failed to produce the silk protein fibroin. Cocoons generated by the silkworms solely consisted of the glue-like glycoprotein sericin, from which soluble sericin could be prepared to form hydrogels. Embryonic stem cells could be maintained on the hydrogels in an undifferentiated state and proliferated through stimulation by the cytokines introduced into the hydrogels. Thus, bioengineering with targeted P1A expression successfully produced silkworms with a biologically useful trait that has significant application potential.
Collapse
|
40
|
Ma S, Liu Y, Liu Y, Chang J, Zhang T, Wang X, Shi R, Lu W, Xia X, Zhao P, Xia Q. An integrated CRISPR Bombyx mori genome editing system with improved efficiency and expanded target sites. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 83:13-20. [PMID: 28189747 DOI: 10.1016/j.ibmb.2017.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/24/2016] [Accepted: 02/07/2017] [Indexed: 06/06/2023]
Abstract
Genome editing enabled unprecedented new opportunities for targeted genomic engineering of a wide variety of organisms ranging from microbes, plants, animals and even human embryos. The serial establishing and rapid applications of genome editing tools significantly accelerated Bombyx mori (B. mori) research during the past years. However, the only CRISPR system in B. mori was the commonly used SpCas9, which only recognize target sites containing NGG PAM sequence. In the present study, we first improve the efficiency of our previous established SpCas9 system by 3.5 folds. The improved high efficiency was also observed at several loci in both BmNs cells and B. mori embryos. Then to expand the target sites, we showed that two newly discovered CRISPR system, SaCas9 and AsCpf1, could also induce highly efficient site-specific genome editing in BmNs cells, and constructed an integrated CRISPR system. Genome-wide analysis of targetable sites was further conducted and showed that the integrated system cover 69,144,399 sites in B. mori genome, and one site could be found in every 6.5 bp. The efficiency and resolution of this CRISPR platform will probably accelerate both fundamental researches and applicable studies in B. mori, and perhaps other insects.
Collapse
Affiliation(s)
- Sanyuan Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 PR China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, 2, Tiansheng Road, Beibei, Chongqing 400716, China
| | - Yue Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 PR China
| | - Yuanyuan Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 PR China
| | - Jiasong Chang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 PR China
| | - Tong Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 PR China
| | - Xiaogang Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 PR China
| | - Run Shi
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 PR China
| | - Wei Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 PR China
| | - Xiaojuan Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 PR China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 PR China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, 2, Tiansheng Road, Beibei, Chongqing 400716, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 PR China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, 2, Tiansheng Road, Beibei, Chongqing 400716, China.
| |
Collapse
|
41
|
Liu H, Liu Q, Zhou X, Huang Y, Zhang Z. Genome Editing of Wnt-1, a Gene Associated with Segmentation, via CRISPR/Cas9 in the Pine Caterpillar Moth, Dendrolimus punctatus. Front Physiol 2017; 7:666. [PMID: 28111552 PMCID: PMC5216022 DOI: 10.3389/fphys.2016.00666] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 12/19/2016] [Indexed: 01/11/2023] Open
Abstract
The pine caterpillar moth, Dendrolimus punctatus, is a devastating forest pest. Genetic manipulation of this insect pest is limited due to the lack of genomic and functional genomic toolsets. Recently, CRISPR/Cas9 technology has been demonstrated to be a promising approach to modify the genome. To investigate gene functions during the embryogenesis, we introduced CRISPR/Cas9 system in D. punctatus to precisely and effectively manipulate gene expressions inmutant embryos. Compared to controls, knocking out of DpWnt-1, a gene well known for its role in the early body planning, led to high embryonic mortality. Among these mutants, 32.9% of the embryos and larvae showed an abnormal development. DpWnt-1 mutants predominantly exhibited abnormal posterior segments. In addition, multiple phenotypes were observed, including the loss of limbs and the head deformation, suggesting that DpWnt-1 signaling pathway is necessary for anterior segmentation and appendage development. Overall, our results demonstrate that CRISPR/Cas9 system is feasible and efficient in inducing mutations at a specific locus in D. punctatus. This study not only lays the foundation for characterizing gene functions in a non-model species, but also facilitates the future development of pest control alternatives for a major defoliator.
Collapse
Affiliation(s)
- Huihui Liu
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry Administration Beijing, China
| | - Qun Liu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky Lexington, KY, USA
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Zhen Zhang
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry Administration Beijing, China
| |
Collapse
|
42
|
Takasu Y, Kobayashi I, Tamura T, Uchino K, Sezutsu H, Zurovec M. Precise genome editing in the silkworm Bombyx mori using TALENs and ds- and ssDNA donors - A practical approach. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 78:29-38. [PMID: 27569417 DOI: 10.1016/j.ibmb.2016.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/19/2016] [Accepted: 08/23/2016] [Indexed: 06/06/2023]
Abstract
Engineered nucleases are able to introduce double stranded breaks at desired genomic locations. The breaks can be repaired by an error-prone non-homologous end joining (NHEJ) mechanism, or the repair process can be exploited to introduce precise DNA modifications by homology-directed repair (HDR) when provided with a suitable donor template. We designed a series of DNA donors including long dsDNA plasmids as well as short ssDNA oligonucleotides and compared the effectiveness of their utilization during gene targeting with highly efficient transcription activator-like effector nucleases (TALENs). While the use of long dsDNA donors for the incorporation of larger DNA fragments in Bombyx is still a problem, short single-stranded oligodeoxynucleotides (ssODNs) are incorporated quite efficiently. We show that appropriately designed ssODNs were integrated into germ cells in up to 79% of microinjected individuals and describe in more detail the conditions for the precise genome editing of Bombyx genes. We specify the donor sequence requirements that affected knock-in efficiency, and demonstrate the successful applications of this method of sequence deletion, insertion and replacement in the Bombyx genome.
Collapse
Affiliation(s)
- Yoko Takasu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Isao Kobayashi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Toshiki Tamura
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Keiro Uchino
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Hideki Sezutsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Michal Zurovec
- Biology Centre of the ASCR, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic
| |
Collapse
|
43
|
Wang D, Zhang Y, Dong Z, Guo P, Ma S, Guo K, Xia Q, Zhao P. Serine protease P-IIc is responsible for the digestion of yolk proteins at the late stage of silkworm embryogenesis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 74:42-49. [PMID: 27137459 DOI: 10.1016/j.ibmb.2016.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 06/05/2023]
Abstract
In silkworms, yolk proteins comprise vitellin, egg-specific protein and 30K proteins, which are sequentially degraded by endogenous proteases strictly regulated during embryogenesis. Although the process has been extensively investigated, there is still a gap in the knowledge about the degradation of silkworm yolk proteins on the last two days of embryonic development. In the present study, we isolated and purified a gut serine protease P-IIc, which demonstrated optimal activity at 25 °C and pH 11. Semi-quantitative RT-PCR combined with western blotting showed that P-IIc was actively expressed and significantly accumulated in the gut on the last two days of embryogenesis. When natural yolk proteins were incubated with P-IIc in vitro, vitellin and ESP were selectively degraded. P-IIc also demonstrated activity towards 30K proteins as evidenced by rapid and complete digestion of BmLP1 and partial digestion of BmLP2 and BmLP3. Furthermore, RNAi knockdown of P-IIc in silkworm embryos significantly reduced the degradation rate of residual yolk proteins on embryonic day 10. Taken together, our results indicate that P-IIc represents an embryonic gut protease with a relatively broad substrate specificity, which plays an important role in the degradation of yolk proteins at the late stage of silkworm embryogenesis.
Collapse
Affiliation(s)
- Dandan Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Pengchao Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Sanyuan Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Kaiyu Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
44
|
Long D, Lu W, Hao Z, Xiang Z, Zhao A. Highly efficient and inducible DNA excision in transgenic silkworms using the FLP/FRT site-specific recombination system. Transgenic Res 2016; 25:795-811. [DOI: 10.1007/s11248-016-9970-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 06/16/2016] [Indexed: 12/11/2022]
|
45
|
Xu H, O'Brochta DA. Advanced technologies for genetically manipulating the silkworm Bombyx mori, a model Lepidopteran insect. Proc Biol Sci 2016; 282:rspb.2015.0487. [PMID: 26108630 DOI: 10.1098/rspb.2015.0487] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genetic technologies based on transposon-mediated transgenesis along with several recently developed genome-editing technologies have become the preferred methods of choice for genetically manipulating many organisms. The silkworm, Bombyx mori, is a Lepidopteran insect of great economic importance because of its use in silk production and because it is a valuable model insect that has greatly enhanced our understanding of the biology of insects, including many agricultural pests. In the past 10 years, great advances have been achieved in the development of genetic technologies in B. mori, including transposon-based technologies that rely on piggyBac-mediated transgenesis and genome-editing technologies that rely on protein- or RNA-guided modification of chromosomes. The successful development and application of these technologies has not only facilitated a better understanding of B. mori and its use as a silk production system, but also provided valuable experiences that have contributed to the development of similar technologies in non-model insects. This review summarizes the technologies currently available for use in B. mori, their application to the study of gene function and their use in genetically modifying B. mori for biotechnology applications. The challenges, solutions and future prospects associated with the development and application of genetic technologies in B. mori are also discussed.
Collapse
Affiliation(s)
- Hanfu Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, People's Republic of China
| | - David A O'Brochta
- Department of Entomology, The Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, MD 20850, USA
| |
Collapse
|
46
|
Mabashi-Asazuma H, Sohn BH, Kim YS, Kuo CW, Khoo KH, Kucharski CA, Fraser MJ, Jarvis DL. Targeted glycoengineering extends the protein N-glycosylation pathway in the silkworm silk gland. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 65:20-7. [PMID: 26163436 PMCID: PMC4628589 DOI: 10.1016/j.ibmb.2015.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 07/02/2015] [Accepted: 07/03/2015] [Indexed: 05/12/2023]
Abstract
The silkworm silk glands are powerful secretory organs that can produce and secrete proteins at high levels. As such, it has been suggested that the biosynthetic and secretory power of the silk gland can be harnessed to produce and secrete recombinant proteins in tight or loose association with silk fibers. However, the utility of the silkworm platform is constrained by the fact that it has a relatively primitive protein N-glycosylation pathway, which produces relatively simple insect-type, rather than mammalian-type N-glycans. In this study, we demonstrate for the first time that the silk gland protein N-glycosylation pathway can be glycoengineered. We accomplished this by using a dual piggyBac vector encoding two distinct mammalian glycosyltransferases under the transcriptional control of a posterior silk gland (PSG)-specific promoter. Both mammalian transgenes were expressed and each mammalian N-glycan processing activity was induced in transformed silkworm PSGs. In addition, the transgenic animals produced endogenous glycoproteins containing significant proportions of mammalian-type, terminally galactosylated N-glycans, while the parental animals produced none. This demonstration of the ability to glycoengineer the silkworm extends its potential utility as a recombinant protein production platform.
Collapse
Affiliation(s)
| | - Bong-Hee Sohn
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Young-Soo Kim
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Chu-Wei Kuo
- Institute of Biological Chemistry, Academia Sinica 128, Nankang, Taipei 115, Taiwan
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica 128, Nankang, Taipei 115, Taiwan
| | - Cheryl A Kucharski
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Malcolm J Fraser
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Donald L Jarvis
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
47
|
Wang H, Wang L, Wang Y, Tao H, Yin W, SiMa Y, Wang Y, Xu S. High yield exogenous protein HPL production in the Bombyx mori silk gland provides novel insight into recombinant expression systems. Sci Rep 2015; 5:13839. [PMID: 26370318 PMCID: PMC4570194 DOI: 10.1038/srep13839] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 08/06/2015] [Indexed: 01/24/2023] Open
Abstract
The silk gland of Bombyx mori (BmSG) has gained significant attention by dint of superior synthesis and secretion of proteins. However, the application of BmSG bioreactor is still a controversial issue because of low yields of recombinant proteins. Here, a 3057 bp full-length coding sequence of Hpl was designed and transformed into the silkworm genome, and then the mutant (Hpl/Hpl) with specific expression of Hpl in posterior BmSG (BmPSG) was obtained. In the mutants, the transcription level of Fib-L and P25, and corresponding encoding proteins, did not decrease. However, the mRNA level of Fib-H was reduced by 71.1%, and Fib-H protein in the secreted fibroin was decreased from 91.86% to 71.01%. The mRNA level of Hpl was 0.73% and 0.74% of Fib-H and Fib-L, respectively, while HPL protein accounted for 18.85% of fibroin and 15.46% of the total amount of secreted silk protein. The exogenous protein was therefore very efficiently translated and secreted. Further analysis of differentially expressed gene (DEG) was carried out in the BmPSG cells and 891 DEGs were detected, of which 208 genes were related to protein metabolism. Reduced expression of endogenous silk proteins in the BmPSG could effectively improve the production efficiency of recombinant exogenous proteins.
Collapse
Affiliation(s)
- Huan Wang
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China
| | - Lu Wang
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China
| | - Yulong Wang
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China
| | - Hui Tao
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China
| | - Weimin Yin
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China
| | - Yanghu SiMa
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China
| | - Yujun Wang
- R&D Division, Okamoto Corporation, Nara 635-8550, Japan
| | - Shiqing Xu
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China.,National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| |
Collapse
|
48
|
Suppression of intestinal immunity through silencing of TCTP by RNAi in transgenic silkworm, Bombyx mori. Gene 2015; 574:82-7. [PMID: 26302749 DOI: 10.1016/j.gene.2015.07.089] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/23/2015] [Accepted: 07/29/2015] [Indexed: 11/20/2022]
Abstract
Intestinal immune response is a front line of host defense. The host factors that participate in intestinal immunity response remain largely unknown. We recently reported that Translationally Controlled Tumor Protein (BmTCTP) was obtained by constructing a phage display cDNA library of the silkworm midgut and carrying out high throughput screening of pathogen binding molecules. To further address the function of BmTCTP in silkworm intestinal immunity, transgenic RNAi silkworms were constructed by microinjection piggBac plasmid to Dazao embryos. The antimicrobial capacity of transgenic silkworm decreased since the expression of gut antimicrobial peptide from transgenic silkworm was not sufficiently induced during oral microbial challenge. Moreover, dynamic ERK phosphorylation from transgenic silkworm midgut was disrupted. Taken together, the innate immunity of intestinal was suppressed through disruption of dynamic ERK phosphorylation after oral microbial infection as a result of RNAi-mediated knockdown of midgut TCTP in transgenic silkworm.
Collapse
|
49
|
Comparative proteomic analysis of silkworm fat body after knocking out fibroin heavy chain gene: a novel insight into cross-talk between tissues. Funct Integr Genomics 2015; 15:611-37. [DOI: 10.1007/s10142-015-0461-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 07/28/2015] [Accepted: 08/02/2015] [Indexed: 11/25/2022]
|
50
|
Chen Q, Liu X, Zhao P, Sun Y, Zhao X, Xiong Y, Xu G, Xia Q. GC/MS-based metabolomic studies reveal key roles of glycine in regulating silk synthesis in silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 57:41-50. [PMID: 25533535 DOI: 10.1016/j.ibmb.2014.12.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/11/2014] [Accepted: 12/11/2014] [Indexed: 06/04/2023]
Abstract
Metabolic profiling of silkworm, especially the factors that affect silk synthesis at the metabolic level, is little known. Herein, metabolomic method based on gas chromatography-mass spectrometry was applied to identify key metabolic changes in silk synthesis deficient silkworms. Forty-six differential metabolites were identified in Nd group with the defect of silk synthesis. Significant changes in the levels of glycine and uric acid (up-regulation), carbohydrates and free fatty acids (down-regulation) were observed. The further metabolomics of silk synthesis deficient silkworms by decreasing silk proteins synthesis using knocking out fibroin heavy chain gene or extirpating silk glands operation showed that the changes of the metabolites were almost consistent with those of the Nd group. Furthermore, the increased silk yields by supplying more glycine or its related metabolite confirmed that glycine is a key metabolite to regulate silk synthesis. These findings provide important insights into the regulation between metabolic profiling and silk synthesis.
Collapse
Affiliation(s)
- Quanmei Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 216 Tiansheng Road, Chongqing 400715, China
| | - Xinyu Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 216 Tiansheng Road, Chongqing 400715, China
| | - Yanhui Sun
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 216 Tiansheng Road, Chongqing 400715, China
| | - Xinjie Zhao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Ying Xiong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 216 Tiansheng Road, Chongqing 400715, China
| | - Guowang Xu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 216 Tiansheng Road, Chongqing 400715, China.
| |
Collapse
|