1
|
Prywer J, Torzewska A, Mielniczek-Brzóska E. Understanding the role of zinc ions on struvite nucleation and growth in the context of infection urinary stones. Metallomics 2024; 16:mfae017. [PMID: 38599629 PMCID: PMC11095266 DOI: 10.1093/mtomcs/mfae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/09/2024] [Indexed: 04/12/2024]
Abstract
Taking into account that in recent decades there has been an increase in the incidence of urinary stones, especially in highly developed countries, from a wide range of potentially harmful substances commonly available in such countries, we chose zinc for the research presented in this article, which is classified by some sources as a heavy metal. In this article, we present the results of research on the influence of Zn2+ ion on the nucleation and growth of struvite crystals-the main component of infection urinary stones. The tests were carried out in an artificial urine environment with and without the presence of Proteus mirabilis bacteria. In the latter case, the activity of bacterial urease was simulated chemically, by systematic addition of an aqueous ammonia solution. The obtained results indicate that Zn2+ ions compete with Mg2+ ions, which leads to the gradual replacement of Mg2+ ions in the struvite crystal lattice with Zn2+ ions to some extent. This means co-precipitation of Mg-struvite (MgNH4PO4·6H2O) and Znx-struvite (Mg1-xZnxNH4PO4·6H2O). Speciation analysis of chemical complexes showed that Znx-struvite precipitates at slightly lower pH values than Mg-struvite. This means that Zn2+ ions shift the nucleation point of crystalline solids towards a lower pH. Additionally, the conducted research shows that Zn2+ ions, in the range of tested concentrations, do not have a toxic effect on bacteria; on the contrary, it has a positive effect on cellular metabolism, enabling bacteria to develop better. It means that Zn2+ ions in artificial urine, in vitro, slightly increase the risk of developing infection urinary stones.
Collapse
Affiliation(s)
- Jolanta Prywer
- Institute of Physics, Lodz University of Technology, ul. Wólczańska 217/221, 93-005 Łódź, Poland
| | - Agnieszka Torzewska
- Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, ul. Banacha 12/16, 90-237 Łódź, Poland
| | - Ewa Mielniczek-Brzóska
- Institute of Chemistry, Faculty of Science and Technology, Jan Długosz University of Czestochowa, ul. Armii Krajowej 13/15, 42-200 Częstochowa, Poland
| |
Collapse
|
2
|
Wang X, Meng L, Hu M, Gao L, Lian B. The competitive and selective adsorption of heavy metals by struvite in the Pb(II)-Cd(II)-Zn(II) composite system and its environmental significance. WATER RESEARCH 2024; 250:121087. [PMID: 38171180 DOI: 10.1016/j.watres.2023.121087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
The prevalence of struvite and other phosphate minerals in eutrophic environments has a significant effect on the transport and transformation of environmental heavy metals, but their competitive immobilization characteristics and mechanisms for heavy metals remain unclear. Three different sources of struvite (BS, CSHS, and CSS) were obtained respectively by biosynthesis and chemical synthesis with or without humic acid to investigate their competitive immobilization characteristics and mechanism of heavy metals in the Pb(II)-Cd(II)-Zn(II) composite system. The results showed that the immobilization of heavy metals by struvite is physico-chemical adsorption and the affinity (in descending order) is Pb(II) >> Cd(II)/Zn(II). Cd(II) promotes the immobilization of Pb(II)/Zn(II) by BS. The order of the selective strength by struvite for Pb(II) is BS >> CSS ≈ CSHS. The study indicates that the difference between struvite holding heavy metal ions is related to the material composition and heavy metal types, and BS shows best selective immobilization for Pb(II) in the Pb(II)-Cd(II)-Zn(II) composite system. This study provides a theoretical basis for understanding the environmental geochemical role and eco-environmental effects of struvite.
Collapse
Affiliation(s)
- Xingxing Wang
- College of Life Science, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Lei Meng
- College of Life Science, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Mingyang Hu
- College of Life Science, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Lei Gao
- College of Life Science, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Bin Lian
- College of Life Science, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
3
|
Szczerbiec D, Słaba M, Torzewska A. Substances Secreted by Lactobacillus spp. from the Urinary Tract Microbiota Play a Protective Role against Proteus mirabilis Infections and Their Complications. Int J Mol Sci 2023; 25:103. [PMID: 38203274 PMCID: PMC10779068 DOI: 10.3390/ijms25010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Proteus mirabilis urinary tract infections can lead to serious complications such as development of urinary stones. Lactobacillus spp., belonging to the natural microbiota of the urinary tract, exhibit a number of antagonistic mechanisms against uropathogens, including the secretion of organic acids. In this study, we determined the anti-adhesion, anti-cytotoxicity and anti-crystallization properties of the substances secreted by Lactobacillus. For this purpose, membrane inserts with a pore diameter 0.4 μm were used, which prevent mixing of cultured cells, simultaneously enabling the diffusion of metabolic products. The intensity of crystallization was assessed by measuring the levels of Ca2+, Mg2+ and NH3 and by observing crystals using microscopic methods. The cytotoxicity of the HCV-29 cell line was determined using the LDH and MTT assays, and the impact of lactobacilli on P. mirabilis adhesion to the bladder epithelium was assessed by establishing CFU/mL after cell lysis. It was shown that in the presence of L. gasseri the adhesion of P. mirabilis and the cytotoxicity of the cells decreased. The degree of crystallization was also inhibited in all experimental models. Moreover, it was demonstrated that L. gasseri is characterized by the secretion of a high concentration of L-lactic acid. These results indicate that L-lactic acid secreted by L. gasseri has a significant impact on the crystallization process and pathogenicity of P. mirabilis.
Collapse
Affiliation(s)
- Dominika Szczerbiec
- Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Mirosława Słaba
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Agnieszka Torzewska
- Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| |
Collapse
|
4
|
Hostert J, Spitzer QA, Giammattei P, Renner JN. Scalable Production of Peptides for Enhanced Struvite Formation via Expression on the Surface of Genetically Engineered Microbes. ACS MATERIALS AU 2023; 3:548-556. [PMID: 38089095 PMCID: PMC10510520 DOI: 10.1021/acsmaterialsau.3c00037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 11/19/2024]
Abstract
A promising method for recycling phosphate from wastewater is through precipitation of struvite (MgNH4PO4·6H2O), a slow-release fertilizer. Peptides have been shown to increase the yield of struvite formation, but producing peptides via solid phase synthesis is cost prohibitive. This work investigates the effects of peptide-expressing bacteria on struvite precipitation to provide a sustainable and cost-efficient means to enhance struvite precipitation. A peptide known for increased struvite yield was expressed on a membrane protein in Escherichia coli(E. coli), and then 5 mL precipitation reactions were performed in 50 mL culture tubes for at least 15 min. The yield of struvite crystals was examined, with the presence of peptide-expressing E. coli inducing significantly higher yields than nonpeptide-expressing E. coli when normalized to the amount of bacteria. The precipitate was identified as struvite through Fourier transform infrared spectroscopy and energy dispersive spectroscopy, while the morphology and size of the crystals were analyzed through optical microscopy and scanning electron microscopy. Crystals were found to have a larger area when precipitated with the peptide-expressing bacteria. Additionally, bacteria-struvite samples were thermogravimetrically analyzed to quantify their purity and determine their thermal decomposition behavior. Overall, this study presents the benefits of a novel, microbe-driven method of struvite precipitation, offering a means for scalable implementation.
Collapse
Affiliation(s)
- Jacob
D. Hostert
- Department
of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Quincy A. Spitzer
- Department
of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Paola Giammattei
- Department
of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Julie N. Renner
- Department
of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
5
|
Uttamamul N, Suksawat M, Phetcharaburanin J, Jitpean S, Lulitanond A, Sae-ung N, Boonsiri P, Tavichakorntrakool R. 1H NMR metabolic profiling of Staphylococcus pseudintermedius isolated from canine uroliths. PLoS One 2022; 17:e0277808. [PMID: 36395195 PMCID: PMC9671361 DOI: 10.1371/journal.pone.0277808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 11/03/2022] [Indexed: 11/19/2022] Open
Abstract
Staphylococcus pseudintermedius is a urease-producing bacteria which is a major cause of magnesium ammonium phosphate (MAP) urolithiasis in canine. A positive urolith culture is an important risk factor for MAP urolithiasis in canine. The mechanism underlying the metabolic changes of S. pseudintermedius after crystallization in artificial urine (AU) needs more defined baseline metabolic information. Therefore, we extensively investigated the metabolic changes of S. pseudintermedius extensively after crystallization in AU. A high urease activity and positive biofilm formation strain, entitled the S. pseudintermedius (SPMAP09) strain, was isolated from canine MAP uroliths, and analyzed using nuclear magnetic resonance (NMR) spectroscopy-based metabolomics. The molecular mechanism-specific metabolic phenotypes were clearly observed after crystallization in AU at day 3. The crystals induced by SPMAP09 were also confirmed and the major chemical composition identified as struvite. Interestingly, our findings demonstrated that a total of 11 identified metabolites were significantly changed. The levels of formate, homocarnosine, tyrosine, cis-aconitate, glycolate, ethyl malonate, valine and acetate level were significantly higher, accompanied with decreased levels of inosine, glucose, and threonine at day 3 compared with the initial time-point (day 0). In addition, our results exhibited that the glyoxylate and dicarboxylate metabolism was significantly related to the SPMAP09 strain at day 3 in AU. Thus, metabolic changes of the SPMAP09 strain after crystallization in AU potentially helps to explain the preliminary molecular mechanism for the crystals induced by S. pseudintermedius.
Collapse
Affiliation(s)
- Nahathai Uttamamul
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
- School of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Manida Suksawat
- Khon Kaen University International Phenome Laboratory, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jutarop Phetcharaburanin
- Khon Kaen University International Phenome Laboratory, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Supranee Jitpean
- Division of Surgery, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Aroonlug Lulitanond
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
- School of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Nattaya Sae-ung
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
- School of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Patcharee Boonsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Ratree Tavichakorntrakool
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
- School of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
- * E-mail: ,
| |
Collapse
|
6
|
Daudon M, Petay M, Vimont S, Deniset A, Tielens F, Haymann JP, Letavernier E, Frochot V, Bazin D. Urinary tract infection inducing stones: some clinical and chemical data. CR CHIM 2022. [DOI: 10.5802/crchim.159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Skubisz M, Torzewska A, Mielniczek-Brzóska E, Prywer J. Consumption of soft drinks rich in phosphoric acid versus struvite crystallization from artificial urine. Sci Rep 2022; 12:14332. [PMID: 35995826 PMCID: PMC9395414 DOI: 10.1038/s41598-022-18357-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 08/10/2022] [Indexed: 11/09/2022] Open
Abstract
In recent years, there has been a continuous increase in the incidence of urolithiasis, especially in highly developed countries. Therefore, the question arises which factors specific to these countries may be responsible for the increase in the incidence of this disease. In this article, we try to assess the effect of phosphoric acid, a component of various carbonated drinks, including Coca-Cola, on the nucleation and growth of struvite crystals, which are the main component of infectious urinary stones. The research was carried out in the environment of artificial urine with and without the presence of Proteus mirabilis bacteria. In the latter case, the activity of bacterial urease was simulated by adding an aqueous ammonia solution. The obtained results indicate that phosphoric acid present in artificial urine causes the nucleation of struvite to shift towards a lower pH, which means that struvite nucleates earlier in artificial urine compared to the control test. The amount of struvite formed is the greater the higher the concentration of phosphoric acid. At the same time, as the concentration of phosphoric acid increases, the growing struvite crystals are larger, which is disadvantageous because they are more difficult to remove from the urinary tract along with the urine. For the highest levels of phosphoric acid tested, large dendrites are formed, which are particularly undesirable as they can damage the epithelium of the urinary tract. The effect of phosphoric acid on the nucleation and growth of struvite is explained in base of chemical speciation analysis. This analysis indicates that the MgHCit and MgCit- complexes have the main influence on the nucleation and growth of struvite in artificial urine in the presence of phosphoric acid. It should be keep in mind that all these effects of phosphoric acid are possible when the urinary tract is infected with urease-positive bacteria. In the absence of infection, phosphoric acid will not cause struvite to crystallize.
Collapse
Affiliation(s)
- Mikołaj Skubisz
- Institute of Physics, Lodz University of Technology, ul. Wólczańska 217/221, 93‑005, Łódź, Poland
| | - Agnieszka Torzewska
- Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, ul. Banacha 12/16, 90-237, Łódź, Poland
| | - Ewa Mielniczek-Brzóska
- Institute of Chemistry, Faculty of Science and Technology, Jan Długosz University of Czestochowa, ul. Armii Krajowej 13/15, 42-200, Częstochowa, Poland
| | - Jolanta Prywer
- Institute of Physics, Lodz University of Technology, ul. Wólczańska 217/221, 93‑005, Łódź, Poland.
| |
Collapse
|
8
|
Huang Y, Cai J, Ye ZL, Lin L, Hong Z. Morphological crystal adsorbing tetracyclines and its interaction with magnesium ion in the process of struvite crystallization by using synthetic wastewater. WATER RESEARCH 2022; 215:118253. [PMID: 35278912 DOI: 10.1016/j.watres.2022.118253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Struvite (MgNH4PO4·6H2O) crystallization is a promising method of phosphorus recovery from wastewater. As for digestive livestock wastewater, the extensive residues of antibiotics could induce struvite recovery to spread antibiotic resistance and thereafter pose ecological risks to the environment. In this study, struvite crystals with different morphologies were produced from synthetic swine wastewater, and tetracyclines (TCs) adsorbing capacities were investigated. The important factors, including the existence of Mg2+ ions and initial TCs concentration, were examined. The predominant adsorption between TCs and struvite crystals was electrostatic interaction, with the maximum capacity at doxycycline (DXC) 876.5 μg/Kg, oxytetracycline (OTC) 1946.7 μg/Kg and tetracycline (TC) 2376.2 μg/Kg, respectively. Well-faceted struvite crystallites possessed high adsorption capacities than those of dendritic crystallite, due to higher Mg intensities on the crystallite surface. The increment of phosphorus concentration could trigger the transformation of struvite morphology from needle to dendritic shapes with X-shape as an intermediate stage, which would reduce Mg density in specific crystallite facets and therefore limit TCs adsorption onto struvite crystals. The existence of Mg2+ ion would inhibit TCs deprotonation and thereafter improve TCs adsorption onto struvite crystals. Further investigation revealed that continuously elevating initial TCs concentration would promote the formation of 1:2 transferring to 1:1 TCs-Mg chelates, which would result in a fluctuation following a drastic augment of TCs adsorption capacity.
Collapse
Affiliation(s)
- Yahui Huang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, No. 1799 Jimei Road, Xiamen City, Fujian, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiasheng Cai
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, No. 1799 Jimei Road, Xiamen City, Fujian, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Long Ye
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, No. 1799 Jimei Road, Xiamen City, Fujian, 361021, China.
| | - Lifeng Lin
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, No. 1799 Jimei Road, Xiamen City, Fujian, 361021, China
| | - Zixiao Hong
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, No. 1799 Jimei Road, Xiamen City, Fujian, 361021, China
| |
Collapse
|
9
|
Biomineralization of Nickel Struvite Linked to Metal Resistance in Streptomyces mirabilis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103061. [PMID: 35630535 PMCID: PMC9145468 DOI: 10.3390/molecules27103061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 11/22/2022]
Abstract
Biomineral formation is a common trait and prominent for soil Actinobacteria, including the genus Streptomyces. We investigated the formation of nickel-containing biominerals in the presence of a heavy-metal-resistant Streptomyces mirabilis P16B-1. Biomineralization was found to occur both in solid and liquid media. Minerals were identified with Raman spectroscopy and TEM-EDX to be either Mg-containing struvite produced in media containing no nickel, or Ni-struvite where Ni replaces the Mg when nickel was present in sufficient concentrations in the media. The precipitation of Ni-struvite reduced the concentration of nickel available in the medium. Therefore, Ni-struvite precipitation is an efficient mechanism for tolerance to nickel. We discuss the contribution of a plasmid-encoded nickel efflux transporter in aiding biomineralization. In the elevated local concentrations of Ni surrounding the cells carrying this plasmid, more biominerals occurred supporting this point of view. The biominerals formed have been quantified, showing that the conditions of growth do influence mineralization. This control is also visible in differences observed to biosynthetically synthesized Ni-struvites, including the use of sterile-filtered culture supernatant. The use of the wildtype S. mirabilis P16B-1 and its plasmid-free derivative, as well as a metal-sensitive recipient, S. lividans, and the same transformed with the plasmid, allowed us to access genetic factors involved in this partial control of biomineral formation.
Collapse
|
10
|
Prywer J. The fascinating world of biogenic crystals. Science 2022; 376:240-241. [PMID: 35420943 DOI: 10.1126/science.abo2781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The diverse properties of these crystals may lead to a variety of applications.
Collapse
Affiliation(s)
- Jolanta Prywer
- Institute of Physics, Lodz University of Technology, ul. Wólczańska 217/221, 93-005 Łódź, Poland
| |
Collapse
|
11
|
Yan C, Ma H, Luo Z, Zhou X, Wang L. Influence of Phosphorus Sources on the Compressive Strength and Microstructure of Ferronickel Slag-Based Magnesium Phosphate Cement. MATERIALS 2022; 15:ma15051965. [PMID: 35269196 PMCID: PMC8911786 DOI: 10.3390/ma15051965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 11/18/2022]
Abstract
Electric furnace ferronickel slag (EFS) is a typical magnesium-rich industrial by-product discharged from the manufacture of nickel and iron-nickel alloys. The approach to use it as the raw material for the preparation of magnesium phosphate cement (MPC) has potential and proves effective. In this study, three different phosphorus sources (PS) including phosphoric acid (H3PO4, PA), sodium dihydrogen phosphate (NaH2PO4, SDP) and potassium dihydrogen phosphate (KH2PO4, PDP) were used to react with EFS to prepare the EFS-based MPC (EMPC), and the effects of raw material mass ratio (EFS/PA, EFS/SDP, EFS/PDP) on the compressive strength, early hydration temperature and microstructure of EMPC pastes were investigated. Results showed that the compressive strength of EMPC paste is significantly impacted by the type of phosphorus source and the raw materials mass ratio. When the EFS/PDP ratio is 4.0, the compressive strength of the MPC paste reaches up to 18.8, 22.8 and 27.5 MPa at 3, 7 and 28 d, respectively. Cattiite (Mg3(PO4)2·22H2O), K-struvite (KMgPO4·6H2O) and/or Na-struvite (NaMgPO4·6H2O) were identified as the main hydration products of EMPC. The development of EMPC mainly involves the dissolution of a phosphorus source, MgO and Mg2SiO4, formation of hydration product as binder, and combination of the unreacted raw materials together by binders to build a compact form.
Collapse
Affiliation(s)
- Cuirong Yan
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China; (C.Y.); (L.W.)
- Faculty of Environmental and Chemical Engineering, Kunming Metallurgy College, Kunming 650033, China
| | - Hongyan Ma
- Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA;
| | - Zhongqiu Luo
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China; (C.Y.); (L.W.)
- Correspondence: (Z.L.); (X.Z.)
| | - Xintao Zhou
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China; (C.Y.); (L.W.)
- Correspondence: (Z.L.); (X.Z.)
| | - Luxing Wang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China; (C.Y.); (L.W.)
| |
Collapse
|
12
|
Liu M, Cui Z, Zhu ZW, Gao M, Chen JB, Feng Z, He C, Chen H. Development of a nomogram predicting the infection stones in kidney for better clinical management: A retrospective study. J Endourol 2022; 36:947-953. [PMID: 35166130 DOI: 10.1089/end.2021.0735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE To establish the first comprehensive nomogram for prediction of infection stones before treatment for better perioperative treatment and post-operative prevention of infection stones. METHODS A total number of 461 patients with kidney stones who underwent mini-percutaneous nephrolithotomy (mPCNL) and flexible ureteroscopy (FURS) between January 2019 to March 2021 were retrospectively analyzed. Univariable analysis and multivariable logistic regression analysis were conducted to identify the predictors for infection stones. Furthermore, the nomogram was established as a predicted model for infection stones. RESULTS Among 461 patients with infrared spectroscopy stone analysis, 100 (21.70%) had infection stones and 361 (78.31%) had noninfection stones. Multivariate logistic regression analysis indicated that female (OR 2.816, 95% CI 1.148-6.909, P = 0.024), recurrent kidney stones (OR 8.263, 95% CI 2.295-29.745, P = 0.001), stone burden (OR 6.872, 95% CI 2.973-15.885, P < 0.001), Hounsfield units (HU) (OR 15.208, 95% CI 6.635-34.860, P < 0.001), positive preoperative bladder urine culture (PBUC) (OR 4.899, 95% CI 1.911-12.560, P = 0.001), positive urine leukocyte esterase (ULE) (OR 3.144, 95% CI 1.114-8.870, P = 0.030), urine pH (OR 2.692, 95% CI 1.573-4.608, P < 0.001) and positive urine turbidity (OR 3.295, 95% CI 1.207-8.998, P = 0.020) were predictors for infection stone. CONCLUSIONS For patients with kidney stones, female, recurrent kidney stones, stone burden (>601 mm2), HU (750-1000), positive PBUC, positive ULE, urine pH and positive urine turbidity were predictors for infection stone. We established the first comprehensive model for identifying infection stones in vivo, which is extremely useful for the management of infection stones.
Collapse
Affiliation(s)
- Minghui Liu
- Central South University, 12570, changsha,hunan,China, Changsha, China, 410083;
| | - Zhongxiao Cui
- Xiangya Hospital Central South University, 159374, Changsha, Hunan, China;
| | | | - Meng Gao
- Xiangya Hospital Central South University, 159374, hunan changsha, Changsha, China, 410008;
| | - Jin-Bo Chen
- Xiangya Hospital, Central South University, Department of Urology, No. 78, XiangYa Road, ChangSha City, Hunan 410008, China, Changsha, China, 410008;
| | - Zeng Feng
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.changsha, China, 410000;
| | - Cheng He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China. , Changsha, China;
| | - Hequn Chen
- Xiangya Hospital Central South University, 159374, Department of Urology, The Xiangya Hospital, Central South University, Changsha, Hunan 410000, China., Changsha, China, 410008;
| |
Collapse
|
13
|
Zhao JJ, Zhang YF, Zhao TL, Li H, Yao QZ, Fu SQ, Zhou GT. Abiotic Formation of Calcium Oxalate under UV Irradiation and Implications for Biomarker Detection on Mars. ASTROBIOLOGY 2022; 22:35-48. [PMID: 35020413 DOI: 10.1089/ast.2020.2416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A major objective in the exploration of Mars is to test the hypothesis that the planet has ever hosted life. Biogenic compounds, especially biominerals, are believed to serve as biomarkers in Raman-assisted remote sensing missions. However, the prerequisite for the development of these minerals as biomarkers is the uniqueness of their biogenesis. Herein, tetragonal bipyramidal weddellite, a type of calcium oxalate, is successfully achieved by UV-photolyzing pyruvic acid (PA). The as-prepared products are identified and characterized by micro-Raman spectroscopy and field emission scanning electron microscopy. Persistent mineralization of weddellite is observed with altering key experimental parameters, including pH, Ca2+ and PA concentrations. In particular, the initial concentration of PA can significantly influence the morphology of weddellite crystal. Oxalate acid is commonly of biological origin; thus calcium oxalate is considered to be a biomarker. However, our results reveal that calcium oxalate can be harvested by a UV photolysis pathway. Moreover, prebiotic sources of organics (e.g., PA, glycine, alanine, and aspartic acid) have been proven to be available through abiotic pathways. Therefore, our results may provide a new abiotic pathway of calcium oxalate formation. Considering that calcium oxalate minerals have been taken as biosignatures for the origin and early evolution of life on Earth and astrobiological investigations, its formation and accumulation by the photolysis of abiological organic compounds should be taken into account.
Collapse
Affiliation(s)
- Jia-Jian Zhao
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, P.R. China
| | - Yi-Fan Zhang
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, P.R. China
| | - Tian-Lei Zhao
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, P.R. China
| | - Han Li
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, P.R. China
| | - Qi-Zhi Yao
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, P.R. China
| | - Sheng-Quan Fu
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, P.R. China
| | - Gen-Tao Zhou
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, P.R. China
- CAS Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei, P.R. China
| |
Collapse
|
14
|
Effect of Ca2+ Replacement with Cu2+ Ions in Brushite on the Phase Composition and Crystal Structure. MINERALS 2021. [DOI: 10.3390/min11101028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The gradual replacement of Ca2+ with Cu2+ ions in brushite (CaHPO4·2H2O) has been extensively studied and discussed. The approach adopted in this work has not been systematically explored in previous studies. This novel approach may prove beneficial for the production of Ca1−xCuxHPO4·nH2O materials with desired properties suitable for medical applications. Solutions of sodium dihydrogen orthophosphate dihydrate, NaH2PO4·2H2O, calcium nitrate tetrahydrate, Ca(NO3)2·4H2O, copper nitrate trihydrate, Cu(NO3)2·3H2O, ammonium hydroxide solution, and diluted HCl were used for the preparation of these materials. At low Cu/Ca molar ratios (up to 0.25) in the starting solution, biphasic phosphate minerals were formed: brushite and sampleite. When the Cu/Ca molar ratio increases gradually from 0.67 to 1.5, sampleite-like mineral precipitates. Powdered XRD (X-ray diffraction), thermogravimetric (TG) analysis, and SEM (scanning electron microscopy) techniques were employed for the study of the microstructure of the produced materials for different degrees of Ca replacement with Mg. It is found that the Cu/Ca ratio in the starting solution can be adjusted to obtain materials with tailored composition. Thus, a new method of sampleite-like synthesis as a rare mineral is introduced in this study. Both phosphate minerals brushite and sampleite-like minerals are attractive as precursors of bioceramics and biocements. The search for such products that may decrease the possibility of post prosthetic or implant infection can be crucial in preventing devastating post-surgical complications.
Collapse
|
15
|
Nandre V, Kumbhar N, Battu S, Kale Y, Bagade A, Haram S, Kodam K. Siderophore mediated mineralization of struvite: A novel greener route of sustainable phosphate management. WATER RESEARCH 2021; 203:117511. [PMID: 34375932 DOI: 10.1016/j.watres.2021.117511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/24/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Efficient and sustainable removal of phosphate ions from an aqueous solution is of great challenge. Herein we demonstrated a greener route for phosphate recovery through struvite formation by using bacterial siderophore. This method was efficient for removal of phosphate as low as 1.3 mM with 99% recovery efficiency. The siderophore produced by Pseudomonas taiwanensis R-12-2 act as template for the nucleation of struvite crystals and was found sustainable for recycling the phosphorous efficiently after twenty cycles. The formation of struvite crystals is driven by surrounding pH (9.0) and presence of Mg2+ and NH4+ ions along with PO43- and siderophore which was further validated by computational studies. The morphology of struvite was characterized by scanning electron microscopy, followed by elemental analysis. Furthermore, our results revealed that the siderophore plays an important role in struvite biomineralization. We have successfully demonstrated the phosphate sequestration by using industrial waste samples, as possible application for environmental sustainability and phosphate conservation. For the first time electrochemical super-capacitance performance of the struvite was studied. The specific capacitance value for the struvite was found to be 320 F g-1 at 1.87 A g-1 and retained 92 % capacitance after 250 cycles. The study revealed the potential implications of siderophore for the phosphate recycling and the new mechanism for biomineralization by sequestering into struvite.
Collapse
Affiliation(s)
- Vinod Nandre
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Navanath Kumbhar
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Shateesh Battu
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Yuvraj Kale
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Aditi Bagade
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Santosh Haram
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Kisan Kodam
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
16
|
Gradual Replacement of Ca2+ with Mg2+ Ions in Brushite for the Production of Ca1−xMgxHPO4·nH2O Materials. MINERALS 2021. [DOI: 10.3390/min11030284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The present study investigates the gradual replacement of Ca2+ with Mg2+ ions in brushite (CaHPO4·2H2O). To date, this approach has not been systematically explored and may prove beneficial for the production of Ca1−xMgxHPO4·nH2O materials with tailored properties which are suitable for environmental and medical applications. For their production, solutions of sodium dihydrogen orthophosphate dehydrate, NaH2PO4·2H2O, calcium nitrate tetrahydrate, Ca(NO3)2·4H2O, magnesium nitrate hexahydrate, Mg(NO3)2·6H2O and ammonium hydroxide solution, NH4OH, were used. At low Mg/Ca molar ratios (up to 0.25) in the starting solution, partial replacement of Ca with Mg takes place (Mg doping) but no struvite is produced as discrete phase. When the Mg/Ca molar ratio increases gradually to 1.5, in addition to Mg-doped brushite, struvite, NH4MgPO4·6H2O, precipitates. The microstructure of the materials produced for different degrees of Ca replacement with Mg has been analyzed in depth with the use of powdered XRD (X-ray diffraction), XPS (X-ray photoelectron spectroscopy), thermogravimetric (TG) analysis and SEM (scanning electron microscopy). The results of this study prove that the Mg/Ca ratio in the starting solution can be monitored in such a way that materials with tailored composition are obtained.
Collapse
|
17
|
Li H, Zhao TL, Qian FJ, Jiang HF, Yao QZ, Luo Y, Fu SQ, Zhou GT. A model of extracellular polymeric substances on crystal growth and morphogenesis of struvite: Effects of sodium alginate. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.11.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Kim D, Olympiou C, McCoy CP, Irwin NJ, Rimer JD. Time-Resolved Dynamics of Struvite Crystallization: Insights from the Macroscopic to Molecular Scale. Chemistry 2020; 26:3555-3563. [PMID: 31742800 DOI: 10.1002/chem.201904347] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/05/2019] [Indexed: 12/14/2022]
Abstract
The crystallization of magnesium ammonium phosphate hexahydrate (struvite) often occurs under conditions of fluid flow, yet the dynamics of struvite growth under these relevant environments has not been previously reported. In this study, we use a microfluidic device to evaluate the anisotropic growth of struvite crystals at variable flow rates and solution supersaturation. We show that bulk crystallization under quiescent conditions yields irreproducible data owing to the propensity of struvite to adopt defects in its crystal lattice, as well as fluctuations in pH that markedly impact crystal growth rates. Studies in microfluidic channels allow for time-resolved analysis of seeded growth along all three principle crystallographic directions and under highly controlled environments. After having first identified flow rates that differentiate diffusion and reaction limited growth regimes, we operated solely in the latter regime to extract the kinetic rates of struvite growth along the [100], [010], and [001] directions. In situ atomic force microscopy was used to obtain molecular level details of surface growth mechanisms. Our findings reveal a classical pathway of crystallization by monomer addition with the expected transition from growth by screw dislocations at low supersaturation to that of two-dimensional layer generation and spreading at high supersaturation. Collectively, these studies present a platform for assessing struvite crystallization under flow conditions and demonstrate how this approach is superior to measurements under quiescent conditions.
Collapse
Affiliation(s)
- Doyoung Kim
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204, USA
| | - Chara Olympiou
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Colin P McCoy
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Nicola J Irwin
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Jeffrey D Rimer
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204, USA
| |
Collapse
|
19
|
Biomineralization of Carbonate Minerals Induced by The Moderate Halophile Staphylococcus Warneri YXY2. CRYSTALS 2020. [DOI: 10.3390/cryst10020058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although biomineralization of minerals induced by microorganisms has been widely reported, the mechanisms of biomineralization and the characteristics of the biominerals precipitated needs to be studied further. In this study, Staphylococcus warneri YXY2, a moderate halophile, was used to induce the precipitation of carbonate minerals at various Mg/Ca molar ratios. To investigate the biomineralization mechanism, the growth curve, pH changes, ammonia test, the concentration of bicarbonate and carbonate ions, and the activity of carbonic anhydrase (CA) and alkaline phosphatase (ALP) were determined. X-ray powder diffraction (XRD), scanning electron microscopy - energy disperse spectroscopy (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), and stable carbon isotope analyses were used to characterize the minerals. The obtained biotic minerals were calcite, vaterite, Mg-rich calcite, and aragonite crystals. The crystallinity of aragonite decreased with increasing Mg/Ca ratios. The preferred orientation, diverse morphologies, organic substances, and more negative stable carbon isotope values proved the biogenesis of these carbonate minerals. The presence of Mg in the biotic aragonite crystals was likely related to the acidic amino acids which also facilitated the nucleation of minerals on/in the extracellular polymeric substances (EPS). Mg2+ and Ca2+ ions were able to enter into the YXY2 bacteria to induce intracellular biomineralization. Dynamics simulation using Material Studio software proved that different adsorption energies of Glutamic acid (Glu) adsorbed onto different crystal planes of aragonite led to the preferred orientation of aragonite. This study helps to deepen our understanding of biomineralization mechanisms and may be helpful to distinguish biotic minerals from abiotic minerals.
Collapse
|
20
|
Bio-Precipitation of Carbonate and Phosphate Minerals Induced by the Bacterium Citrobacter freundii ZW123 in an Anaerobic Environment. MINERALS 2020. [DOI: 10.3390/min10010065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, a facultative anaerobic strain isolated from marine sediments and identified as Citrobacter freundii, was used to induce the precipitation of carbonate and phosphate minerals in the laboratory under anaerobic conditions. This is the first time that the ability of C. freundii ZW123 to precipitate carbonate and phosphate minerals has been demonstrated. During the experiments, carbonic anhydrase, alkaline phosphatase and ammonium released by the bacteria not only promoted an increase in pH, but also drove the supersaturation and precipitation of carbonate and phosphate minerals. The predominant bio-mediated minerals precipitated at various Mg/Ca molar ratios were calcite, vaterite, Mg-rich calcite, monohydrocalcite and struvite. A preferred orientation towards struvite was observed. Scanning transmission electron microscopy (STEM) and elemental mapping showed the distribution of magnesium and calcium elements within Mg-rich calcite. Many organic functional groups, including C=O, C–O–C and C–O, were detected within the biominerals, and these functional groups were also identified in the associated extracellular polymeric substances (EPS). Fifteen kinds of amino acid were detected in the biotic minerals, almost identical to those of the EPS, indicating a close relationship between EPS and biominerals. Most amino acids are negatively charged and able to adsorb cations, providing an oversaturated microenvironment to facilitate mineral nucleation. The X-ray photoelectron spectroscopy (XPS) spectrum of struvite shows the presence of organic functional groups on the mineral surface, suggesting a role of the microorganism in struvite precipitation. The ZW123 bacteria provided carbon and nitrogen for the formation of the biotic minerals through their metabolism, which further emphasizes the close relationship between biominerals and the microorganisms. Thermal studies showed the enhanced thermal stability of biotic minerals, perhaps due to the participation of the bacteria ZW123. The presence of amino acids such as Asp and Glu may explain the high magnesium content of some calcites. Molecular dynamics simulations demonstrated that the morphological change and preferred orientation were likely caused by selective adsorption of EPS onto the various struvite crystal surfaces. Thus, this study shows the significant role played by C. freundii ZW123 in the bioprecipitation of carbonate and phosphate minerals and provides some insights into the processes involved.
Collapse
|
21
|
Manzoor MAP, Duwal SR, Mujeeburahiman M, Rekha PD. Vitamin C inhibits crystallization of struvite from artificial urine in the presence of Pseudomonas aeruginosa. Int Braz J Urol 2019; 44:1234-1242. [PMID: 29617075 PMCID: PMC6442181 DOI: 10.1590/s1677-5538.ibju.2017.0656] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/13/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Formation of struvite stones is associated with urinary tract infection by urease-producing bacteria. Biogenic crystal growth in natural and synthetic materials is regulated by the action of inhibitors, ranging from small ions, molecules to large macromolecules. MATERIALS AND METHODS We report the dynamics of in vitro crystallization of struvite in presence of vitamin C in synthetic urine using single diffusion gel growth technique. Sodium metasilicate gel of specific gravity 1.05 and the aqueous solution of ammonium dihydrogen phosphate were used as the medium for growing the struvite crystals. The crystallization process was induced by a urease positive struvite stone associated Pseudomonas aeruginosa to mimic the infection leading to stone formation. The grown crystals were characterized by ATR-FTIR and powder XRD. The surface morphology was analysed through FE-SEM for comparison between treatments. RESULTS We observed decrease in number, dimension, and growth rate of struvite crystals with the increasing concentrations of vitamin C. Crystals displayed well-defined faces and dendritic morphology of struvite in both control and biogenic systems. CONCLUSION The results strongly suggest that, vitamin C can modulate the formation of struvite crystals in the presence of uropathogenic bacteria.
Collapse
Affiliation(s)
- Muhammed A P Manzoor
- Yenepoya Research Centre, Yenepoya Medical College, Yenepoya University, Mangalore, Karnataka, India
| | - Surya Ram Duwal
- Department of Biochemistry, Yenepoya Medical College, Yenepoya University, Mangalore, Karnataka, India
| | - M Mujeeburahiman
- Department of Urology, Yenepoya Medical College, Yenepoya University, Mangalore, Karnataka, India
| | - Punchappady-Devasya Rekha
- Yenepoya Research Centre, Yenepoya Medical College, Yenepoya University, Mangalore, Karnataka, India
| |
Collapse
|
22
|
Investigation on growth and morphology of in vitro generated struvite crystals. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.01.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Wei L, Hong T, Hu Z, Luo L, Zhang Q, Chen T. Modeling surface acid-base properties of struvite crystals synthesized in aqueous solution. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.05.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
24
|
Manzoor MAP, Singh B, Agrawal AK, Arun AB, Mujeeburahiman M, Rekha PD. Morphological and micro-tomographic study on evolution of struvite in synthetic urine infected with bacteria and investigation of its pathological biomineralization. PLoS One 2018; 13:e0202306. [PMID: 30106992 PMCID: PMC6091953 DOI: 10.1371/journal.pone.0202306] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/31/2018] [Indexed: 11/24/2022] Open
Abstract
Pathological biomineralization in the urinary system leads to urolithiasis. Formation of kidney stones involves a series of events during which they undergo morphological and mineralogical changes. We investigated the mineralization of biogenic struvite (in vitro) and examined the transformation of distinct interior and exterior structure of struvite. In vitro crystallization of struvite was performed in the presence of two bacteria that were originally isolated from the kidney stone patients. Morphological evaluation was carried out using SR-μCT as well as FESEM, XRD and FT-IR. Characteristic internal 3-D morphology and porosity of the stones were studied. For comparison, patient derived struvite stones were used. From the results obtained, we report that the presence of bacteria enhances the crystallization process of struvite in vitro. A series of time-resolved experiments revealed that struvite crystals experienced a significant morphologic evolution from pin pointed structure to X-shaped and tabular morphologies. These X-shaped and unusual tabular habits of struvite resembled biogenic morphologies of struvite. SR-μCT showed similarities between the patient derived and the in vitro derived struvite crystals. In conclusion, these experiments revealed that the bacteria play a major role in the specific morphogenesis of struvite and can able to control the nucleation, modulate crystalline phases, and shape of the growing crystal.
Collapse
Affiliation(s)
- Muhammed A. P. Manzoor
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
- Department of Urology, Yenepoya Medical College, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Balwant Singh
- Technical Physics Division, Bhabha Atomic Research Centre, Indore-Mumbai, India
| | - Ashish K. Agrawal
- Technical Physics Division, Bhabha Atomic Research Centre, Indore-Mumbai, India
| | | | - M. Mujeeburahiman
- Department of Urology, Yenepoya Medical College, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
- * E-mail: (RPD); (MM)
| | - Punchappady-Devasya Rekha
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
- * E-mail: (RPD); (MM)
| |
Collapse
|
25
|
Liu N, Xie H, Ping H, Wang L, Liu Z, Tao F, Guo J, Su BL. Shape and structure controlling of calcium oxalate crystals by a combination of additives in the process of biomineralization. RSC Adv 2018; 8:11014-11020. [PMID: 35541543 PMCID: PMC9078945 DOI: 10.1039/c8ra00661j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/05/2018] [Indexed: 11/21/2022] Open
Abstract
The origin of complex hierarchical superstructures of biomaterials and their unique self-assembly mechanisms of formation are important in biological systems and have attracted considerable attention. In the present study, we investigated the morphological changes of calcium oxalate (CaO x ) crystals induced by additives including chiral aspartic acid, sodium citrate, Mg2+, casein and combinations of these molecules. The morphology and structure of CaO x were identified with the use of various techniques. The morphogenesis of CaO x crystals were significantly affected by chiral aspartic acid, sodium citrate or Mg2+. However, they only formed calcium oxalate monohydrate (COM). It was observed that the chiral aspartic acid, sodium citrate and casein adhered to the surface of the crystals. The adherence of Mg2+ to crystals was not evident. Casein significantly affected the formation of COM and calcium oxalate dihydrate (COD). The ratio of different CaO x crystal forms is associated with the casein concentration. In combination with Mg2+ or citrate ions, casein showed improved formation of COD. The present study mimics biomineralization with a simple chemical approach and provides insight into the complicated system of CaO x biomineralization as well as facilitates the understanding of urinary stone treatment.
Collapse
Affiliation(s)
- Nian Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology Wuhan 430070 China
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| | - Hao Xie
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology Wuhan 430070 China
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| | - Hang Ping
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| | - Lin Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology Wuhan 430070 China
| | - Zewen Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology Wuhan 430070 China
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| | - Fei Tao
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology Wuhan 430070 China
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| | - Junhui Guo
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology Wuhan 430070 China
| | - Bao-Lian Su
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
- Laboratory of Inorganic Materials Chemistry, University of Namur B-5000 Namur Belgium
| |
Collapse
|
26
|
Tansel B, Lunn G, Monje O. Struvite formation and decomposition characteristics for ammonia and phosphorus recovery: A review of magnesium-ammonia-phosphate interactions. CHEMOSPHERE 2018; 194:504-514. [PMID: 29241124 DOI: 10.1016/j.chemosphere.2017.12.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 10/31/2017] [Accepted: 12/02/2017] [Indexed: 05/10/2023]
Abstract
Struvite (MgNH4PO4·6H2O) forms in aqueous systems with high ammonia and phosphate concentrations. However, conditions that result into struvite formation are highly dependent on the ionic compositions, temperature, pH, and ion speciation characteristics. The primary ions involved in struvite formation have complex interactions and can form different crystals depending on the ionic levels, pH and temperature. Struvite as well as struvite analogues (with substitution of monovalent cations for NH4+ or divalent cations for Mg2+) as well as other crystals can form simultaneously and result in changes in crystal morphology during crystal growth. This review provides the results from experimental and theoretical studies on struvite formation and decomposition studies. Characteristics of NH4+ or divalent cations for Mg2+ were evaluated in comparison to monovalent and divalent ions for formation of struvite and its analogues. Struvite crystals forming in wastewater systems are likely to contain crystals other than struvite due to ionic interactions, pH changes, temperature effects and clustering of ions during nucleation and crystal growth. Decomposition of struvite occurs following a series of reactions depending on the rate of heating, temperature and availability of water during heating.
Collapse
Affiliation(s)
- Berrin Tansel
- Florida International University, Civil and Environmental Engineering Department, Miami, FL, USA.
| | - Griffin Lunn
- Vencore Services and Solutions, Inc., Kennedy Space Center, FL, USA
| | - Oscar Monje
- Vencore Services and Solutions, Inc., Kennedy Space Center, FL, USA
| |
Collapse
|
27
|
Rationally designed mineralization for selective recovery of the rare earth elements. Nat Commun 2017; 8:15670. [PMID: 28548098 PMCID: PMC5458567 DOI: 10.1038/ncomms15670] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 04/19/2017] [Indexed: 02/01/2023] Open
Abstract
The increasing demand for rare earth (RE) elements in advanced materials for permanent magnets, rechargeable batteries, catalysts and lamp phosphors necessitates environmentally friendly approaches for their recovery and separation. Here, we propose a mineralization concept for direct extraction of RE ions with Lamp (lanthanide ion mineralization peptide). In aqueous solution containing various metal ions, Lamp promotes the generation of RE hydroxide species with which it binds to form hydrophobic complexes that accumulate spontaneously as insoluble precipitates, even under physiological conditions (pH ∼6.0). This concept for stabilization of an insoluble lanthanide hydroxide complex with an artificial peptide also works in combination with stable scaffolds like synthetic macromolecules and proteins. Our strategy opens the possibility for selective separation of target metal elements from seawater and industrial wastewater under mild conditions without additional energy input.
Collapse
|
28
|
Merino-Jimenez I, Celorrio V, Fermin DJ, Greenman J, Ieropoulos I. Enhanced MFC power production and struvite recovery by the addition of sea salts to urine. WATER RESEARCH 2017; 109:46-53. [PMID: 27866103 PMCID: PMC5234473 DOI: 10.1016/j.watres.2016.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/01/2016] [Accepted: 11/03/2016] [Indexed: 05/09/2023]
Abstract
Urine is an excellent fuel for electricity generation in Microbial Fuel Cells (MFCs), especially with practical implementations in mind. Moreover, urine has a high content in nutrients which can be easily recovered. Struvite (MgNH4PO4·6H2O) crystals naturally precipitate in urine, but this reaction can be enhanced by the introduction of additional magnesium. In this work, the effect of magnesium additives on the power output of the MFCs and on the catholyte generation is evaluated. Several magnesium sources including MgCl2, artificial sea water and a commercially available sea salts mixture for seawater preparation (SeaMix) were mixed with real fresh human urine in order to enhance struvite precipitation. The supernatant of each mixture was tested as a feedstock for the MFCs and it was evaluated in terms of power output and catholyte generation. The commercial SeaMix showed the best performance in terms of struvite precipitation, increasing the amount of struvite in the solid collected from 21% to 94%. Moreover, the SeaMix increased the maximum power performance of the MFCs by over 10% and it also changed the properties of the catholyte collected by increasing the pH, conductivity and the concentration of chloride ions. These results demonstrate that the addition of sea-salts to real urine is beneficial for both struvite recovery and electricity generation in MFCs.
Collapse
Affiliation(s)
- Irene Merino-Jimenez
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK.
| | - Veronica Celorrio
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - David J Fermin
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - John Greenman
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK; Biological, Biomedical and Analytical Sciences, University of the West of England, BS16 1QY, UK
| | - Ioannis Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK; Biological, Biomedical and Analytical Sciences, University of the West of England, BS16 1QY, UK.
| |
Collapse
|
29
|
Fang C, Zhang T, Jiang R, Ohtake H. Phosphate enhance recovery from wastewater by mechanism analysis and optimization of struvite settleability in fluidized bed reactor. Sci Rep 2016; 6:32215. [PMID: 27573918 PMCID: PMC5004189 DOI: 10.1038/srep32215] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/04/2016] [Indexed: 11/09/2022] Open
Abstract
Since phosphorus, a non-renewable and non-substitutable resource, has become the principal contributor and limiting factor to water eutrophication, achieving phosphorus removal and recovery from wastewater is pretty essential. Even though struvite crystallization process has been widely used for phosphate (P) recovery in wastewater treatment, its application is hampered by difficulties controlling small particle size and crystal growth. This study was conducted to control the settleability of struvite by calculating and predicting the struvite-settling percentage (Ps), which is always affected by the initial concentration of P (CP), solution pH (pH), reaction time (t), reaction temperature (T), agitation rate (Ar), and inlet flow velocity (vf) of the fluidized bed reactor. The results showed that the settleability of struvite could be enhanced by increasing T and decreasing pH, Ar, or vf, and would perform worse with overlong t or excessive CP. The dynamic variation process of the solution supersaturated index (SI) combined with the phase equilibrium theory and Ostwald ripening mechanism explained the above results sufficiently. The logistic model was chosen to predict the Ps under multi-factors, but the accuracy needs to be improved.
Collapse
Affiliation(s)
- Ci Fang
- Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Tao Zhang
- Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Rongfeng Jiang
- Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Hisao Ohtake
- Research Institute for Phosphorus Atlas, Waseda University, Osaka 565-0871, Japan
| |
Collapse
|
30
|
Li H, Yu SH, Yao QZ, Zhou GT, Fu SQ. Chemical control of struvite scale by a green inhibitor polyaspartic acid. RSC Adv 2015. [DOI: 10.1039/c5ra17149k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A green scale inhibitor, polyaspartic acid, is reported for the first time to effectively inhibit struvite formation and promote struvite dissolution.
Collapse
Affiliation(s)
- Han Li
- CAS Key Laboratory of Crust-Mantle Materials and Environments
- School of Earth and Space Sciences
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| | - Sheng-Hui Yu
- CAS Key Laboratory of Crust-Mantle Materials and Environments
- School of Earth and Space Sciences
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| | - Qi-Zhi Yao
- School of Chemistry and Materials Science
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| | - Gen-Tao Zhou
- CAS Key Laboratory of Crust-Mantle Materials and Environments
- School of Earth and Space Sciences
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| | - Sheng-Quan Fu
- Hefei National Laboratory for Physical Sciences at Microscale
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| |
Collapse
|