1
|
Vieira MFM, Hernandez G, Zhong Q, Arbesú M, Veloso T, Gomes T, Martins ML, Monteiro H, Frazão C, Frankel G, Zanzoni A, Cordeiro TN. The pathogen-encoded signalling receptor Tir exploits host-like intrinsic disorder for infection. Commun Biol 2024; 7:179. [PMID: 38351154 PMCID: PMC10864410 DOI: 10.1038/s42003-024-05856-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
The translocated intimin receptor (Tir) is an essential type III secretion system (T3SS) effector of attaching and effacing pathogens contributing to the global foodborne disease burden. Tir acts as a cell-surface receptor in host cells, rewiring intracellular processes by targeting multiple host proteins. We investigated the molecular basis for Tir's binding diversity in signalling, finding that Tir is a disordered protein with host-like binding motifs. Unexpectedly, also are several other T3SS effectors. By an integrative approach, we reveal that Tir dimerises via an antiparallel OB-fold within a highly disordered N-terminal cytosolic domain. Also, it has a long disordered C-terminal cytosolic domain partially structured at host-like motifs that bind lipids. Membrane affinity depends on lipid composition and phosphorylation, highlighting a previously unrecognised host interaction impacting Tir-induced actin polymerisation and cell death. Furthermore, multi-site tyrosine phosphorylation enables Tir to engage host SH2 domains in a multivalent fuzzy complex, consistent with Tir's scaffolding role and binding promiscuity. Our findings provide insights into the intracellular Tir domains, highlighting the ability of T3SS effectors to exploit host-like protein disorder as a strategy for host evasion.
Collapse
Affiliation(s)
- Marta F M Vieira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Guillem Hernandez
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Qiyun Zhong
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK
| | - Miguel Arbesú
- Department of NMR-supported Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
- InstaDeep Ltd, 5 Merchant Square, London, UK
| | - Tiago Veloso
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Tiago Gomes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Maria L Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Hugo Monteiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Carlos Frazão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Gad Frankel
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK
| | - Andreas Zanzoni
- Aix-Marseille Université, Inserm, TAGC, UMR_S1090, Marseille, France
| | - Tiago N Cordeiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal.
| |
Collapse
|
2
|
Wuchty S, White AK, Olthof AM, Drake K, Hume AJ, Olejnik J, Aguiar-Pulido V, Mühlberger E, Kanadia RN. Minor intron-containing genes as an ancient backbone for viral infection? PNAS NEXUS 2024; 3:pgad479. [PMID: 38274120 PMCID: PMC10810330 DOI: 10.1093/pnasnexus/pgad479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024]
Abstract
Minor intron-containing genes (MIGs) account for <2% of all human protein-coding genes and are uniquely dependent on the minor spliceosome for proper excision. Despite their low numbers, we surprisingly found a significant enrichment of MIG-encoded proteins (MIG-Ps) in protein-protein interactomes and host factors of positive-sense RNA viruses, including SARS-CoV-1, SARS-CoV-2, MERS coronavirus, and Zika virus. Similarly, we observed a significant enrichment of MIG-Ps in the interactomes and sets of host factors of negative-sense RNA viruses such as Ebola virus, influenza A virus, and the retrovirus HIV-1. We also found an enrichment of MIG-Ps in double-stranded DNA viruses such as Epstein-Barr virus, human papillomavirus, and herpes simplex viruses. In general, MIG-Ps were highly connected and placed in central positions in a network of human-host protein interactions. Moreover, MIG-Ps that interact with viral proteins were enriched with essential genes. We also provide evidence that viral proteins interact with ancestral MIGs that date back to unicellular organisms and are mainly involved in basic cellular functions such as cell cycle, cell division, and signal transduction. Our results suggest that MIG-Ps form a stable, evolutionarily conserved backbone that viruses putatively tap to invade and propagate in human host cells.
Collapse
Affiliation(s)
- Stefan Wuchty
- Department of Computer Science, University of Miami, Coral Gables, FL 33146, USA
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
- Institute of Data Science and Computing, University of Miami, Coral Gables, FL 33146, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33134, USA
| | - Alisa K White
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Anouk M Olthof
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Kyle Drake
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Adam J Hume
- Department of Virology, Immunology and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA
- Center for Emerging Infectious Diseases Policy and Research, Boston University, Boston, MA 02118, USA
| | - Judith Olejnik
- Department of Virology, Immunology and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA
| | | | - Elke Mühlberger
- Department of Virology, Immunology and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA
| | - Rahul N Kanadia
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW This review updates recent findings about Escherichia coli O157:H7 virulence factors and its bovine reservoir. This Shiga toxin (Stx)-producing E. coli belongs to the Enterohemorrhagic E. coli (EHEC) pathotype causing hemorrhagic colitis. Its low infectious dose makes it an efficient, severe, foodborne pathogen. Although EHEC remains in the intestine, Stx can translocate systemically and is cytotoxic to microvascular endothelial cells, especially in the kidney and brain. Disease can progress to life-threatening hemolytic uremic syndrome (HUS) with hemolytic anemia, acute kidney failure, and thrombocytopenia. Young children, the immunocompromised, and the elderly are at the highest risk for HUS. Healthy ruminants are the major reservoir of EHEC and cattle are the primary source of human exposure. RECENT FINDINGS Advances in understanding E. coli O157:H7 pathogenesis include molecular mechanisms of virulence, bacterial adherence, type three secretion effectors, intestinal microbiome, inflammation, and reservoir maintenance. SUMMARY Many aspects of E. coli O157:H7 disease remain unclear and include the role of the human and bovine intestinal microbiomes in infection. Therapeutic strategies involve controlling inflammatory responses and/or intestinal barrier function. Finally, elimination/reduction of E. coli O157:H7 in cattle using CRISPR-engineered conjugative bacterial plasmids and/or on-farm management likely hold solutions to reduce infections and increase food safety/security.
Collapse
|
4
|
Ma M, Zeng G, Li J, Liang J, Huang L, Chen J, Lai J. Expressional and prognostic value of HPCAL1 in cholangiocarcinoma via integrated bioinformatics analyses and experiments. Cancer Med 2022; 12:824-836. [PMID: 35645147 PMCID: PMC9844623 DOI: 10.1002/cam4.4897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/25/2022] [Accepted: 05/04/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Hippocalcin-like 1 (HPCAL1) is involved in the development of several cancer types. However, our understanding of the HPCAL1 activity in cholangiocarcinoma (CCA) remains limited. METHODS Two microarray datasets were used to screen for differentially expressed genes (DEGs) involved in the development of CCA. The Cancer Genome Atlas (TCGA)/Gene Expression Omnibus (GEO) database was integrated to determine the prognostic significance of DEGs in CCA. The association between clinical characteristics and HPCAL1 expression levels was initially explored to assess the clinical profile of CCA. The prognostic value of HPCAL1 overexpression in the validation cohort was analyzed, followed by Gene Ontology (GO) term analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of HPCAL1. RESULTS Three upregulated genes and 10 downregulated genes were detected from two microarray-based screenings. High expression of HPCAL1 as a poor prognostic factor of CCA was validated using TCGA/GEO integrated database and our database. Univariate and multivariate analyses along with Kaplan-Meier survival analysis showed that high HPCAL1 expression was an independent factor affecting the overall survival and relapse-free survival in patients with CCA. The high expression of HPCAL1 was significantly associated with cancer antigen 125 (CA-125) levels, number of tumors, lymph node invasion, and TNM stage. Analysis of the enriched GO terms and KEGG pathways revealed that the high expression of HPCAL1 was involved in the critical biological processes and molecular pathways, including modulation by a host of symbiont processes, the clathrin coat, actinin binding, and Rap1 signaling pathways. CONCLUSION HPCAL1 was enriched in CCA in our study and has the potential to be applied in the identification of patients with CCA with an unfavorable prognosis.
Collapse
Affiliation(s)
- Mingjian Ma
- Department of Pancreato‐Biliary SurgeryFirst Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouPR China
| | - Guangyan Zeng
- Department of Pancreato‐Biliary SurgeryFirst Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouPR China,Department of Gastrointestinal SurgeryEighth Affiliated Hospital, Sun Yat‐sen UniversityShenzhenPR China
| | - Jinhui Li
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
| | - Jiahua Liang
- Department of Pancreato‐Biliary SurgeryFirst Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouPR China
| | - Li Huang
- Department of Pancreato‐Biliary SurgeryFirst Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouPR China
| | - Jiancong Chen
- Department of Pancreato‐Biliary SurgeryFirst Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouPR China
| | - Jiaming Lai
- Department of Pancreato‐Biliary SurgeryFirst Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouPR China
| |
Collapse
|
5
|
Walch P, Selkrig J, Knodler LA, Rettel M, Stein F, Fernandez K, Viéitez C, Potel CM, Scholzen K, Geyer M, Rottner K, Steele-Mortimer O, Savitski MM, Holden DW, Typas A. Global mapping of Salmonella enterica-host protein-protein interactions during infection. Cell Host Microbe 2021; 29:1316-1332.e12. [PMID: 34237247 PMCID: PMC8561747 DOI: 10.1016/j.chom.2021.06.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 02/24/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022]
Abstract
Intracellular bacterial pathogens inject effector proteins to hijack host cellular processes and promote their survival and proliferation. To systematically map effector-host protein-protein interactions (PPIs) during infection, we generated a library of 32 Salmonella enterica serovar Typhimurium (STm) strains expressing chromosomally encoded affinity-tagged effectors and quantified PPIs in macrophages and epithelial cells. We identified 446 effector-host PPIs, 25 of which were previously described, and validated 13 by reciprocal co-immunoprecipitation. While effectors converged on the same host cellular processes, most had multiple targets, which often differed between cell types. We demonstrate that SseJ, SseL, and SifA modulate cholesterol accumulation at the Salmonella-containing vacuole (SCV) partially via the cholesterol transporter Niemann-Pick C1 protein. PipB recruits the organelle contact site protein PDZD8 to the SCV, and SteC promotes actin bundling by phosphorylating formin-like proteins. This study provides a method for probing host-pathogen PPIs during infection and a resource for interrogating STm effector mechanisms.
Collapse
Affiliation(s)
- Philipp Walch
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany; Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Joel Selkrig
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Leigh A Knodler
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, USA; Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Mandy Rettel
- EMBL, Proteomics Core Facility, Heidelberg, Germany
| | - Frank Stein
- EMBL, Proteomics Core Facility, Heidelberg, Germany
| | - Keith Fernandez
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Cristina Viéitez
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany; EMBL European Bioinformatics Institute, (EMBL-EBI), Hinxton, UK
| | - Clément M Potel
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Karoline Scholzen
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Bonn, Germany
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, TU Braunschweig, Braunschweig, Germany; Molecular Cell Biology Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Olivia Steele-Mortimer
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Mikhail M Savitski
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany; EMBL, Proteomics Core Facility, Heidelberg, Germany
| | - David W Holden
- MRC Centre for Molecular Bacteriology and Infection, Imperial College, London, UK
| | - Athanasios Typas
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany.
| |
Collapse
|
6
|
Chen H, Shen J, Wang L, Chi C. APEX2S: A two‐layer machine learning model for discovery of host‐pathogen protein‐protein interactions on cloud‐based multiomics data. CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE 2020; 32. [DOI: 10.1002/cpe.5846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/30/2020] [Indexed: 01/03/2025]
Abstract
SummaryPresented by the avalanche of biological interactions data, computational biology is now facing greater challenges on big data analysis and solicits more studies to mine and integrate cloud‐based multiomics data, especially when the data are related to infectious diseases. Meanwhile, machine learning techniques have recently succeeded in different computational biology tasks. In this article, we have calibrated the focus for host‐pathogen protein‐protein interactions study, aiming to apply the machine learning techniques for learning the interactions data and making predictions. A comprehensive and practical workflow to harness different cloud‐based multiomics data is discussed. In particular, a novel two‐layer machine learning model, namely APEX2S, is proposed for discovery of the protein‐protein interactions data. The results show that our model can better learn and predict from the accumulated host‐pathogen protein‐protein interactions.
Collapse
Affiliation(s)
- Huaming Chen
- School of Computing and Information Technology University of Wollongong Wollongong New South Wales Australia
| | - Jun Shen
- School of Computing and Information Technology University of Wollongong Wollongong New South Wales Australia
| | - Lei Wang
- School of Computing and Information Technology University of Wollongong Wollongong New South Wales Australia
| | | |
Collapse
|
7
|
Vavougios GD, Nday C, Pelidou SH, Zarogiannis SG, Gourgoulianis KI, Stamoulis G, Doskas T. Double hit viral parasitism, polymicrobial CNS residency and perturbed proteostasis in Alzheimer's disease: A data driven, in silico analysis of gene expression data. Mol Immunol 2020; 127:124-135. [PMID: 32971399 DOI: 10.1016/j.molimm.2020.08.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/25/2020] [Accepted: 08/30/2020] [Indexed: 01/04/2023]
Abstract
The aim of this study was to determine the interaction of peripheral immunity vs. the CNS in the setting of AD pathogenesis at the transcriptomic level in a data driven manner. For this purpose, publicly available gene expression data from the GEO Datasets repository. We performed differential gene expression and functional enrichment analyses were performed on the five retrieved studies: (a) three hippocampal cortex (HC) studies (b) one study of peripheral blood mononuclear cells (PBMC) and (c) one involving neurofibrillary tangle - containing neurons of the entorhinal cortex (NFT EC). Subsequently, BLAST was used to determine protein conservation between human proteins vs. microbial, whereas putative protein / oligopeptide antigenicity were determined via RANKPep. Gene ontology and pathway analyses revealed significantly enriched viral parasitism pathways in both PBMC and NFT - EC datasets, mediated by ribosomal protein families and epigenetic regulators. Among these, a salient viral pathway referred to Influenza A infection. NFT - EC annotations included leukocyte chemotaxis and immune response pathways. All datasets were significantly enriched for infectious pathways, as well as pathways involved in impaired proteostasis and non - phagocytic cell phagosomal cascades. In conclusion, our in silico analysis outlined an ad hoc model of AD pathophysiology in which double hit (PBMC and NFT-EC) viral parasitism is mediated by eukaryotic translational hijacking, and may be further implicated by impaired immune responses. Overall, our results overlap with the antimicrobial protection hypothesis of AD pathogenesis and support the notion of a pathogen - driven etiology.
Collapse
Affiliation(s)
- George D Vavougios
- Department of Neurology, Athens Naval Hospital, P.C. 115 21, Athens, Greece; Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Biopolis, P.C, 41500, Larissa, Greece; Department of Computer Science and Telecommunications, University of Thessaly, Papasiopoulou 2 - 4, P.C. 35 131 Galaneika, Lamia, Greece.
| | - Christiane Nday
- Laboratory of Medical Physics, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, P.C. 5414, Thessaloniki, Greece
| | | | - Sotirios G Zarogiannis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, 41500, Greece
| | - Konstantinos I Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Biopolis, P.C, 41500, Larissa, Greece
| | - George Stamoulis
- Department of Electrical and Computer Engineering, University of Thessaly, 37 Glavani - 28th October Str, Deligiorgi Building, 4th floor, P.C. 382 21, Volos, Greece
| | | |
Collapse
|
8
|
Meyer MD, Ryck JD, Goormachtig S, Van Damme P. Keeping in Touch with Type-III Secretion System Effectors: Mass Spectrometry-Based Proteomics to Study Effector-Host Protein-Protein Interactions. Int J Mol Sci 2020; 21:E6891. [PMID: 32961832 PMCID: PMC7555288 DOI: 10.3390/ijms21186891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 01/03/2023] Open
Abstract
Manipulation of host cellular processes by translocated bacterial effectors is key to the success of bacterial pathogens and some symbionts. Therefore, a comprehensive understanding of effectors is of critical importance to understand infection biology. It has become increasingly clear that the identification of host protein targets contributes invaluable knowledge to the characterization of effector function during pathogenesis. Recent advances in mapping protein-protein interaction networks by means of mass spectrometry-based interactomics have enabled the identification of host targets at large-scale. In this review, we highlight mass spectrometry-driven proteomics strategies and recent advances to elucidate type-III secretion system effector-host protein-protein interactions. Furthermore, we highlight approaches for defining spatial and temporal effector-host interactions, and discuss possible avenues for studying natively delivered effectors in the context of infection. Overall, the knowledge gained when unravelling effector complexation with host factors will provide novel opportunities to control infectious disease outcomes.
Collapse
Affiliation(s)
- Margaux De Meyer
- Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium; (M.D.M.); (J.D.R.)
- VIB Center for Medical Biotechnology, Technologiepark 75, 9052 Zwijnaarde, Belgium
| | - Joren De Ryck
- Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium; (M.D.M.); (J.D.R.)
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Zwijnaarde, Belgium;
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium
| | - Sofie Goormachtig
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Zwijnaarde, Belgium;
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium
| | - Petra Van Damme
- Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium; (M.D.M.); (J.D.R.)
| |
Collapse
|
9
|
Slater SL, Frankel G. Advances and Challenges in Studying Type III Secretion Effectors of Attaching and Effacing Pathogens. Front Cell Infect Microbiol 2020; 10:337. [PMID: 32733819 PMCID: PMC7358347 DOI: 10.3389/fcimb.2020.00337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/04/2020] [Indexed: 12/24/2022] Open
Affiliation(s)
- Sabrina L Slater
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Gad Frankel
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
10
|
Khodadadi E, Zeinalzadeh E, Taghizadeh S, Mehramouz B, Kamounah FS, Khodadadi E, Ganbarov K, Yousefi B, Bastami M, Kafil HS. Proteomic Applications in Antimicrobial Resistance and Clinical Microbiology Studies. Infect Drug Resist 2020; 13:1785-1806. [PMID: 32606829 PMCID: PMC7305820 DOI: 10.2147/idr.s238446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/23/2020] [Indexed: 12/11/2022] Open
Abstract
Sequences of the genomes of all-important bacterial pathogens of man, plants, and animals have been completed. Still, it is not enough to achieve complete information of all the mechanisms controlling the biological processes of an organism. Along with all advances in different proteomics technologies, proteomics has completed our knowledge of biological processes all around the world. Proteomics is a valuable technique to explain the complement of proteins in any organism. One of the fields that has been notably benefited from other systems approaches is bacterial pathogenesis. An emerging field is to use proteomics to examine the infectious agents in terms of, among many, the response the host and pathogen to the infection process, which leads to a deeper knowledge of the mechanisms of bacterial virulence. This trend also enables us to identify quantitative measurements for proteins extracted from microorganisms. The present review study is an attempt to summarize a variety of different proteomic techniques and advances. The significant applications in bacterial pathogenesis studies are also covered. Moreover, the areas where proteomics may lead the future studies are introduced.
Collapse
Affiliation(s)
- Ehsaneh Khodadadi
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Zeinalzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepehr Taghizadeh
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahareh Mehramouz
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fadhil S Kamounah
- Department of Chemistry, University of Copenhagen, Copenhagen, DK 2100, Denmark
| | - Ehsan Khodadadi
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Bastami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Araujo-Garrido JL, Baisón-Olmo F, Bernal-Bayard J, Romero F, Ramos-Morales F. Tubulin Folding Cofactor TBCB is a Target of the Salmonella Effector Protein SseK1. Int J Mol Sci 2020; 21:ijms21093193. [PMID: 32366039 PMCID: PMC7246435 DOI: 10.3390/ijms21093193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is a human and animal pathogen that uses type III secretion system effectors to manipulate the host cell and fulfill infection. SseK1 is a Salmonella effector with glycosyltransferase activity. We carried out a yeast two-hybrid screen and have identified tubulin-binding cofactor B (TBCB) as a new binding partner for this effector. SseK1 catalyzed the addition of N-acetylglucosamine to arginine on TBCB, and its expression promoted the stabilization of the microtubule cytoskeleton of HEK293T cells. The conserved Asp-x-Asp (DxD) motif that is essential for the activity of SseK1 was required for the binding and modification of TBCB and for the effect on the cytoskeleton. Our study has identified a novel target for SseK1 and suggests that this effector may have a role in the manipulation of the host cell microtubule network to provide a safe niche for this pathogen.
Collapse
Affiliation(s)
- Juan Luis Araujo-Garrido
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain; (J.L.A.-G.); (F.B.-O.); (J.B.-B.)
| | - Fernando Baisón-Olmo
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain; (J.L.A.-G.); (F.B.-O.); (J.B.-B.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 1058, Chile
| | - Joaquín Bernal-Bayard
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain; (J.L.A.-G.); (F.B.-O.); (J.B.-B.)
| | - Francisco Romero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - Francisco Ramos-Morales
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain; (J.L.A.-G.); (F.B.-O.); (J.B.-B.)
- Correspondence:
| |
Collapse
|
12
|
Type III Secretion Effectors with Arginine N-Glycosyltransferase Activity. Microorganisms 2020; 8:microorganisms8030357. [PMID: 32131463 PMCID: PMC7142665 DOI: 10.3390/microorganisms8030357] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 01/31/2023] Open
Abstract
Type III secretion systems are used by many Gram-negative bacterial pathogens to inject proteins, known as effectors, into the cytosol of host cells. These virulence factors interfere with a diverse array of host signal transduction pathways and cellular processes. Many effectors have catalytic activities to promote post-translational modifications of host proteins. This review focuses on a family of effectors with glycosyltransferase activity that catalyze addition of N-acetyl-d-glucosamine to specific arginine residues in target proteins, leading to reduced NF-κB pathway activation and impaired host cell death. This family includes NleB from Citrobacter rodentium, NleB1 and NleB2 from enteropathogenic and enterohemorrhagic Escherichia coli, and SseK1, SseK2, and SseK3 from Salmonella enterica. First, we place these effectors in the general framework of the glycosyltransferase superfamily and in the particular context of the role of glycosylation in bacterial pathogenesis. Then, we provide detailed information about currently known members of this family, their role in virulence, and their targets.
Collapse
|
13
|
Xia X, Liu Y, Hodgson A, Xu D, Guo W, Yu H, She W, Zhou C, Lan L, Fu K, Vallance BA, Wan F. EspF is crucial for Citrobacter rodentium-induced tight junction disruption and lethality in immunocompromised animals. PLoS Pathog 2019; 15:e1007898. [PMID: 31251784 PMCID: PMC6623547 DOI: 10.1371/journal.ppat.1007898] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/11/2019] [Accepted: 06/05/2019] [Indexed: 12/17/2022] Open
Abstract
Attaching/Effacing (A/E) bacteria include human pathogens enteropathogenic Escherichia coli (EPEC), enterohemorrhagic E. coli (EHEC), and their murine equivalent Citrobacter rodentium (CR), of which EPEC and EHEC are important causative agents of foodborne diseases worldwide. While A/E pathogen infections cause mild symptoms in the immunocompetent hosts, an increasing number of studies show that they produce more severe morbidity and mortality in immunocompromised and/or immunodeficient hosts. However, the pathogenic mechanisms and crucial host-pathogen interactions during A/E pathogen infections under immunocompromised conditions remain elusive. We performed a functional screening by infecting interleukin-22 (IL-22) knockout (Il22-/-) mice with a library of randomly mutated CR strains. Our screen reveals that interruption of the espF gene, which encodes the Type III Secretion System effector EspF (E. coli secreted protein F) conserved among A/E pathogens, completely abolishes the high mortality rates in CR-infected Il22-/- mice. Chromosomal deletion of espF in CR recapitulates the avirulent phenotype without impacting colonization and proliferation of CR, and EspF complement in ΔespF strain fully restores the virulence in mice. Moreover, the expression levels of the espF gene are elevated during CR infection and CR induces disruption of the tight junction (TJ) strands in colonic epithelium in an EspF-dependent manner. Distinct from EspF, chromosomal deletion of other known TJ-damaging effector genes espG and map failed to impede CR virulence in Il22-/- mice. Hence our findings unveil a critical pathophysiological function for EspF during CR infection in the immunocompromised host and provide new insights into the complex pathogenic mechanisms of A/E pathogens.
Collapse
Affiliation(s)
- Xue Xia
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
| | - Yue Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
| | - Andrea Hodgson
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
| | - Dongqing Xu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
| | - Wenxuan Guo
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
| | - Hongbing Yu
- Division of Gastroenterology, Department of Pediatrics, BC's Children's Hospital and Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Weifeng She
- Eudowood Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Chenxing Zhou
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Lei Lan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Kai Fu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
- Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Bruce A. Vallance
- Division of Gastroenterology, Department of Pediatrics, BC's Children's Hospital and Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, United States of America
| |
Collapse
|
14
|
Ivan FX, Kwoh CK, Chow VT, Zheng J. Genome Analysis – Identification of Genes Involved in Host-Pathogen Protein-Protein Interaction Networks. ENCYCLOPEDIA OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY 2019:410-424. [DOI: 10.1016/b978-0-12-809633-8.20124-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Novel Effector Protein EspY3 of Type III Secretion System from Enterohemorrhagic Escherichia coli Is Localized in Actin Pedestals. Microorganisms 2018; 6:microorganisms6040112. [PMID: 30373243 PMCID: PMC6313403 DOI: 10.3390/microorganisms6040112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/20/2018] [Accepted: 10/24/2018] [Indexed: 11/17/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic Escherichia coli (EPEC) are attaching and effacing (A/E) pathogens, which translocate effector proteins to intestinal enterocytes through a type III secretion system (T3SS). T3SS and most of its effector proteins are encoded in a pathogenicity island called LEE. Recently, new effectors have been located outside the LEE. This study aimed to characterize EspY3, a novel non-LEE encoded T3SS effector of EHEC. EspY3 shares homology with SopD and PipB2 effector proteins of Salmonella's T3SS-1 and T3SS-2, respectively. The presence of recombinant EspY3 in the supernatant samples demonstrated that EspY3 was secreted by the T3SS of EHEC and EPEC. Through infection assays, we demonstrated the translocation of EspY3 into Caco-2 cells by T3SS of EPEC. The subcellular localization of EspY3 was determined in the pedestal region, where its presence generates a significant increase in the size of the pedestals area. The EspY3 effector induced the elongation of polymerized actin pedestals in infected Caco-2 by EPEC. This study confirmed that EspY3 is part of the repertoire of T3SS effectors of EHEC O157:H7, and that it participates in modeling cellular actin during the infection.
Collapse
|
16
|
Kralicek SE, Nguyen M, Rhee KJ, Tapia R, Hecht G. EPEC NleH1 is significantly more effective in reversing colitis and reducing mortality than NleH2 via differential effects on host signaling pathways. J Transl Med 2018; 98:477-488. [PMID: 29396422 PMCID: PMC5920738 DOI: 10.1038/s41374-017-0016-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 12/31/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is a foodborne pathogen that uses a type III secretion system to translocate effector molecules into host intestinal epithelial cells (IECs) subverting several host cell processes and signaling cascades. Interestingly, EPEC infection induces only modest intestinal inflammation in the host. The homologous EPEC effector proteins, NleH1 and NleH2, suppress the nuclear factor-κB (NF-κB) pathway and apoptosis in vitro. Increased apoptosis and activation of NF-κB and MAP kinases (MAPK) contribute to the pathogenesis of inflammatory bowel diseases (IBD). The aim of this study was to determine if NleH1 and NleH2 also block MAPK pathways in vitro and in vivo, and to compare the effects of these bacterial proteins on a murine model of colitis. Cultured IECs were infected with various strains of EPEC expressing NleH1 and NleH2, or not, and the activation of ERK1/2 and p38 was determined. In addition, the impact of infection with various strains of EPEC on murine DSS colitis was assessed by change in body weight, colon length, histology, and survival. Activation of apoptosis and MAPK signaling were also evaluated. Our data show that NleH1, but not NleH2, suppresses ERK1/2 and p38 activation in vitro. Interestingly, NleH1 affords significantly greater protection against and hastens recovery from dextran sodium sulfate (DSS)-induced colitis compared to NleH2. Strikingly, colitis-associated mortality was abolished by infection with EPEC strains expressing NleH1. Interestingly, in vivo NleH1 suppresses activation of ERK1/2 and p38 and blocks apoptosis independent of the kinase domain that inhibits NF-κB. In contrast, NleH2 suppresses only caspase-3 and p38, but not ERK1/2. We conclude that NleH1 affords greater protection against and improves recovery from DSS colitis compared to NleH2 due to its ability to suppress ERK1/2 in addition to NF-κB, p38, and apoptosis. These findings warrant further investigation of anti-inflammatory bacterial proteins as novel treatments for IBD.
Collapse
Affiliation(s)
- Sarah E. Kralicek
- Department of Medicine, Division of Gastroenterology and Nutrition, Loyola University Chicago, Maywood, IL, USA
| | - Mai Nguyen
- Cortexyme Inc, South San Francisco, CA, USA
| | - Ki-Jong Rhee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju, Wonju, Gangwon-do, Republic of Korea
| | - Rocio Tapia
- Department of Medicine, Division of Gastroenterology and Nutrition, Loyola University Chicago, Maywood, IL, USA
| | - Gail Hecht
- Department of Medicine, Division of Gastroenterology and Nutrition, Loyola University Chicago, Maywood, IL, USA. .,Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA. .,Edward Hines Jr. VA Hospital, Hines, IL, USA.
| |
Collapse
|
17
|
Multitalented EspB of enteropathogenic Escherichia coli (EPEC) enters cells autonomously and induces programmed cell death in human monocytic THP-1 cells. Int J Med Microbiol 2018; 308:387-404. [PMID: 29550166 DOI: 10.1016/j.ijmm.2018.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/06/2018] [Accepted: 03/11/2018] [Indexed: 12/26/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) subvert host cell signaling pathways by injecting effector proteins via a Type 3 Secretion System (T3SS). The T3SS-dependent EspB protein is a multi-functional effector protein, which contributes to adherence and translocator pore formation and after injection exhibits several intracellular activities. In addition, EspB is also secreted into the environment. Effects of secreted EspB have not been reported thus far. As a surrogate for secreted EspB we employed recombinant EspB (rEspB) derived from the prototype EPEC strain E2348/69 and investigated the interactions of the purified protein with different human epithelial and immune cells including monocytic THP-1 cells, macrophages, dendritic cells, U-937, epithelial T84, Caco-2, and HeLa cells. To assess whether these proteins might exert a cytotoxic effect we monitored the release of lactate dehydrogenase (LDH) as well as propidium iodide (PI) uptake. For comparison, we also investigated several homologs of EspB such as IpaD of Shigella, and SipC, SipD, SseB, and SseD of Salmonella as purified recombinant proteins. Interestingly, cytotoxicity was only observed in THP-1 cells and macrophages, whereas epithelial cells remained unaffected. Cell fractionation and immune fluorescence experiments showed that rEspB enters cells autonomously, which suggests that EspB might qualify as a novel cell-penetrating effector protein (CPE). Using specific organelle tracers and inhibitors of signaling pathways we found that rEspB destroys the mitochondrial membrane potential - an indication of programmed cell death induction in THP-1 cells. Here we show that EspB not only constitutes an essential part of the T3SS-nanomachine and contributes to the arsenal of injected effector proteins but, furthermore, that secreted (recombinant) EspB autonomously enters host cells and selectively induces cell death in immune cells.
Collapse
|
18
|
Singh AP, Sharma S, Pagarware K, Siraji RA, Ansari I, Mandal A, Walling P, Aijaz S. Enteropathogenic E. coli effectors EspF and Map independently disrupt tight junctions through distinct mechanisms involving transcriptional and post-transcriptional regulation. Sci Rep 2018; 8:3719. [PMID: 29487356 PMCID: PMC5829253 DOI: 10.1038/s41598-018-22017-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/14/2018] [Indexed: 01/05/2023] Open
Abstract
Enteropathogenic E. coli infection is characterized by rapid onset of diarrhea but the underlying mechanisms are not well defined. EPEC targets the tight junctions which selectively regulate the permeability of charged and uncharged molecules. Cooperative actions of the EPEC effectors EspF and Map have been reported to mediate tight junction disruption. To analyze the individual contributions of EspF and Map, we generated in vitro models where EspF and Map, derived from the EPEC strain E2348/69, were constitutively expressed in epithelial cells. Here we report that tight junction disruption by EspF and Map is caused by the inhibition of the junctional recruitment of proteins during tight junction assembly. Constitutive expression of EspF and Map depleted the levels of tight junction proteins. EspF down-regulated the transcript levels of claudin-1, occludin and ZO-1, while Map down-regulated only claudin-1 transcripts. Both effectors also caused lysosomal degradation of existing tight junction proteins. We also identified a novel interaction of Map with non-muscle myosin II. Consistent with earlier studies, EspF was found to interact with ZO-1 while actin was the common interacting partner for both effectors. Our data provides evidence for the distinct roles of Map and EspF in tight junction disruption through non-synergistic functions.
Collapse
Affiliation(s)
- Anand Prakash Singh
- Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Swati Sharma
- Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Kirti Pagarware
- Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rafay Anwar Siraji
- Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Imran Ansari
- Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anupam Mandal
- Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pangertoshi Walling
- Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Saima Aijaz
- Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
19
|
Nicod C, Banaei-Esfahani A, Collins BC. Elucidation of host-pathogen protein-protein interactions to uncover mechanisms of host cell rewiring. Curr Opin Microbiol 2017; 39:7-15. [PMID: 28806587 DOI: 10.1016/j.mib.2017.07.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 07/27/2017] [Indexed: 01/08/2023]
Abstract
Infectious diseases are the result of molecular cross-talks between hosts and their pathogens. These cross-talks are in part mediated by host-pathogen protein-protein interactions (HP-PPI). HP-PPI play crucial roles in infections, as they may tilt the balance either in favor of the pathogens' spread or their clearance. The identification of host proteins targeted by viral or bacterial pathogenic proteins necessary for the infection can provide insights into their underlying molecular mechanisms of pathogenicity, and potentially even single out pharmacological intervention targets. Here, we review the available methods to study HP-PPI, with a focus on recent mass spectrometry based methods to decipher bacterial-human infectious diseases and examine their relevance in uncovering host cell rewiring by pathogens.
Collapse
Affiliation(s)
- Charlotte Nicod
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland; PhD Program in Systems Biology, Life Science Zurich Graduate School, University of Zurich and ETH Zurich, CH-8093 Zurich, Switzerland
| | - Amir Banaei-Esfahani
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland; PhD Program in Systems Biology, Life Science Zurich Graduate School, University of Zurich and ETH Zurich, CH-8093 Zurich, Switzerland
| | - Ben C Collins
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
20
|
Zanzoni A, Spinelli L, Braham S, Brun C. Perturbed human sub-networks by Fusobacterium nucleatum candidate virulence proteins. MICROBIOME 2017; 5:89. [PMID: 28793925 PMCID: PMC5551000 DOI: 10.1186/s40168-017-0307-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 07/13/2017] [Indexed: 05/10/2023]
Abstract
BACKGROUND Fusobacterium nucleatum is a gram-negative anaerobic species residing in the oral cavity and implicated in several inflammatory processes in the human body. Although F. nucleatum abundance is increased in inflammatory bowel disease subjects and is prevalent in colorectal cancer patients, the causal role of the bacterium in gastrointestinal disorders and the mechanistic details of host cell functions subversion are not fully understood. RESULTS We devised a computational strategy to identify putative secreted F. nucleatum proteins (FusoSecretome) and to infer their interactions with human proteins based on the presence of host molecular mimicry elements. FusoSecretome proteins share similar features with known bacterial virulence factors thereby highlighting their pathogenic potential. We show that they interact with human proteins that participate in infection-related cellular processes and localize in established cellular districts of the host-pathogen interface. Our network-based analysis identified 31 functional modules in the human interactome preferentially targeted by 138 FusoSecretome proteins, among which we selected 26 as main candidate virulence proteins, representing both putative and known virulence proteins. Finally, six of the preferentially targeted functional modules are implicated in the onset and progression of inflammatory bowel diseases and colorectal cancer. CONCLUSIONS Overall, our computational analysis identified candidate virulence proteins potentially involved in the F. nucleatum-human cross-talk in the context of gastrointestinal diseases.
Collapse
Affiliation(s)
- Andreas Zanzoni
- Aix-Marseille Université, Inserm, TAGC UMR_S1090, Marseille, France.
| | - Lionel Spinelli
- Aix-Marseille Université, Inserm, TAGC UMR_S1090, Marseille, France
| | - Shérazade Braham
- Aix-Marseille Université, Inserm, TAGC UMR_S1090, Marseille, France
| | - Christine Brun
- Aix-Marseille Université, Inserm, TAGC UMR_S1090, Marseille, France
- CNRS, Marseille, France
| |
Collapse
|
21
|
Jean Beltran PM, Federspiel JD, Sheng X, Cristea IM. Proteomics and integrative omic approaches for understanding host-pathogen interactions and infectious diseases. Mol Syst Biol 2017; 13:922. [PMID: 28348067 PMCID: PMC5371729 DOI: 10.15252/msb.20167062] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Organisms are constantly exposed to microbial pathogens in their environments. When a pathogen meets its host, a series of intricate intracellular interactions shape the outcome of the infection. The understanding of these host–pathogen interactions is crucial for the development of treatments and preventive measures against infectious diseases. Over the past decade, proteomic approaches have become prime contributors to the discovery and understanding of host–pathogen interactions that represent anti‐ and pro‐pathogenic cellular responses. Here, we review these proteomic methods and their application to studying viral and bacterial intracellular pathogens. We examine approaches for defining spatial and temporal host–pathogen protein interactions upon infection of a host cell. Further expanding the understanding of proteome organization during an infection, we discuss methods that characterize the regulation of host and pathogen proteomes through alterations in protein abundance, localization, and post‐translational modifications. Finally, we highlight bioinformatic tools available for analyzing such proteomic datasets, as well as novel strategies for integrating proteomics with other omic tools, such as genomics, transcriptomics, and metabolomics, to obtain a systems‐level understanding of infectious diseases.
Collapse
Affiliation(s)
- Pierre M Jean Beltran
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Joel D Federspiel
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Xinlei Sheng
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| |
Collapse
|
22
|
Zhuang X, Chen Z, He C, Wang L, Zhou R, Yan D, Ge B. Modulation of host signaling in the inflammatory response by enteropathogenic Escherichia coli virulence proteins. Cell Mol Immunol 2017; 14:237-244. [PMID: 27796284 PMCID: PMC5360883 DOI: 10.1038/cmi.2016.52] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/24/2016] [Accepted: 07/25/2016] [Indexed: 12/27/2022] Open
Abstract
To successfully infect host cells and evade the host immune response, a type III secretion system (T3SS) is commonly used by enteric bacterial pathogens such as enteropathogenic Escherichia coli (EPEC). Recent findings have revealed that various effectors are injected into host cells through the T3SS and exert an inhibitory effect on inflammatory signaling pathways, subverting the immune responses to these pathogens. Here we review recent studies aimed at addressing the modulation of several important inflammatory signaling pathways modulated by EPEC effector proteins, such as the nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways, which provides insight into the unfinished work in this unexplored field and helps to identify novel positions in inflammatory signaling networks for EPEC effectors.Cellular & Molecular Immunology advance online publication, 31 October 2016; doi:10.1038/cmi.2016.52.
Collapse
Affiliation(s)
- Xiaonan Zhuang
- Department of Immunology and Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zijuan Chen
- Department of Immunology and Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Chenxi He
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, China
| | - Lin Wang
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, China
| | - Ruixue Zhou
- Department of Immunology and Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Dapeng Yan
- Department of Immunology and Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Baoxue Ge
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200092, China
| |
Collapse
|
23
|
Kamneva OK. Genome composition and phylogeny of microbes predict their co-occurrence in the environment. PLoS Comput Biol 2017; 13:e1005366. [PMID: 28152007 PMCID: PMC5313232 DOI: 10.1371/journal.pcbi.1005366] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 02/16/2017] [Accepted: 01/17/2017] [Indexed: 12/15/2022] Open
Abstract
The genomic information of microbes is a major determinant of their phenotypic properties, yet it is largely unknown to what extent ecological associations between different species can be explained by their genome composition. To bridge this gap, this study introduces two new genome-wide pairwise measures of microbe-microbe interaction. The first (genome content similarity index) quantifies similarity in genome composition between two microbes, while the second (microbe-microbe functional association index) summarizes the topology of a protein functional association network built for a given pair of microbes and quantifies the fraction of network edges crossing organismal boundaries. These new indices are then used to predict co-occurrence between reference genomes from two 16S-based ecological datasets, accounting for phylogenetic relatedness of the taxa. Phylogenetic relatedness was found to be a strong predictor of ecological associations between microbes which explains about 10% of variance in co-occurrence data, but genome composition was found to be a strong predictor as well, it explains up to 4% the variance in co-occurrence when all genomic-based indices are used in combination, even after accounting for evolutionary relationships between the species. On their own, the metrics proposed here explain a larger proportion of variance than previously reported more complex methods that rely on metabolic network comparisons. In summary, results of this study indicate that microbial genomes do indeed contain detectable signal of organismal ecology, and the methods described in the paper can be used to improve mechanistic understanding of microbe-microbe interactions. It is still unknown to what extent ecological associations between microbes, as measured by co-occurrence of different taxa in 16S rRNA surveys, can be explained, or predicted, using composition and structure of microbial genomes alone. Here I introduce two new genome-wide, pairwise indices for quantifying the propensity of microbial species to interact with each other. The first measure quantifies similarity in genome composition between two microbes. The second measure summarizes the topology of a protein functional association network built for a given pair of microbes and quantifies the fraction of network edges crossing organismal boundaries. I then study the ability of two newly proposed and two previously reported indices to explain variation in microbial co-occurrence. All four measures are significantly correlated with co-occurrence of microbes even when accounting for evolutionary relationships between the species. One of the newly developed indices outperforms previously proposed ones and explains up to 3.5% of the variance in co-occurrence. In summary, the indices described here are able to detect ecological associations between species using only their genomic information; however, additional methods are needed to provide more reliable genomic tools for microbial ecology.
Collapse
Affiliation(s)
- Olga K. Kamneva
- Department of Biology, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
24
|
Yen H, Karino M, Tobe T. Modulation of the Inflammasome Signaling Pathway by Enteropathogenic and Enterohemorrhagic Escherichia coli. Front Cell Infect Microbiol 2016; 6:89. [PMID: 27617233 PMCID: PMC4999430 DOI: 10.3389/fcimb.2016.00089] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 08/11/2016] [Indexed: 01/07/2023] Open
Abstract
Innate immunity is an essential component in the protection of a host against pathogens. Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC, respectively) are known to modulate the innate immune responses of infected cells. The interference is dependent on their type III secretion system (T3SS) and T3SS-dependent effector proteins. Furthermore, these cytosolically injected effectors have been demonstrated to engage multiple immune signaling pathways, including the IFN/STAT, MAPK, NF-κB, and inflammasome pathways. In this review, recent work describing the interaction between EPEC/EHEC and the inflammasome pathway will be discussed.
Collapse
Affiliation(s)
- Hilo Yen
- Department of Biomedical Informatics, Graduate School of Medicine, Osaka University Osaka, Japan
| | - Masaki Karino
- Department of Biomedical Informatics, Graduate School of Medicine, Osaka University Osaka, Japan
| | - Toru Tobe
- Department of Biomedical Informatics, Graduate School of Medicine, Osaka University Osaka, Japan
| |
Collapse
|
25
|
Ugalde-Silva P, Gonzalez-Lugo O, Navarro-Garcia F. Tight Junction Disruption Induced by Type 3 Secretion System Effectors Injected by Enteropathogenic and Enterohemorrhagic Escherichia coli. Front Cell Infect Microbiol 2016; 6:87. [PMID: 27606286 PMCID: PMC4995211 DOI: 10.3389/fcimb.2016.00087] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/10/2016] [Indexed: 12/18/2022] Open
Abstract
The intestinal epithelium consists of a single cell layer, which is a critical selectively permeable barrier to both absorb nutrients and avoid the entry of potentially harmful entities, including microorganisms. Epithelial cells are held together by the apical junctional complexes, consisting of adherens junctions, and tight junctions (TJs), and by underlying desmosomes. TJs lay in the apical domain of epithelial cells and are mainly composed by transmembrane proteins such as occludin, claudins, JAMs, and tricellulin, that are associated with the cytoplasmic plaque formed by proteins from the MAGUK family, such as ZO-1/2/3, connecting TJ to the actin cytoskeleton, and cingulin and paracingulin connecting TJ to the microtubule network. Extracellular bacteria such as EPEC and EHEC living in the intestinal lumen inject effectors proteins directly from the bacterial cytoplasm to the host cell cytoplasm, where they play a relevant role in the manipulation of the eukaryotic cell functions by modifying or blocking cell signaling pathways. TJ integrity depends on various cell functions such as actin cytoskeleton, microtubule network for vesicular trafficking, membrane integrity, inflammation, and cell survival. EPEC and EHEC effectors target most of these functions. Effectors encoded inside or outside of locus of enterocyte effacement (LEE) disrupt the TJ strands. EPEC and EHEC exploit the TJ dynamics to open this structure, for causing diarrhea. EPEC and EHEC secrete effectors that mimic host proteins to manipulate the signaling pathways, including those related to TJ dynamics. In this review, we focus on the known mechanisms exploited by EPEC and EHEC effectors for causing TJ disruption.
Collapse
Affiliation(s)
- Paul Ugalde-Silva
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional México City, Mexico
| | - Octavio Gonzalez-Lugo
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional México City, Mexico
| | - Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional México City, Mexico
| |
Collapse
|
26
|
Law RJ, Law HT, Scurll JM, Scholz R, Santos AS, Shames SR, Deng W, Croxen MA, Li Y, de Hoog CL, van der Heijden J, Foster LJ, Guttman JA, Finlay BB. Quantitative Mass Spectrometry Identifies Novel Host Binding Partners for Pathogenic Escherichia coli Type III Secretion System Effectors. J Proteome Res 2016; 15:1613-22. [DOI: 10.1021/acs.jproteome.6b00074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Hong T. Law
- Department
of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | | | | | | | | | | | | | | | | | | | | | - Julian A. Guttman
- Department
of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | | |
Collapse
|
27
|
Abstract
Eukaryotic cells utilize the ubiquitin (Ub) system for maintaining a balanced functioning of cellular pathways. Although the Ub system is exclusive to eukaryotes, prokaryotic bacteria have developed an armory of Ub ligase enzymes that are capable of employing the Ub systems of various hosts, ranging from plant to animal cells. These enzymes have been acquired through the evolution and can be classified into three main classes, RING (really interesting new gene), HECT (homologous to the E6-AP carboxyl terminus) and NEL (novel E3 ligases). In this review we describe the roles played by different classes of bacterial Ub ligases in infection and pathogenicity. We also provide an overview of the different mechanisms by which bacteria mimic specific components of the host Ub system and outline the gaps in our current understanding of their functions. Additionally, we discuss approaches and experimental tools for validating this class of enzymes as potential novel antibacterial therapy targets.
Collapse
|
28
|
Uncovering New Pathogen-Host Protein-Protein Interactions by Pairwise Structure Similarity. PLoS One 2016; 11:e0147612. [PMID: 26799490 PMCID: PMC4723085 DOI: 10.1371/journal.pone.0147612] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/06/2016] [Indexed: 01/31/2023] Open
Abstract
Pathogens usually evade and manipulate host-immune pathways through pathogen-host protein-protein interactions (PPIs) to avoid being killed by the host immune system. Therefore, uncovering pathogen-host PPIs is critical for determining the mechanisms underlying pathogen infection and survival. In this study, we developed a computational method, which we named pairwise structure similarity (PSS)-PPI, to predict pathogen-host PPIs. First, a high-quality and non-redundant structure-structure interaction (SSI) template library was constructed by exhaustively exploring heteromeric protein complex structures in the PDB database. New interactions were then predicted by searching for PSS with complex structures in the SSI template library. A quantitative score named the PSS score, which integrated structure similarity and residue-residue contact-coverage information, was used to describe the overall similarity of each predicted interaction with the corresponding SSI template. Notably, PSS-PPI yielded experimentally confirmed pathogen-host PPIs of human immunodeficiency virus type 1 (HIV-1) with performance close to that of in vitro high-throughput screening approaches. Finally, a pathogen-host PPI network of human pathogen Mycobacterium tuberculosis, the causative agent of tuberculosis, was constructed using PSS-PPI and refined using filtration steps based on cellular localization information. Analysis of the resulting network indicated that secreted proteins of the STPK, ESX-1, and PE/PPE family in M. tuberculosis targeted human proteins involved in immune response and phagocytosis. M. tuberculosis also targeted host factors known to regulate HIV replication. Taken together, our findings provide insights into the survival mechanisms of M. tuberculosis in human hosts, as well as co-infection of tuberculosis and HIV. With the rapid pace of three-dimensional protein structure discovery, the SSI template library we constructed and the PSS-PPI method we devised can be used to uncover new pathogen-host PPIs in the future.
Collapse
|
29
|
Stradal TEB, Costa SCP. Type III Secreted Virulence Factors Manipulating Signaling to Actin Dynamics. Curr Top Microbiol Immunol 2016; 399:175-199. [PMID: 27744505 DOI: 10.1007/82_2016_35] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A key aspect of bacterial pathogenesis is the colonization and persistence within the host and, later on, its dissemination to new niches. During evolution, bacteria developed a myriad of virulence mechanisms to usurp the host's sophisticated defense mechanisms in order to establish their colonization niche. Elucidation of the highly dynamic and complex interactions between host and pathogens remains an important field of study. Here, we highlight the conserved manipulation of the actin cytoskeleton by some Gram-negative gastrointestinal pathogens, addressing the role of type III secreted bacterial GEFs at the different steps of pathogenesis. As a final topic, we review cytoskeleton dynamics induced by EPEC/EHEC strains for pedestal formation.
Collapse
Affiliation(s)
- Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Baunschweig, Germany.
| | - Sonia C P Costa
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Baunschweig, Germany
| |
Collapse
|