1
|
Takeuchi K, Ueda T, Imai M, Fujisaki M, Shimura M, Tokunaga Y, Kofuku Y, Shimada I. Affinity-directed substrate/H +-antiport by a MATE transporter. Structure 2024; 32:1150-1164.e3. [PMID: 38815577 DOI: 10.1016/j.str.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/16/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024]
Abstract
Multidrug and toxin extrusion (MATE) family transporters excrete toxic compounds coupled to Na+/H+ influx. Although structures of MATE transporters are available, the mechanism by which substrate export is coupled to ion influx remains unknown. To address this issue, we conducted a structural analysis of Pyrococcus furiosus MATE (PfMATE) using solution nuclear magnetic resonance (NMR). The NMR analysis, along with thorough substitutions of all non-exposed acidic residues, confirmed that PfMATE is under an equilibrium between inward-facing (IF) and outward-facing (OF) conformations, dictated by the Glu163 protonation. Importantly, we found that only the IF conformation exhibits a mid-μM affinity for substrate recognition. In contrast, the OF conformation exhibited only weak mM substrate affinity, suitable for releasing substrate to the extracellular side. These results indicate that PfMATE is an affinity-directed H+ antiporter where substrates selectively bind to the protonated IF conformation in the equilibrium, and subsequent proton release mechanistically ensures H+-coupled substrate excretion by the transporter.
Collapse
Affiliation(s)
- Koh Takeuchi
- Graduate School of Pharmacological Sciences, The University of Tokyo, Hongo, Bunkyo, Tokyo 113-0033, Japan; Molecular Profiling Research Center for Drug Discovery and Cellular Molecular Biotechnology Research Institute, National Institute of Advanced Science and Technology, Aomi, Koto, Tokyo 135-0063, Japan.
| | - Takumi Ueda
- Graduate School of Pharmacological Sciences, The University of Tokyo, Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Misaki Imai
- Graduate School of Pharmacological Sciences, The University of Tokyo, Hongo, Bunkyo, Tokyo 113-0033, Japan; Research and Development Department, Japan Biological Informatics Consortium, Aomi 2-3-26, Koto-ku, Tokyo 135-0064, Japan
| | - Miwa Fujisaki
- Graduate School of Pharmacological Sciences, The University of Tokyo, Hongo, Bunkyo, Tokyo 113-0033, Japan; Research and Development Department, Japan Biological Informatics Consortium, Aomi 2-3-26, Koto-ku, Tokyo 135-0064, Japan
| | - Mie Shimura
- Graduate School of Pharmacological Sciences, The University of Tokyo, Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Yuji Tokunaga
- Graduate School of Pharmacological Sciences, The University of Tokyo, Hongo, Bunkyo, Tokyo 113-0033, Japan; Molecular Profiling Research Center for Drug Discovery and Cellular Molecular Biotechnology Research Institute, National Institute of Advanced Science and Technology, Aomi, Koto, Tokyo 135-0063, Japan
| | - Yutaka Kofuku
- Graduate School of Pharmacological Sciences, The University of Tokyo, Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Ichio Shimada
- Graduate School of Pharmacological Sciences, The University of Tokyo, Hongo, Bunkyo, Tokyo 113-0033, Japan; Center for Biosystems Dynamics Research, RIKEN, Kanagawa 230-0045, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-8528, Japan.
| |
Collapse
|
2
|
Aspholm EE, Lidman J, Burmann BM. Structural basis of substrate recognition and allosteric activation of the proapoptotic mitochondrial HtrA2 protease. Nat Commun 2024; 15:4592. [PMID: 38816423 PMCID: PMC11535027 DOI: 10.1038/s41467-024-48997-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/14/2024] [Indexed: 06/01/2024] Open
Abstract
The mitochondrial serine protease HtrA2 is a human homolog of the Escherichia coli Deg-proteins exhibiting chaperone and proteolytic roles. HtrA2 is involved in both apoptotic regulation via its ability to degrade inhibitor-of-apoptosis proteins (IAPs), as well as in cellular maintenance as part of the cellular protein quality control machinery, by preventing the possible toxic accumulation of aggregated proteins. In this study, we use advanced solution NMR spectroscopy methods combined with biophysical characterization and biochemical assays to elucidate the crucial role of the substrate recognizing PDZ domain. This domain regulates the protease activity of HtrA2 by triggering an intricate allosteric network involving the regulatory loops of the protease domain. We further show that divalent metal ions can both positively and negatively modulate the activity of HtrA2, leading to a refined model of HtrA2 regulation within the apoptotic pathway.
Collapse
Affiliation(s)
- Emelie E Aspholm
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Göteborg, Sweden
| | - Jens Lidman
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Göteborg, Sweden
| | - Björn M Burmann
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Göteborg, Sweden.
| |
Collapse
|
3
|
Wang L, Zhang M, Teng H, Wang Z, Wang S, Li P, Wu J, Yang L, Xu G. Rationally introducing non-canonical amino acids to enhance catalytic activity of LmrR for Henry reaction. BIORESOUR BIOPROCESS 2024; 11:26. [PMID: 38647789 PMCID: PMC10992053 DOI: 10.1186/s40643-024-00744-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/19/2024] [Indexed: 04/25/2024] Open
Abstract
The use of enzymes to catalyze Henry reaction has advantages of mild reaction conditions and low contamination, but low enzyme activity of promiscuous catalysis limits its application. Here, rational design was first performed to identify the key amino acid residues in Henry reaction catalyzed by Lactococcal multidrug resistance Regulator (LmrR). Further, non-canonical amino acids were introduced into LmrR, successfully obtaining variants that enhanced the catalytic activity of LmrR. The best variant, V15CNF, showed a 184% increase in enzyme activity compared to the wild type, and was 1.92 times more effective than the optimal natural amino acid variant, V15F. Additionally, this variant had a broad substrate spectrum, capable of catalyzing reactions between various aromatic aldehydes and nitromethane, with product yielded ranging from 55 to 99%. This study improved enzymatic catalytic activity by enhancing affinity between the enzyme and substrates, while breaking limited types of natural amino acid residues by introducing non-canonical amino acids into the enzyme, providing strategies for molecular modifications.
Collapse
Affiliation(s)
- Lan Wang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Mengting Zhang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Haidong Teng
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Zhe Wang
- Huadong Medicine Co., Ltd, Hangzhou, 310011, Zhejiang, China
| | - Shulin Wang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Pengcheng Li
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Jianping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Gang Xu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China.
| |
Collapse
|
4
|
Lidman J, Sallova Y, Matečko-Burmann I, Burmann BM. Structure and dynamics of the mitochondrial DNA-compaction factor Abf2 from S. cerevisiae. J Struct Biol 2023; 215:108008. [PMID: 37543301 DOI: 10.1016/j.jsb.2023.108008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/10/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Mitochondria are essential organelles that produce most of the energy via the oxidative phosphorylation (OXPHOS) system in all eukaryotic cells. Several essential subunits of the OXPHOS system are encoded by the mitochondrial genome (mtDNA) despite its small size. Defects in mtDNA maintenance and expression can lead to severe OXPHOS deficiencies and are amongst the most common causes of mitochondrial disease. The mtDNA is packaged as nucleoprotein structures, referred to as nucleoids. The conserved mitochondrial proteins, ARS-binding factor 2 (Abf2) in the budding yeast Saccharomyces cerevisiae (S. cerevisiae) and mitochondrial transcription factor A (TFAM) in mammals, are nucleoid associated proteins (NAPs) acting as condensing factors needed for packaging and maintenance of the mtDNA. Interestingly, gene knockout of Abf2 leads, in yeast, to the loss of mtDNA and respiratory growth, providing evidence for its crucial role. On a structural level, the condensing factors usually contain two DNA binding domains called high-mobility group boxes (HMG boxes). The co-operating mechanical activities of these domains are crucial in establishing the nucleoid architecture by bending the DNA strands. Here we used advanced solution NMR spectroscopy methods to characterize the dynamical properties of Abf2 together with its interaction with DNA. We find that the two HMG-domains react notably different to external cues like temperature and salt, indicating distinct functional properties. Biophysical characterizations show the pronounced difference of these domains upon DNA-binding, suggesting a refined picture of the Abf2 functional cycle.
Collapse
Affiliation(s)
- Jens Lidman
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Göteborg, Sweden
| | - Ylber Sallova
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Göteborg, Sweden
| | - Irena Matečko-Burmann
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Göteborg, Sweden; Department of Psychiatry and Neurochemistry, University of Gothenburg, 405 30 Göteborg, Sweden
| | - Björn M Burmann
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Göteborg, Sweden.
| |
Collapse
|
5
|
Kumar V, Turnbull WB, Kumar A. Review on Recent Developments in Biocatalysts for Friedel–Crafts Reactions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Vajinder Kumar
- Department of Chemistry, Akal University, Talwandi Sabo, Bathinda, Punjab 151302, India
| | - W. Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | - Avneesh Kumar
- Department of Botany, Akal University, Talwandi Sabo, Bathinda, Punjab 151302, India
| |
Collapse
|
6
|
Shao J, Kuiper BP, Thunnissen AMWH, Cool RH, Zhou L, Huang C, Dijkstra BW, Broos J. The Role of Tryptophan in π Interactions in Proteins: An Experimental Approach. J Am Chem Soc 2022; 144:13815-13822. [PMID: 35868012 PMCID: PMC9354243 DOI: 10.1021/jacs.2c04986] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
In proteins, the amino acids Phe, Tyr, and especially
Trp are frequently
involved in π interactions such as π–π, cation−π,
and CH−π bonds. These interactions are often crucial
for protein structure and protein–ligand binding. A powerful
means to study these interactions is progressive fluorination of these
aromatic residues to modulate the electrostatic component of the interaction.
However, to date no protein expression platform is available to produce
milligram amounts of proteins labeled with such fluorinated amino
acids. Here, we present a Lactococcus lactis Trp
auxotroph-based expression system for efficient incorporation (≥95%)
of mono-, di-, tri-, and tetrafluorinated, as well as a methylated
Trp analog. As a model protein we have chosen LmrR, a dimeric multidrug
transcriptional repressor protein from L. lactis. LmrR binds aromatic drugs, like daunomycin and riboflavin, between
Trp96 and Trp96′ in the dimer interface. Progressive fluorination
of Trp96 decreased the affinity for the drugs 6- to 70-fold, clearly
establishing the importance of electrostatic π–π
interactions for drug binding. Presteady state kinetic data of the
LmrR–drug interaction support the enthalpic nature of the interaction,
while high resolution crystal structures of the labeled protein–drug
complexes provide for the first time a structural view of the progressive
fluorination approach. The L. lactis expression system
was also used to study the role of Trp68 in the binding of riboflavin
by the membrane-bound riboflavin transport protein RibU from L. lactis. Progressive fluorination of Trp68 revealed a
strong electrostatic component that contributed 15–20% to the
total riboflavin-RibU binding energy.
Collapse
Affiliation(s)
- Jinfeng Shao
- Groningen Biomolecular Science and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Bastiaan P Kuiper
- Groningen Biomolecular Science and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Andy-Mark W H Thunnissen
- Groningen Biomolecular Science and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Robbert H Cool
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Liang Zhou
- Groningen Biomolecular Science and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Chenxi Huang
- Groningen Biomolecular Science and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Bauke W Dijkstra
- Groningen Biomolecular Science and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Jaap Broos
- Groningen Biomolecular Science and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
7
|
Maity B, Taher M, Mazumdar S, Ueno T. Artificial metalloenzymes based on protein assembly. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Nasr M, Timmins LR, Martin VJJ, Kwan DH. A Versatile Transcription Factor Biosensor System Responsive to Multiple Aromatic and Indole Inducers. ACS Synth Biol 2022; 11:1692-1698. [PMID: 35316041 PMCID: PMC9017570 DOI: 10.1021/acssynbio.2c00063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Indexed: 12/26/2022]
Abstract
Allosteric transcription factor (aTF) biosensors are valuable tools for engineering microbes toward a multitude of applications in metabolic engineering, biotechnology, and synthetic biology. One of the challenges toward constructing functional and diverse biosensors in engineered microbes is the limited toolbox of identified and characterized aTFs. To overcome this, extensive bioprospecting of aTFs from sequencing databases, as well as aTF ligand-specificity engineering are essential in order to realize their full potential as biosensors for novel applications. In this work, using the TetR-family repressor CmeR from Campylobacter jejuni, we construct aTF genetic circuits that function as salicylate biosensors in the model organisms Escherichia coli and Saccharomyces cerevisiae. In addition to salicylate, we demonstrate the responsiveness of CmeR-regulated promoters to multiple aromatic and indole inducers. This relaxed ligand specificity of CmeR makes it a useful tool for detecting molecules in many metabolic engineering applications, as well as a good target for directed evolution to engineer proteins that are able to detect new and diverse chemistries.
Collapse
Affiliation(s)
- Mohamed
A. Nasr
- Department
of Biology, Centre for Applied Synthetic Biology, and Centre for Structural
and Functional Genomics, Concordia University, Montréal, Quebec H4B 1R6, Canada
- PROTEO,
Quebec Network for Research on Protein Function, Structure, and Engineering, Québec City, Quebec G1 V 0A6, Canada
| | - Logan R. Timmins
- Department
of Biology, Centre for Applied Synthetic Biology, and Centre for Structural
and Functional Genomics, Concordia University, Montréal, Quebec H4B 1R6, Canada
- PROTEO,
Quebec Network for Research on Protein Function, Structure, and Engineering, Québec City, Quebec G1 V 0A6, Canada
| | - Vincent J. J. Martin
- Department
of Biology, Centre for Applied Synthetic Biology, and Centre for Structural
and Functional Genomics, Concordia University, Montréal, Quebec H4B 1R6, Canada
| | - David H. Kwan
- Department
of Biology, Centre for Applied Synthetic Biology, and Centre for Structural
and Functional Genomics, Concordia University, Montréal, Quebec H4B 1R6, Canada
- PROTEO,
Quebec Network for Research on Protein Function, Structure, and Engineering, Québec City, Quebec G1 V 0A6, Canada
- Department
of Chemistry and Biochemistry, Concordia
University, Montréal, Quebec H4B 1R6, Canada
| |
Collapse
|
9
|
Sugiki T, Lee YH, Alsanousi N, Murata K, Kawamura I, Fujiwara T, Hanada K, Kojima C. A hybrid strategy combining solution NMR spectroscopy and isothermal titration calorimetry to characterize protein-nanodisc interaction. Anal Biochem 2021; 639:114521. [PMID: 34906540 DOI: 10.1016/j.ab.2021.114521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 11/19/2022]
Abstract
NMR is a powerful tool for characterizing intermolecular interactions at atomic resolution. However, the nature of the complex interactions of membrane-binding proteins makes it difficult to elucidate the interaction mechanisms. Here, we demonstrated that structural and thermodynamic analyses using solution NMR spectroscopy and isothermal titration calorimetry (ITC) can clearly detect a specific interaction between the pleckstrin homology (PH) domain of ceramide transport protein (CERT) and phosphatidylinositol 4-monophosphate (PI4P) embedded in the lipid nanodisc, and distinguish the specific interaction from nonspecific interactions with the bulk surface of the lipid nanodisc. This NMR-ITC hybrid strategy provides detailed characterization of protein-lipid membrane interactions.
Collapse
Affiliation(s)
- Toshihiko Sugiki
- Institute for Protein Research, Osaka University, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Young-Ho Lee
- Institute for Protein Research, Osaka University, Yamadaoka, Suita, Osaka, 565-0871, Japan; Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Chungcheongbuk-do, 28119, South Korea; Bio-Analytical Science, University of Science and Technology, Daejeon, 34113, South Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, South Korea
| | - Nesreen Alsanousi
- Institute for Protein Research, Osaka University, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kaito Murata
- Graduate School of Engineering Science, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan
| | - Izuru Kawamura
- Graduate School of Engineering Science, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan
| | - Toshimichi Fujiwara
- Institute for Protein Research, Osaka University, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Chojiro Kojima
- Institute for Protein Research, Osaka University, Yamadaoka, Suita, Osaka, 565-0871, Japan; Graduate School of Engineering Science, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan.
| |
Collapse
|
10
|
Milanesi L, Trevitt C, Whitehead B, Hounslow A, Tomas S, Hosszu L, Hunter C, Waltho J. High-affinity tamoxifen analogues retain extensive positional disorder when bound to calmodulin. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:629-642. [PMID: 37905217 PMCID: PMC10539762 DOI: 10.5194/mr-2-629-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/03/2021] [Indexed: 11/02/2023]
Abstract
Using a combination of NMR and fluorescence measurements, we have investigated the structure and dynamics of the complexes formed between calcium-loaded calmodulin (CaM) and the potent breast cancer inhibitor idoxifene, a derivative of tamoxifen. High-affinity binding (K d ∼ 300 nM) saturates with a 2 : 1 idoxifene : CaM complex. The complex is an ensemble where each idoxifene molecule is predominantly in the vicinity of one of the two hydrophobic patches of CaM but, in contrast with the lower-affinity antagonists TFP, J-8, and W-7, does not substantially occupy the hydrophobic pocket. At least four idoxifene orientations per domain of CaM are necessary to satisfy the intermolecular nuclear Overhauser effect (NOE) restraints, and this requires that the idoxifene molecules switch rapidly between positions. The CaM molecule is predominantly in the form where the N and C-terminal domains are in close proximity, allowing for the idoxifene molecules to contact both domains simultaneously. Hence, the 2 : 1 idoxifene : CaM complex illustrates how high-affinity binding occurs without the loss of extensive positional dynamics.
Collapse
Affiliation(s)
- Lilia Milanesi
- Department of Molecular Biology and Biotechnology, University of
Sheffield, Sheffield S10 2TN, UK
- Department of Biological Sciences, School of Science, Birkbeck
University of London, London WC1E 7HX, UK
| | - Clare R. Trevitt
- Department of Molecular Biology and Biotechnology, University of
Sheffield, Sheffield S10 2TN, UK
| | - Brian Whitehead
- Department of Molecular Biology and Biotechnology, University of
Sheffield, Sheffield S10 2TN, UK
| | - Andrea M. Hounslow
- Department of Molecular Biology and Biotechnology, University of
Sheffield, Sheffield S10 2TN, UK
| | - Salvador Tomas
- Department of Biological Sciences, School of Science, Birkbeck
University of London, London WC1E 7HX, UK
- Departament de Química, Universitat de les Illes Balears, Cra. de Valldemossa, km 7.5. 07122 Palma de Mallorca, Spain
| | - Laszlo L. P. Hosszu
- Department of Molecular Biology and Biotechnology, University of
Sheffield, Sheffield S10 2TN, UK
- Medical Research Council Prion Unit, University College of London
Institute of Neurology, Queen Square, London WCN1 3BG, UK
| | - Christopher A. Hunter
- Department of Chemistry, University of Cambridge, Lensfield Road,
Cambridge CB2 1EW, UK
| | - Jonathan P. Waltho
- Department of Molecular Biology and Biotechnology, University of
Sheffield, Sheffield S10 2TN, UK
- Manchester Institute of Biotechnology, University of Manchester, 131
Princess Street, Manchester M1 7DN, UK
| |
Collapse
|
11
|
Iyer A, Baranov M, Foster AJ, Chordia S, Roelfes G, Vlijm R, van den Bogaart G, Poolman B. Chemogenetic Tags with Probe Exchange for Live-Cell Fluorescence Microscopy. ACS Chem Biol 2021; 16:891-904. [PMID: 33913682 PMCID: PMC8154248 DOI: 10.1021/acschembio.1c00100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/15/2021] [Indexed: 11/29/2022]
Abstract
Fluorogenic protein tagging systems have been less developed for prokaryotes than for eukaryotic cell systems. Here, we extend the concept of noncovalent fluorogenic protein tags in bacteria by introducing transcription factor-based tags, namely, LmrR and RamR, for probe binding and fluorescence readout under aerobic and anaerobic conditions. We developed two chemogenetic protein tags that impart fluorogenicity and a longer fluorescence lifetime to reversibly bound organic fluorophores, hence the name Chemogenetic Tags with Probe Exchange (CTPEs). We present an extensive characterization of 30 fluorophores reversibly interacting with the two different CTPEs and conclude that aromatic planar structures bind with high specificity to the hydrophobic pockets of these tags. The reversible binding of organic fluorophores to the CTPEs and the superior photophysical properties of organic fluorophores enable long-term fluorescence microscopy of living bacterial cells. Our protein tags provide a general tool for investigating (sub)cellular protein localization and dynamics, protein-protein interactions, and prolonged live-cell microscopy, even under oxygen-free conditions.
Collapse
Affiliation(s)
- Aditya Iyer
- Department
of Biochemistry, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Maxim Baranov
- Department
of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Alexander J. Foster
- Department
of Biochemistry, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Shreyans Chordia
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Gerard Roelfes
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Rifka Vlijm
- Molecular
Biophysics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Geert van den Bogaart
- Department
of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Bert Poolman
- Department
of Biochemistry, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
12
|
Elements in the LftR Repressor Operator Interface Contributing to Regulation of Aurantimycin Resistance in Listeria monocytogenes. J Bacteriol 2021; 203:JB.00503-20. [PMID: 33649145 DOI: 10.1128/jb.00503-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
The bacterium Listeria monocytogenes ubiquitously occurs in the environment but can cause severe invasive disease in susceptible individuals when ingested. We recently identified the L. monocytogenes genes lieAB and lftRS, encoding a multidrug resistance ABC transporter and a regulatory module, respectively. These genes jointly mediate resistance against aurantimycin, an antibiotic produced by the soil-dwelling species Streptomyces aurantiacus, and thus contribute to the survival of L. monocytogenes in its natural habitat, the soil. Repression of lieAB and lftRS is exceptionally tight but strongly induced in the presence of aurantimycin. Repression depends on LftR, which belongs to subfamily 2 of the PadR-like transcriptional repressors. To better understand this interesting class of transcriptional repressors, we here deduce the LftR operator sequence from a systematic truncation and mutation analysis of the P lieAB promoter. The sequence identified is also present in the P lftRS promoter but not found elsewhere in the chromosome. Mutational analysis of the putative operator in the P lftRS promoter confirmed its relevance for LftR-dependent repression. The proposed operator sequence was sufficient for DNA binding by LftR in vitro, and a mutation in this sequence affected aurantimycin resistance. Our results provide further insights into the transcriptional adaptation of an important human pathogen to survive the conditions in its natural reservoir.IMPORTANCE Listeria monocytogenes is an environmental bacterium that lives in the soil but can infect humans upon ingestion, and this can lead to severe invasive disease. Adaptation to these entirely different habitats involves massive reprogramming of transcription. Among the differentially expressed genes is the lieAB operon, which encodes a transporter for the detoxification of aurantimycin, an antimicrobial compound produced by soil-dwelling competitors. While lieAB is important for survival in the environment, its expression is detrimental during infection. We here identify critical elements in the lieAB promoter and its transcriptional regulator LftR that contribute to habitat-specific expression of the lieAB genes. These results further clarify the molecular mechanisms underlying the aurantimycin resistance of L. monocytogenes.
Collapse
|
13
|
Chordia S, Narasimhan S, Lucini Paioni A, Baldus M, Roelfes G. In Vivo Assembly of Artificial Metalloenzymes and Application in Whole-Cell Biocatalysis*. Angew Chem Int Ed Engl 2021; 60:5913-5920. [PMID: 33428816 PMCID: PMC7986609 DOI: 10.1002/anie.202014771] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Indexed: 12/14/2022]
Abstract
We report the supramolecular assembly of artificial metalloenzymes (ArMs), based on the Lactococcal multidrug resistance regulator (LmrR) and an exogeneous copper(II)-phenanthroline complex, in the cytoplasm of E. coli cells. A combination of catalysis, cell-fractionation, and inhibitor experiments, supplemented with in-cell solid-state NMR spectroscopy, confirmed the in-cell assembly. The ArM-containing whole cells were active in the catalysis of the enantioselective Friedel-Crafts alkylation of indoles and the Diels-Alder reaction of azachalcone with cyclopentadiene. Directed evolution resulted in two different improved mutants for both reactions, LmrR_A92E_M8D and LmrR_A92E_V15A, respectively. The whole-cell ArM system required no engineering of the microbial host, the protein scaffold, or the cofactor to achieve ArM assembly and catalysis. We consider this a key step towards integrating abiological catalysis with biosynthesis to generate a hybrid metabolism.
Collapse
Affiliation(s)
- Shreyans Chordia
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Siddarth Narasimhan
- NMR Spectroscopy groupBijvoet Center for Biomolecular ResearchUtrecht UniversityPadualaan 8, 3584CHUtrechtThe Netherlands
- Current address: Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryMeyerhofstraße 169117HeidelbergGermany
| | - Alessandra Lucini Paioni
- NMR Spectroscopy groupBijvoet Center for Biomolecular ResearchUtrecht UniversityPadualaan 8, 3584CHUtrechtThe Netherlands
| | - Marc Baldus
- NMR Spectroscopy groupBijvoet Center for Biomolecular ResearchUtrecht UniversityPadualaan 8, 3584CHUtrechtThe Netherlands
| | - Gerard Roelfes
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| |
Collapse
|
14
|
Chordia S, Narasimhan S, Lucini Paioni A, Baldus M, Roelfes G. In Vivo Assembly of Artificial Metalloenzymes and Application in Whole‐Cell Biocatalysis**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Shreyans Chordia
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Siddarth Narasimhan
- NMR Spectroscopy group Bijvoet Center for Biomolecular Research Utrecht University Padualaan 8, 3584 CH Utrecht The Netherlands
- Current address: Structural and Computational Biology Unit European Molecular Biology Laboratory Meyerhofstraße 1 69117 Heidelberg Germany
| | - Alessandra Lucini Paioni
- NMR Spectroscopy group Bijvoet Center for Biomolecular Research Utrecht University Padualaan 8, 3584 CH Utrecht The Netherlands
| | - Marc Baldus
- NMR Spectroscopy group Bijvoet Center for Biomolecular Research Utrecht University Padualaan 8, 3584 CH Utrecht The Netherlands
| | - Gerard Roelfes
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
15
|
Mejías SH, Roelfes G, Browne WR. Impact of binding to the multidrug resistance regulator protein LmrR on the photo-physics and -chemistry of photosensitizers. Phys Chem Chem Phys 2020; 22:12228-12238. [PMID: 32432253 DOI: 10.1039/d0cp01755h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Light activated photosensitizers generate reactive oxygen species (ROS) that interfere with cellular components and can induce cell death, e.g., in photodynamic therapy (PDT). The effect of cellular components and especially proteins on the photochemistry and photophysics of the sensitizers is a key aspect in drug design and the correlating cellular response with the generation of specific ROS species. Here, we show the complex range of effects of binding of photosensitizer to a multidrug resistance protein, produced by bacteria, on the formers reactivity. We show that recruitment of drug like molecules by LmrR (Lactococcal multidrug resistance Regulator) modifies their photophysical properties and their capacity to induce oxidative stress especially in 1O2 generation, including rose bengal (RB), protoporphyrin IX (PpIX), bodipy, eosin Y (EY), riboflavin (RBF), and rhodamine 6G (Rh6G). The range of neutral and charged dyes with different exited redox potentials, are broadly representative of the dyes used in PDT.
Collapse
Affiliation(s)
- Sara H Mejías
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| | - Gerard Roelfes
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| | - Wesley R Browne
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
16
|
Dubey A, Takeuchi K, Reibarkh M, Arthanari H. The role of NMR in leveraging dynamics and entropy in drug design. JOURNAL OF BIOMOLECULAR NMR 2020; 74:479-498. [PMID: 32720098 PMCID: PMC7686249 DOI: 10.1007/s10858-020-00335-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/11/2020] [Indexed: 05/03/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy has contributed to structure-based drug development (SBDD) in a unique way compared to the other biophysical methods. The potency of a ligand binding to a protein is dictated by the binding free energy, which is an intricate interplay between entropy and enthalpy. In addition to providing the atomic resolution structural information, NMR can help to identify protein-ligand interactions that potentially contribute to the enthalpic component of the free energy. NMR can also illuminate dynamic aspects of the interaction, which correspond to the entropic term of the free energy. The ability of NMR to access both terms in the free energy equation stems from the suite of experiments developed to shed light on various aspects that contribute to both entropy and enthalpy, deepening our understanding of the biological function of macromolecules and assisting to target them in physiological conditions. Here we provide a brief account of the contribution of NMR to SBDD, highlighting hallmark examples and discussing the challenges that demand further method development. In the era of integrated biology, the unique ability of NMR to directly ascertain structural and dynamical aspects of macromolecule and monitor changes in these properties upon engaging a ligand can be combined with computational and other structural and biophysical methods to provide a more complete picture of the energetics of drug engagement with the target. Such efforts can be used to engineer better drugs.
Collapse
Affiliation(s)
- Abhinav Dubey
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Koh Takeuchi
- Cellular and Molecular Biotechnology Research Institute & Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, 135-0064, Japan.
| | - Mikhail Reibarkh
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Haribabu Arthanari
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
17
|
Villarino L, Chordia S, Alonso-Cotchico L, Reddem E, Zhou Z, Thunnissen AMWH, Maréchal JD, Roelfes G. Cofactor Binding Dynamics Influence the Catalytic Activity and Selectivity of an Artificial Metalloenzyme. ACS Catal 2020; 10:11783-11790. [PMID: 33101759 PMCID: PMC7574625 DOI: 10.1021/acscatal.0c01619] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/11/2020] [Indexed: 12/20/2022]
Abstract
We present an artificial metalloenzyme based on the transcriptional regulator LmrR that exhibits dynamics involving the positioning of its abiological metal cofactor. The position of the cofactor, in turn, was found to be related to the preferred catalytic reactivity, which is either the enantioselective Friedel-Crafts alkylation of indoles with β-substituted enones or the tandem Friedel-Crafts alkylation/enantioselective protonation of indoles with α-substituted enones. The artificial metalloenzyme could be specialized for one of these catalytic reactions introducing a single mutation in the protein. The relation between cofactor dynamics and activity and selectivity in catalysis has not been described for natural enzymes and, to date, appears to be particular for artificial metalloenzymes.
Collapse
Affiliation(s)
- Lara Villarino
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Shreyans Chordia
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Lur Alonso-Cotchico
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Eswar Reddem
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Zhi Zhou
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Andy Mark W. H. Thunnissen
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Jean-Didier Maréchal
- Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., 08193,
Cerdanyola del Vallés, Barcelona, Spain
| | - Gerard Roelfes
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
18
|
Mizukoshi Y, Takeuchi K, Tokunaga Y, Matsuo H, Imai M, Fujisaki M, Kamoshida H, Takizawa T, Hanzawa H, Shimada I. Targeting the cryptic sites: NMR-based strategy to improve protein druggability by controlling the conformational equilibrium. SCIENCE ADVANCES 2020; 6:eabd0480. [PMID: 32998885 PMCID: PMC7527212 DOI: 10.1126/sciadv.abd0480] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
Cryptic ligand binding sites, which are not evident in the unligated structures, are beneficial in tackling with difficult but attractive drug targets, such as protein-protein interactions (PPIs). However, cryptic sites have thus far not been rationally pursued in the early stages of drug development. Here, we demonstrated by nuclear magnetic resonance that the cryptic site in Bcl-xL exists in a conformational equilibrium between the open and closed conformations under the unligated condition. While the fraction of the open conformation in the unligated wild-type Bcl-xL is estimated to be low, F143W mutation that is distal from the ligand binding site can substantially elevate the population. The F143W mutant showed a higher hit rate in a phage-display peptide screening, and the hit peptide bound to the cryptic site of the wild-type Bcl-xL. Therefore, by controlling the conformational equilibrium in the cryptic site, the opportunity to identify a PPI inhibitor could be improved.
Collapse
Affiliation(s)
| | - Koh Takeuchi
- National Institute of Advanced Industrial Science and Technology (AIST), Molecular Profiling Research Center for Drug Discovery (molprof) and Cellular and Molecular Biotechnology Research Institute, Tokyo 135-0063, Japan.
| | - Yuji Tokunaga
- National Institute of Advanced Industrial Science and Technology (AIST), Molecular Profiling Research Center for Drug Discovery (molprof) and Cellular and Molecular Biotechnology Research Institute, Tokyo 135-0063, Japan
| | - Hitomi Matsuo
- Japan Biological Informatics Consortium, Tokyo 135-0063, Japan
| | - Misaki Imai
- Japan Biological Informatics Consortium, Tokyo 135-0063, Japan
| | - Miwa Fujisaki
- Japan Biological Informatics Consortium, Tokyo 135-0063, Japan
| | | | | | | | - Ichio Shimada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan.
- RIKEN, Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| |
Collapse
|
19
|
Gutiérrez de Souza C, Bersellini M, Roelfes G. Artificial Metalloenzymes based on TetR Proteins and Cu(II) for Enantioselective Friedel-Crafts Alkylation Reactions. ChemCatChem 2020; 12:3190-3194. [PMID: 32612714 PMCID: PMC7319431 DOI: 10.1002/cctc.202000245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/31/2020] [Indexed: 12/16/2022]
Abstract
The supramolecular approach is among the most convenient methodologies for creating artificial metalloenzymes (ArMs). Usually this approach involves the binding of a transition metal ion complex to a biomolecular scaffold via its ligand, which also modulates the catalytic properties of the metal ion. Herein, we report ArMs based on the proteins CgmR, RamR and QacR from the TetR family of multidrug resistance regulators (MDRs) and Cu2+ ions, assembled without the need of a ligand. These ArMs catalyze the enantioselective vinylogous Friedel-Crafts alkylation reaction with up to 75 % ee. Competition experiments with ethidium and rhodamine 6G confirm that the reactions occur in the chiral environment of the hydrophobic pocket. It is proposed that the Cu2+-substrate complex is bound via a combination of electrostatic and π-stacking interactions provided by the second coordination sphere. This approach constitutes a fast and straightforward way to assemble metalloenzymes and may facilitate future optimization of the protein scaffolds via mutagenesis or directed evolution approaches.
Collapse
Affiliation(s)
- Cora Gutiérrez de Souza
- Stratingh Institute for ChemistryUniversity of Groningen Nijenborgh49747AG GroningenThe Netherlands
| | - Manuela Bersellini
- Stratingh Institute for ChemistryUniversity of Groningen Nijenborgh49747AG GroningenThe Netherlands
| | - Gerard Roelfes
- Stratingh Institute for ChemistryUniversity of Groningen Nijenborgh49747AG GroningenThe Netherlands
| |
Collapse
|
20
|
Spotlight on the Ballet of Proteins: The Structural Dynamic Properties of Proteins Illuminated by Solution NMR. Int J Mol Sci 2020; 21:ijms21051829. [PMID: 32155847 PMCID: PMC7084655 DOI: 10.3390/ijms21051829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/01/2020] [Accepted: 03/04/2020] [Indexed: 12/22/2022] Open
Abstract
Solution NMR spectroscopy is a unique and powerful technique that has the ability to directly connect the structural dynamics of proteins in physiological conditions to their activity and function. Here, we summarize recent studies in which solution NMR contributed to the discovery of relationships between key dynamic properties of proteins and functional mechanisms in important biological systems. The capacity of NMR to quantify the dynamics of proteins over a range of time scales and to detect lowly populated protein conformations plays a critical role in its power to unveil functional protein dynamics. This analysis of dynamics is not only important for the understanding of biological function, but also in the design of specific ligands for pharmacologically important proteins. Thus, the dynamic view of structure provided by NMR is of importance in both basic and applied biology.
Collapse
|
21
|
Leveson-Gower RB, Mayer C, Roelfes G. The importance of catalytic promiscuity for enzyme design and evolution. Nat Rev Chem 2019. [DOI: 10.1038/s41570-019-0143-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Conformational equilibrium defines the variable induction of the multidrug-binding transcriptional repressor QacR. Proc Natl Acad Sci U S A 2019; 116:19963-19972. [PMID: 31527244 DOI: 10.1073/pnas.1906129116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
QacR, a multidrug-binding transcriptional repressor in pathogenic bacteria Staphylococcus aureus, modulates the transcriptional level of the multidrug transporter gene, qacA, in response to engaging a set of diverse ligands. However, the structural basis that defines the variable induction level remains unknown. Here, we reveal that the conformational equilibrium between the repressive and inducive conformations in QacR defines the induction level of the transporter gene. In addition, the unligated QacR is already partly populated in the inducive conformation, allowing the basal expression of the transporter. We also showed that, in the known constitutively active QacR mutants, the equilibrium is shifted more toward the inducive conformation, even in the unligated state. These results highlight the unexpected structural mechanism, connecting the promiscuous multidrug binding to the variable transcriptional regulation of QacR, which provide clues to dysfunctioning of the multidrug resistance systems.
Collapse
|
23
|
Hauf S, Möller L, Fuchs S, Halbedel S. PadR-type repressors controlling production of a non-canonical FtsW/RodA homologue and other trans-membrane proteins. Sci Rep 2019; 9:10023. [PMID: 31296881 PMCID: PMC6624303 DOI: 10.1038/s41598-019-46347-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 06/27/2019] [Indexed: 01/02/2023] Open
Abstract
The Gram-positive bacterium Listeria monocytogenes occurs ubiquitously in the environment and infects humans upon ingestion. It encodes four PadR-like repressors, out of which LftR has been characterized previously and was shown to control gene expression in response to the antibiotic aurantimycin produced by other environmental bacteria. To better understand the PadR regulons of L. monocytogenes, we performed RNA-sequencing with mutants of the other three repressors LadR, LstR and Lmo0599. We show that LadR is primarily responsible for the regulation of the mdrL gene, encoding an efflux pump, while LstR and Lmo0599 mainly regulate their own operons. The lstR operon contains the lmo0421 gene, encoding a homolog of the RodA/FtsW protein family. However, this protein does not possess such functionality, as we demonstrate here. The lmo0599 operon contains two additional genes coding for the hypothetical trans-membrane proteins lmo0600 and lmo0601. A striking phenotype of the lmo0599 mutant is its impaired growth at refrigeration temperature. In light of these and other results we suggest that Lmo0599 should be renamed and propose LltR (listerial low temperature regulator) as its new designation. Based on the nature of the PadR target genes we assume that these repressors collectively respond to compounds acting on the cellular envelope.
Collapse
Affiliation(s)
- Samuel Hauf
- FG11 Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Burgstrasse 37, 38855, Wernigerode, Germany
| | - Lars Möller
- ZBS 4 - Advanced Light and Electron Microscopy, Robert Koch Institute, Nordufer 20, 13353, Berlin, Germany
| | - Stephan Fuchs
- FG13 Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Burgstrasse 37, 38855, Wernigerode, Germany
| | - Sven Halbedel
- FG11 Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Burgstrasse 37, 38855, Wernigerode, Germany.
| |
Collapse
|
24
|
Abstract
![]()
The biotechnological revolution has made it
possible to create
enzymes for many reactions by directed evolution. However, because
of the immense number of possibilities, the availability of enzymes
that possess a basal level of the desired catalytic activity is a
prerequisite for success. For new-to-nature reactions, artificial
metalloenzymes (ARMs), which are rationally designed hybrids of proteins
and catalytically active transition-metal complexes, can be such a
starting point. This Account details our efforts toward the
creation of ARMs for
the catalysis of new-to-nature reactions. Key to our approach is the
notion that the binding of substrates, that is, effective molarity,
is a key component to achieving large accelerations in catalysis.
For this reason, our designs are based on the multidrug resistance
regulator LmrR, a dimeric transcription factor with a large, hydrophobic
binding pocket at its dimer interface. In this pocket, there are two
tryptophan moieties, which are important for promiscuous binding of
planar hydrophobic conjugated compounds by π-stacking. The catalytic
machinery is introduced either by the covalent linkage of a catalytically
active metal complex or via the ligand or supramolecular assembly,
taking advantage of the two central tryptophan moieties for noncovalent
binding of transition-metal complexes. Designs based on the
chemical modification of LmrR were successful
in catalysis, but this approach proved too laborious to be practical.
Therefore, expanded genetic code methodologies were used to introduce
metal binding unnatural amino acids during LmrR biosynthesis in vivo.
These ARMs have been successfully applied in Cu(II) catalyzed Friedel–Crafts
alkylation of indoles. The extension to MDRs from the TetR family
resulted in ARMs capable of providing the opposite enantiomer of the
Friedel–Crafts product. We have employed a computationally
assisted redesign of these ARMs to create a more active and selective
artificial hydratase, introducing a glutamate as a general base at
a judicious position so it can activate and direct the incoming water
nucleophile. A supramolecularly assembled ARM from LmrR and
copper(II)–phenanthroline
was successful in Friedel–Crafts alkylation reactions, giving
rise to up to 94% ee. Also, hemin was bound, resulting in an artificial
heme enzyme for enantioselective cyclopropanation reactions. The importance
of structural dynamics of LmrR was suggested by computational studies,
which showed that the pore can open up to allow access of substrates
to the catalytic iron center, which, according to the crystal structure,
is deeply buried inside the protein. Finally, the assembly approaches
were combined to introduce both
a catalytic and a regulatory domain, resulting in an ARM that was
specifically activated in the presence of Fe(II) salts but not Zn(II)
salts. Our work demonstrates that LmrR is a privileged scaffold
for ARM
design: It allows for multiple assembly methods and even combinations
of these, it can be applied in a variety of different catalytic reactions,
and it shows significant structural dynamics that contribute to achieving
the desired catalytic activity. Moreover, both the creation via expanded
genetic code methods as well as the supramolecular assembly make LmrR-based
ARMs highly suitable for achieving the ultimate goal of the integration
of ARMs in biosynthetic pathways in vivo to create a hybrid metabolism.
Collapse
Affiliation(s)
- Gerard Roelfes
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
25
|
Hauf S, Herrmann J, Miethke M, Gibhardt J, Commichau FM, Müller R, Fuchs S, Halbedel S. Aurantimycin resistance genes contribute to survival of Listeria monocytogenes during life in the environment. Mol Microbiol 2019; 111:1009-1024. [PMID: 30648305 DOI: 10.1111/mmi.14205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2019] [Indexed: 12/16/2022]
Abstract
Bacteria can cope with toxic compounds such as antibiotics by inducing genes for their detoxification. A common detoxification strategy is compound excretion by ATP-binding cassette (ABC) transporters, which are synthesized upon compound contact. We previously identified the multidrug resistance ABC transporter LieAB in Listeria monocytogenes, a Gram-positive bacterium that occurs ubiquitously in the environment, but also causes severe infections in humans upon ingestion. Expression of the lieAB genes is strongly induced in cells lacking the PadR-type transcriptional repressor LftR, but compounds leading to relief of this repression in wild-type cells were not known. Using RNA-Seq and promoter-lacZ fusions, we demonstrate highly specific repression of the lieAB and lftRS promoters through LftR. Screening of a natural compound library yielded the depsipeptide aurantimycin A - synthesized by the soil-dwelling Streptomyces aurantiacus - as the first known naturally occurring inducer of lieAB expression. Genetic and phenotypic experiments concordantly show that aurantimycin A is a substrate of the LieAB transporter and thus, lftRS and lieAB represent the first known genetic module conferring and regulating aurantimycin A resistance. Collectively, these genes may support the survival of L. monocytogenes when it comes into contact with antibiotic-producing bacteria in the soil.
Collapse
Affiliation(s)
- Samuel Hauf
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Burgstrasse 37, Wernigerode, 38855, Germany
| | - Jennifer Herrmann
- Department of Microbial Natural Products, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Campus E8.1, Saarbrücken, 66123, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, 38124, Germany
| | - Marcus Miethke
- Department of Microbial Natural Products, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Campus E8.1, Saarbrücken, 66123, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, 38124, Germany
| | - Johannes Gibhardt
- Department of General Microbiology, University of Göttingen, Grisebachstrasse 8, Göttingen, 37077, Germany
| | - Fabian M Commichau
- Department of General Microbiology, University of Göttingen, Grisebachstrasse 8, Göttingen, 37077, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Campus E8.1, Saarbrücken, 66123, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, 38124, Germany
| | - Stephan Fuchs
- FG13 Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Burgstrasse 37, Wernigerode, 38855, Germany
| | - Sven Halbedel
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Burgstrasse 37, Wernigerode, 38855, Germany
| |
Collapse
|
26
|
Stetz MA, Caro JA, Kotaru S, Yao X, Marques BS, Valentine KG, Wand AJ. Characterization of Internal Protein Dynamics and Conformational Entropy by NMR Relaxation. Methods Enzymol 2018; 615:237-284. [PMID: 30638531 PMCID: PMC6364297 DOI: 10.1016/bs.mie.2018.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Recent studies suggest that the fast timescale motion of methyl-bearing side chains may play an important role in mediating protein activity. These motions have been shown to encapsulate the residual conformational entropy of the folded state that can potentially contribute to the energetics of protein function. Here, we provide an overview of how to characterize these motions using nuclear magnetic resonance (NMR) spin relaxation methods. The strengths and limitations of several techniques are highlighted in order to assist with experimental design. Particular emphasis is placed on the practical aspects of sample preparation, data collection, data fitting, and statistical analysis. Additionally, discussion of the recently refined "entropy meter" is presented and its use in converting NMR observables to conformational entropy is illustrated. Taken together, these methods should yield new insights into the complex interplay between structure and dynamics in protein function.
Collapse
Affiliation(s)
- Matthew A Stetz
- Johnson Research Foundation and Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - José A Caro
- Johnson Research Foundation and Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sravya Kotaru
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Xuejun Yao
- Johnson Research Foundation and Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Bryan S Marques
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kathleen G Valentine
- Johnson Research Foundation and Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - A Joshua Wand
- Johnson Research Foundation and Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
27
|
Villarino L, Splan KE, Reddem E, Alonso‐Cotchico L, Gutiérrez de Souza C, Lledós A, Maréchal J, Thunnissen AWH, Roelfes G. An Artificial Heme Enzyme for Cyclopropanation Reactions. Angew Chem Int Ed Engl 2018; 57:7785-7789. [PMID: 29719099 PMCID: PMC6033091 DOI: 10.1002/anie.201802946] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/01/2018] [Indexed: 12/12/2022]
Abstract
An artificial heme enzyme was created through self-assembly from hemin and the lactococcal multidrug resistance regulator (LmrR). The crystal structure shows the heme bound inside the hydrophobic pore of the protein, where it appears inaccessible for substrates. However, good catalytic activity and moderate enantioselectivity was observed in an abiological cyclopropanation reaction. We propose that the dynamic nature of the structure of the LmrR protein is key to the observed activity. This was supported by molecular dynamics simulations, which showed transient formation of opened conformations that allow the binding of substrates and the formation of pre-catalytic structures.
Collapse
Affiliation(s)
- Lara Villarino
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Kathryn E. Splan
- Department of ChemistryMacalester College1600 Grand AvenueSaint PaulMN55105USA
| | - Eswar Reddem
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Lur Alonso‐Cotchico
- Departament de QuímicaUniversitat Autònoma de BarcelonaEdifici C.n.08193 Cerdanyola del VallésBarcelonaSpain
| | - Cora Gutiérrez de Souza
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Agustí Lledós
- Departament de QuímicaUniversitat Autònoma de BarcelonaEdifici C.n.08193 Cerdanyola del VallésBarcelonaSpain
| | - Jean‐Didier Maréchal
- Departament de QuímicaUniversitat Autònoma de BarcelonaEdifici C.n.08193 Cerdanyola del VallésBarcelonaSpain
| | - Andy‐Mark W. H. Thunnissen
- Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Gerard Roelfes
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| |
Collapse
|
28
|
Villarino L, Splan KE, Reddem E, Alonso-Cotchico L, Gutiérrez de Souza C, Lledós A, Maréchal JD, Thunnissen AMWH, Roelfes G. An Artificial Heme Enzyme for Cyclopropanation Reactions. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802946] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lara Villarino
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Kathryn E. Splan
- Department of Chemistry; Macalester College; 1600 Grand Avenue Saint Paul MN 55105 USA
| | - Eswar Reddem
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Lur Alonso-Cotchico
- Departament de Química; Universitat Autònoma de Barcelona; Edifici C.n. 08193 Cerdanyola del Vallés Barcelona Spain
| | - Cora Gutiérrez de Souza
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Agustí Lledós
- Departament de Química; Universitat Autònoma de Barcelona; Edifici C.n. 08193 Cerdanyola del Vallés Barcelona Spain
| | - Jean-Didier Maréchal
- Departament de Química; Universitat Autònoma de Barcelona; Edifici C.n. 08193 Cerdanyola del Vallés Barcelona Spain
| | - Andy-Mark W. H. Thunnissen
- Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Gerard Roelfes
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
29
|
Takeuchi K, Imai M, Shimada I. Dynamic equilibrium on DNA defines transcriptional regulation of a multidrug binding transcriptional repressor, LmrR. Sci Rep 2017; 7:267. [PMID: 28325892 PMCID: PMC5428041 DOI: 10.1038/s41598-017-00257-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/14/2017] [Indexed: 11/09/2022] Open
Abstract
LmrR is a multidrug binding transcriptional repressor that controls the expression of a major multidrug transporter, LmrCD, in Lactococcus lactis. Promiscuous compound ligations reduce the affinity of LmrR for the lmrCD operator by several fold to release the transcriptional repression; however, the affinity reduction is orders of magnitude smaller than that of typical transcriptional repressors. Here, we found that the transcriptional regulation of LmrR is achieved through an equilibrium between the operator-bound and non-specific DNA-adsorption states in vivo. The effective dissociation constant of LmrR for the lmrCD operator under the equilibrium is close to the endogenous concentration of LmrR, which allows a substantial reduction of LmrR occupancy upon compound ligations. Therefore, LmrR represents a dynamic type of transcriptional regulation of prokaryotic multidrug resistance systems, where the small affinity reduction induced by compounds is coupled to the functional relocalization of the repressor on the genomic DNA via nonspecific DNA adsorption.
Collapse
Affiliation(s)
- Koh Takeuchi
- Biomedicinal Information Research Center & Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Aomi 2-3-26, Koto-ku, Tokyo, 135-0064, Japan.,PRESTO, JST, Aomi 2-3-26, Koto-ku, Tokyo, 135-0064, Japan
| | - Misaki Imai
- Research and Development Department, Japan Biological Informatics Consortium, Aomi 2-3-26, Koto-ku, Tokyo, 135-0064, Japan
| | - Ichio Shimada
- Biomedicinal Information Research Center & Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Aomi 2-3-26, Koto-ku, Tokyo, 135-0064, Japan. .,Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
30
|
Toyama Y, Kano H, Mase Y, Yokogawa M, Osawa M, Shimada I. Dynamic regulation of GDP binding to G proteins revealed by magnetic field-dependent NMR relaxation analyses. Nat Commun 2017; 8:14523. [PMID: 28223697 PMCID: PMC5322562 DOI: 10.1038/ncomms14523] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/10/2017] [Indexed: 11/30/2022] Open
Abstract
Heterotrimeric guanine-nucleotide-binding proteins (G proteins) serve as molecular switches in signalling pathways, by coupling the activation of cell surface receptors to intracellular responses. Mutations in the G protein α-subunit (Gα) that accelerate guanosine diphosphate (GDP) dissociation cause hyperactivation of the downstream effector proteins, leading to oncogenesis. However, the structural mechanism of the accelerated GDP dissociation has remained unclear. Here, we use magnetic field-dependent nuclear magnetic resonance relaxation analyses to investigate the structural and dynamic properties of GDP bound Gα on a microsecond timescale. We show that Gα rapidly exchanges between a ground-state conformation, which tightly binds to GDP and an excited conformation with reduced GDP affinity. The oncogenic D150N mutation accelerates GDP dissociation by shifting the equilibrium towards the excited conformation. Heterotrimeric guanine-nucleotide-binding proteins (G proteins) act as molecular switches. Here the authors use NMR relaxation analyses, which reveal the dynamics of G protein alpha subunit binding to GDP on a microsecond timescale.
Collapse
Affiliation(s)
- Yuki Toyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Japan Biological Informatics Consortium (JBiC), Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Hanaho Kano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoko Mase
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mariko Yokogawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masanori Osawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ichio Shimada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
31
|
Bersellini M, Roelfes G. Multidrug resistance regulators (MDRs) as scaffolds for the design of artificial metalloenzymes. Org Biomol Chem 2017; 15:3069-3073. [DOI: 10.1039/c7ob00390k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Artificial metalloenzymes were created from multidrug resistance regulator proteins by in vivo incorporation of an unnatural metal binding amino acid.
Collapse
Affiliation(s)
- Manuela Bersellini
- Stratingh Institute for Chemistry
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| | - Gerard Roelfes
- Stratingh Institute for Chemistry
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| |
Collapse
|
32
|
Hikiri S, Yoshidome T, Ikeguchi M. Computational Methods for Configurational Entropy Using Internal and Cartesian Coordinates. J Chem Theory Comput 2016; 12:5990-6000. [DOI: 10.1021/acs.jctc.6b00563] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Simon Hikiri
- Graduate School of Medical
Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Takashi Yoshidome
- Graduate School of Medical
Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical
Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
33
|
Isom CE, Menon SK, Thomas LM, West AH, Richter-Addo GB, Karr EA. Crystal structure and DNA binding activity of a PadR family transcription regulator from hypervirulent Clostridium difficile R20291. BMC Microbiol 2016; 16:231. [PMID: 27716049 PMCID: PMC5050560 DOI: 10.1186/s12866-016-0850-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/24/2016] [Indexed: 01/05/2023] Open
Abstract
Background Clostridium difficile is a spore-forming obligate anaerobe that can remain viable for extended periods, even in the presence of antibiotics, which contributes to the persistence of this bacterium as a human pathogen during host-to-host transmission and in hospital environments. We examined the structure and function of a gene product with the locus tag CDR20291_0991 (cdPadR1) as part of our broader goal aimed at elucidating transcription regulatory mechanisms involved in virulence and antibiotic resistance of the recently emergent hypervirulent C. difficile strain R20291. cdPadR1 is genomically positioned near genes that are involved in stress response and virulence. In addition, it was previously reported that cdPadR1 and a homologue from the historical C. difficile strain 630 (CD630_1154) were differentially expressed when exposed to stressors, including antibiotics. Results The crystal structure of cdPadR1 was determined to 1.9 Å resolution, which revealed that it belongs to the PadR-s2 subfamily of PadR transcriptional regulators. cdPadR1 binds its own promoter and other promoter regions from within the C. difficile R20291 genome. DNA binding experiments demonstrated that cdPadR1 binds a region comprised of inverted repeats and an AT-rich core with the predicted specific binding motif, GTACTAT(N2)ATTATA(N)AGTA, within its own promoter that is also present in 200 other regions in the C. difficile R20291 genome. Mutation of the highly conserved W in α4 of the effector binding/oligomerization domain, which is predicted to be involved in multi-drug recognition and dimerization in other PadR-s2 proteins, resulted in alterations of cdPadR1 binding to the predicted binding motif, potentially due to loss of higher order oligomerization. Conclusions Our results indicate that cdPadR1 binds a region within its own promoter consisting of the binding motif GTACTAT(N2)ATTATA(N)AGTA and seems to associate non-specifically with longer DNA fragments in vitro, which may facilitate promoter and motif searching. This suggests that cdPadR1 acts as a transcriptional auto-regulator, binding specific sites within its own promoter, and is part of a broad gene regulatory network involved, in part, with environmental stress response, antibiotic resistance and virulence. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0850-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Catherine E Isom
- Price Family Foundation Institute of Structural Biology and Department of Microbiology and Plant Biology, University of Oklahoma, 770 Van Vleet Oval, Norman, OK, 73019, USA.,Price Family Foundation Institute of Structural Biology and Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| | - Smita K Menon
- Price Family Foundation Institute of Structural Biology and Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| | - Leonard M Thomas
- Price Family Foundation Institute of Structural Biology and Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| | - Ann H West
- Price Family Foundation Institute of Structural Biology and Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| | - George B Richter-Addo
- Price Family Foundation Institute of Structural Biology and Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| | - Elizabeth A Karr
- Price Family Foundation Institute of Structural Biology and Department of Microbiology and Plant Biology, University of Oklahoma, 770 Van Vleet Oval, Norman, OK, 73019, USA.
| |
Collapse
|
34
|
Moreno A, Froehlig JR, Bachas S, Gunio D, Alexander T, Vanya A, Wade H. Solution Binding and Structural Analyses Reveal Potential Multidrug Resistance Functions for SAV2435 and CTR107 and Other GyrI-like Proteins. Biochemistry 2016; 55:4850-63. [PMID: 27505298 DOI: 10.1021/acs.biochem.6b00651] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multidrug resistance (MDR) refers to the acquired ability of cells to tolerate a broad range of toxic compounds. One mechanism cells employ is to increase the level of expression of efflux pumps for the expulsion of xenobiotics. A key feature uniting efflux-related mechanisms is multidrug (MD) recognition, either by efflux pumps themselves or by their transcriptional regulators. However, models describing MD binding by MDR effectors are incomplete, underscoring the importance of studies focused on the recognition elements and key motifs that dictate polyspecific binding. One such motif is the GyrI-like domain, which is found in several MDR proteins and is postulated to have been adapted for small-molecule binding and signaling. Here we report the solution binding properties and crystal structures of two proteins containing GyrI-like domains, SAV2435 and CTR107, bound to various ligands. Furthermore, we provide a comparison with deposited crystal structures of GyrI-like proteins, revealing key features of GyrI-like domains that not only support polyspecific binding but also are conserved among GyrI-like domains. Together, our studies suggest that GyrI-like domains perform evolutionarily conserved functions connected to multidrug binding and highlight the utility of these types of studies for elucidating mechanisms of MDR.
Collapse
Affiliation(s)
- Andrew Moreno
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - John R Froehlig
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Sharrol Bachas
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Drew Gunio
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Teressa Alexander
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Aaron Vanya
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Herschel Wade
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| |
Collapse
|
35
|
Boulton S, Melacini G. Advances in NMR Methods To Map Allosteric Sites: From Models to Translation. Chem Rev 2016; 116:6267-304. [PMID: 27111288 DOI: 10.1021/acs.chemrev.5b00718] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The last five years have witnessed major developments in the understanding of the allosteric phenomenon, broadly defined as coupling between remote molecular sites. Such advances have been driven not only by new theoretical models and pharmacological applications of allostery, but also by progress in the experimental approaches designed to map allosteric sites and transitions. Among these techniques, NMR spectroscopy has played a major role given its unique near-atomic resolution and sensitivity to the dynamics that underlie allosteric couplings. Here, we highlight recent progress in the NMR methods tailored to investigate allostery with the goal of offering an overview of which NMR approaches are best suited for which allosterically relevant questions. The picture of the allosteric "NMR toolbox" is provided starting from one of the simplest models of allostery (i.e., the four-state thermodynamic cycle) and continuing to more complex multistate mechanisms. We also review how such an "NMR toolbox" has assisted the elucidation of the allosteric molecular basis for disease-related mutations and the discovery of novel leads for allosteric drugs. From this overview, it is clear that NMR plays a central role not only in experimentally validating transformative theories of allostery, but also in tapping the full translational potential of allosteric systems.
Collapse
Affiliation(s)
- Stephen Boulton
- Department of Chemistry and Chemical Biology Department of Biochemistry and Biomedical Sciences, McMaster University , 1280 Main St. W., Hamilton L8S 4M1, Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology Department of Biochemistry and Biomedical Sciences, McMaster University , 1280 Main St. W., Hamilton L8S 4M1, Canada
| |
Collapse
|
36
|
Ferrage F, Dutta K, Cowburn D. Identification of Hydrophobic Interfaces in Protein-Ligand Complexes by Selective Saturation Transfer NMR Spectroscopy. Molecules 2015; 20:21992-9. [PMID: 26690112 PMCID: PMC6332028 DOI: 10.3390/molecules201219824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/17/2015] [Accepted: 11/26/2015] [Indexed: 11/28/2022] Open
Abstract
The proper characterization of protein-ligand interfaces is essential for structural biology, with implications ranging from the fundamental understanding of biological processes to pharmacology. Nuclear magnetic resonance is a powerful technique for such studies. We propose a novel approach to the direct determination of the likely pose of a peptide ligand onto a protein partner, by using frequency-selective cross-saturation with a low stringency isotopic labeling methods. Our method illustrates a complex of the Src homology 3 domain of C-terminal Src kinase with a peptide from the proline-enriched tyrosine phosphatase.
Collapse
Affiliation(s)
- Fabien Ferrage
- New York Structural Biology Center, New York, NY 10027, USA.
- Department of Chemistry, École Normale Supérieure-PSL Research University, 24 rue Lhomond, 75005 Paris, France.
- LBM, Sorbonne Universités, UPMC Univ Paris 06, 4 place Jussieu, F-75005 Paris, France.
- UMR 7203 LBM, CNRS, F-75005 Paris, France.
| | - Kaushik Dutta
- New York Structural Biology Center, New York, NY 10027, USA.
| | - David Cowburn
- New York Structural Biology Center, New York, NY 10027, USA.
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
37
|
Wacher-Rodarte MDC, Trejo-Muñúzuri TP, Montiel-Aguirre JF, Drago-Serrano ME, Gutiérrez-Lucas RL, Castañeda-Sánchez JI, Sainz-Espuñes T. Antibiotic resistance and multidrug-resistant efflux pumps expression in lactic acid bacteria isolated from pozol, a nonalcoholic Mayan maize fermented beverage. Food Sci Nutr 2015; 4:423-30. [PMID: 27247772 PMCID: PMC4867762 DOI: 10.1002/fsn3.304] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/18/2015] [Accepted: 09/21/2015] [Indexed: 01/22/2023] Open
Abstract
Pozol is a handcrafted nonalcoholic Mayan beverage produced by the spontaneous fermentation of maize dough by lactic acid bacteria. Lactic acid bacteria (LAB) are carriers of chromosomal encoded multidrug‐resistant efflux pumps genes that can be transferred to pathogens and/or confer resistance to compounds released during the fermentation process causing food spoiling. The aim of this study was to evaluate the antibiotic sensibility and the transcriptional expression of ABC‐type efflux pumps in LAB isolated from pozol that contributes to multidrug resistance. Analysis of LAB and Staphylococcus (S.) aureus ATCC 29213 and ATCC 6538 control strains to antibiotic susceptibility, minimal inhibitory concentration (MIC), and minimal bactericidal concentration (MBC) to ethidium bromide were based in “standard methods” whereas the ethidium bromide efflux assay was done by fluorometric assay. Transcriptional expression of efflux pumps was analyzed by RT‐PCR. LAB showed antibiotic multiresistance profiles, moreover, Lactococcus (L.) lactis and Lactobacillus (L.) plantarum displayed higher ethidium bromide efflux phenotype than S. aureus control strains. Ethidium bromide resistance and ethidium bromide efflux phenotypes were unrelated with the overexpression of lmrD in L. lactics, or the underexpression of lmrA in L. plantarum and norA in S. aureus. These findings suggest that, moreover, the analyzed efflux pumps genes, other unknown redundant mechanisms may underlie the antibiotic resistance and the ethidium bromide efflux phenotype in L. lactis and L. plantarum. Phenotypic and molecular drug multiresistance assessment in LAB may improve a better selection of the fermentation starter cultures used in pozol, and to control the antibiotic resistance widespread and food spoiling for health safety.
Collapse
Affiliation(s)
- Maria Del Carmen Wacher-Rodarte
- Depto de Alimentos y Biotecnología Facultad de Química UNAM Ciudad Universitaria Coyoacán 04510 México Distrito Federal México
| | - Tanya Paulina Trejo-Muñúzuri
- Depto de Alimentos y Biotecnología Facultad de Química UNAM Ciudad Universitaria Coyoacán 04510 México Distrito Federal México
| | | | - Maria Elisa Drago-Serrano
- Depto. Sistemas Biológicos UAM-Xochimilco Calzada del Hueso No.1100, Coyoacan 04960 Mexico Distrito Federal México
| | - Raúl L Gutiérrez-Lucas
- Depto. Sistemas Biológicos UAM-Xochimilco Calzada del Hueso No.1100, Coyoacan 04960 Mexico Distrito Federal México
| | | | - Teresita Sainz-Espuñes
- Depto. Sistemas Biológicos UAM-Xochimilco Calzada del Hueso No.1100, Coyoacan 04960 Mexico Distrito Federal México
| |
Collapse
|
38
|
van der Berg JP, Madoori PK, Komarudin AG, Thunnissen AM, Driessen AJM. Binding of the Lactococcal Drug Dependent Transcriptional Regulator LmrR to Its Ligands and Responsive Promoter Regions. PLoS One 2015; 10:e0135467. [PMID: 26267906 PMCID: PMC4534193 DOI: 10.1371/journal.pone.0135467] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/22/2015] [Indexed: 11/18/2022] Open
Abstract
The heterodimeric ABC transporter LmrCD from Lactococcus lactis is able to extrude several different toxic compounds from the cell, fulfilling a role in the intrinsic and induced drug resistance. The expression of the lmrCD genes is regulated by the multi-drug binding repressor LmrR, which also binds to its own promoter to autoregulate its own expression. Previously, we reported the crystal structure of LmrR in the presence and absence of the drugs Hoechst 33342 and daunomycin. Analysis of the mechanism how drugs control the repressor activity of LmrR is impeded by the fact that these drugs also bind to DNA. Here we identified, using X-ray crystallography and fluorescence, that riboflavin binds into the drug binding cavity of LmrR, adopting a similar binding mode as Hoechst 33342 and daunomycin. Microscale thermophoresis was employed to quantify the binding affinity of LmrR to its responsive promoter regions and to evaluate the cognate site of LmrR in the lmrCD promoter region. Riboflavin reduces the binding affinity of LmrR for the promoter regions. Our results support a model wherein drug binding to LmrR relieves the LmrR dependent repression of the lmrCD genes.
Collapse
Affiliation(s)
- Jan Pieter van der Berg
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Pramod Kumar Madoori
- Department of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Amalina Ghaisani Komarudin
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Andy-Mark Thunnissen
- Department of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Arnold J. M. Driessen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
39
|
Bos J, Browne WR, Driessen AJM, Roelfes G. Supramolecular Assembly of Artificial Metalloenzymes Based on the Dimeric Protein LmrR as Promiscuous Scaffold. J Am Chem Soc 2015. [DOI: 10.1021/jacs.5b05790] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jeffrey Bos
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Wesley R. Browne
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Arnold J. M. Driessen
- Groningen
Biomolecular Sciences and Biotechnology Institute and the Zernike
Institute for Advanced Materials, University of Groningen, Nijenborgh
7, 9747 AG, Groningen, The Netherlands
| | - Gerard Roelfes
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
40
|
Kaval KG, Hahn B, Tusamda N, Albrecht D, Halbedel S. The PadR-like transcriptional regulator LftR ensures efficient invasion of Listeria monocytogenes into human host cells. Front Microbiol 2015; 6:772. [PMID: 26284051 PMCID: PMC4517056 DOI: 10.3389/fmicb.2015.00772] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/14/2015] [Indexed: 12/11/2022] Open
Abstract
Invasion of the bacterial pathogen Listeria monocytogenes into human host cells requires specialized surface molecules for attachment and induction of phagocytosis. However, efficient invasion is also dependent on factors with house-keeping functions, such as SecA2-dependent secretion of autolysins for post-divisional segregation of daughter cells. Mutations in this pathway prevent degradation of peptidoglycan cross-walls, so that long cell chains are formed that cannot be phagocytosed. The extreme chaining of such mutants manifests as rough colony phenotype. One rough clone was isolated from a transposon library with a transposon insertion in the uncharacterized lmo0720 gene (lftS) together with a spontaneous point mutation in the secA2 gene. We separated both mutations and demonstrated that this point mutation in the intramolecular regulator 2 domain of SecA2 was sufficient to inactivate the protein. In contrast, lftS deletion did not cause a ΔsecA2-like phenotype. lftS is located in an operon with lftR (lmo0719), encoding a PadR-like transcriptional regulator, and lftR deletion affected growth, invasion and day-light dependent coordination of swarming. Inactivation of lftS partially suppressed these phenotypes, suggesting a functional relationship between LftR and LftS. However, the invasion defect of the ΔlftR mutant was only marginally suppressed by lftS removal. LftR regulates expression of the lmo0979–0980 (lieAB) operon, encoding a putative multidrug resistance transporter and lieAB transcription was strongly upregulated in the absence of LftR. Deletion of lieAB in the ΔlftR background restores wild type-like invasion levels. Hence, we conclude that tight transcriptional repression of the lieAB operon is essential for efficient listerial host cell invasion.
Collapse
Affiliation(s)
- Karan G Kaval
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute Wernigerode, Germany
| | - Birgitt Hahn
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute Wernigerode, Germany
| | - Nayana Tusamda
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute Wernigerode, Germany
| | - Dirk Albrecht
- Institute of Microbiology, University of Greifswald Greifswald, Germany
| | - Sven Halbedel
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute Wernigerode, Germany
| |
Collapse
|