1
|
Köhler L, Trunk F, Rohr V, Fischer T, Gärtner W, Wachtveitl J, Matysik J, Slavov C, Song C. Rotameric Heterogeneity of Conserved Tryptophan Is Responsible for Reduced Photochemical Quantum Yield in Cyanobacteriochrome Slr1393g3. Chemphyschem 2025; 26:e202400453. [PMID: 39382835 PMCID: PMC11733413 DOI: 10.1002/cphc.202400453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/17/2024] [Accepted: 10/09/2024] [Indexed: 10/10/2024]
Abstract
The red/green cyanobacteriochrome (CBCR) slr1393g3 exhibits a quantum yield of only 8 % for its forward photoconversion, significantly lower than other species from the same CBCR subfamily. The cause for this reduced photoconversion is not yet clear, although in the related NpR6012g4 dark-state structural heterogeneity of a paramount Trp residue has been proposed to cause the formation of nonproductive subpopulation. However, there is no such information on the equivalent residue in slr1393g3, W496. Here we use solid-state NMR to explore all possible sidechain rotamers of this Trp residue and their local interactions at the atomic level. The indole nitrogen (Nϵ1) is used as an NMR probe, achieved by site-specific 15N-indole labeling of a quadruply Trp-deleted variant and trehalose vitrification technique. The data reveal a set of seven indole rotamers of W496 with four distinct environments for the Nϵ1-H group. Only a minority population of 20 % is found to retain the π-stacking and hydrogen-bonding interactions with the chromophore in the dark state that has been assigned to account for complete forward photoconversion. Our results demonstrate the direct role of W496 in modulating the forward quantum yield of slr1393g3 via rearrangement of its sidechain rotameric conformations.
Collapse
Affiliation(s)
- Lisa Köhler
- Institut für Analytische ChemieUniversität Leipzig04103LeipzigGermany
| | - Florian Trunk
- Institut für Physikalische und Theoretische ChemieGoethe-Universität Frankfurt60438Frankfurt am MainGermany
| | - Valentin Rohr
- Institut für Analytische ChemieUniversität Leipzig04103LeipzigGermany
| | - Tobias Fischer
- Institut für Physikalische und Theoretische ChemieGoethe-Universität Frankfurt60438Frankfurt am MainGermany
| | - Wolfgang Gärtner
- Institut für Analytische ChemieUniversität Leipzig04103LeipzigGermany
| | - Josef Wachtveitl
- Institut für Physikalische und Theoretische ChemieGoethe-Universität Frankfurt60438Frankfurt am MainGermany
| | - Jörg Matysik
- Institut für Analytische ChemieUniversität Leipzig04103LeipzigGermany
| | - Chavdar Slavov
- Institut für Physikalische und Theoretische ChemieGoethe-Universität Frankfurt60438Frankfurt am MainGermany
- Department of ChemistryUniversity of South Florida33620TampaUnited States of America
| | - Chen Song
- Institut für Analytische ChemieUniversität Leipzig04103LeipzigGermany
| |
Collapse
|
2
|
Rockwell NC, Lagarias JC. Cyanobacteriochromes: A Rainbow of Photoreceptors. Annu Rev Microbiol 2024; 78:61-81. [PMID: 38848579 PMCID: PMC11578781 DOI: 10.1146/annurev-micro-041522-094613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Widespread phytochrome photoreceptors use photoisomerization of linear tetrapyrrole (bilin) chromophores to measure the ratio of red to far-red light. Cyanobacteria also contain distantly related cyanobacteriochrome (CBCR) proteins that share the bilin-binding GAF domain of phytochromes but sense other colors of light. CBCR photocycles are extremely diverse, ranging from the near-UV to the near-IR. Photoisomerization of the bilin triggers photoconversion of the CBCR input, thereby modulating the biochemical signaling state of output domains such as histidine kinase bidomains that can interface with cellular signal transduction pathways. CBCRs thus can regulate several aspects of cyanobacterial photobiology, including phototaxis, metabolism of cyclic nucleotide second messengers, and optimization of the cyanobacterial light-harvesting apparatus. This review examines spectral tuning, photoconversion, and photobiology of CBCRs and recent developments in understanding their evolution and in applying them in synthetic biology.
Collapse
Affiliation(s)
- Nathan C Rockwell
- Department of Molecular and Cellular Biology, University of California, Davis, California, USA; ,
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis, California, USA; ,
| |
Collapse
|
3
|
Hoshino H, Miyake K, Fushimi K, Narikawa R. Red/green cyanobacteriochromes acquire isomerization from phycocyanobilin to phycoviolobilin. Protein Sci 2024; 33:e5132. [PMID: 39072823 DOI: 10.1002/pro.5132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/01/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024]
Abstract
Cyanobacteriochromes (CBCRs) are unique cyanobacteria-specific photoreceptors that share a distant relation with phytochromes. Most CBCRs contain conserved cysteine residues known as canonical Cys, while some CBCRs have additional cysteine residues called second Cys within the DXCF motif, leading to their classification as DXCF CBCRs. They typically undergo a process where they incorporate phycocyanobilin (PCB) and subsequently isomerize it to phycoviolobilin (PVB). Conversely, CBCRs with conserved Trp residues and without the second Cys are called extended red/green (XRG) CBCRs. Typical XRG CBCRs bind PCB without undergoing PCB-to-PVB isomerization, displaying red/green reversible photoconversion, and there are also atypical CBCRs that exhibit diverse photoconversions. We discovered novel XRG CBCRs with Cys residue instead of the conserved Trp residue. These novel XRG CBCRs exhibited the ability to isomerize PCB to PVB, displaying green/teal reversible photoconversion. Through sequence- and structure-based comparisons coupled with mutagenesis experiments, we identified three amino acid residues, including the Cys residue, crucial for facilitating PCB-to-PVB isomerization. This research expands our understanding of the diversity of XRG CBCRs, highlighting the remarkable molecular plasticity of CBCRs.
Collapse
Affiliation(s)
- Hiroki Hoshino
- Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Keita Miyake
- Graduate School of Arts and Sciences, University of Tokyo, Meguro, Tokyo, Japan
| | - Keiji Fushimi
- Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Rei Narikawa
- Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| |
Collapse
|
4
|
Zhan ML, Zhao X, Li XD, Tan ZZ, Xu QZ, Zhou M, Zhao KH. Photoreversible Aggregation of the Biliprotein Containing the First and Second GAF Domains of a Cyanobacteriochrome All2699 in Nostoc sp. PCC7120. Biochemistry 2024; 63:1225-1233. [PMID: 38682295 DOI: 10.1021/acs.biochem.4c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
As plant photoreceptors, phytochromes are capable of detecting red light and far-red light, thereby governing plant growth. All2699 is a photoreceptor found in Nostoc sp. PCC7120 that specifically responds to red light and far-red light. All2699g1g2 is a truncated protein carrying the first and second GAF (cGMP phosphodiesterase/adenylyl cyclase/FhlA) domains of All2699. In this study, we found that, upon exposure to red light, the protein underwent aggregation, resulting in the formation of protein aggregates. Conversely, under far-red light irradiation, these protein aggregates dissociated. We delved into the factors that impact the aggregation of All2699g1g2, focusing on the protein structure. Our findings showed that the GAF2 domain contains a low-complexity (LC) loop region, which plays a crucial role in mediating protein aggregation. Specifically, phenylalanine at position 239 within the LC loop region was identified as a key site for the aggregation process. Furthermore, our research revealed that various factors, including irradiation time, temperature, concentration, NaCl concentration, and pH value, can impact the aggregation of All2699g1g2. The aggregation led to variations in Pfr concentration depending on temperature, NaCl concentration, and pH value. In contrast, ΔLC did not aggregate and therefore lacked responses to these factors. Consequently, the LC loop region of All2699g1g2 extended and enhanced sensory properties.
Collapse
Affiliation(s)
- Min-Li Zhan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Xi Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Xiao-Dan Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Zi-Zhu Tan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Qian-Zhao Xu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Ming Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Kai-Hong Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| |
Collapse
|
5
|
Jiang XX, Hou YN, Lu LW, Zhao KH. Monomeric Far-red and Near-infrared Fluorescent Biliproteins of Ultrahigh Brightness. Chembiochem 2024:e202400068. [PMID: 38623786 DOI: 10.1002/cbic.202400068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/01/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Far-red and near-infrared fluorescent proteins have regions of maximum transmission in most tissues and can be widely used as fluorescent biomarkers. We report that fluorescent phycobiliproteins originating from the phycobilisome core subunit ApcF2 can covalently bind biliverdin, named BDFPs. To further improve BDFPs, we conducted a series of studies. Firstly, we mutated K53Q and T144A of BDFPs to increase their effective brightness up to 190 % in vivo. Secondly, by homochromatic tandem fusion of high-brightness BDFPs to achieve monomerization, which increases the effective brightness by up to 180 % in vivo, and can effectively improve the labeling effect. By combining the above two approaches, the brightness of the tandem BDFPs was much improved compared with that of the previously reported fluorescent proteins in a similar spectral range. The tandem BDFPs were expressed stably while maintaining fluorescence in mammalian cells and Caenorhabditis elegans. They were also photostable and resistant to high temperature, low pH, and chemical denaturation. The tandem BDFPs advantages were proved in applications as biomarkers for imaging in super-resolution microscopy.
Collapse
Affiliation(s)
- Xiang-Xiang Jiang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Ya-Nan Hou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Li-Wen Lu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Kai-Hong Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| |
Collapse
|
6
|
Rockwell NC, Lagarias JC. Cyanobacteriochromes from Gloeobacterales Provide New Insight into the Diversification of Cyanobacterial Photoreceptors. J Mol Biol 2024; 436:168313. [PMID: 37839679 PMCID: PMC11218821 DOI: 10.1016/j.jmb.2023.168313] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
The phytochrome superfamily comprises three groups of photoreceptors sharing a conserved GAF (cGMP-specific phosphodiesterases, cyanobacterial adenylate cyclases, and formate hydrogen lyase transcription activator FhlA) domain that uses a covalently attached linear tetrapyrrole (bilin) chromophore to sense light. Knotted red/far-red phytochromes are widespread in both bacteria and eukaryotes, but cyanobacteria also contain knotless red/far-red phytochromes and cyanobacteriochromes (CBCRs). Unlike typical phytochromes, CBCRs require only the GAF domain for bilin binding, chromophore ligation, and full, reversible photoconversion. CBCRs can sense a wide range of wavelengths (ca. 330-750 nm) and can regulate phototaxis, second messenger metabolism, and optimization of the cyanobacterial light-harvesting apparatus. However, the origins of CBCRs are not well understood: we do not know when or why CBCRs evolved, or what selective advantages led to retention of early CBCRs in cyanobacterial genomes. In the current work, we use the increasing availability of genomes and metagenome-assembled-genomes from early-branching cyanobacteria to explore the origins of CBCRs. We reaffirm the earliest branches in CBCR evolution. We also show that early-branching cyanobacteria contain late-branching CBCRs, implicating early appearance of CBCRs during cyanobacterial evolution. Moreover, we show that early-branching CBCRs behave as integrators of light and pH, providing a potential unique function for early CBCRs that led to their retention and subsequent diversification. Our results thus provide new insight into the origins of these diverse cyanobacterial photoreceptors.
Collapse
Affiliation(s)
- Nathan C Rockwell
- 31 Briggs Hall, Department of Molecular and Cell Biology, One Shields Avenue, University of California at Davis, Davis, CA 95616, USA.
| | - J Clark Lagarias
- 31 Briggs Hall, Department of Molecular and Cell Biology, One Shields Avenue, University of California at Davis, Davis, CA 95616, USA.
| |
Collapse
|
7
|
Blain-Hartung M, Johannes von Sass G, Plaickner J, Katz S, Tu Hoang O, Andrea Mroginski M, Esser N, Budisa N, Forest KT, Hildebrandt P. On the Role of a Conserved Tryptophan in the Chromophore Pocket of Cyanobacteriochrome. J Mol Biol 2024; 436:168227. [PMID: 37544357 DOI: 10.1016/j.jmb.2023.168227] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
The cyanobacteriochrome Slr1393 can be photoconverted between a red (Pr) and green absorbing form (Pg). The recently determined crystal structures of both states suggest a major movement of Trp496 from a stacking interaction with ring D of the phycocyanobilin (PCB) chromophore in Pr to a position outside the chromophore pocket in Pg. Here, we investigated the role of this amino acid during photoconversion in solution using engineered protein variants in which Trp496 was substituted by natural and non-natural amino acids. These variants and the native protein were studied by various spectroscopic techniques (UV-vis absorption, fluorescence, IR, NIR and UV resonance Raman) complemented by theoretical approaches. Trp496 is shown to affect the electronic transition of PCB and to be essential for the thermal equilibrium between Pr and an intermediate state O600. However, Trp496 is not required to stabilize the tilted orientation of ring D in Pr, and does not play a role in the secondary structure changes of Slr1393 during the Pr/Pg transition. The present results confirm the re-orientation of Trp496 upon Pr → Pg conversion, but do not provide evidence of a major change in the microenvironment of this residue. Structural models indicate the penetration of water molecules into the chromophore pocket in both Pr and Pg states and thus water-Trp contacts, which can readily account for the subtle spectral changes between Pr and Pg. Thus, we conclude that reorientation of Trp496 during the Pr-to-Pg photoconversion in solution is not associated with a major change in the dielectric environment in the two states.
Collapse
Affiliation(s)
- Matthew Blain-Hartung
- Technische Universität Berlin, Institut für Chemie, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Georg Johannes von Sass
- Technische Universität Berlin, Institut für Chemie, Sekr. CL1, Müller-Breslau-Str.10, D-10623 Berlin, Germany
| | - Julian Plaickner
- Technische Universität Berlin, Institut für Festkörperphysik, Sekr. EW 6-1, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Sagie Katz
- Technische Universität Berlin, Institut für Chemie, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Oanh Tu Hoang
- Technische Universität Berlin, Institut für Chemie, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Maria Andrea Mroginski
- Technische Universität Berlin, Institut für Chemie, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Norbert Esser
- Technische Universität Berlin, Institut für Festkörperphysik, Sekr. EW 6-1, Hardenbergstraße 36, 10623 Berlin, Germany; Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Schwarzschildstraße 8, 12489 Berlin, Germany
| | - Nediljko Budisa
- Technische Universität Berlin, Institut für Chemie, Sekr. CL1, Müller-Breslau-Str.10, D-10623 Berlin, Germany; Department of Chemistry, University of Manitoba, 144 Dysart Rd, 360 Parker Building, R3T 2N2 Winnipeg, Manitoba, Canada
| | - Katrina T Forest
- University of Wisconsin-Madison, Department of Bacteriology, 1550 Linden Dr., Madison, WI 53706, USA
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany.
| |
Collapse
|
8
|
Suzuki T, Yoshimura M, Arai M, Narikawa R. Crucial Residue for Tuning Thermal Relaxation Kinetics in the Biliverdin-binding Cyanobacteriochrome Photoreceptor Revealed by Site-saturation Mutagenesis. J Mol Biol 2024; 436:168451. [PMID: 38246412 DOI: 10.1016/j.jmb.2024.168451] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Cyanobacteriochromes (CBCRs) are cyanobacterial photoreceptors distantly related to the phytochromes sensing red and far-red light reversibly. Only the cGMP phosphodiesterase/Adenylate cyclase/FhlA (GAF) domain is needed for chromophore incorporation and proper photoconversion. The CBCR GAF domains covalently ligate linear tetrapyrrole chromophores and show reversible photoconversion between two light-absorbing states. In most cases, the two light-absorbing states are stable under dark conditions, but in some cases, the photoproduct state undergoes thermal relaxation back to the dark-adapted state during thermal relaxation. In this study, we examined the engineered CBCR GAF domain, AnPixJg2_BV4. AnPixJg2_BV4 covalently binds biliverdin IX-alpha (BV) and shows reversible photoconversion between a far-red-absorbing Pfr dark-adapted state and an orange-absorbing Po photoproduct state. Because the BV is an intrinsic chromophore of mammalian cells and absorbs far-red light penetrating into deep tissues, BV-binding CBCR molecules are useful for the development of optogenetic and bioimaging tools used in mammals. To obtain a better developmental platform molecule, we performed site-saturation random mutagenesis on the Phe319 position. We succeeded in obtaining variant molecules with higher chromophore-binding efficiency and higher molar extinction coefficient. Furthermore, we observed a wide variation in thermal relaxation kinetics, with an 81-fold difference between the slowest and fastest rates. Both molecules with relatively slow and fast thermal relaxation would be advantageous for optogenetic control.
Collapse
Affiliation(s)
- Takahisa Suzuki
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan.
| | - Masataka Yoshimura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | - Munehito Arai
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan; Department of Physics, Graduate School of Science, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | - Rei Narikawa
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan.
| |
Collapse
|
9
|
Kannan P, Oh J, Yeon YJ, Park YI, Seo MH, Park K. Computational identification of key residues regulating fluorescence emission in a red/green cyanobacteriochrome. Proteins 2024; 92:106-116. [PMID: 37646483 DOI: 10.1002/prot.26586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/03/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Cyanobacteriochromes (CBCRs) are linear tetrapyrrole bilin-binding photoreceptors of cyanobacteria that exhibit high spectral diversity, gaining attention in optogenetics and bioimaging applications. Several engineering studies on CBCRs were attempted, especially for designing near-infrared (NIR) fluorescent proteins with longer fluorescence wavelengths. However, despite continuous efforts, a key component regulating fluorescence emission property in CBCRs is still poorly understood. As a model system, we focused on red/green CBCR Slr1393g3, from the unicellular cyanobacterium Synechocystis sp. PCC 6803 to engineer Pr to get far-red light-emitting property. Energy profiling and pairwise structural comparison of Slr1393g3 variants effectively reveal the mutations that are critical to the fluorescence changes. H497 seems to play a key role in stabilizing the chromophore environment, especially the α3 helix, while H495, T499, and Q502 are potential key residues determining fluorescence emission peak wavelength. We also found that mutations of α2 and α4 helical regions are closely related to the chromophore binding stability and likely affect fluorescence properties. Taken together, our computational analysis suggests that the fluorescence of Slr1393g3 is mainly controlled by the stabilization of the chromophore binding pocket. The predicted key residues potentially regulating the fluorescence emission property of a red/green CBCR will be advantageous for designing improved NIR fluorescent protein when combined with in vitro molecular evolution approaches.
Collapse
Affiliation(s)
- Priyadharshini Kannan
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung, Republic of Korea
- Department of Biochemical Engineering, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Jisung Oh
- Department of Biochemical Engineering, Gangneung-Wonju National University, Gangneung, Republic of Korea
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| | - Young Joo Yeon
- Department of Biochemical Engineering, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Moon-Hyeong Seo
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung, Republic of Korea
- Department of Convergence Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Department of YM-KIST Bio-Health Convergence, Yonsei University, Wonju, Republic of Korea
| | - Keunwan Park
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung, Republic of Korea
- Department of YM-KIST Bio-Health Convergence, Yonsei University, Wonju, Republic of Korea
| |
Collapse
|
10
|
Janis MK, Zou W, Zastrow ML. A Single-Site Mutation Tunes Fluorescence and Chromophorylation of an Orange Fluorescent Cyanobacteriochrome. Chembiochem 2023; 24:e202300358. [PMID: 37423892 PMCID: PMC10653908 DOI: 10.1002/cbic.202300358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023]
Abstract
Cyanobacteriochrome (CBCR) cGMP-specific phosphodiesterase, adenylyl cyclase, and FhlA (GAF) domains bind bilin cofactors to confer sensory wavelengths important for various cyanobacterial photosensory processes. Many isolated GAF domains autocatalytically bind bilins, including the third GAF domain of CBCR Slr1393 from Synechocystis sp. PCC6803, which binds phycoerythrobilin (PEB) to yield a bright orange fluorescent protein. Compared to green fluorescent proteins, the smaller size and lack of an oxygen requirement for fluorescence make Slr1393g3 a promising platform for new genetically encoded fluorescent tools. Slr1393g3, however, shows low PEB binding efficiency (chromophorylation) at ~3 % compared to total Slr1393g3 expressed in E. coli. Here we used site-directed mutagenesis and plasmid redesign methods to improve Slr1393g3-PEB binding and demonstrate its utility as a fluorescent marker in live cells. Mutation at a single site, Trp496, tuned the emission over ~30 nm, likely by shifting autoisomerization of PEB to phycourobilin (PUB). Plasmid modifications for tuning relative expression of Slr1393g3 and PEB synthesis enzymes also improved chromophorylation and moving from a dual to single plasmid system facilitated exploration of a range of mutants via site saturation mutagenesis and sequence truncation. Collectively, the PEB/PUB chromophorylation was raised up to a total of 23 % with combined sequence truncation and W496H mutation.
Collapse
Affiliation(s)
- Makena K Janis
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, 77204, USA
| | - Wenping Zou
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, 77204, USA
| | - Melissa L Zastrow
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, 77204, USA
| |
Collapse
|
11
|
Suzuki T, Yoshimura M, Hoshino H, Fushimi K, Arai M, Narikawa R. Introduction of reversible cysteine ligation ability to the biliverdin-binding cyanobacteriochrome photoreceptor. FEBS J 2023; 290:4999-5015. [PMID: 37488966 DOI: 10.1111/febs.16911] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/16/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Cyanobacteriochrome (CBCR) photoreceptors are distantly related to the canonical red/far-red reversible phytochrome photoreceptors. In the case of the CBCRs, only the GAF domain is required for chromophore incorporation and photoconversion. The GAF domains of CBCR are highly diversified into many lineages to sense various colors of light. These CBCR GAF domains are divided into two types: those possessing only the canonical Cys residue and those with both canonical and second Cys residues. The canonical Cys residue stably ligates to the chromophore in both cases. The second Cys residue mostly shows reversible adduct formation with the chromophore during photoconversion for spectral tuning. In this study, we focused on the CBCR GAF domain AnPixJg2_BV4, which possesses only the canonical Cys residue. AnPixJg2_BV4 covalently ligates to the biliverdin (BV) chromophore and shows far-red/orange reversible photoconversion. Because BV is a mammalian intrinsic chromophore, BV-binding molecules are advantageous for in vivo optogenetic and bioimaging tool development. To obtain a better developmental platform molecule, we performed site-saturation random mutagenesis and serendipitously obtained a unique variant molecule that showed far-red/blue reversible photoconversion, in which the Cys residue was introduced near the chromophore. This introduced Cys residue functioned as the second Cys residue that reversibly ligated with the chromophore. Because the position of the introduced Cys residue is distinct from the known second Cys residues, the variant molecule obtained in this study would expand our knowledge about the spectral tuning mechanism of CBCRs and contribute to tool development.
Collapse
Affiliation(s)
- Takahisa Suzuki
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Japan
| | - Masataka Yoshimura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Japan
| | - Hiroki Hoshino
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Japan
| | - Keiji Fushimi
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Munehito Arai
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Japan
- Department of Physics, Graduate School of Science, The University of Tokyo, Japan
| | - Rei Narikawa
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Japan
| |
Collapse
|
12
|
Takeda Y, Ohtsu I, Suzuki T, Nakasone Y, Fushimi K, Ikeuchi M, Terazima M, Dohra H, Narikawa R. Conformational change in an engineered biliverdin-binding cyanobacteriochrome during the photoconversion process. Arch Biochem Biophys 2023; 745:109715. [PMID: 37549803 DOI: 10.1016/j.abb.2023.109715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/09/2023]
Abstract
Cyanobacteriochromes (CBCRs) derived from cyanobacteria are linear-tetrapyrrole-binding photoreceptors related to the canonical red/far-red reversible phytochrome photoreceptors. CBCRs contain chromophore-binding cGMP-specific phosphodiesterase/adenylate cyclase/FhlA (GAF) domains that are highly diverse in their primary sequences and are categorized into many subfamilies. Among this repertoire, the biliverdin (BV)-binding CBCR GAF domains receive considerable attention for their in vivo optogenetic and bioimaging applications because BV is a mammalian intrinsic chromophore and can absorb far-red light that penetrates deep into the mammalian body. The typical BV-binding CBCR GAF domain exhibits reversible photoconversion between far-red-absorbing dark-adapted and orange-absorbing photoproduct states. Herein, we applied various biochemical and spectral studies to identify the details of the conformational change during this photoconversion process. No oligomeric state change was observed, whereas the surface charge would change with a modification of the α-helix structures during the photoconversion process. Combinatorial analysis using partial protease digestion and mass spectrometry identified the region where the conformational change occurred. These results provide clues for the future development of optogenetic tools.
Collapse
Affiliation(s)
- Yuka Takeda
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Itsuki Ohtsu
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Takahisa Suzuki
- Graduate School of Biological Sciences, Faculty of Science, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo, 192-0397, Japan
| | - Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Keiji Fushimi
- Graduate School of Science, Technology and Innovation, Kobe University, Hyogo, 657-0013, Japan
| | - Masahiko Ikeuchi
- Graduate School of Biological Sciences, Faculty of Science, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo, 192-0397, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Hideo Dohra
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan; Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Rei Narikawa
- Graduate School of Biological Sciences, Faculty of Science, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo, 192-0397, Japan.
| |
Collapse
|
13
|
Janis MK, Zou W, Zastrow ML. A Single Site Mutation Tunes Fluorescence and Chromophorylation of an Orange Fluorescent Cyanobacteriochrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540396. [PMID: 37214816 PMCID: PMC10197653 DOI: 10.1101/2023.05.11.540396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cyanobacteriochrome (CBCR) GAF domains bind bilin cofactors to confer sensory wavelengths important for various cyanobacterial photosensory processes. Many isolated GAF domains autocatalytically bind bilins, becoming fluorescent. The third GAF domain of CBCR Slr1393 from Synechocystis sp. PCC6803 binds phycocyanobilin (PCB) natively, yielding red/green photoswitching properties but also binds phycoerythrobilin (PEB). GAF3-PCB has low quantum yields but non-photoswitching GAF3-PEB is brighter, making it a promising platform for new genetically encoded fluorescent tools. GAF3, however, shows low PEB binding efficiency (chromophorylation) at ∼3% compared to total protein expressed in E. coli . Here we explored site-directed mutagenesis and plasmid-based methods to improve GAF3-PEB binding and demonstrate its utility as a fluorescent marker in live cells. We found that a single mutation improved chromophorylation while tuning the emission over ∼30 nm, likely by shifting autoisomerization of PEB to phycourobilin (PUB). Plasmid modifications also improved chromophorylation and moving from a dual to single plasmid system facilitated exploration of a range of mutants via site saturation mutagenesis and sequence truncation. Collectively, the PEB/PUB chromophorylation was raised by ∼7-fold. Moreover, we show that protein-chromophore interactions can tune autoisomerization of PEB to PUB in a GAF domain, which will facilitate future engineering of similar GAF domain-derived fluorescent proteins.
Collapse
Affiliation(s)
- Makena K Janis
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, 77204 (USA)
| | - Wenping Zou
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, 77204 (USA)
| | - Melissa L Zastrow
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, 77204 (USA)
| |
Collapse
|
14
|
Priyadarshini N, Steube N, Wiens D, Narikawa R, Wilde A, Hochberg GKA, Enomoto G. Evidence for an early green/red photocycle that precedes the diversification of GAF domain photoreceptor cyanobacteriochromes. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2023:10.1007/s43630-023-00387-4. [PMID: 36781703 DOI: 10.1007/s43630-023-00387-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/01/2023] [Indexed: 02/15/2023]
Abstract
Phytochromes are linear tetrapyrrole-binding photoreceptors in eukaryotes and bacteria, primarily responding to red and far-red light signals reversibly. Among the GAF domain-based phytochrome superfamily, cyanobacteria-specific cyanobacteriochromes show various optical properties covering the entire visible region. It is unknown what physiological demands drove the evolution of cyanobacteriochromes in cyanobacteria. Here, we utilize ancestral sequence reconstruction and biochemical verification to show that the resurrected ancestral cyanobacteriochrome proteins reversibly respond to green and red light signals. pH titration analyses indicate that the deprotonation of the bound phycocyanobilin chromophore is crucial to perceive green light. The ancestral cyanobacteriochromes show only modest thermal reversion to the green light-absorbing form, suggesting that they evolved to sense the incident green/red light ratio. Many cyanobacteria can utilize green light for photosynthesis using phycobilisome light-harvesting complexes. The green/red sensing cyanobacteriochromes may have allowed better acclimation to changing light environments by rearranging the absorption capacity of the phycobilisome through chromatic acclimation.
Collapse
Affiliation(s)
- Nibedita Priyadarshini
- Faculty of Biology, Institute of Biology III, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, Albertstr. 19, 79104, Freiburg, Germany
| | - Niklas Steube
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Dennis Wiens
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Rei Narikawa
- Graduate School of Biological Sciences, Faculty of Science, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo, 192-0397, Japan
| | - Annegret Wilde
- Faculty of Biology, Institute of Biology III, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany
| | - Georg K A Hochberg
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany. .,Faculty of Chemistry, University of Marburg, Hans-Meerwein-Str. 4, 35032, Marburg, Germany. .,Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Str. 14, 35032, Marburg, Germany.
| | - Gen Enomoto
- Faculty of Biology, Institute of Biology III, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany. .,Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan.
| |
Collapse
|
15
|
Joutsuka T, Nanasawa R, Igarashi K, Horie K, Sugishima M, Hagiwara Y, Wada K, Fukuyama K, Yano N, Mori S, Ostermann A, Kusaka K, Unno M. Neutron crystallography and quantum chemical analysis of bilin reductase PcyA mutants reveal substrate and catalytic residue protonation states. J Biol Chem 2022; 299:102763. [PMID: 36463961 PMCID: PMC9800206 DOI: 10.1016/j.jbc.2022.102763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
PcyA, a ferredoxin-dependent bilin pigment reductase, catalyzes the site-specific reduction of the two vinyl groups of biliverdin (BV), producing phycocyanobilin. Previous neutron crystallography detected both the neutral BV and its protonated form (BVH+) in the wildtype (WT) PcyA-BV complex, and a nearby catalytic residue Asp105 was found to have two conformations (protonated and deprotonated). Semiempirical calculations have suggested that the protonation states of BV are reflected in the absorption spectrum of the WT PcyA-BV complex. In the previously determined absorption spectra of the PcyA D105N and I86D mutants, complexed with BV, a peak at 730 nm, observed in the WT, disappeared and increased, respectively. Here, we performed neutron crystallography and quantum chemical analysis of the D105N-BV and I86D-BV complexes to determine the protonation states of BV and the surrounding residues and study the correlation between the absorption spectra and protonation states around BV. Neutron structures elucidated that BV in the D105N mutant is in a neutral state, whereas that in the I86D mutant is dominantly in a protonated state. Glu76 and His88 showed different hydrogen bonding with surrounding residues compared with WT PcyA, further explaining why D105N and I86D have much lower activities for phycocyanobilin synthesis than the WT PcyA. Our quantum mechanics/molecular mechanics calculations of the absorption spectra showed that the spectral change in D105N arises from Glu76 deprotonation, consistent with the neutron structure. Collectively, our findings reveal more mechanistic details of bilin pigment biosynthesis.
Collapse
Affiliation(s)
- Tatsuya Joutsuka
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Ibaraki, Japan,Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Naka-Tokai, Ibaraki, Japan,For correspondence: Tatsuya Joutsuka; Masaki Unno
| | - Ryota Nanasawa
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Ibaraki, Japan
| | - Keisuke Igarashi
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Ibaraki, Japan
| | - Kazuki Horie
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Ibaraki, Japan
| | - Masakazu Sugishima
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Yoshinori Hagiwara
- Department of Biochemistry and Applied Chemistry, National Institute of Technology, Kurume College, Kurume, Fukuoka, Japan
| | - Kei Wada
- Department of Medical Sciences, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Keiichi Fukuyama
- Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Naomine Yano
- Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Naka-Tokai, Ibaraki, Japan
| | - Seiji Mori
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Ibaraki, Japan,Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Naka-Tokai, Ibaraki, Japan
| | - Andreas Ostermann
- Heinz Maier-Leibnitz Zentrum (MLZ), Technical University Munich, Garching, Germany
| | - Katsuhiro Kusaka
- Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Naka-Tokai, Ibaraki, Japan
| | - Masaki Unno
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Ibaraki, Japan,Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Naka-Tokai, Ibaraki, Japan,For correspondence: Tatsuya Joutsuka; Masaki Unno
| |
Collapse
|
16
|
Ohlendorf R, Möglich A. Light-regulated gene expression in Bacteria: Fundamentals, advances, and perspectives. Front Bioeng Biotechnol 2022; 10:1029403. [PMID: 36312534 PMCID: PMC9614035 DOI: 10.3389/fbioe.2022.1029403] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Numerous photoreceptors and genetic circuits emerged over the past two decades and now enable the light-dependent i.e., optogenetic, regulation of gene expression in bacteria. Prompted by light cues in the near-ultraviolet to near-infrared region of the electromagnetic spectrum, gene expression can be up- or downregulated stringently, reversibly, non-invasively, and with precision in space and time. Here, we survey the underlying principles, available options, and prominent examples of optogenetically regulated gene expression in bacteria. While transcription initiation and elongation remain most important for optogenetic intervention, other processes e.g., translation and downstream events, were also rendered light-dependent. The optogenetic control of bacterial expression predominantly employs but three fundamental strategies: light-sensitive two-component systems, oligomerization reactions, and second-messenger signaling. Certain optogenetic circuits moved beyond the proof-of-principle and stood the test of practice. They enable unprecedented applications in three major areas. First, light-dependent expression underpins novel concepts and strategies for enhanced yields in microbial production processes. Second, light-responsive bacteria can be optogenetically stimulated while residing within the bodies of animals, thus prompting the secretion of compounds that grant health benefits to the animal host. Third, optogenetics allows the generation of precisely structured, novel biomaterials. These applications jointly testify to the maturity of the optogenetic approach and serve as blueprints bound to inspire and template innovative use cases of light-regulated gene expression in bacteria. Researchers pursuing these lines can choose from an ever-growing, versatile, and efficient toolkit of optogenetic circuits.
Collapse
Affiliation(s)
- Robert Ohlendorf
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Andreas Möglich
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
- Bayreuth Center for Biochemistry and Molecular Biology, Universität Bayreuth, Bayreuth, Germany
- North-Bavarian NMR Center, Universität Bayreuth, Bayreuth, Germany
| |
Collapse
|
17
|
Wu XJ, Qu JY, Wang CT, Zhang YP, Li PP. Biliverdin incorporation into the cyanobacteriochrome SPI1085g3 from Spirulina. Front Microbiol 2022; 13:952678. [PMID: 35983329 PMCID: PMC9378818 DOI: 10.3389/fmicb.2022.952678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/11/2022] [Indexed: 11/14/2022] Open
Abstract
Cyanobacteriochromes (CBCRs) bind linear tetrapyrrole chromophores, mostly phycocyanobilin (PCB), and exhibit considerable spectral diversity with a high potential for biotechnological applications. Particular attention has been given to the conversion into intrinsic biliverdin (BV) incorporation due to the absence of PCB in mammalian cells. Our recent study discovered that a red/green CBCR of Spirulina subsalsa, SPI1085g3, was covalently attached to PCB and exhibited strong red fluorescence with a unique red/dark switch. In this study, we found that SPI1085g3 could be modestly chromophorylated with BV and absorb somewhat shifted (10 nm) red light, while the single C448S mutant could efficiently bind BV and exhibit unidirectional photoconversion and moderate dark reversion. The fluorescence in its dark-adapted state was switched off by red light, followed by a moderate recovery in the dark, and these were properties similar to those of PCB-binding SPI1085g3. Furthermore, by introducing the CY motif into the conserved CH motif for chromophore attachment, we developed another variant, C448S_CY, which showed increased BV-binding efficiency. As expected, C448S_CY had a significant enhancement in fluorescence quantum yield, reaching that of PCB-binding SPI1085g3 (0.14). These BV-binding CBCRs offer an improved platform for the development of unique photoswitchable fluorescent proteins compared with PCB-binding CBCRs.
Collapse
Affiliation(s)
- Xian-Jun Wu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, China
- National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, China
- *Correspondence: Xian-Jun Wu,
| | - Jia-Ying Qu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Chang-Tian Wang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Ya-Ping Zhang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Ping-Ping Li
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, China
- National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, China
| |
Collapse
|
18
|
Hou YN, Ding WL, Jiang XX, Hu JL, Tan ZZ, Zhao KH. New Far-Red and Near-Infrared Fluorescent Phycobiliproteins with Excellent Brightness and Photostability. Chembiochem 2022; 23:e202200267. [PMID: 35811374 DOI: 10.1002/cbic.202200267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/10/2022] [Indexed: 11/11/2022]
Abstract
Far-red and near-infrared fluorescent proteins can be used as fluorescence biomarkers in the region of maximal transmission of most tissues and facilitate multiplexing. Recently, we reported the generation and properties of far-red and near-infrared fluorescent phycobiliproteins, termed BeiDou Fluorescent Proteins (BDFPs), which can covalently bind the more readily accessible biliverdin. Far-red BDFPs maximally fluoresce at ∼670 nm, while near-infrared BDFPs fluoresce at ∼710 nm. In this work, we molecularly evolved BDFPs as follows: (a) mutations L58Q, S68R and M81K of BDFPs, which can maximally enhance the effective brightness in vivo by 350 %; (b) minimization and monomerization of far-red BDFPs 2.1, 2.2, 2.3, and near-infrared BDFPs 2.4, 2.5 and 2.6. These newly developed BDFPs are remarkably brighter than the formerly reported far-red and near-infrared fluorescent proteins. Their advantages are demonstrated by biolabeling in mammalian cells using super-resolution microscopy.
Collapse
Affiliation(s)
- Ya-Nan Hou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Wen-Long Ding
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Xiang-Xiang Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Ji-Ling Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Zi-Zhu Tan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| |
Collapse
|
19
|
Jang J, Reed PMM, Rauscher S, Woolley GA. Point (S-to-G) Mutations in the W(S/G)GE Motif in Red/Green Cyanobacteriochrome GAF Domains Enhance Thermal Reversion Rates. Biochemistry 2022; 61:1444-1455. [PMID: 35759789 DOI: 10.1021/acs.biochem.2c00060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyanobacteriochromes (CBCRs) are photoreceptors consisting of single or tandem GAF (cGMP-phosphodiesterase/adenylate cyclase/FhlA) domains that bind bilin chromophores. Canonical red/green CBCR GAF domains are a well-characterized subgroup of the expanded red/green CBCR GAF domain family that binds phycocyanobilin (PCB) and converts between a thermally stable red-absorbing Pr state and a green-absorbing Pg state. The rate of thermal reversion from Pg to Pr varies widely among canonical red/green CBCR GAF domains, with half-lives ranging from days to seconds. Since the thermal reversion rate is an important parameter for the application of CBCR GAF domains as optogenetic tools, the molecular factors controlling the thermal reversion rate are of particular interest. Here, we report that point mutations in a well-conserved W(S/G)GE motif alter reversion rates in canonical red/green CBCR GAF domains in a predictable manner. Specifically, S-to-G mutations enhance thermal reversion rates, while the reverse, G-to-S mutations slow thermal reversion. Despite the distance (>10 Å) of the mutation site from the chromophore, molecular dynamics simulations and nuclear magnetic resonance (NMR) analyses suggest that the presence of a glycine residue allows the formation of a water bridge that alters the conformational dynamics of chromophore-interacting residues, leading to enhanced Pg to Pr thermal reversion.
Collapse
Affiliation(s)
- Jaewan Jang
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - P Maximilian M Reed
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Sarah Rauscher
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.,Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario, L5L 1C6, Canada.,Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario, M5S 1A7, Canada
| | - G Andrew Woolley
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
20
|
Garzella F, Bianchini P, Diaspro A, Losi A, Gärtner W, Abbruzzetti S, Viappiani C. A red-green photochromic bacterial protein as a new contrast agent for improved photoacoustic imaging. PHOTOACOUSTICS 2022; 26:100358. [PMID: 35656384 PMCID: PMC9152790 DOI: 10.1016/j.pacs.2022.100358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
The GAF3 domain of the cyanobacteriochrome Slr1393 from Synechocystis sp. PCC6803, binding phycocyanobilin as a chromophore, shows photochromicity between two stable, green- and red-absorbing states, characterized by relatively high photoconversion yields. Using nanosecond-pulsed excitation by red or green light, respectively, and suitable cw photoconversion beams, we demonstrate that the light-modulatable photoacoustic waveforms arising from GAF3 can be easily distinguished from background signals originating from non-modulatable competitive absorbers and scattering media. It is demonstrated that this effect can be exploited to identify the position of the photochromic molecule by using as a phantom a cylindrical capillary tube filled with either a GAF3 solution or with an E.coli suspension overexpressing GAF3. These properties identify the high potential of GAF3 to be included in the palette of genetically encoded photochromic probes for photoacoustic imaging.
Collapse
Affiliation(s)
- Francesco Garzella
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Italy
- Nanoscopy @ Istituto Italiano di Tecnologia, Genova, Italy
| | - Paolo Bianchini
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Italy
- Nanoscopy @ Istituto Italiano di Tecnologia, Genova, Italy
- DIFILAB, Dipartimento di Fisica, Università di Genova, Genova, Italy
| | - Alberto Diaspro
- Nanoscopy @ Istituto Italiano di Tecnologia, Genova, Italy
- DIFILAB, Dipartimento di Fisica, Università di Genova, Genova, Italy
| | - Aba Losi
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Italy
| | - Wolfgang Gärtner
- Institut für Analytische Chemie - Universität Leipzig, Leipzig, Germany
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Italy
| |
Collapse
|
21
|
Minić S, Annighöfer B, Hélary A, Sago L, Cornu D, Brûlet A, Combet S. Structure of proteins under pressure: covalent binding effects of biliverdin on β-lactoglobulin. Biophys J 2022; 121:2514-2525. [DOI: 10.1016/j.bpj.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/18/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
|
22
|
Light- and pH-dependent structural changes in cyanobacteriochrome AnPixJg2. Photochem Photobiol Sci 2022; 21:447-469. [PMID: 35394641 DOI: 10.1007/s43630-022-00204-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
Abstract
Cyanobacteriochromes (CBCRs) are phytochrome-related photosensory proteins that play an essential role in regulating phototaxis, chromatic acclimation, and cell aggregation in cyanobacteria. Here, we apply solid-state NMR spectroscopy to the red/green GAF2 domain of the CBCR AnPixJ assembled in vitro with a uniformly 13C- and 15N-labeled bilin chromophore, tracking changes in electronic structure, geometry, and structural heterogeneity of the chromophore as well as intimate contacts between the chromophore and protein residues in the photocycle. Our data confirm that the bilin ring D is strongly twisted with respect to the B-C plane in both dark and photoproduct states. We also identify a greater structural heterogeneity of the bilin chromophore in the photoproduct than in the dark state. In addition, the binding pocket is more hydrated in the photoproduct. Observation of interfacial 1H contacts of the photoproduct chromophore, together with quantum mechanics/molecular mechanics (QM/MM)-based structural models for this photoproduct, clearly suggests the presence of a biprotonated (cationic) imidazolium side-chain for a conserved histidine residue (322) at a distance of ~2.7 Å, generalizing the recent theoretical findings that explicitly link the structural heterogeneity of the dark-state chromophore to the protonation of this specific residue. Moreover, we examine pH effects on this in vitro assembled holoprotein, showing a substantially altered electronic structure and protonation of the photoproduct chromophore even with a small pH drop from 7.8 to 7.2. Our studies provide further information regarding the light- and pH-induced changes of the chromophore and the rearrangements of the hydrogen-bonding and electrostatic interaction network around it. Possible correlations between structural heterogeneity of the chromophore, protonation of the histidine residue nearby, and hydration of the pocket in both photostates are discussed.
Collapse
|
23
|
Rockwell NC, Moreno MV, Martin SS, Lagarias JC. Protein-chromophore interactions controlling photoisomerization in red/green cyanobacteriochromes. Photochem Photobiol Sci 2022; 21:471-491. [PMID: 35411484 PMCID: PMC9609751 DOI: 10.1007/s43630-022-00213-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/21/2022] [Indexed: 10/18/2022]
Abstract
Photoreceptors in the phytochrome superfamily use 15,16-photoisomerization of a linear tetrapyrrole (bilin) chromophore to photoconvert between two states with distinct spectral and biochemical properties. Canonical phytochromes include master regulators of plant growth and development in which light signals trigger interconversion between a red-absorbing 15Z dark-adapted state and a metastable, far-red-absorbing 15E photoproduct state. Distantly related cyanobacteriochromes (CBCRs) carry out a diverse range of photoregulatory functions in cyanobacteria and exhibit considerable spectral diversity. One widespread CBCR subfamily typically exhibits a red-absorbing 15Z dark-adapted state similar to that of phytochrome that gives rise to a distinct green-absorbing 15E photoproduct. This red/green CBCR subfamily also includes red-inactive examples that fail to undergo photoconversion, providing an opportunity to study protein-chromophore interactions that either promote photoisomerization or block it. In this work, we identified a conserved lineage of red-inactive CBCRs. This enabled us to identify three substitutions sufficient to block photoisomerization in photoactive red/green CBCRs. The resulting red-inactive variants faithfully replicated the fluorescence and circular dichroism properties of naturally occurring examples. Converse substitutions restored photoconversion in naturally red-inactive CBCRs. This work thus identifies protein-chromophore interactions that control the fate of the excited-state population in red/green cyanobacteriochromes.
Collapse
Affiliation(s)
- Nathan C Rockwell
- Department of Molecular and Cellular Biology, University of California at Davis, Davis, CA, 95616, USA.
| | - Marcus V Moreno
- Department of Molecular and Cellular Biology, University of California at Davis, Davis, CA, 95616, USA
| | - Shelley S Martin
- Department of Molecular and Cellular Biology, University of California at Davis, Davis, CA, 95616, USA
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California at Davis, Davis, CA, 95616, USA.
| |
Collapse
|
24
|
Zhao H, Zastrow ML. Transition Metals Induce Quenching of Monomeric Near-Infrared Fluorescent Proteins. Biochemistry 2022; 61:494-504. [PMID: 35289592 DOI: 10.1021/acs.biochem.1c00705] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transition metals such as zinc and copper are essential in numerous life processes, and both deficiency and toxic overload of these metals are associated with various diseases. Fluorescent metal sensors are powerful tools for studying the roles of metal ions in the physiology and pathology of biological systems. Green fluorescent protein (GFP) and its derivatives are highly utilized for protein-based sensor design, but application to anaerobic systems is limited because these proteins require oxygen to become fluorescent. Bacteriophytochrome-based monomeric near-infrared fluorescent proteins (miRFPs) covalently bind a bilin cofactor, which can be added exogenously for anaerobic cells. miRFPs can also have emission wavelengths extending to >700 nm, which is valuable for imaging applications. Here, we evaluated the suitability of miRFP670 and miRFP709 as platforms for single fluorescent protein metal ion sensors. We found that divalent metal ions like Zn2+, Co2+, Ni2+, and Cu2+ can quench from ∼6-20% (Zn2+, Co2+, and Ni2+) and up to nearly 90% (Cu2+) of the fluorescence intensity of pure miRFPs and have similar impacts in live Escherichia coli cells expressing miRFPs. The presence of a 6× histidine tag for purification influences metal quenching, but significant Cu2+-induced quenching and a picomolar binding affinity are retained in the absence of the His6 tag in both cuvettes and live bacterial cells. By comparing the Cu2+ and Cu+-induced quenching results for miRFP670 and miRFP709 and through examining absorption spectra and previously reported crystal structures, we propose a surface metal binding site near the biliverdin IXα chromophore.
Collapse
Affiliation(s)
- Haowen Zhao
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Melissa L Zastrow
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
25
|
Babakhanova S, Jung EE, Namikawa K, Zhang H, Wang Y, Subach OM, Korzhenevskiy DA, Rakitina TV, Xiao X, Wang W, Shi J, Drobizhev M, Park D, Eisenhard L, Tang H, Köster RW, Subach FV, Boyden ES, Piatkevich KD. Rapid directed molecular evolution of fluorescent proteins in mammalian cells. Protein Sci 2022; 31:728-751. [PMID: 34913537 PMCID: PMC8862398 DOI: 10.1002/pro.4261] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/24/2021] [Accepted: 12/14/2021] [Indexed: 12/31/2022]
Abstract
In vivo imaging of model organisms is heavily reliant on fluorescent proteins with high intracellular brightness. Here we describe a practical method for rapid optimization of fluorescent proteins via directed molecular evolution in cultured mammalian cells. Using this method, we were able to perform screening of large gene libraries containing up to 2 × 107 independent random genes of fluorescent proteins expressed in HEK cells, completing one iteration of directed evolution in a course of 8 days. We employed this approach to develop a set of green and near-infrared fluorescent proteins with enhanced intracellular brightness. The developed near-infrared fluorescent proteins demonstrated high performance for fluorescent labeling of neurons in culture and in vivo in model organisms such as Caenorhabditis elegans, Drosophila, zebrafish, and mice. Spectral properties of the optimized near-infrared fluorescent proteins enabled crosstalk-free multicolor imaging in combination with common green and red fluorescent proteins, as well as dual-color near-infrared fluorescence imaging. The described method has a great potential to be adopted by protein engineers due to its simplicity and practicality. We also believe that the new enhanced fluorescent proteins will find wide application for in vivo multicolor imaging of small model organisms.
Collapse
|
26
|
Tang K, Beyer HM, Zurbriggen MD, Gärtner W. The Red Edge: Bilin-Binding Photoreceptors as Optogenetic Tools and Fluorescence Reporters. Chem Rev 2021; 121:14906-14956. [PMID: 34669383 PMCID: PMC8707292 DOI: 10.1021/acs.chemrev.1c00194] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 12/15/2022]
Abstract
This review adds the bilin-binding phytochromes to the Chemical Reviews thematic issue "Optogenetics and Photopharmacology". The work is structured into two parts. We first outline the photochemistry of the covalently bound tetrapyrrole chromophore and summarize relevant spectroscopic, kinetic, biochemical, and physiological properties of the different families of phytochromes. Based on this knowledge, we then describe the engineering of phytochromes to further improve these chromoproteins as photoswitches and review their employment in an ever-growing number of different optogenetic applications. Most applications rely on the light-controlled complex formation between the plant photoreceptor PhyB and phytochrome-interacting factors (PIFs) or C-terminal light-regulated domains with enzymatic functions present in many bacterial and algal phytochromes. Phytochrome-based optogenetic tools are currently implemented in bacteria, yeast, plants, and animals to achieve light control of a wide range of biological activities. These cover the regulation of gene expression, protein transport into cell organelles, and the recruitment of phytochrome- or PIF-tagged proteins to membranes and other cellular compartments. This compilation illustrates the intrinsic advantages of phytochromes compared to other photoreceptor classes, e.g., their bidirectional dual-wavelength control enabling instant ON and OFF regulation. In particular, the long wavelength range of absorption and fluorescence within the "transparent window" makes phytochromes attractive for complex applications requiring deep tissue penetration or dual-wavelength control in combination with blue and UV light-sensing photoreceptors. In addition to the wide variability of applications employing natural and engineered phytochromes, we also discuss recent progress in the development of bilin-based fluorescent proteins.
Collapse
Affiliation(s)
- Kun Tang
- Institute
of Synthetic Biology, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Hannes M. Beyer
- Institute
of Synthetic Biology, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Matias D. Zurbriggen
- Institute
of Synthetic Biology and CEPLAS, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse
1, D-40225 Düsseldorf, Germany
| | - Wolfgang Gärtner
- Retired: Max Planck Institute
for Chemical Energy Conversion. At present: Institute for Analytical Chemistry, University
Leipzig, Linnéstrasse
3, 04103 Leipzig, Germany
| |
Collapse
|
27
|
Huang M, Zhang JY, Zeng X, Zhang CC. c-di-GMP Homeostasis Is Critical for Heterocyst Development in Anabaena sp. PCC 7120. Front Microbiol 2021; 12:793336. [PMID: 34925302 PMCID: PMC8682488 DOI: 10.3389/fmicb.2021.793336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/09/2021] [Indexed: 12/04/2022] Open
Abstract
c-di-GMP is a ubiquitous bacterial signal regulating various physiological process. Anabaena PCC 7120 (Anabaena) is a filamentous cyanobacterium able to form regularly-spaced heterocysts for nitrogen fixation, in response to combined-nitrogen deprivation in 24h. Anabaena possesses 16 genes encoding proteins for c-di-GMP metabolism, and their functions are poorly characterized, except all2874 (cdgS) whose deletion causes a decrease in heterocyst frequency 48h after nitrogen starvation. We demonstrated here that c-di-GMP levels increased significantly in Anabaena after combined-nitrogen starvation. By inactivating each of the 16 genes, we found that the deletion of all1175 (cdgSH) led to an increase of heterocyst frequency 24h after nitrogen stepdown. A double mutant ΔcdgSHΔcdgS had an additive effect over the single mutants in regulating heterocyst frequency, indicating that the two genes acted at different time points for heterocyst spacing. Biochemical and genetic data further showed that the functions of CdgSH and CdgS in the setup or maintenance of heterocyst frequency depended on their opposing effects on the intracellular levels of c-di-GMP. Finally, we demonstrated that heterocyst differentiation was completely inhibited when c-di-GMP levels became too high or too low. Together, these results indicate that the homeostasis of c-di-GMP level is important for heterocyst differentiation in Anabaena.
Collapse
Affiliation(s)
- Min Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ju-Yuan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaoli Zeng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Cheng-Cai Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.,Institut AMU-WUT, Aix-Marseille University and Wuhan University of Technology, Wuhan, China.,Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Manoilov KY, Ghosh A, Almo SC, Verkhusha VV. Structural and Functional Characterization of a Biliverdin-Binding Near-Infrared Fluorescent Protein From the Serpin Superfamily. J Mol Biol 2021; 434:167359. [PMID: 34798132 DOI: 10.1016/j.jmb.2021.167359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022]
Abstract
Biliverdin-binding serpins (BBSs) are proteins that are responsible for coloration in amphibians and fluoresce in the near-infrared (NIR) spectral region. Here we produced the first functional recombinant BBS of the polka-dot treefrog Boana punctata (BpBBS), assembled with its biliverdin (BV) chromophore, and report its biochemical and photochemical characterization. We determined the crystal structure of BpBBS at 2.05 Å resolution, which demonstrated its structural homology to the mammalian protease inhibitor alpha-1-antitrypsin. BV interaction with BpBBS was studied and it was found that the N-terminal polypeptide (residues 19-50) plays a critical role in the BV binding. By comparing BpBBS with the available NIR fluorescent proteins and expressing it in mammalian cells, we demonstrated its potential as a NIR imaging probe. These results provide insight into the non-inhibitory function of serpins, provide a basis for improving their performance in mammalian cells, and suggest possible paths for the development of BBS-based fluorescent probes.
Collapse
Affiliation(s)
- Kyrylo Yu Manoilov
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Agnidipta Ghosh
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA. https://twitter.com/@AgniGh0sh
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Medicum, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland; Science Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi 354340, Russia.
| |
Collapse
|
29
|
Pucci C, Martinelli C, Degl'Innocenti A, Desii A, De Pasquale D, Ciofani G. Light-Activated Biomedical Applications of Chlorophyll Derivatives. Macromol Biosci 2021; 21:e2100181. [PMID: 34212510 DOI: 10.1002/mabi.202100181] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/06/2021] [Indexed: 02/01/2023]
Abstract
Tetrapyrroles are the basis of essential physiological functions in most living organisms. These compounds represent the basic scaffold of porphyrins, chlorophylls, and bacteriochlorophylls, among others. Chlorophyll derivatives, obtained by the natural or artificial degradation of chlorophylls, present unique properties, holding great potential in the scientific and medical fields. Indeed, they can act as cancer-preventing agents, antimutagens, apoptosis inducers, efficient antioxidants, as well as antimicrobial and immunomodulatory molecules. Moreover, thanks to their peculiar optical properties, they can be exploited as photosensitizers for photodynamic therapy and as vision enhancers. Most of these molecules, however, are highly hydrophobic and poorly soluble in biological fluids, and may display undesired toxicity due to accumulation in healthy tissues. The advent of nanomedicine has prompted the development of nanoparticles acting as carriers for chlorophyll derivatives, facilitating their targeted administration with demonstrated applicability in diagnosis and therapy. In this review, the chemical and physical properties of chlorophyll derivatives that justify their usage in the biomedical field, with particular regard to light-activated dynamics are described. Their role as antioxidants and photoactive agents are discussed, introducing the most recent nanomedical applications and focusing on inorganic and organic nanocarriers exploited in vitro and in vivo.
Collapse
Affiliation(s)
- Carlotta Pucci
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| | - Chiara Martinelli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, 20133, Italy
| | - Andrea Degl'Innocenti
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| | - Andrea Desii
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| | - Daniele De Pasquale
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| |
Collapse
|
30
|
Makita Y, Suzuki S, Fushimi K, Shimada S, Suehisa A, Hirata M, Kuriyama T, Kurihara Y, Hamasaki H, Okubo-Kurihara E, Yoshitake K, Watanabe T, Sakuta M, Gojobori T, Sakami T, Narikawa R, Yamaguchi H, Kawachi M, Matsui M. Identification of a dual orange/far-red and blue light photoreceptor from an oceanic green picoplankton. Nat Commun 2021; 12:3593. [PMID: 34135337 PMCID: PMC8209157 DOI: 10.1038/s41467-021-23741-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 05/11/2021] [Indexed: 11/09/2022] Open
Abstract
Photoreceptors are conserved in green algae to land plants and regulate various developmental stages. In the ocean, blue light penetrates deeper than red light, and blue-light sensing is key to adapting to marine environments. Here, a search for blue-light photoreceptors in the marine metagenome uncover a chimeric gene composed of a phytochrome and a cryptochrome (Dualchrome1, DUC1) in a prasinophyte, Pycnococcus provasolii. DUC1 detects light within the orange/far-red and blue spectra, and acts as a dual photoreceptor. Analyses of its genome reveal the possible mechanisms of light adaptation. Genes for the light-harvesting complex (LHC) are duplicated and transcriptionally regulated under monochromatic orange/blue light, suggesting P. provasolii has acquired environmental adaptability to a wide range of light spectra and intensities.
Collapse
Affiliation(s)
- Yuko Makita
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Shigekatsu Suzuki
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Keiji Fushimi
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Setsuko Shimada
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Aya Suehisa
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Manami Hirata
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Tomoko Kuriyama
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Yukio Kurihara
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Hidefumi Hamasaki
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Yokohama City University, Kihara Institute for Biological Research, Yokohama, Japan
| | - Emiko Okubo-Kurihara
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Kazutoshi Yoshitake
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Watanabe
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Kushiro, Hokkaido, Japan
| | - Masaaki Sakuta
- Department of Biological Sciences, Ochanomizu University, Tokyo, Japan
| | - Takashi Gojobori
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Tomoko Sakami
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Minami-ise, Mie, Japan
| | - Rei Narikawa
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Haruyo Yamaguchi
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Masanobu Kawachi
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Minami Matsui
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan.
- Yokohama City University, Kihara Institute for Biological Research, Yokohama, Japan.
| |
Collapse
|
31
|
Unusual ring D fixation by three crucial residues promotes phycoviolobilin formation in the DXCF-type cyanobacteriochrome without the second Cys. Biochem J 2021; 478:1043-1059. [PMID: 33559683 DOI: 10.1042/bcj20210013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/17/2022]
Abstract
Cyanobacteriochromes are linear tetrapyrrole-binding photoreceptors produced by cyanobacteria. Their chromophore-binding GAF domains are categorized into many lineages. Among them, dual Cys-type cyanobacteriochrome GAF domains possessing not only a highly conserved 'first Cys' but also a 'second Cys' are found from multiple lineages. The first Cys stably attaches to C31 of the A-ring, while the second Cys mostly shows reversible ligation to the C10 of the chromophore. Notably, the position of the second Cys in the primary sequence is diversified, and the most abundant dual Cys-type GAF domains have a 'second Cys' within the DXCF motif, which are called DXCF GAF domains. It has been long known that the second Cys in the DXCF GAF domains not only shows the reversible ligation but also is involved in isomerization activity (reduction in C4=C5 double bond) from the initially incorporated phycocyanobilin to phycoviolobilin. However, comprehensive site-directed mutagenesis on the DXCF GAF domains, AM1_6305g1 and AM1_1499g1, revealed that the second Cys is dispensable for isomerization activity, in which three residues participate by fixing the C- and D-rings. Fixation of the chromophore on both sides of the C5 bridge is necessary, even though one side of the fixation site is far from this bridge, with the other side at C31 fixed by the first Cys.
Collapse
|
32
|
Kirpich JS, Chang CW, Franse J, Yu Q, Escobar FV, Jenkins AJ, Martin SS, Narikawa R, Ames JB, Lagarias JC, Larsen DS. Comparison of the Forward and Reverse Photocycle Dynamics of Two Highly Similar Canonical Red/Green Cyanobacteriochromes Reveals Unexpected Differences. Biochemistry 2021; 60:274-288. [PMID: 33439010 DOI: 10.1021/acs.biochem.0c00796] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cyanobacteriochromes (CBCRs) are cyanobacterial photoreceptors that exhibit photochromism between two states: a thermally stable dark-adapted state and a metastable light-adapted state with bound linear tetrapyrrole (bilin) chromophores possessing 15Z and 15E configurations, respectively. The photodynamics of canonical red/green CBCRs have been extensively studied; however, the time scales of their excited-state lifetimes and subsequent ground-state evolution rates widely differ and, at present, remain difficult to predict. Here, we compare the photodynamics of two closely related red/green CBCRs that have substantial sequence identity (∼68%) and similar chromophore environments: AnPixJg2 from Anabaena sp. PCC 7120 and NpR6012g4 from Nostoc punctiforme. Using broadband transient absorption spectroscopy on the primary (125 fs to 7 ns) and secondary (7 ns to 10 ms) time scales together with global analysis modeling, our studies revealed that AnPixJg2 and NpR6012g4 have comparable quantum yields for initiating the forward (15ZPr → 15EPg) and reverse (15EPg → 15ZPr) reactions, which proceed through monotonic and nonmonotonic mechanisms, respectively. In addition to small discrepancies in the kinetics, the secondary reverse dynamics resolved unique features for each domain: intermediate shunts in NpR6012g4 and a Meta-Gf intermediate red-shifted from the 15ZPr photoproduct in AnPixJg2. Overall, this study supports the conclusion that sequence similarity is a useful criterion for predicting pathways of the light-induced evolution and quantum yield of generating primary intermediate Φp within subfamilies of CBCRs, but more studies are still needed to develop a comprehensive molecular level understanding of these processes.
Collapse
Affiliation(s)
- Julia S Kirpich
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, California 95616, United States
| | - Che-Wei Chang
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, California 95616, United States
| | - Jasper Franse
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, California 95616, United States
| | - Qinhong Yu
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, California 95616, United States
| | - Francisco Velazquez Escobar
- Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| | - Adam J Jenkins
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, California 95616, United States
| | - Shelley S Martin
- Department of Molecular and Cell Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Rei Narikawa
- Department of Biological Sciences, Faculty of Sciences, Shizuoka University, 836, Ohya, Suruga-ku, Shizuoka-Shi, Shizuoka-Ken 422-8529, Japan
| | - James B Ames
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, California 95616, United States
| | - J Clark Lagarias
- Department of Molecular and Cell Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Delmar S Larsen
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, California 95616, United States
| |
Collapse
|
33
|
Phytochromes and Cyanobacteriochromes: Photoreceptor Molecules Incorporating a Linear Tetrapyrrole Chromophore. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:167-187. [PMID: 33398813 DOI: 10.1007/978-981-15-8763-4_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this chapter, we summarize the molecular mechanisms of the linear tetrapyrrole-binding photoreceptors, phytochromes, and cyanobacteriochromes. We especially focus on the color-tuning mechanisms and conformational changes during the photoconversion process. Furthermore, we introduce current status of development of the optogenetic tools based on these molecules. Huge repertoire of these photoreceptors with diverse spectral properties would contribute to development of multiplex optogenetic regulation. Among them, the photoreceptors incorporating the biliverdin IXα chromophore is advantageous for in vivo optogenetics because this is intrinsic in the mammalian cells, and absorbs far-red light penetrating into deep mammalian tissues.
Collapse
|
34
|
Abstract
Cyanobacteriochromes (CBCRs) are photoswitchable linear tetrapyrrole (bilin)-based light sensors in the phytochrome superfamily with a broad spectral range from the near UV through the far red (330 to 760 nm). The recent discovery of far-red absorbing CBCRs (frCBCRs) has garnered considerable interest from the optogenetic and imaging communities because of the deep penetrance of far-red light into mammalian tissue and the small size of the CBCR protein scaffold. The present studies were undertaken to determine the structural basis for far-red absorption by JSC1_58120g3, a frCBCR from the thermophilic cyanobacterium Leptolyngbya sp. JSC-1 that is a representative member of a phylogenetically distinct class. Unlike most CBCRs that bind phycocyanobilin (PCB), a phycobilin naturally occurring in cyanobacteria and only a few eukaryotic phototrophs, JSC1_58120g3's far-red absorption arises from incorporation of the PCB biosynthetic intermediate 181,182-dihydrobiliverdin (181,182-DHBV) rather than the more reduced and more abundant PCB. JSC1_58120g3 can also yield a far-red-absorbing adduct with the more widespread linear tetrapyrrole biliverdin IXα (BV), thus circumventing the need to coproduce or supplement optogenetic cell lines with PCB. Using high-resolution X-ray crystal structures of 181,182-DHBV and BV adducts of JSC1_58120g3 along with structure-guided mutagenesis, we have defined residues critical for its verdin-binding preference and far-red absorption. Far-red sensing and verdin incorporation make this frCBCR lineage an attractive template for developing robust optogenetic and imaging reagents for deep tissue applications.
Collapse
|
35
|
Fushimi K, Matsunaga T, Narikawa R. A photoproduct of DXCF cyanobacteriochromes without reversible Cys ligation is destabilized by rotating ring twist of the chromophore. Photochem Photobiol Sci 2020; 19:1289-1299. [PMID: 32789394 DOI: 10.1039/d0pp00208a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyanobacteriochrome photoreceptors (CBCRs) ligate linear tetrapyrrole chromophores via their first (canonical) Cys residue and show reversible photoconversion triggered by light-dependent Z/E isomerization of the chromophore. Among the huge repertoire of CBCRs, DXCF CBCRs contain a second Cys residue within the highly conserved Asp-Xaa-Cys-Phe (DXCF) motif. In the typical receptors, the second Cys covalently attaches to the 15Z-chromophore in the dark state and detaches from the 15E-chromophore in the photoproduct state, whereas atypical ones that lack reversible ligation activity show red-shifted absorption in the dark state due to a more extended π-conjugated system. Moreover, some DXCF CBCRs show blue-shifted absorption in the photoproduct state due to the twisted geometry of the rotating ring. During the process of rational color tuning of a certain DXCF CBCR, we unexpectedly found that twisted photoproducts of some variant molecules showed dark reversion to the dark state, which prompted us to hypothesize that the photoproduct is destabilized by the twisted geometry of the rotating ring. In this study, we comprehensively examined the photoproduct stability of the twisted and relaxed molecules derived from the same CBCR scaffolds under dark conditions. In the DXCF CBCRs lacking reversible ligation activity, the twisted photoproducts showed faster dark reversion than the relaxed ones, supporting our hypothesis. By contrast, in the DXCF CBCRs exhibiting reversible ligation activity, the twisted photoproducts showed no detectable photoconversion. Reversible Cys adduct formation thus results in drastic rearrangement of the protein-chromophore interaction in the photoproduct state, which would contribute to the previously unknown photoproduct stability.
Collapse
Affiliation(s)
- Keiji Fushimi
- Department of Biological Sciences, Faculty of Science, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan. and Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takumi Matsunaga
- Department of Biological Sciences, Faculty of Science, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan.
| | - Rei Narikawa
- Department of Biological Sciences, Faculty of Science, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan. and Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan and Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan
| |
Collapse
|
36
|
Fushimi K, Hoshino H, Shinozaki-Narikawa N, Kuwasaki Y, Miyake K, Nakajima T, Sato M, Kano F, Narikawa R. The Cruciality of Single Amino Acid Replacement for the Spectral Tuning of Biliverdin-Binding Cyanobacteriochromes. Int J Mol Sci 2020; 21:ijms21176278. [PMID: 32872628 PMCID: PMC7504144 DOI: 10.3390/ijms21176278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/26/2020] [Accepted: 08/29/2020] [Indexed: 01/27/2023] Open
Abstract
Cyanobacteriochromes (CBCRs), which are known as linear tetrapyrrole-binding photoreceptors, to date can only be detected from cyanobacteria. They can perceive light only in a small unit, which is categorized into various lineages in correlation with their spectral and structural characteristics. Recently, we have succeeded in identifying specific molecules, which can incorporate mammalian intrinsic biliverdin (BV), from the expanded red/green (XRG) CBCR lineage and in converting BV-rejective molecules into BV-acceptable ones with the elucidation of the structural basis. Among the BV-acceptable molecules, AM1_1870g3_BV4 shows a spectral red-shift in comparison with other molecules, while NpF2164g5_BV4 does not show photoconversion but stably shows a near-infrared (NIR) fluorescence. In this study, we found that AM1_1870g3_BV4 had a specific Tyr residue near the d-ring of the chromophore, while others had a highly conserved Leu residue. The replacement of this Tyr residue with Leu in AM1_1870g3_BV4 resulted in a blue-shift of absorption peak. In contrast, reverse replacement in NpF2164g5_BV4 resulted in a red-shift of absorption and fluorescence peaks, which applies to fluorescence bio-imaging in mammalian cells. Notably, the same Tyr/Leu-dependent color-tuning is also observed for the CBCRs belonging to the other lineage, which indicates common molecular mechanisms.
Collapse
Affiliation(s)
- Keiji Fushimi
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (K.F.); (H.H.); (K.M.)
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan;
| | - Hiroki Hoshino
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (K.F.); (H.H.); (K.M.)
| | - Naeko Shinozaki-Narikawa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; (N.S.-N.); (F.K.)
| | - Yuto Kuwasaki
- Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan; (Y.K.); (T.N.)
| | - Keita Miyake
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (K.F.); (H.H.); (K.M.)
| | - Takahiro Nakajima
- Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan; (Y.K.); (T.N.)
- Kanagawa Institute of Industrial Science and Technology, 705-1 Shimoimaizumi, Ebina, Kanagawa 243-0435, Japan
| | - Moritoshi Sato
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan;
- Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan; (Y.K.); (T.N.)
| | - Fumi Kano
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; (N.S.-N.); (F.K.)
| | - Rei Narikawa
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (K.F.); (H.H.); (K.M.)
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan;
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan
- Correspondence: ; Tel.: +81-54-238-4783
| |
Collapse
|
37
|
Villafani Y, Yang HW, Park YI. Color Sensing and Signal Transmission Diversity of Cyanobacterial Phytochromes and Cyanobacteriochromes. Mol Cells 2020; 43:509-516. [PMID: 32438780 PMCID: PMC7332365 DOI: 10.14348/molcells.2020.0077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 12/31/2022] Open
Abstract
To perceive fluctuations in light quality, quantity, and timing, higher plants have evolved diverse photoreceptors including UVR8 (a UV-B photoreceptor), cryptochromes, phototropins, and phytochromes (Phys). In contrast to plants, prokaryotic oxygen-evolving photosynthetic organisms, cyanobacteria, rely mostly on bilin-based photoreceptors, namely, cyanobacterial phytochromes (Cphs) and cyanobacteriochromes (CBCRs), which exhibit structural and functional differences compared with plant Phys. CBCRs comprise varying numbers of light sensing domains with diverse color-tuning mechanisms and signal transmission pathways, allowing cyanobacteria to respond to UV-A, visible, and far-red lights. Recent genomic surveys of filamentous cyanobacteria revealed novel CBCRs with broader chromophore-binding specificity and photocycle protochromicity. Furthermore, a novel Cph lineage has been identified that absorbs blue-violet/yellow-orange light. In this minireview, we briefly discuss the diversity in color sensing and signal transmission mechanisms of Cphs and CBCRs, along with their potential utility in the field of optogenetics.
Collapse
Affiliation(s)
- Yvette Villafani
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Hee Wook Yang
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
38
|
Evolution-inspired design of multicolored photoswitches from a single cyanobacteriochrome scaffold. Proc Natl Acad Sci U S A 2020; 117:15573-15580. [PMID: 32571944 DOI: 10.1073/pnas.2004273117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cyanobacteriochromes (CBCRs) are small, bistable linear tetrapyrrole (bilin)-binding light sensors which are typically found as modular components in multidomain cyanobacterial signaling proteins. The CBCR family has been categorized into many lineages that roughly correlate with their spectral diversity, but CBCRs possessing a conserved DXCF motif are found in multiple lineages. DXCF CBCRs typically possess two conserved Cys residues: a first Cys that remains ligated to the bilin chromophore and a second Cys found in the DXCF motif. The second Cys often forms a second thioether linkage, providing a mechanism to sense blue and violet light. DXCF CBCRs have been described with blue/green, blue/orange, blue/teal, and green/teal photocycles, and the molecular basis for some of this spectral diversity has been well established. We here characterize AM1_1499g1, an atypical DXCF CBCR that lacks the second cysteine residue and exhibits an orange/green photocycle. Based on prior studies of CBCR spectral tuning, we have successfully engineered seven AM1_1499g1 variants that exhibit robust yellow/teal, green/teal, blue/teal, orange/yellow, yellow/green, green/green, and blue/green photocycles. The remarkable spectral diversity generated by modification of a single CBCR provides a good template for multiplexing synthetic photobiology systems within the same cellular context, thereby bypassing the time-consuming empirical optimization process needed for multiple probes with different protein scaffolds.
Collapse
|
39
|
Kashimoto T, Miyake K, Sato M, Maeda K, Matsumoto C, Ikeuchi M, Toyooka K, Watanabe S, Kanesaki Y, Narikawa R. Acclimation process of the chlorophyll d-bearing cyanobacterium Acaryochloris marina to an orange light environment revealed by transcriptomic analysis and electron microscopic observation. J GEN APPL MICROBIOL 2020; 66:106-115. [PMID: 32147625 DOI: 10.2323/jgam.2019.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The cyanobacterium Acaryochloris marina MBIC 11017 (A. marina 11017) possesses chlorophyll d (Chl. d) peaking at 698 nm as photosystem reaction center pigments, instead of chlorophyll a (Chl. a) peaking at 665 nm. About 95% of the total chlorophylls is Chl. d in A. marina 11017. In addition, A. marina 11017 possesses phycobilisome (PBS) supercomplex to harvest orange light and to transfer the absorbing energy to the photosystems. In this context, A. marina 11017 utilizes both far-red and orange light as the photosynthetic energy source. In the present study, we incubated A. marina 11017 cells under monochromatic orange and far-red light conditions and performed transcriptional and morphological studies by RNA-seq analysis and electron microscopy. Cellular absorption spectra, transcriptomic profiles, and microscopic observations demonstrated that PBS was highly accumulated under an orange light condition relative to a far-red light condition. Notably, transcription of one cpcBA operon encoding the phycobiliprotein of the phycocyanin was up-regulated under the orange light condition, but another operon was constitutively expressed under both conditions, indicating functional diversification of these two operons for light harvesting. Taking the other observations into consideration, we could illustrate the photoacclimation processes of A. marina 11017 in response to orange and far-red light conditions in detail.
Collapse
Affiliation(s)
- Tomonori Kashimoto
- Department of Biological Science, Faculty of Science, Shizuoka University
| | - Keita Miyake
- Department of Biological Science, Faculty of Science, Shizuoka University
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science
| | - Kaisei Maeda
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo.,Department of Bioscience, Tokyo University of Agriculture
| | | | - Masahiko Ikeuchi
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency
| | | | | | - Yu Kanesaki
- Research Institute of Green Science and Technology, Shizuoka University.,NODAI Genome Research Center, Tokyo University of Agriculture
| | - Rei Narikawa
- Department of Biological Science, Faculty of Science, Shizuoka University.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency.,Research Institute of Green Science and Technology, Shizuoka University
| |
Collapse
|
40
|
Sanfilippo JE, Garczarek L, Partensky F, Kehoe DM. Chromatic Acclimation in Cyanobacteria: A Diverse and Widespread Process for Optimizing Photosynthesis. Annu Rev Microbiol 2020; 73:407-433. [PMID: 31500538 DOI: 10.1146/annurev-micro-020518-115738] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromatic acclimation (CA) encompasses a diverse set of molecular processes that involve the ability of cyanobacterial cells to sense ambient light colors and use this information to optimize photosynthetic light harvesting. The six known types of CA, which we propose naming CA1 through CA6, use a range of molecular mechanisms that likely evolved independently in distantly related lineages of the Cyanobacteria phylum. Together, these processes sense and respond to the majority of the photosynthetically relevant solar spectrum, suggesting that CA provides fitness advantages across a broad range of light color niches. The recent discoveries of several new CA types suggest that additional CA systems involving additional light colors and molecular mechanisms will be revealed in coming years. Here we provide a comprehensive overview of the currently known types of CA and summarize the molecular details that underpin CA regulation.
Collapse
Affiliation(s)
- Joseph E Sanfilippo
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08540, USA;
| | - Laurence Garczarek
- Adaptation et Diversité en Milieu Marin (AD2M), Station Biologique de Roscoff, CNRS UMR 7144, Sorbonne Université, 29680 Roscoff, France; ,
| | - Frédéric Partensky
- Adaptation et Diversité en Milieu Marin (AD2M), Station Biologique de Roscoff, CNRS UMR 7144, Sorbonne Université, 29680 Roscoff, France; ,
| | - David M Kehoe
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA;
| |
Collapse
|
41
|
Rockwell NC, Lagarias JC. Phytochrome evolution in 3D: deletion, duplication, and diversification. THE NEW PHYTOLOGIST 2020; 225:2283-2300. [PMID: 31595505 PMCID: PMC7028483 DOI: 10.1111/nph.16240] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/17/2019] [Indexed: 05/09/2023]
Abstract
Canonical plant phytochromes are master regulators of photomorphogenesis and the shade avoidance response. They are also part of a widespread superfamily of photoreceptors with diverse spectral and biochemical properties. Plant phytochromes belong to a clade including other phytochromes from glaucophyte, prasinophyte, and streptophyte algae (all members of the Archaeplastida) and those from cryptophyte algae. This is consistent with recent analyses supporting the existence of an AC (Archaeplastida + Cryptista) clade. AC phytochromes have been proposed to arise from ancestral cyanobacterial genes via endosymbiotic gene transfer (EGT), but most recent studies instead support multiple horizontal gene transfer (HGT) events to generate extant eukaryotic phytochromes. In principle, this scenario would be compared to the emerging understanding of early events in eukaryotic evolution to generate a coherent picture. Unfortunately, there is currently a major discrepancy between the evolution of phytochromes and the evolution of eukaryotes; phytochrome evolution is thus not a solved problem. We therefore examine phytochrome evolution in a broader context. Within this context, we can identify three important themes in phytochrome evolution: deletion, duplication, and diversification. These themes drive phytochrome evolution as organisms evolve in response to environmental challenges.
Collapse
|
42
|
Miyake K, Fushimi K, Kashimoto T, Maeda K, Ni-Ni-Win, Kimura H, Sugishima M, Ikeuchi M, Narikawa R. Functional diversification of two bilin reductases for light perception and harvesting in unique cyanobacterium Acaryochloris marina MBIC 11017. FEBS J 2020; 287:4016-4031. [PMID: 31995844 DOI: 10.1111/febs.15230] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/17/2019] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
Abstract
Bilin pigments play important roles for both light perception and harvesting in cyanobacteria by binding to cyanobacteriochromes (CBCRs) and phycobilisomes (PBS), respectively. Among various cyanobacteria, Acaryochloris marina MBIC 11017 (A. marina 11017) exceptionally uses chlorophyll d as the main photosynthetic pigment absorbing longer wavelength light than the canonical pigment, chlorophyll a, indicating existence of a system to sense longer wavelength light than others. On the other hand, A. marina 11017 has the PBS apparatus to harvest short-wavelength orange light, similar to most cyanobacteria. Thus, A. marina 11017 might sense longer wavelength light and harvest shorter wavelength light by using bilin pigments. Phycocyanobilin (PCB) is the main bilin pigment of both systems. Phycocyanobilin:ferredoxin oxidoreductase (PcyA) catalyzes PCB synthesis from biliverdin via the intermediate 181 ,182 -dihydrobiliverdin (181 ,182 -DHBV), resulting in the stepwise shortening of the absorbing wavelengths. In this study, we found that A. marina 11017 exceptionally encodes two PcyA homologs, AmPcyAc and AmPcyAp. AmPcyAc is encoded on the main chromosome with most photoreceptor genes, whereas AmPcyAp is encoded on a plasmid with PBS-related genes. High accumulation of 181 ,182 -DHBV for extended periods was observed during the reaction catalyzed by AmPcyAc, whereas 181 ,182 -DHBV was transiently accumulated for a short period during the reaction catalyzed by AmPcyAp. CBCRs could sense longer wavelength far-red light through 181 ,182 -DHBV incorporation, whereas PBS could only harvest orange light through PCB incorporation, suggesting functional diversification of PcyA as AmPcyAc and AmPcyAp to provide 181 ,182 -DHBV and PCB to the light perception and harvesting systems, respectively.
Collapse
Affiliation(s)
- Keita Miyake
- Graduate School of Integrated Science and Technology, Shizuoka University, Japan
| | - Keiji Fushimi
- Graduate School of Integrated Science and Technology, Shizuoka University, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Tomonori Kashimoto
- Graduate School of Integrated Science and Technology, Shizuoka University, Japan
| | - Kaisei Maeda
- Graduate School of Arts and Sciences, University of Tokyo, Japan
| | - Ni-Ni-Win
- Graduate School of Arts and Sciences, University of Tokyo, Japan
| | - Hiroyuki Kimura
- Graduate School of Integrated Science and Technology, Shizuoka University, Japan.,Research Institute of Green Science and Technology, Shizuoka University, Japan
| | - Masakazu Sugishima
- Department of Medical Biochemistry, Kurume University School of Medicine, Japan
| | - Masahiko Ikeuchi
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan.,Graduate School of Arts and Sciences, University of Tokyo, Japan
| | - Rei Narikawa
- Graduate School of Integrated Science and Technology, Shizuoka University, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan.,Research Institute of Green Science and Technology, Shizuoka University, Japan
| |
Collapse
|
43
|
Wiltbank LB, Kehoe DM. Diverse light responses of cyanobacteria mediated by phytochrome superfamily photoreceptors. Nat Rev Microbiol 2020; 17:37-50. [PMID: 30410070 DOI: 10.1038/s41579-018-0110-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cyanobacteria are an evolutionarily and ecologically important group of prokaryotes. They exist in diverse habitats, ranging from hot springs and deserts to glaciers and the open ocean. The range of environments that they inhabit can be attributed in part to their ability to sense and respond to changing environmental conditions. As photosynthetic organisms, one of the most crucial parameters for cyanobacteria to monitor is light. Cyanobacteria can sense various wavelengths of light and many possess a range of bilin-binding photoreceptors belonging to the phytochrome superfamily. Vital cellular processes including growth, phototaxis, cell aggregation and photosynthesis are tuned to environmental light conditions by these photoreceptors. In this Review, we examine the physiological responses that are controlled by members of this diverse family of photoreceptors and discuss the signal transduction pathways through which these photoreceptors operate. We highlight specific examples where the activities of multiple photoreceptors function together to fine-tune light responses. We also discuss the potential application of these photosensing systems in optogenetics and synthetic biology.
Collapse
Affiliation(s)
- Lisa B Wiltbank
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - David M Kehoe
- Department of Biology, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
44
|
Hou YN, Ding WL, Hu JL, Jiang XX, Tan ZZ, Zhao KH. Very Bright Phycoerythrobilin Chromophore for Fluorescence Biolabeling. Chembiochem 2019; 20:2777-2783. [PMID: 31145526 DOI: 10.1002/cbic.201900273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Indexed: 11/07/2022]
Abstract
Biliproteins have extended the spectral range of fluorescent proteins into the far-red (FR) and near-infrared (NIR) regions. These FR and NIR fluorescent proteins are suitable for the bioimaging of mammalian tissues and are indispensable for multiplex labeling. Their application, however, presents considerable challenges in increasing their brightness, while maintaining emission in FR regions and oligomerization of monomers. Two fluorescent biliprotein triads, termed BDFP1.2/1.6:3.3:1.2/1.6, are reported. In mammalian cells, these triads not only have extremely high brightness in the FR region, but also have monomeric oligomerization. The BDFP1.2 and BDFP1.6 domains covalently bind to biliverdin, which is accessible in most cells. The BDFP3.3 domain noncovalently binds phycoerythrobilin that is added externally. A new method of replacing phycoerythrobilin with proteolytically digested BDFP3.3 facilitates this labeling. BDFP3.3 has a very high fluorescence quantum yield of 66 %, with maximal absorbance at λ=608 nm and fluorescence at λ=619 nm. In BDFP1.2/1.6:3.3:1.2/1.6, the excitation energy that is absorbed in the red region by phycoerythrobilin in the BDFP3.3 domain is transferred to biliverdin in the two BDFP1.2 or BDFP1.6 domains and fluoresces at λ≈670 nm. The combination of BDFP3.3 and BDFP1.2/1.6:3.3:1.2/1.6 can realize dual-color labeling. Labeling various proteins by fusion to these new fluorescent biliproteins is demonstrated in prokaryotic and mammalian cells.
Collapse
Affiliation(s)
- Ya-Nan Hou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Wen-Long Ding
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Ji-Ling Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Xiang-Xiang Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Zi-Zhu Tan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| |
Collapse
|
45
|
Fushimi K, Narikawa R. Cyanobacteriochromes: photoreceptors covering the entire UV-to-visible spectrum. Curr Opin Struct Biol 2019; 57:39-46. [DOI: 10.1016/j.sbi.2019.01.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/08/2019] [Accepted: 01/28/2019] [Indexed: 10/27/2022]
|
46
|
Protein Engineering of Dual-Cys Cyanobacteriochrome AM1_1186g2 for Biliverdin Incorporation and Far-Red/Blue Reversible Photoconversion. Int J Mol Sci 2019; 20:ijms20122935. [PMID: 31208089 PMCID: PMC6628166 DOI: 10.3390/ijms20122935] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/09/2019] [Accepted: 06/12/2019] [Indexed: 01/14/2023] Open
Abstract
Cyanobacteria have cyanobacteriochromes (CBCRs), which are photoreceptors that bind to a linear tetrapyrrole chromophore and sense UV-to-visible light. A recent study revealed that the dual-Cys CBCR AM1_1186g2 covalently attaches to phycocyanobilin and exhibits unique photoconversion between a Pr form (red-absorbing dark state, λmax = 641 nm) and Pb form (blue-absorbing photoproduct, λmax = 416 nm). This wavelength separation is larger than those of the other CBCRs, which is advantageous for optical tools. Nowadays, bioimaging and optogenetics technologies are powerful tools for biological research. In particular, the utilization of far-red and near-infrared light sources is required for noninvasive applications to mammals because of their high potential to penetrate into deep tissues. Biliverdin (BV) is an intrinsic chromophore and absorbs the longest wavelength among natural linear tetrapyrrole chromophores. Although the BV-binding photoreceptors are promising platforms for developing optical tools, AM1_1186g2 cannot efficiently attach BV. Herein, by rationally introducing several replacements, we developed a BV-binding AM1_1186g2 variant, KCAP_QV, that exhibited reversible photoconversion between a Pfr form (far-red-absorbing dark state, λmax = 691 nm) and Pb form (λmax = 398 nm). This wavelength separation reached 293 nm, which is the largest among the known phytochrome and CBCR photoreceptors. In conclusion, the KCAP_QV molecule developed in this study can offer an alternative platform for the development of unique optical tools.
Collapse
|
47
|
Sugishima M, Wada K, Unno M, Fukuyama K. Bilin-metabolizing enzymes: site-specific reductions catalyzed by two different type of enzymes. Curr Opin Struct Biol 2019; 59:73-80. [PMID: 30954759 DOI: 10.1016/j.sbi.2019.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/09/2019] [Accepted: 03/04/2019] [Indexed: 02/05/2023]
Abstract
In mammals, the green heme metabolite biliverdin is converted to a yellow anti-oxidant by NAD(P)H-dependent biliverdin reductase (BVR), whereas in O2-dependent photosynthetic organisms it is converted to photosynthetic or light-sensing pigments by ferredoxin-dependent bilin reductases (FDBRs). In NADP+-bound and biliverdin-bound BVR-A, two biliverdins are stacked at the binding cleft; one is positioned to accept hydride from NADPH, and the other appears to donate a proton to the first biliverdin through a neighboring arginine residue. During the FDBR-catalyzed reaction, electrons and protons are supplied to bilins from ferredoxin and from FDBRs and waters bound within FDBRs, respectively. Thus, the protonation sites of bilin and catalytic residues are important for the analysis of site-specific reduction. The neutron structure of FDBR sheds light on this issue.
Collapse
Affiliation(s)
- Masakazu Sugishima
- Department of Medical Biochemistry, Kurume University School of Medicine, Fukuoka 830-0011, Japan.
| | - Kei Wada
- Department of Medical Sciences, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Masaki Unno
- Graduate School of Science and Engineering, Ibaraki University, Ibaraki 316-8511, Japan
| | - Keiichi Fukuyama
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| |
Collapse
|
48
|
Rational conversion of chromophore selectivity of cyanobacteriochromes to accept mammalian intrinsic biliverdin. Proc Natl Acad Sci U S A 2019; 116:8301-8309. [PMID: 30948637 DOI: 10.1073/pnas.1818836116] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Because cyanobacteriochrome photoreceptors need only a single compact domain for chromophore incorporation and for absorption of visible spectra including the long-wavelength far-red region, these molecules have been paid much attention for application to bioimaging and optogenetics. Most cyanobacteriochromes, however, have a drawback to incorporate phycocyanobilin that is not available in the mammalian cells. In this study, we focused on biliverdin (BV) that is a mammalian intrinsic chromophore and absorbs the far-red region and revealed that replacement of only four residues was enough for conversion from BV-rejective cyanobacteriochromes into BV-acceptable molecules. We succeeded in determining the crystal structure of one of such engineered molecules, AnPixJg2_BV4, at 1.6 Å resolution. This structure identified unusual covalent bond linkage, which resulted in deep BV insertion into the protein pocket. The four mutated residues contributed to reducing steric hindrances derived from the deeper insertion. We introduced these residues into other domains, and one of them, NpF2164g5_BV4, produced bright near-infrared fluorescence from mammalian liver in vivo. Collectively, this study provides not only molecular basis to incorporate BV by the cyanobacteriochromes but also rational strategy to open the door for application of cyanobacteriochromes to visualization and regulation of deep mammalian tissues.
Collapse
|
49
|
Oliinyk OS, Shemetov AA, Pletnev S, Shcherbakova DM, Verkhusha VV. Smallest near-infrared fluorescent protein evolved from cyanobacteriochrome as versatile tag for spectral multiplexing. Nat Commun 2019; 10:279. [PMID: 30655515 PMCID: PMC6336887 DOI: 10.1038/s41467-018-08050-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/12/2018] [Indexed: 01/07/2023] Open
Abstract
From a single domain of cyanobacteriochrome (CBCR) we developed a near-infrared (NIR) fluorescent protein (FP), termed miRFP670nano, with excitation at 645 nm and emission at 670 nm. This is the first CBCR-derived NIR FP evolved to efficiently bind endogenous biliverdin chromophore and brightly fluoresce in mammalian cells. miRFP670nano is a monomer with molecular weight of 17 kDa that is 2-fold smaller than bacterial phytochrome (BphP)-based NIR FPs and 1.6-fold smaller than GFP-like FPs. Crystal structure of the CBCR-based NIR FP with biliverdin reveals a molecular basis of its spectral and biochemical properties. Unlike BphP-derived NIR FPs, miRFP670nano is highly stable to denaturation and degradation and can be used as an internal protein tag. miRFP670nano is an effective FRET donor for red-shifted NIR FPs, enabling engineering NIR FRET biosensors spectrally compatible with GFP-like FPs and blue-green optogenetic tools. miRFP670nano unlocks a new source of diverse CBCR templates for NIR FPs.
Collapse
Affiliation(s)
- Olena S Oliinyk
- Medicum, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Anton A Shemetov
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Sergei Pletnev
- Basic Science Program, Macromolecular Crystallography Laboratory, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, 21702, USA
| | - Daria M Shcherbakova
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Vladislav V Verkhusha
- Medicum, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland.
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
50
|
Leem JW, Allcca AEL, Chen J, Kim SW, Kim KY, Choi KH, Chen YP, Kim SR, Kim YL. Visible light biophotosensors using biliverdin from Antheraea yamamai. OPTICS EXPRESS 2018; 26:31817-31828. [PMID: 30650761 DOI: 10.1364/oe.26.031817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
We report an endogenous photoelectric biomolecule and demonstrate that such a biomolecule can be used to detect visible light. We identify the green pigment abundantly present in natural silk cocoons of Antheraea yamamai (Japanese oak silkmoth) as biliverdin, using mass spectroscopy and optical spectroscopy. Biliverdin extracted from the green silk cocoons generates photocurrent upon light illumination with distinct colors. We further characterize the basic performance, responsiveness, and stability of the biliverdin-based biophotosensors at a photovoltaic device level using blue, green, orange, and red light illumination. Biliverdin could potentially serve as an optoelectric biomolecule toward the development of next-generation implantable photosensors and artificial photoreceptors.
Collapse
|