1
|
Sadr Z, Ghasemi M, Jafarpour S, Seyfi R, Ghasemi A, Boustanipour E, Khorshid HRK, Ehtesham N. Beginning at the ends: telomere and telomere-based cancer therapeutics. Mol Genet Genomics 2024; 300:1. [PMID: 39638969 DOI: 10.1007/s00438-024-02206-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
Telomeres, which are situated at the terminal ends of chromosomes, undergo a reduction in length with each cellular division, ultimately reaching a critical threshold that triggers cellular senescence. Cancer cells circumvent this senescence by utilizing telomere maintenance mechanisms (TMMs) that grant them a form of immortality. These mechanisms can be categorized into two primary processes: the reactivation of telomerase reverse transcriptase and the alternative lengthening of telomeres (ALT) pathway, which is dependent on homologous recombination (HR). Various strategies have been developed to inhibit telomerase activation in 85-95% of cancers, including the use of antisense oligonucleotides such as small interfering RNAs and endogenous microRNAs, agents that simulate telomere uncapping, expression modulators, immunotherapeutic vaccines targeting telomerase, reverse transcriptase inhibitors, stabilization of G-quadruplex structures, and gene therapy approaches. Conversely, in the remaining 5-15% of human cancers that rely on ALT, mechanisms involve modifications in the chromatin environment surrounding telomeres, upregulation of TERRA long non-coding RNA, enhanced activation of the ataxia telangiectasia and Rad-3-related protein kinase signaling pathway, increased interactions with nuclear receptors, telomere repositioning driven by HR, and recombination events between non-sister chromatids, all of which present potential targets for therapeutic intervention. Additionally, combinatorial therapy has emerged as a strategy that employs selective agents to simultaneously target both telomerase and ALT, aiming for optimal clinical outcomes. Given the critical role of anti-TMM strategies in cancer treatment, this review provides an overview of the latest insights into the structure and function of telomeres, their involvement in tumorigenesis, and the advancements in TMM-based cancer therapies.
Collapse
Affiliation(s)
- Zahra Sadr
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Masoumeh Ghasemi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Soheyla Jafarpour
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhaneh Seyfi
- Department of Stem Cells Technology and Tissue Regeneration, Faculty of Interdisciplinary Science and Technologies, Tarbiat Modares University, Tehran, Iran
| | - Aida Ghasemi
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Boustanipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Naeim Ehtesham
- Department of Medical Genetics, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran.
| |
Collapse
|
2
|
Ji Q, Yang Q, Ou M, Hong M. Simultaneous Down-Regulation of Intracellular MicroRNA-21 and hTERT mRNA Using AS1411-Functionallized Gold Nanoprobes to Achieve Targeted Anti-Tumor Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1956. [PMID: 39683343 DOI: 10.3390/nano14231956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024]
Abstract
Telomerase presents over-expression in most cancer cells and has been used as a near-universal marker of cancer. Studies have revealed that inhibiting telomerase activity by utilizing oligonucleotides to down-regulate the expression of intracellular human telomerase reverse-transcriptase (hTERT) mRNA is an effective method of achieving anti-tumor therapy. Considering that oncogenic microRNA-21 has been proven to indirectly up-regulate hTERT expression and drive cancer metastasis and aggression through increased telomerase activity, here, we constructed an AS1411-functionallized oligonucleotide-conjugated gold nanoprobe (Au nanoprobe) to simultaneously down-regulate intracellular microRNA-21 and hTERT mRNA by using anti-sense oligonucleotide technology to explore their targeted anti-tumor therapy effect. In vitro cell studies demonstrated that Au nanoprobes could effectively induce apoptosis and inhibit the proliferation of cancer cells by down-regulating intracellular hTERT activity. In vivo imaging and anti-tumor studies revealed that Au nanoprobes could accumulate at the tumor site and inhibit the growth of MCF-7 tumor xenografted on balb/c nude mice, thus having potential for anti-tumor therapy.
Collapse
Affiliation(s)
- Qinghong Ji
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Qiangqiang Yang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Mengyao Ou
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Min Hong
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
3
|
Bortoletto S, Nunes-Souza E, Marchi R, Ruthes MO, Okano LM, Tofolo MV, Centa A, Fonseca AS, Rosolen D, Cavalli LR. MicroRNAs role in telomere length maintenance and telomerase activity in tumor cells. J Mol Med (Berl) 2024; 102:1089-1100. [PMID: 39042290 DOI: 10.1007/s00109-024-02467-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024]
Abstract
MiRNAs, a class of non-coding RNA molecules, have emerged as critical modulators of telomere length and telomerase activity by finely tuning the expression of target genes (and not gene targets) within signaling pathways involved in telomere homeostasis. The primary objective of this systematic review was to compile and synthesize the existing body of knowledge on the role, association, and involvement of miRNAs in telomere length. Additionally, the review explored the regulation, function, and activation mechanism of the human telomerase reverse transcriptase (hTERT) gene and telomerase activity in tumor cells. A comprehensive analysis of 47 selected articles revealed 40 distinct miRNAs involved in these processes. These miRNAs were shown to exert their function, in both clinical cases and cell line models, either directly or indirectly, regulating hTERT and telomerase activity through distinct molecular mechanisms. The regulatory roles of these miRNAs significantly affected major cancer phenotypes, with outcomes largely dependent on the tissue type and the cellular actions within the tumor cells, whereby they functioned as oncogenes or tumor suppressors. These findings strongly support the pivotal role of miRNAs in modulating telomere length and telomerase activity, thereby contributing to the intricate and complex regulation of telomere homeostasis in tumor cells. Moreover, they emphasize the potential of targeting miRNAs and key regulatory genes as therapeutic strategies to disrupt cancer cell growth and promote senescence, offering promising avenues for novel cancer treatments.
Collapse
Affiliation(s)
- Stéfanne Bortoletto
- Faculdades Pequeno Príncipe, Research Institute Pelé Pequeno Príncipe, Curitiba, PR, Brazil
| | - Emanuelle Nunes-Souza
- Faculdades Pequeno Príncipe, Research Institute Pelé Pequeno Príncipe, Curitiba, PR, Brazil
| | - Rafael Marchi
- Faculdades Pequeno Príncipe, Research Institute Pelé Pequeno Príncipe, Curitiba, PR, Brazil
| | - Mayara Oliveira Ruthes
- Faculdades Pequeno Príncipe, Research Institute Pelé Pequeno Príncipe, Curitiba, PR, Brazil
| | - Larissa M Okano
- Faculdades Pequeno Príncipe, Research Institute Pelé Pequeno Príncipe, Curitiba, PR, Brazil
| | - Maria Vitoria Tofolo
- Faculdades Pequeno Príncipe, Research Institute Pelé Pequeno Príncipe, Curitiba, PR, Brazil
| | - Ariana Centa
- Universidade Alto Vale do Rio do Peixe (UNIARP), Caçador, SC, Brazil
| | - Aline S Fonseca
- Faculdades Pequeno Príncipe, Research Institute Pelé Pequeno Príncipe, Curitiba, PR, Brazil
| | - Daiane Rosolen
- Faculdades Pequeno Príncipe, Research Institute Pelé Pequeno Príncipe, Curitiba, PR, Brazil
| | - Luciane R Cavalli
- Faculdades Pequeno Príncipe, Research Institute Pelé Pequeno Príncipe, Curitiba, PR, Brazil.
- Oncology Department, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA.
| |
Collapse
|
4
|
Long W, Zeng YX, Zheng BX, Li YB, Wang YK, Chan KH, She MT, Lu YJ, Cao C, Wong WL. Targeting hTERT Promoter G-Quadruplex DNA Structures with Small-Molecule Ligand to Downregulate hTERT Expression for Triple-Negative Breast Cancer Therapy. J Med Chem 2024; 67:13363-13382. [PMID: 38987863 DOI: 10.1021/acs.jmedchem.4c01255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Human telomerase reverse transcriptase (hTERT) may have noncanonical functions in transcriptional regulation and metabolic reprogramming in cancer cells, but it is a challenging target. We thus developed small-molecule ligands targeting hTERT promoter G-quadruplex DNA structures (hTERT G4) to downregulate hTERT expression. Ligand 5 showed high affinity toward hTERT G4 (Kd = 1.1 μM) and potent activity against triple-negative breast cancer cells (MDA-MB-231, IC50 = 1 μM). In cell-based assays, 5 not only exerts markedly inhibitory activity on classical telomere functions including decreased telomerase activity, shortened telomere length, and cellular senescence but also induces DNA damage, acute cellular senescence, and apoptosis. This study reveals that hTERT G4-targeting ligand may cause mitochondrial dysfunction, disrupt iron metabolism and activate ferroptosis in cancer cells. The in vivo antitumor efficacy of 5 was also evaluated in an MDA-MB-231 xenograft mouse model and approximately 78.7% tumor weight reduction was achieved. No observable toxicity against the major organs was observed.
Collapse
Affiliation(s)
- Wei Long
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Yao-Xun Zeng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Bo-Xin Zheng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Yu-Bo Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ya-Kun Wang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Ka-Hin Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Meng-Ting She
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Yu-Jing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology Guangzhou 510006, China
| | - Chunyang Cao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
5
|
Zhao J, Xu Y. PITX1 plays essential functions in cancer. Front Oncol 2023; 13:1253238. [PMID: 37841446 PMCID: PMC10570508 DOI: 10.3389/fonc.2023.1253238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
PITX1, also known as the pituitary homeobox 1 gene, has emerged as a key regulator in animal growth and development, attracting significant research attention. Recent investigations have revealed the implication of dysregulated PITX1 expression in tumorigenesis, highlighting its involvement in cancer development. Notably, PITX1 interacts with p53 and exerts control over crucial cellular processes including cell cycle progression, apoptosis, and chemotherapy resistance. Its influence extends to various tumors, such as esophageal, colorectal, gastric, and liver cancer, contributing to tumor progression and metastasis. Despite its significance, a comprehensive review examining PITX1's role in oncology remains lacking. This review aims to address this gap by providing a comprehensive overview of PITX1 in different cancer types, with a particular focus on its clinicopathological significance.
Collapse
Affiliation(s)
- Jingpu Zhao
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Yongfeng Xu
- Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
De Felice B, Montanino C, Pinelli C, Nacca M, De Luca P. A novel Telomerase activity and microRNA-21 upregulation identified in a family with Palmoplantar keratoderma. Gene 2023:147600. [PMID: 37419429 DOI: 10.1016/j.gene.2023.147600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/11/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Palmoplantar keratoderma is a set of skin diseases with hyperkeratotic thickening of palms and soles which are characteristic of these heterogeneous group of keratinization disorders. Various genetic mutations, autosomal dominant or recessive, have been identified which may triggerpalmoplantar keratoderma, as KRT9 (Keratin 9), KRT1 (Keratin1), AQP5 (Aquaporin), SERPINB 7 (serine protease inhibitor). The identification of causal mutations is extremely important for the correct diagnosis. Here, we report the case of a family affected from Palmoplantar keratoderma caused by autosomal dominant KRT1 mutations (Unna-Thost disease). Telomerase activation and hTERT expression take a part in the process of cell proliferation and inflammation and microRNAs, as microRNA-21, are emerging as drivers in the regulation of telomerase activity. Here, the patients underwent KRT1 analysis genetic sequence, telomerase activity and miR-21 expression. Beside histopathology assay was performed. The patients presented thickening of the skin on soles of the feet and the palms of the hands, KRT1mutations and showed high expression levels of hTERT and hTR, the gene encoding for the telomeric subunits, and miR-21 (fold change >1.5 and p value =0.043), explicating the aberrant proliferation of epidermal layer and the inflammatory state characterizing palmoplantar keratoderma.
Collapse
Affiliation(s)
- Bruna De Felice
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DISTABIF), University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy.
| | - Concetta Montanino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DISTABIF), University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Claudia Pinelli
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DISTABIF), University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Massimo Nacca
- University Hospital Sant'Anna e San Sebastiano, Via Palasciano, 81100 Caserta, Italy
| | - Pasquale De Luca
- Department RIMAR, Sequencing and Molecular Analyses Center, Stazione Zoologica Anton Dohrn, Napoli, Italy
| |
Collapse
|
7
|
Ohira T, Yoshimura K, Kugoh H. Human artificial chromosome carrying 3p21.3-p22.2 region suppresses hTERT transcription in oral cancer cells. Chromosome Res 2023; 31:17. [PMID: 37353691 PMCID: PMC10289923 DOI: 10.1007/s10577-023-09726-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/24/2023] [Accepted: 06/06/2023] [Indexed: 06/25/2023]
Abstract
Telomerase is a ribonucleoprotein ribonucleic enzyme that elongates telomere repeat sequences at the ends of chromosomes and contributes to cellular immortalization. The catalytic component of telomerase, human telomerase reverse transcriptase (hTERT), has been observed to be reactivated in immortalized cells. Notably, most cancer cells have been found to have active hTERT mRNA transcription, resulting in continuous cell division, which is crucial for malignant transformation. Therefore, discovering mechanisms underlying the regulation of hTERT transcription is an attractive target for cancer-specific treatments.Loss of heterozygosity (LOH) of chromosome 3p21.3 has been frequently observed in human oral squamous cell carcinoma (OSCC). Moreover, we previously reported that HSC3 OSCC microcell hybrid clones with an introduced human chromosome 3 (HSC3#3) showed inhibition of hTERT transcription compared with the parental HSC3 cells. This study examined whether hTERT transcription regulators are present in the 3p21.3 region. We constructed a human artificial chromosome (HAC) vector (3p21.3-HAC) with only the 3p21.3-p22.2 region and performed functional analysis using the 3p21.3-HAC. HSC3 microcell hybrid clones with an introduced 3p21.3-HAC exhibited significant suppression of hTERT transcription, similar to the microcell hybrid clones with an intact chromosome 3. In contrast, HSC3 clones with truncated chromosome 3 with deletion of the 3p21.3 region (3delp21.3) showed no effect on hTERT expression levels. These results provide direct evidence that hTERT suppressor gene(s) were retained in the 3p21.3 region, suggesting that the presence of regulatory factors that control telomerase enzyme activity may be involved in the development of OSCC.
Collapse
Affiliation(s)
- Takahito Ohira
- Department of Chromosome Biomedical Engineering, Tottori University, 86 Nishi-Cho, Yonago, Tottori, 683-8503, Japan
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-Cho, Yonago, Tottori, 683-8503, Japan
| | - Kaho Yoshimura
- Department of Chromosome Biomedical Engineering, Tottori University, 86 Nishi-Cho, Yonago, Tottori, 683-8503, Japan
| | - Hiroyuki Kugoh
- Department of Chromosome Biomedical Engineering, Tottori University, 86 Nishi-Cho, Yonago, Tottori, 683-8503, Japan.
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-Cho, Yonago, Tottori, 683-8503, Japan.
- Division of Genome and Cellular Function, Department of Molecular and Cellular Biology, Tottori University, 86 Nishi-Cho, Yonago, Tottori, 683-8503, Japan.
| |
Collapse
|
8
|
Khan I, Siraj M. An updated review on cell signaling pathways regulated by candidate miRNAs in coronary artery disease. Noncoding RNA Res 2023; 8:326-334. [PMID: 37077752 PMCID: PMC10106733 DOI: 10.1016/j.ncrna.2023.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/16/2023] [Accepted: 03/29/2023] [Indexed: 03/31/2023] Open
Abstract
MicroRNAs (miRNAs) are small endogenous non-coding RNA, size range from 17 to 25 nucleotides that regulate gene expression at the post-transcriptional level. More than 2000 different types of miRNAs have been identified in humans which regulate about 60% of gene expression, since the discovery of the first miRNA in 1993. MicroRNA performs many functions such as being involved in the regulation of various biological pathways for example cell migration, cell proliferation, cell differentiation, disease progression, and initiation. miRNAs also play an important role in the development of atherosclerosis lesions, cardiac fibroblast, cardiac hypertrophy, cancer, and neurological disorders. Abnormal activation of many cell signaling pathways has been observed in the development of coronary artery disease. Abnormal expression of these candidate miRNA genes leads to up or downregulation of specific genes, these specific genes play an important role in the regulation of cell signaling pathways involved in coronary artery disease. Many studies have found that miRNAs play a key role in the regulation of crucial signaling pathways that are involved in the pathophysiology of coronary artery disease. This review is designed to investigate the role of cell signaling pathways regulated by candidate miRNAs in Coronary artery disease.
Collapse
|
9
|
Vitiligo-specific soluble biomarkers as early indicators of response to immune checkpoint inhibitors in metastatic melanoma patients. Sci Rep 2022; 12:5448. [PMID: 35361879 PMCID: PMC8971439 DOI: 10.1038/s41598-022-09373-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 03/21/2022] [Indexed: 02/08/2023] Open
Abstract
Immunotherapy with checkpoint inhibitors (CPIs) strongly improved the outcome of metastatic melanoma patients. However, not all the patients respond to treatment and identification of prognostic biomarkers able to select responding patients is currently of outmost importance. Considering that development of vitiligo-like depigmentation in melanoma patients represents both an adverse event of CPIs and a favorable prognostic factor, we analyzed soluble biomarkers of vitiligo to validate them as early indicators of response to CPIs. Fifty-seven metastatic melanoma patients receiving CPIs were enrolled and divided according to the best overall response to treatment. Patient sera were evaluated at pre-treatment and after 1 and 3 months of therapy. We found that basal CD25 serum levels were higher in stable and responding patients and remained higher during the first 3 months of CPI therapy compared to non-responders. CXCL9 was absent in non-responding patients before therapy beginning. Moreover, an increase of CXCL9 levels was observed at 1 and 3 months of therapy for all patients, although higher CXCL9 amounts were present in stable and responding compared to non-responding patients. Variations in circulating immune cell subsets was also analyzed, revealing a reduced number of regulatory T lymphocytes in responding patients. Altogether, our data indicate that a pre-existing and maintained activation of the immune system could be an indication of response to CPI treatment in melanoma patients.
Collapse
|
10
|
PITX1 Is a Regulator of TERT Expression in Prostate Cancer with Prognostic Power. Cancers (Basel) 2022; 14:cancers14051267. [PMID: 35267575 PMCID: PMC8909694 DOI: 10.3390/cancers14051267] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Most prostate cancer is of an indolent form and is curable. However, some prostate cancer belongs to rather aggressive subtypes leading to metastasis and death, and immediate therapy is mandatory. However, for these, the therapeutic options are highly invasive, such as radical prostatectomy, radiation or brachytherapy. Hence, a precise diagnosis of these tumor subtypes is needed, and the thus far applied diagnostic means are insufficient for this. Besides this, for their endless cell divisions, prostate cancer cells need the enzyme telomerase to elongate their telomeres (chromatin endings). In this study, we developed a gene regulatory model based on large data from transcription profiles from prostate cancer and chromatin-immuno-precipitation studies. We identified the developmental regulator PITX1 regulating telomerase. Besides observing experimental evidence of PITX1′s functional role in telomerase regulation, we also found PITX1 serving as a prognostic marker, as concluded from an analysis of more than 15,000 prostate cancer samples. Abstract The current risk stratification in prostate cancer (PCa) is frequently insufficient to adequately predict disease development and outcome. One hallmark of cancer is telomere maintenance. For telomere maintenance, PCa cells exclusively employ telomerase, making it essential for this cancer entity. However, TERT, the catalytic protein component of the reverse transcriptase telomerase, itself does not suit as a prognostic marker for prostate cancer as it is rather low expressed. We investigated if, instead of TERT, transcription factors regulating TERT may suit as prognostic markers. To identify transcription factors regulating TERT, we developed and applied a new gene regulatory modeling strategy to a comprehensive transcriptome dataset of 445 primary PCa. Six transcription factors were predicted as TERT regulators, and most prominently, the developmental morphogenic factor PITX1. PITX1 expression positively correlated with telomere staining intensity in PCa tumor samples. Functional assays and chromatin immune-precipitation showed that PITX1 activates TERT expression in PCa cells. Clinically, we observed that PITX1 is an excellent prognostic marker, as concluded from an analysis of more than 15,000 PCa samples. PITX1 expression in tumor samples associated with (i) increased Ki67 expression indicating increased tumor growth, (ii) a worse prognosis, and (iii) correlated with telomere length.
Collapse
|
11
|
Telomerase in Cancer: Function, Regulation, and Clinical Translation. Cancers (Basel) 2022; 14:cancers14030808. [PMID: 35159075 PMCID: PMC8834434 DOI: 10.3390/cancers14030808] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Cells undergoing malignant transformation must circumvent replicative senescence and eventual cell death associated with progressive telomere shortening that occurs through successive cell division. To do so, malignant cells reactivate telomerase to extend their telomeres and achieve cellular immortality, which is a “Hallmark of Cancer”. Here we review the telomere-dependent and -independent functions of telomerase in cancer, as well as its potential as a biomarker and therapeutic target to diagnose and treat cancer patients. Abstract During the process of malignant transformation, cells undergo a series of genetic, epigenetic, and phenotypic alterations, including the acquisition and propagation of genomic aberrations that impart survival and proliferative advantages. These changes are mediated in part by the induction of replicative immortality that is accompanied by active telomere elongation. Indeed, telomeres undergo dynamic changes to their lengths and higher-order structures throughout tumor formation and progression, processes overseen in most cancers by telomerase. Telomerase is a multimeric enzyme whose function is exquisitely regulated through diverse transcriptional, post-transcriptional, and post-translational mechanisms to facilitate telomere extension. In turn, telomerase function depends not only on its core components, but also on a suite of binding partners, transcription factors, and intra- and extracellular signaling effectors. Additionally, telomerase exhibits telomere-independent regulation of cancer cell growth by participating directly in cellular metabolism, signal transduction, and the regulation of gene expression in ways that are critical for tumorigenesis. In this review, we summarize the complex mechanisms underlying telomere maintenance, with a particular focus on both the telomeric and extratelomeric functions of telomerase. We also explore the clinical utility of telomeres and telomerase in the diagnosis, prognosis, and development of targeted therapies for primary, metastatic, and recurrent cancers.
Collapse
|
12
|
MicroRNA-603 Promotes Progression of Cutaneous Melanoma by Regulating TBX5. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2021:1888501. [PMID: 35003317 PMCID: PMC8741382 DOI: 10.1155/2021/1888501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 11/28/2022]
Abstract
Background Although studies manifested that microRNA-603 plays a vital role in many cancers, the modulatory mechanism of microRNA-603 in cutaneous melanoma remains unknown. We aimed to investigate the roles of microRNA-603 in cutaneous melanoma cells. Methods First, microRNA-603 expression in cutaneous melanoma cell lines was detected by qRT-PCR. The mRNA and protein expression levels of TBX5 in cutaneous melanoma cell lines were tested by qRT-PCR and western blot, respectively. In addition, the interaction between microRNA-603 and TBX5 was determined by dual-luciferase reporter gene assay, and their impacts on the growth of cutaneous melanoma cells were detected by cellular function experiments such as MTT, colony formation, and Transwell assays. Results The expression level of microRNA-603 in human cutaneous melanoma cells was relatively upregulated. Overexpressing microRNA-603 could promote progression of cutaneous melanoma cells, while silencing microRNA-603 expression could suppress the malignant progression of cutaneous melanoma. In addition, TBX5 was lowly expressed in cutaneous melanoma cells. As confirmed by dual-luciferase assay, microRNA-603 could specifically bind to 3′UTR of TBX5 and regulate TBX5. The results of the rescue experiment demonstrated that inhibiting microRNA-603 expression could suppress the proliferation, migration, and invasion of cutaneous melanoma cells, but its suppressive effect could be restored by TBX5. Conclusion MicroRNA-603 could regulate the expression of TBX5, thus promoting the malignant progression of cutaneous melanoma cells.
Collapse
|
13
|
Tarazón E, de Unamuno Bustos B, Murria Estal R, Pérez Simó G, Sahuquillo Torralba A, Simarro J, Palanca Suela S, Botella Estrada R. MiR-138-5p Suppresses Cell Growth and Migration in Melanoma by Targeting Telomerase Reverse Transcriptase. Genes (Basel) 2021; 12:genes12121931. [PMID: 34946880 PMCID: PMC8701232 DOI: 10.3390/genes12121931] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/16/2022] Open
Abstract
Recent evidence suggests the existence of a miRNA regulatory network involving human telomerase reverse transcriptase gene (hTERT), with miR-138-5p playing a central role in many types of cancers. However, little is known about the regulation of hTERT expression by microRNA (miRNAs) in melanocytic tumors. Here, we investigated the effects of miR-138-5p in hTERT regulation in melanoma cells lines. In vitro studies demonstrated higher miR-138-5p and lower hTERT messenger RNA (mRNA) expression in human epidermal melanocytes, compared with melanoma cell lines (A2058, A375, SK-MEL-28) by quantitative polymerase chain reaction (qPCR) observing a negative correlation between them. A2058 melanoma cells were selected to be transfected with miR-138-5p mimic or inhibitor. Using luciferase assay, hTERT was identified as a direct target of this miRNA. Overexpression of miR-138-5p detected by Western blot revealed a decrease in hTERT protein expression (p = 0.012), and qPCR showed a reduction in telomerase activity (p < 0.001). Moreover, suppressions in cell growth (p = 0.035) and migration abilities (p = 0.015) were observed in A2058-transfected cells using thiazolyl blue tetrazolium bromide and flow cytometry, respectively. This study identifies miR-138-5p as a crucial tumor suppressor miRNA involved in telomerase regulation. Targeting it as a combination therapy with immunotherapy or targeted therapies could be used in advanced melanoma treatment; however, more preclinical studies are necessary.
Collapse
Affiliation(s)
- Estefanía Tarazón
- Dermatology and Tisular Regeneration Group, Health Research Institute La Fe, 46026 Valencia, Spain; (E.T.); (B.d.U.B.); (R.M.E.); (A.S.T.); (R.B.E.)
| | - Blanca de Unamuno Bustos
- Dermatology and Tisular Regeneration Group, Health Research Institute La Fe, 46026 Valencia, Spain; (E.T.); (B.d.U.B.); (R.M.E.); (A.S.T.); (R.B.E.)
- Department of Dermatology, University Hospital La Fe, 46026 Valencia, Spain
| | - Rosa Murria Estal
- Dermatology and Tisular Regeneration Group, Health Research Institute La Fe, 46026 Valencia, Spain; (E.T.); (B.d.U.B.); (R.M.E.); (A.S.T.); (R.B.E.)
| | - Gema Pérez Simó
- Clinical and Translational Cancer Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (G.P.S.); (J.S.)
- Laboratory of Molecular Biology, Service of Clinical Analysis, University Hospital La Fe, 46026 Valencia, Spain
| | - Antonio Sahuquillo Torralba
- Dermatology and Tisular Regeneration Group, Health Research Institute La Fe, 46026 Valencia, Spain; (E.T.); (B.d.U.B.); (R.M.E.); (A.S.T.); (R.B.E.)
- Department of Dermatology, University Hospital La Fe, 46026 Valencia, Spain
| | - Javier Simarro
- Clinical and Translational Cancer Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (G.P.S.); (J.S.)
- Laboratory of Molecular Biology, Service of Clinical Analysis, University Hospital La Fe, 46026 Valencia, Spain
| | - Sarai Palanca Suela
- Clinical and Translational Cancer Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (G.P.S.); (J.S.)
- Laboratory of Molecular Biology, Service of Clinical Analysis, University Hospital La Fe, 46026 Valencia, Spain
- Correspondence: ; Tel.: +34-9612-44586
| | - Rafael Botella Estrada
- Dermatology and Tisular Regeneration Group, Health Research Institute La Fe, 46026 Valencia, Spain; (E.T.); (B.d.U.B.); (R.M.E.); (A.S.T.); (R.B.E.)
- Department of Dermatology, University Hospital La Fe, 46026 Valencia, Spain
- Department of Medicine, School of Medicine, Universitat de València, 46010 Valencia, Spain
| |
Collapse
|
14
|
MicroRNA Isoforms Contribution to Melanoma Pathogenesis. Noncoding RNA 2021; 7:ncrna7040063. [PMID: 34698264 PMCID: PMC8544706 DOI: 10.3390/ncrna7040063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 12/28/2022] Open
Abstract
Cutaneous melanoma (CM) is the most lethal tumor among skin cancers, and its incidence is constantly increasing. A deeper understanding of the molecular processes guiding melanoma pathogenesis could improve diagnosis, treatment and prognosis. MicroRNAs play a key role in melanoma biology. Recently, next generation sequencing (NGS) experiments, designed to assess small-RNA expression, revealed the existence of microRNA variants with different length and sequence. These microRNA isoforms are known as isomiRs and provide an additional layer to the complex non-coding RNA world. Here, we collected data from NGS experiments to provide a comprehensive characterization of miRNA and isomiR dysregulation in benign nevi (BN) and early-stage melanomas. We observed that melanoma and BN express different and specific isomiRs and have a different isomiR abundance distribution. Moreover, isomiRs from the same microRNA can have opposite expression trends between groups. Using The Cancer Genome Atlas (TCGA) dataset of skin cancers, we analyzed isomiR expression in primary melanoma and melanoma metastasis and tested their association with NF1, BRAF and NRAS mutations. IsomiRs differentially expressed were identified and catalogued with reference to the canonical form. The reported non-random dysregulation of specific isomiRs contributes to the understanding of the complex melanoma pathogenesis and serves as the basis for further functional studies.
Collapse
|
15
|
PITX1 inhibits the growth and proliferation of melanoma cells through regulation of SOX family genes. Sci Rep 2021; 11:18405. [PMID: 34526609 PMCID: PMC8443576 DOI: 10.1038/s41598-021-97791-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/30/2021] [Indexed: 01/04/2023] Open
Abstract
Melanoma is one of the most aggressive types of cancer wherein resistance to treatment prevails. Therefore, it is important to discover novel molecular targets of melanoma progression as potential treatments. Here we show that paired-like homeodomain transcription factor 1 (PITX1) plays a crucial role in the inhibition of melanoma progression through regulation of SRY-box transcription factors (SOX) gene family mRNA transcription. Overexpression of PITX1 in melanoma cell lines resulted in a reduction in cell proliferation and an increase in apoptosis. Additionally, analysis of protein levels revealed an antagonistic cross-regulation between SOX9 and SOX10. Interestingly, PITX1 binds to the SOX9 promoter region as a positive regulatory transcription factor; PITX1 mRNA expression levels were positively correlated with SOX9 expression, and negatively correlated with SOX10 expression in melanoma tissues. Furthermore, transcription of the long noncoding RNA (lncRNA), survival-associated mitochondrial melanoma-specific oncogenic noncoding RNA (SAMMSON), was decreased in PITX1-overexpressing cells. Taken together, the findings in this study indicate that PITX1 may act as a negative regulatory factor in the development and progression of melanoma via direct targeting of the SOX signaling.
Collapse
|
16
|
Ghafouri-Fard S, Gholipour M, Taheri M. MicroRNA Signature in Melanoma: Biomarkers and Therapeutic Targets. Front Oncol 2021; 11:608987. [PMID: 33968718 PMCID: PMC8100681 DOI: 10.3389/fonc.2021.608987] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Melanoma is the utmost fatal kind of skin neoplasms. Molecular changes occurring during the pathogenic processes of initiation and progression of melanoma are diverse and include activating mutations in BRAF and NRAS genes, hyper-activation of PI3K/AKT pathway, inactivation of p53 and alterations in CDK4/CDKN2A axis. Moreover, several miRNAs have been identified to be implicated in the biology of melanoma through modulation of expression of genes being involved in these pathways. In the current review, we provide a summary of the bulk of information about the role of miRNAs in the pathobiology of melanoma, their possible application as biomarkers and their emerging role as therapeutic targets for this kind of skin cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholipour
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Zhang C, Chen X, Chen Y, Cao M, Tang J, Zhong B, He M. The PITX gene family as potential biomarkers and therapeutic targets in lung adenocarcinoma. Medicine (Baltimore) 2021; 100:e23936. [PMID: 33530195 PMCID: PMC7850728 DOI: 10.1097/md.0000000000023936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 07/06/2020] [Accepted: 11/25/2020] [Indexed: 01/05/2023] Open
Abstract
ABSTRACT The PITX gene family of transcription factors have been reported to regulate the development of multiple organs. This study was designed to investigate the role of PITXs in lung adenocarcinoma (LUAD).In this study, the transcriptional levels of the 3 identified PITXs in patients with LUAD were examined using the gene expression profiling interactive analysis interactive web server. Meanwhile, the immunohistochemical data of the 3 PITXs were obtained in the Human Protein Atlas website, and western blotting was additionally conducted for further verification. Moreover, the association between the levels of PITXs and the stage plot as well as overall survival of patients with LUAD was analyzed.We found that the mRNA and protein levels of PITX1 and PITX2 were higher in LUAD tissues than those in normal lung tissues, while those of PITX3 displayed no significant differences. Additionally, PITX1 and PITX3 were found to be significantly associated with the stage of LUAD. The Kaplan-Meier Plot showed that the high level of PITX1 conferred a better overall survival of patients with LUAD while the high level of PITX3 was associated with poor prognosis.Our study implied that PITX1 and PITX3 are potential targets of precision therapy for patients with LUAD while PITX1 and PITX2 are regarded as novel biomarkers for the diagnosis of LUAD.
Collapse
|
18
|
Safdar M, Zaheer S, Khailany RA, Parvez S, Naveed M, Bhuiyan P, Ozaslan M, Moatasam R, Al-Attar MS, Khan MA, Junejo Y. The Relevance of SNPs at 3'UTR Region of CASP7 and miR-371b-5p Associated Diseases: A Computational Analysis. Cell Biochem Biophys 2020; 78:541-557. [PMID: 32951155 DOI: 10.1007/s12013-020-00941-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The process of genetically programmed cell death, or apoptosis, plays a crucialrolein cellular homeostasis and gene expression. Disruption of apoptosis may lead to aberrant immune responses, cancer, and neurodegenerative diseases. Single nucleotide polymorphisms (SNPs) present in various microRNA (miRNA) genes and targets being an alteration of miRNA activity resulting in human diseases. Evidence reported that SNPs increase/decrease the effectiveness of the interaction between miRNAs and their target genes associated with diseases. The primary purpose of this study is not only to identify miRSNPs on the CASP7 gene (caspase-7) and SNPs in miRNA genes targeting 3'UTR but also to evaluate the effect of thesegene variations in apoptosis and their associated diseases. We detected 120 miRNAs binding sites and 27 different SNPs in binding sites of miRNA in 3'UTR of the CASP7 gene by ten different online softwares. Interestingly, miR-371b-5p's binding site on CASP7 has an SNP (rs576198588, G/T) on CASP7 3'UTR, and its genomic sequence has an SNP (rs751339395, G/T) at the same nucleotide with rs576198588. Similarly, two other SNPs (rs774879764, C/G rs750389063, C/T) were identified at the first position binding site of miR-371b-5p. Here, miRSNP (rs576198588) at CASP7 3'UTR and SNP (rs751339395) at miR-371b-5p genomic sequence cross-matches at the same site of binding region. Besides, miR-371b-5p targets many apoptosis-related genes (HIP1, TRIAP1, GSKIP, NIN, DAP, CAAP1, XIAP, TMBIM1, TMBIM4, TNFRSF10A, RAD21, AKT1, BAG1, BAG4) even though it had no apoptosis correlated interaction demonstrated formerly. It assures that CASP7 could have a significant consequence on apoptosis through different pathways. Henceforth, this study was representing and signifying an influential connotation among miR-371b-5p and apoptosis via computational exploration and recommended to have better insight.
Collapse
Affiliation(s)
- Muhammad Safdar
- Department of Breeding and Genetics, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan.
- Department of Biology, Division of Molecular Biology and Genetics, Gaziantep University, 27310, Gaziantep, Turkey.
| | - Sana Zaheer
- Department of Biotechnology, Virtual University of Pakistan, Lahore, 60000, Pakistan
| | - Rozhgar A Khailany
- Department of Biology, College of Science, Salahaddin University-Erbil, 44001, Erbil, Iraq
- Department of Biology, Faculty of Education, Tishk International University, 44001, Erbil, Iraq
| | - Sadaf Parvez
- Department of Biology, Virtual University of Pakistan, Lahore, 54000, Pakistan
| | - Muhammad Naveed
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Piplu Bhuiyan
- School of Basic Life Sciences, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 20029, PR China
| | - Mehmet Ozaslan
- Department of Biology, Division of Molecular Biology and Genetics, Gaziantep University, 27310, Gaziantep, Turkey
| | - Rebaz Moatasam
- Department of Medical Microbiology, Koya University, Koya-Erbil, Iraq
| | - Mustafa S Al-Attar
- Department of Environmental Science, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Musarrat Abbas Khan
- Department of Animal Breeding and Genetics, University College of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Yasmeen Junejo
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| |
Collapse
|
19
|
Dratwa M, Wysoczańska B, Łacina P, Kubik T, Bogunia-Kubik K. TERT-Regulation and Roles in Cancer Formation. Front Immunol 2020; 11:589929. [PMID: 33329574 PMCID: PMC7717964 DOI: 10.3389/fimmu.2020.589929] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/16/2020] [Indexed: 12/16/2022] Open
Abstract
Telomerase reverse transcriptase (TERT) is a catalytic subunit of telomerase. Telomerase complex plays a key role in cancer formation by telomere dependent or independent mechanisms. Telomere maintenance mechanisms include complex TERT changes such as gene amplifications, TERT structural variants, TERT promoter germline and somatic mutations, TERT epigenetic changes, and alternative lengthening of telomere. All of them are cancer specific at tissue histotype and at single cell level. TERT expression is regulated in tumors via multiple genetic and epigenetic alterations which affect telomerase activity. Telomerase activity via TERT expression has an impact on telomere length and can be a useful marker in diagnosis and prognosis of various cancers and a new therapy approach. In this review we want to highlight the main roles of TERT in different mechanisms of cancer development and regulation.
Collapse
Affiliation(s)
- Marta Dratwa
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Barbara Wysoczańska
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Piotr Łacina
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Tomasz Kubik
- Department of Computer Engineering, Faculty of Electronics, Wrocław University of Science and Technology, Wroclaw, Poland
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
20
|
Potential roles of telomeres and telomerase in neurodegenerative diseases. Int J Biol Macromol 2020; 163:1060-1078. [DOI: 10.1016/j.ijbiomac.2020.07.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/23/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022]
|
21
|
Modulation of telomerase expression and function by miRNAs: Anti-cancer potential. Life Sci 2020; 259:118387. [PMID: 32890603 DOI: 10.1016/j.lfs.2020.118387] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 08/24/2020] [Accepted: 08/30/2020] [Indexed: 12/11/2022]
Abstract
Telomerase is a nucleoprotein reverse transcriptase that maintains the telomere, a protective structure at the ends of the chromosome, and is active in cancer cells, stem cells, and fetal cells. Telomerase immortalizes cancer cells and induces unlimited cell division by preventing telomere shortening. Immortalized cancer cells have unlimited proliferative potential due to telomerase activity that causes tumorigenesis and malignancy. Therefore, telomerase can be a lucrative anti-cancer target. The regulation of catalytic subunit of telomerase (TERT) determines the extent of telomerase activity. miRNAs, as an endogenous regulator of gene expression, can control telomerase activity by targeting TERT mRNA. miRNAs that have a decreasing effect on TERT translation mediate modulation of telomerase activity in cancer cells by binding to TERT mRNA and regulating TERT translation. In this review, we provide an update on miRNAs that influence telomerase activity by regulation of TERT translation.
Collapse
|
22
|
Eckburg A, Dein J, Berei J, Schrank Z, Puri N. Oligonucleotides and microRNAs Targeting Telomerase Subunits in Cancer Therapy. Cancers (Basel) 2020; 12:E2337. [PMID: 32825005 PMCID: PMC7565511 DOI: 10.3390/cancers12092337] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022] Open
Abstract
Telomerase provides cancer cells with replicative immortality, and its overexpression serves as a near-universal marker of cancer. Anti-cancer therapeutics targeting telomerase have garnered interest as possible alternatives to chemotherapy and radiotherapy. Oligonucleotide-based therapies that inhibit telomerase through direct or indirect modulation of its subunits, human telomerase reverse transcriptase (hTERT) and human telomerase RNA gene (hTERC), are a unique and diverse subclass of telomerase inhibitors which hold clinical promise. MicroRNAs that play a role in the upregulation or downregulation of hTERT and respective progression or attenuation of cancer development have been effectively targeted to reduce telomerase activity in various cancer types. Tumor suppressor miRNAs, such as miRNA-512-5p, miRNA-138, and miRNA-128, and oncogenic miRNAs, such as miRNA-19b, miRNA-346, and miRNA-21, have displayed preclinical promise as potential hTERT-based therapeutic targets. Antisense oligonucleotides like GRN163L and T-oligos have also been shown to uniquely target the telomerase subunits and have become popular in the design of novel cancer therapies. Finally, studies suggest that G-quadruplex stabilizers, such as Telomestatin, preserve telomeric oligonucleotide architecture, thus inhibiting hTERC binding to the telomere. This review aims to provide an adept understanding of the conceptual foundation and current state of therapeutics utilizing oligonucleotides to target the telomerase subunits, including the advantages and drawbacks of each of these approaches.
Collapse
Affiliation(s)
| | | | | | | | - Neelu Puri
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (A.E.); (J.D.); (J.B.); (Z.S.)
| |
Collapse
|
23
|
Berei J, Eckburg A, Miliavski E, Anderson AD, Miller RJ, Dein J, Giuffre AM, Tang D, Deb S, Racherla KS, Patel M, Vela MS, Puri N. Potential Telomere-Related Pharmacological Targets. Curr Top Med Chem 2020; 20:458-484. [DOI: 10.2174/1568026620666200109114339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/22/2022]
Abstract
Telomeres function as protective caps at the terminal portion of chromosomes, containing
non-coding nucleotide sequence repeats. As part of their protective function, telomeres preserve genomic
integrity and minimize chromosomal exposure, thus limiting DNA damage responses. With
continued mitotic divisions in normal cells, telomeres progressively shorten until they reach a threshold
at a point where they activate senescence or cell death pathways. However, the presence of the enzyme
telomerase can provide functional immortality to the cells that have reached or progressed past
senescence. In senescent cells that amass several oncogenic mutations, cancer formation can occur due
to genomic instability and the induction of telomerase activity. Telomerase has been found to be expressed
in over 85% of human tumors and is labeled as a near-universal marker for cancer. Due to this
feature being present in a majority of tumors but absent in most somatic cells, telomerase and telomeres
have become promising targets for the development of new and effective anticancer therapeutics.
In this review, we evaluate novel anticancer targets in development which aim to alter telomerase
or telomere function. Additionally, we analyze the progress that has been made, including preclinical
studies and clinical trials, with therapeutics directed at telomere-related targets. Furthermore, we review
the potential telomere-related therapeutics that are used in combination therapy with more traditional
cancer treatments. Throughout the review, topics related to medicinal chemistry are discussed,
including drug bioavailability and delivery, chemical structure-activity relationships of select therapies,
and the development of a unique telomere assay to analyze compounds affecting telomere elongation.
Collapse
Affiliation(s)
- Joseph Berei
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Adam Eckburg
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Edward Miliavski
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Austin D. Anderson
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Rachel J. Miller
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Joshua Dein
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Allison M. Giuffre
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Diana Tang
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Shreya Deb
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Kavya Sri Racherla
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Meet Patel
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Monica Saravana Vela
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Neelu Puri
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| |
Collapse
|
24
|
Inaoka D, Sunamura N, Ohira T, Nakayama Y, Kugoh H. A novel Xist RNA-mediated chromosome inactivation model using a mouse artificial chromosome. Biotechnol Lett 2020; 42:697-705. [PMID: 32006350 DOI: 10.1007/s10529-020-02826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/26/2020] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To develop a mouse artificial chromosome (MAC) carrying the mouse Xist gene (X-inactive specific transcript; Xist-MAC) as a systematic in vitro approach for investigating Xist RNA-mediated chromosome inactivation. RESULTS Ectopic expression of the Xist gene in CHO cells led to the accumulation of Xist RNA in cis on the MAC. In addition, the introduction of Xist-MAC to embryonic stem cells from male mice via microcell-mediated chromosome transfer resulted in the accumulation of Xist RNA in cis on the MAC. Chromosomal inactivation was observed in the differentiated state. Moreover, this phenomenon was accompanied by the epigenetic modification of H3K27 trimethylation. CONCLUSIONS We successfully generated a novel chromosome inactivation model, Xist-MAC, which will provide a valuable tool for the screening and functional analysis of X chromosome inactivation-related genes and proteins.
Collapse
Affiliation(s)
- Daigo Inaoka
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Naohiro Sunamura
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Takahito Ohira
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.,Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Yuji Nakayama
- Division of Radioisotope Science, Research Initiative Center, Organization for Research Initiative and Promotion, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Hiroyuki Kugoh
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan. .,Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
| |
Collapse
|
25
|
The miRNAs Role in Melanoma and in Its Resistance to Therapy. Int J Mol Sci 2020; 21:ijms21030878. [PMID: 32013263 PMCID: PMC7037367 DOI: 10.3390/ijms21030878] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/20/2020] [Accepted: 01/26/2020] [Indexed: 12/11/2022] Open
Abstract
Melanoma is the less common but the most malignant skin cancer. Since the survival rate of melanoma metastasis is about 10–15%, many different studies have been carried out in order to find a more effective treatment. Although the development of target-based therapies and immunotherapeutic strategies has improved chances for patient survival, melanoma treatment still remains a big challenge for oncologists. Here, we collect recent data about the emerging role of melanoma-associated microRNAs (miRNAs) currently available treatments, and their involvement in drug resistance. We also reviewed miRNAs as prognostic factors, because of their chemical stability and resistance to RNase activity, in melanoma progression. Moreover, despite miRNAs being considered small conserved regulators with the limitation of target specificity, we outline the dual role of melanoma-associated miRNAs, as oncogenic and/or tumor suppressive factors, compared to other tumors.
Collapse
|
26
|
An efficient protein production system via gene amplification on a human artificial chromosome and the chromosome transfer to CHO cells. Sci Rep 2019; 9:16954. [PMID: 31740706 PMCID: PMC6861226 DOI: 10.1038/s41598-019-53116-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/28/2019] [Indexed: 11/08/2022] Open
Abstract
Gene amplification methods play a crucial role in establishment of cells that produce high levels of recombinant protein. However, the stability of such cell lines and the level of recombinant protein produced continue to be suboptimal. Here, we used a combination of a human artificial chromosome (HAC) vector and initiation region (IR)/matrix attachment region (MAR) gene amplification method to establish stable cells that produce high levels of recombinant protein. Amplification of Enhanced green fluorescent protein (EGFP) was induced on a HAC carrying EGFP gene and IR/MAR sequences (EGFP MAR-HAC) in CHO DG44 cells. The expression level of EGFP increased approximately 6-fold compared to the original HAC without IR/MAR sequences. Additionally, anti-vascular endothelial growth factor (VEGF) antibody on a HAC (VEGF MAR-HAC) was also amplified by utilization of this IR/MAR-HAC system, and anti-VEGF antibody levels were approximately 2-fold higher compared with levels in control cells without IR/MAR. Furthermore, the expression of anti-VEGF antibody with VEGF MAR-HAC in CHO-K1 cells increased 2.3-fold compared with that of CHO DG44 cells. Taken together, the IR/MAR-HAC system facilitated amplification of a gene of interest on the HAC vector, and could be used to establish a novel cell line that stably produced protein from mammalian cells.
Collapse
|
27
|
Rahman MM, Brane AC, Tollefsbol TO. MicroRNAs and Epigenetics Strategies to Reverse Breast Cancer. Cells 2019; 8:cells8101214. [PMID: 31597272 PMCID: PMC6829616 DOI: 10.3390/cells8101214] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/04/2019] [Accepted: 10/06/2019] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is a sporadic disease with genetic and epigenetic components. Genomic instability in breast cancer leads to mutations, copy number variations, and genetic rearrangements, while epigenetic remodeling involves alteration by DNA methylation, histone modification and microRNAs (miRNAs) of gene expression profiles. The accrued scientific findings strongly suggest epigenetic dysregulation in breast cancer pathogenesis though genomic instability is central to breast cancer hallmarks. Being reversible and plastic, epigenetic processes appear more amenable toward therapeutic intervention than the more unidirectional genetic alterations. In this review, we discuss the epigenetic reprogramming associated with breast cancer such as shuffling of DNA methylation, histone acetylation, histone methylation, and miRNAs expression profiles. As part of this, we illustrate how epigenetic instability orchestrates the attainment of cancer hallmarks which stimulate the neoplastic transformation-tumorigenesis-malignancy cascades. As reversibility of epigenetic controls is a promising feature to optimize for devising novel therapeutic approaches, we also focus on the strategies for restoring the epistate that favor improved disease outcome and therapeutic intervention.
Collapse
Affiliation(s)
- Mohammad Mijanur Rahman
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
| | - Andrew C Brane
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
- Comprehensive Center for Healthy Aging, University of Alabama Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA.
- Comprehensive Cancer Center, University of Alabama Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA.
- Nutrition Obesity Research Center, University of Alabama Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA.
- Comprehensive Diabetes Center, University of Alabama Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA.
| |
Collapse
|
28
|
Ohira T, Kojima H, Kuroda Y, Aoki S, Inaoka D, Osaki M, Wanibuchi H, Okada F, Oshimura M, Kugoh H. PITX1 protein interacts with ZCCHC10 to regulate hTERT mRNA transcription. PLoS One 2019; 14:e0217605. [PMID: 31404068 PMCID: PMC6690549 DOI: 10.1371/journal.pone.0217605] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/29/2019] [Indexed: 01/21/2023] Open
Abstract
Telomerase is a ribonucleoprotein ribonucleic enzyme that is essential for cellular immortalization via elongation of telomere repeat sequences at the end of chromosomes. Human telomerase reverse transcriptase (hTERT), the catalytic subunit of telomerase holoenzyme, is a key regulator of telomerase activity. Telomerase activity, which has been detected in the majority of cancer cells, is accompanied by hTERT expression, suggesting that this enzyme activity contributes to an unlimited replication potential of cancer cells via regulation of telomere length. Thus, hTERT is an attractive target for cancer-specific treatments. We previously reported that pared-like homeodomain 1 (PITX1) is a negative regulator of hTERT through direct binding to the hTERT promoter. However, the mechanism by which the function of PITX1 contributes to transcriptional silencing of the hTERT gene remains to be clarified. Here, we show that PITX1 and zinc finger CCHC-type containing 10 (ZCCHC10) proteins cooperate to facilitate the transcriptional regulation of the hTERT gene by functional studies via FLAG pull-down assay. Co-expression of PITX1 and ZCCHC10 resulted in inhibition of hTERT transcription, in melanoma cell lines, whereas mutate-deletion of homeodomain in PITX1 that interact with ZCCHC10 did not induce similar phenotypes. In addition, ZCCHC10 expression levels showed marked decrease in the majority of melanoma cell lines and tissues. Taken together, these results suggest that ZCCHC10-PITX1 complex is the functional unit that suppresses hTERT transcription, and may play a crucial role as a novel tumor suppressor complex.
Collapse
Affiliation(s)
- Takahito Ohira
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Tottori, Japan
- Chromosome Engineering Research Center, Tottori University, Yonago, Tottori, Japan
| | - Hirotada Kojima
- Department of Immunology, Graduate School of Medicine, Osaka City University, Asahi-machi, Abeno-ku, Osaka, Japan
| | - Yuko Kuroda
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Tottori, Japan
| | - Sayaka Aoki
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Tottori, Japan
| | - Daigo Inaoka
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Tottori, Japan
| | - Mitsuhiko Osaki
- Chromosome Engineering Research Center, Tottori University, Yonago, Tottori, Japan
- Division of Pathological Biochemistry, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Hideki Wanibuchi
- Department of Molecular Pathology, Graduate School of Medicine, Osaka City University, Asahi-machi, Abeno-ku, Osaka, Japan
| | - Futoshi Okada
- Chromosome Engineering Research Center, Tottori University, Yonago, Tottori, Japan
- Division of Pathological Biochemistry, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Mitsuo Oshimura
- Chromosome Engineering Research Center, Tottori University, Yonago, Tottori, Japan
| | - Hiroyuki Kugoh
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Tottori, Japan
- Chromosome Engineering Research Center, Tottori University, Yonago, Tottori, Japan
- * E-mail:
| |
Collapse
|
29
|
Chen X, Tang WJ, Shi JB, Liu MM, Liu XH. Therapeutic strategies for targeting telomerase in cancer. Med Res Rev 2019; 40:532-585. [PMID: 31361345 DOI: 10.1002/med.21626] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022]
Abstract
Telomere and telomerase play important roles in abnormal cell proliferation, metastasis, stem cell maintenance, and immortalization in various cancers. Therefore, designing of drugs targeting telomerase and telomere is of great significance. Over the past two decades, considerable knowledge regarding telomere and telomerase has been accumulated, which provides theoretical support for the design of therapeutic strategies such as telomere elongation. Therefore, the development of telomere-based therapies such as nucleoside analogs, non-nucleoside small molecules, antisense technology, ribozymes, and dominant negative human telomerase reverse transcriptase are being prioritized for eradicating a majority of tumors. While the benefits of telomere-based therapies are obvious, there is a need to address the limitations of various therapeutic strategies to improve the possibility of clinical applications. In this study, current knowledge of telomere and telomerase is discussed, and therapeutic strategies based on recent research are reviewed.
Collapse
Affiliation(s)
- Xing Chen
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Wen-Jian Tang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Jing Bo Shi
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Ming Ming Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Xin-Hua Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
30
|
Jie MM, Chang X, Zeng S, Liu C, Liao GB, Wu YR, Liu CH, Hu CJ, Yang SM, Li XZ. Diverse regulatory manners of human telomerase reverse transcriptase. Cell Commun Signal 2019; 17:63. [PMID: 31186051 PMCID: PMC6560729 DOI: 10.1186/s12964-019-0372-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/17/2019] [Indexed: 12/22/2022] Open
Abstract
Human telomerase reverse transcriptase (hTERT) is the core subunit of human telomerase and plays important roles in human cancers. Aberrant expression of hTERT is closely associated with tumorigenesis, cancer cell stemness maintaining, cell proliferation, apoptosis inhibition, senescence evasion and metastasis. The molecular basis of hTERT regulation is highly complicated and consists of various layers. A deep and full-scale comprehension of the regulatory mechanisms of hTERT is pivotal in understanding the pathogenesis and searching for therapeutic approaches. In this review, we summarize the recent advances regarding the diverse regulatory mechanisms of hTERT, including the transcriptional (promoter mutation, promoter region methylation and histone acetylation), post-transcriptional (mRNA alternative splicing and non-coding RNAs) and post-translational levels (phosphorylation and ubiquitination), which may provide novel perspectives for further translational diagnosis or therapeutic strategies targeting hTERT.
Collapse
Affiliation(s)
- Meng-Meng Jie
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Xing Chang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Shuo Zeng
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Cheng Liu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Guo-Bin Liao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Ya-Ran Wu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Chun-Hua Liu
- Teaching evaluation center of Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Chang-Jiang Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China.
| | - Xin-Zhe Li
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China.
| |
Collapse
|
31
|
Luo Z, Wang W, Li F, Songyang Z, Feng X, Xin C, Dai Z, Xiong Y. Pan-cancer analysis identifies telomerase-associated signatures and cancer subtypes. Mol Cancer 2019; 18:106. [PMID: 31179925 PMCID: PMC6556968 DOI: 10.1186/s12943-019-1035-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/29/2019] [Indexed: 01/09/2023] Open
Abstract
Background Cancer cells become immortalized through telomere maintenance mechanisms, such as telomerase reverse transcriptase (TERT) activation. In addition to maintaining telomere length, TERT activates manifold cell survival signaling pathways. However, telomerase-associated gene signatures in cancer remain elusive. Methods We performed a systematic analysis of TERT high (TERThigh) and low (TERTlow) cancers using multidimensional data from The Cancer Genome Atlas (TCGA). Multidimensional data were analyzed by propensity score matching weight algorithm. Coexpression networks were constructed by weight gene coexpression network analysis (WGCNA). Random forest classifiers were generated to identify cancer subtypes. Results The TERThigh-specific mRNA expression signature is associated with cell cycle-related coexpression modules across cancer types. Experimental screening of hub genes in the cell cycle module suggested TPX2 and EXO1 as potential regulators of telomerase activity and cell survival. MiRNA analysis revealed that the TERThigh-specific miR-17-92 cluster can target biological processes enriched in TERTlow cancer and that its expression is negatively correlated with the tumor/normal telomere length ratio. Intriguingly, TERThigh cancers tend to have mutations in extracellular matrix organization genes and amplify MAPK signaling. By mining the clinical actionable gene database, we uncovered a number of TERThigh-specific somatic mutations, amplifications and high expression genes containing therapeutic targets. Finally, a random forest classifier integrating telomerase-associated multi-omics signatures identifies two cancer subtypes showed profound differences in telomerase activity and patient survival. Conclusions In summary, our results depict a telomerase-associated molecular landscape in cancers and provide therapeutic opportunities for cancer treatment. Electronic supplementary material The online version of this article (10.1186/s12943-019-1035-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhenhua Luo
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.,Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center and the Department of Pediatrics Cincinnati, Ohio, 45229, USA
| | - Weixu Wang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Feng Li
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zhou Songyang
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.,Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Xuyang Feng
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, 45230, USA.,The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510275, China
| | - Changchang Xin
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zhiming Dai
- School of Data and Computer Science, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Yuanyan Xiong
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
32
|
Liu X, Zhao H, Luo C, Du D, Huang J, Ming Q, Jin F, Wang D, Huang W. Acetaminophen Responsive miR-19b Modulates SIRT1/Nrf2 Signaling Pathway in Drug-Induced Hepatotoxicity. Toxicol Sci 2019; 170:476-488. [PMID: 31077331 DOI: 10.1093/toxsci/kfz095] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AbstractPrevious studies suggest that activation of SIRT1 protects liver from acetaminophen (APAP)-induced injury; however, the detailed mechanism of SIRT1 modulation in this process is still incomplete. Therefore, this study was to investigate the pathophysiological role of SIRT1 in APAP-mediated hepatotoxicity. We found that SIRT1 mRNA and protein were markedly upregulated in human LO2 cells and mouse liver upon APAP exposure. In vitro, the specific knockdown of SIRT1 expression ultimately aggravated APAP-evoked cellular antioxidant defense in LO2 cells. Moreover, lentivirus-mediated knockdown of hepatic SIRT1 expression exacerbated APAP-induced oxidative stress and liver injury, especially reduction of Nrf2 and subsequent downregulation of several antioxidant genes. Intriguingly, 30 mg/kg SRT1720, the specific SIRT1 activator, which greatly enhanced Nrf2 expression and antioxidant defense, and then eventually reversed APAP-induced hepatic liver injury in mice. Furthermore, APAP responsive miR-19b played an important role in regulating SIRT1 expression, whereas overexpression miR-19b largely abolished the induction of SIRT1 by APAP in vitro and in vivo. Specific SIRT1 3′-UTR mutation, which disrupted the interaction of miRNA-3′UTR, and successfully abrogated the modulation by miR-19b. Notably, hepatic miR-19b overexpression worsened the APAP-induced hepatotoxicity. In general, our results support the notion that the strong elevation of SIRT1 by APAP responsive miR-19b may represent a compensatory mechanism to protect liver against the drug-induced damage, at least in part by enhancing Nrf2-mediated antioxidant capacity in the liver.
Collapse
Affiliation(s)
- Xing Liu
- Medical College, China Three Gorges University, Yichang 443002, China
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang 443002, China
| | - Hongqian Zhao
- Medical College, China Three Gorges University, Yichang 443002, China
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang 443002, China
| | - Chunyan Luo
- Medical College, China Three Gorges University, Yichang 443002, China
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang 443002, China
| | - Debin Du
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang 443002, China
- The Third Hospital of Yichang City, Yichang 443003, China
| | - Jinlong Huang
- Medical College, China Three Gorges University, Yichang 443002, China
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang 443002, China
| | - Quan Ming
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang 443002, China
- The Third Hospital of Yichang City, Yichang 443003, China
| | - Fen Jin
- Medical College, China Three Gorges University, Yichang 443002, China
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang 443002, China
| | - Decheng Wang
- Medical College, China Three Gorges University, Yichang 443002, China
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang 443002, China
- The Third Hospital of Yichang City, Yichang 443003, China
| | - Weifeng Huang
- Medical College, China Three Gorges University, Yichang 443002, China
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang 443002, China
- The Third Hospital of Yichang City, Yichang 443003, China
| |
Collapse
|
33
|
Gajos-Michniewicz A, Czyz M. Role of miRNAs in Melanoma Metastasis. Cancers (Basel) 2019; 11:E326. [PMID: 30866509 PMCID: PMC6468614 DOI: 10.3390/cancers11030326] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 12/16/2022] Open
Abstract
Tumour metastasis is a multistep process. Melanoma is a highly aggressive cancer and metastasis accounts for the majority of patient deaths. microRNAs (miRNAs) are non-coding RNAs that affect the expression of their target genes. When aberrantly expressed they contribute to the development of melanoma. While miRNAs can act locally in the cell where they are synthesized, they can also influence the phenotype of neighboring melanoma cells or execute their function in the direct tumour microenvironment by modulating ECM (extracellular matrix) and the activity of fibroblasts, endothelial cells, and immune cells. miRNAs are involved in all stages of melanoma metastasis, including intravasation into the lumina of vessels, survival during circulation in cardiovascular or lymphatic systems, extravasation, and formation of the pre-metastatic niche in distant organs. miRNAs contribute to metabolic alterations that provide a selective advantage during melanoma progression. They play an important role in the development of drug resistance, including resistance to targeted therapies and immunotherapies. Distinct profiles of miRNA expression are detected at each step of melanoma development. Since miRNAs can be detected in liquid biopsies, they are considered biomarkers of early disease stages or response to treatment. This review summarizes recent findings regarding the role of miRNAs in melanoma metastasis.
Collapse
Affiliation(s)
- Anna Gajos-Michniewicz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland.
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland.
| |
Collapse
|
34
|
Karam N, Lavoie JF, St-Jacques B, Bouhanik S, Franco A, Ladoul N, Moreau A. Bone-Specific Overexpression of PITX1 Induces Senile Osteoporosis in Mice Through Deficient Self-Renewal of Mesenchymal Progenitors and Wnt Pathway Inhibition. Sci Rep 2019; 9:3544. [PMID: 30837642 PMCID: PMC6401072 DOI: 10.1038/s41598-019-40274-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 02/11/2019] [Indexed: 12/11/2022] Open
Abstract
The cellular and molecular mechanisms underlying senile osteoporosis remain poorly understood. In this study, transgenic mCol1α1-Pitx1 mice overexpressing paired-like homeodomain 1 (PITX1), a homeobox transcription factor, rapidly develop a severe type-II osteoporotic phenotype with significant reduction in bone mass and biomechanical strength similar to that seen in humans and reminiscent of the phenotype previously observed in Sca-1 (Ly6a)-null mice. PITX1 plays a critical role in hind limb formation during fetal development, while loss of expression is associated with primary knee/hip osteoarthritis in aging humans. Through in vivo and in vitro analyses, we demonstrate that Pitx1 directly regulates the self-renewal of mesenchymal progenitors and indirectly regulates osteoclast differentiation through the upregulation of Wnt signaling inhibitors DKK1, SOST, and GSK3-β. This is confirmed by elevated levels of plasma DKK1 and the accumulation of phospho-β-catenin in transgenic mice osteoblasts. Furthermore, overexpressed Pitx1 in mice osteoblasts results in severe repression of Sca-1 (Ly6a) that was previously associated with senile osteoporosis. Our study is the first to demonstrate the novel roles of PITX1 in senile osteoporosis where PITX1 regulates the self-renewal of mesenchymal stem cells or progenitor cells through Sca-1 (Ly6a) repression and, in addition, inhibits the Wnt signaling pathway.
Collapse
Affiliation(s)
- Nancy Karam
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Sainte-Justine University Hospital Research Center, Montréal, Québec, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Jean-François Lavoie
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Sainte-Justine University Hospital Research Center, Montréal, Québec, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Benoit St-Jacques
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Sainte-Justine University Hospital Research Center, Montréal, Québec, H3T 1C5, Canada
| | - Saadallah Bouhanik
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Sainte-Justine University Hospital Research Center, Montréal, Québec, H3T 1C5, Canada
| | - Anita Franco
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Sainte-Justine University Hospital Research Center, Montréal, Québec, H3T 1C5, Canada
| | - Nihad Ladoul
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Sainte-Justine University Hospital Research Center, Montréal, Québec, H3T 1C5, Canada.,Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Alain Moreau
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Sainte-Justine University Hospital Research Center, Montréal, Québec, H3T 1C5, Canada. .,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada. .,Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec, H3T 1J4, Canada.
| |
Collapse
|
35
|
Zhang Y, Zhao Y, Liu L, Su H, Dong D, Wang J, Zhang Y, Chen Q, Li C. MicroRNA-19b Promotes Nasopharyngeal Carcinoma More Sensitive to Cisplatin by Suppressing KRAS. Technol Cancer Res Treat 2018; 17:1533033818793652. [PMID: 30231694 PMCID: PMC6149031 DOI: 10.1177/1533033818793652] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
MicroRNAs have been reported to play a vital role in diverse biological processes and tumorigenesis. MicroRNA-19b-5p has been observed to be downregulated in other cancers, but the function of microRNA-19b-5p in human nasopharyngeal carcinoma has not been well investigated. In our study, these results demonstrated that microRNA-19b-5p was significantly downregulated in 37 pairs of nasopharyngeal carcinoma tissues when compared to normal tissues. Enforced expression of microRNA-19b-5p inhibited activity of cell proliferation and cell migration of nasopharyngeal carcinoma cancer cells, CNE1 and HNE1. Furthermore, microRNA-19b-5p targeted KRAS proto-oncogene, GTPase in cancer cells. In human clinical specimens, KRAS was higher expressed in cancer tissues when compared with normal tissues, which was inversely correlated with the expression of microRNA-19b-5p. More interestingly, microRNA-19b-5p sensitizes CNE1 cells to cisplatin by inhibiting its target KRAS. Finally, microRNA-19b-5p inhibits tumorigenesis in vivo. Thus, our results investigated that microRNA-19b-5p functioned as a tumor suppressor and indicated its potential application for the treatment of human nasopharyngeal carcinoma in future.
Collapse
Affiliation(s)
- Yuan Zhang
- 1 Department of Rhinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yulin Zhao
- 1 Department of Rhinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,2 Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Liu
- 1 Department of Rhinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongxia Su
- 1 Department of Rhinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dong Dong
- 1 Department of Rhinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jia Wang
- 1 Department of Rhinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yaqian Zhang
- 1 Department of Rhinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qi Chen
- 1 Department of Rhinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chang Li
- 1 Department of Rhinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
36
|
Song X, Zhao C, Jiang L, Lin S, Bi J, Wei Q, Yu L, Zhao L, Wei M. High PITX1 expression in lung adenocarcinoma patients is associated with DNA methylation and poor prognosis. Pathol Res Pract 2018; 214:2046-2053. [DOI: 10.1016/j.prp.2018.09.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/07/2018] [Accepted: 09/28/2018] [Indexed: 11/29/2022]
|
37
|
Schrank Z, Khan N, Osude C, Singh S, Miller RJ, Merrick C, Mabel A, Kuckovic A, Puri N. Oligonucleotides Targeting Telomeres and Telomerase in Cancer. Molecules 2018; 23:molecules23092267. [PMID: 30189661 PMCID: PMC6225148 DOI: 10.3390/molecules23092267] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/27/2018] [Accepted: 09/04/2018] [Indexed: 02/07/2023] Open
Abstract
Telomeres and telomerase have become attractive targets for the development of anticancer therapeutics due to their involvement in cancer cell immortality. Currently, several therapeutics have been developed that directly target telomerase and telomeres, such as telomerase inhibitors and G-quadruplex stabilizing ligands. Telomere-specific oligonucleotides that reduce telomerase activity and disrupt telomere architecture are also in development as novel anticancer therapeutics. Specifically, GRN163L and T-oligos have demonstrated promising anticancer activity in multiple cancers types via induction of potent DNA damage responses. Currently, several miRNAs have been implicated in the regulation of telomerase activity and may prove to be valuable targets in the development of novel therapies by reducing expression of telomerase subunits. Targeting miRNAs that are known to increase expression of telomerase subunits may be another strategy to reduce carcinogenesis. This review aims to provide a comprehensive understanding of current oligonucleotide-based anticancer therapies that target telomeres and telomerase. These studies may help design novel therapeutic approaches to overcome the challenges of oligonucleotide therapy in a clinical setting.
Collapse
Affiliation(s)
- Zachary Schrank
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Nabiha Khan
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Chike Osude
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Sanjana Singh
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Rachel J Miller
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Collin Merrick
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Alexander Mabel
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Adijan Kuckovic
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Neelu Puri
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| |
Collapse
|
38
|
Zhang J, Wang Z, Han X, Jiang L, Ge R, Wang X, Li J. Up-regulation of microRNA-19b is associated with metastasis and predicts poor prognosis in patients with colorectal cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:3952-3960. [PMID: 31949783 PMCID: PMC6962803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 06/29/2018] [Indexed: 06/10/2023]
Abstract
Recent evidence has demonstrated that microRNA-19b (miR-19b) is elevated and functions as a prognosis predictor in hepatocellular carcinoma and melanoma. However, its expression and clinical significance in colorectal cancer (CRC) remain unclear. The study aimed to identify the correlation between miR-19b expression and the clinicopathological features and prognosis of patients with CRC. In this study, we found that the levels of miR-19b were significantly up-regulated in CRC tissues and cell lines compared with matched adjacent non-cancerous tissues and human colon mucosal epithelial cell lines, and its expression was also increased in patients with lymph node metastasis compared with those patients with no lymph node metastasis. Meanwhile, the patients with distal metastasis have a higher miR-19b expression than those patients with no distal metastasis. The high expression of miR-19b in patients with CRC was associated with lymph node metastasis and distant metastasis. miR-19b expression was an independent prognostic indicator for overall survival of CRC patients. Moreover, patients with a high miR-19b expression have shorter overall survival times than those patients with a low miR-19b expression. In addition, an in vitro functional assay showed that miR-19b knockdown restrained the migration and invasion of HCT116 and SW480 cells. In summary, the study provides the first convincing statistical and experimental evidence that the up-regulation of miR-19b is associated with metastasis and predicts unfavorable prognosis in patients with CRC, suggesting that miR-19b may serve as a novel and promising prognostic biomarker in CRC.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical CollegeBengbu, People’s Republic of China
| | - Zian Wang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical CollegeBengbu, People’s Republic of China
| | - Xiao Han
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical CollegeBengbu, People’s Republic of China
| | - Lei Jiang
- Department of General Surgery, The Second Affiliated Hospital of Bengbu Medical CollegeBengbu, People’s Republic of China
| | - Rongjing Ge
- Department of Pathophysiology, School of Basic Medicine, Bengbu Medical CollegeBengbu, People’s Republic of China
| | - Xiu Wang
- Department of Pharmacy, Bengbu Medical CollegeBengbu 233030, People’s Republic of China
| | - Jiajia Li
- Department of Hematology, The First Affiliated Hospital of Bengbu Medical CollegeBengbu, People’s Republic of China
| |
Collapse
|
39
|
Li C, Zhang J, Ma Z, Zhang F, Yu W. miR-19b serves as a prognostic biomarker of breast cancer and promotes tumor progression through PI3K/AKT signaling pathway. Onco Targets Ther 2018; 11:4087-4095. [PMID: 30038508 PMCID: PMC6052917 DOI: 10.2147/ott.s171043] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background MicroRNAs (miRNAs) are involved in tumor progression of various human malignancies. MicroRNA-19b (miR-19b) has been described as serving a crucial role in tumorigenesis of breast cancer. The purpose of this study was to investigate the expression patterns, clinical value, and functional role of miR-19b in breast cancer. Methods Expression of miR-19b was estimated by quantitative real time PCR. Kaplan–Meier survival analysis and Cox regression assay were performed to explore the prognostic value of miR-19b. The functional role of miR-19b was verified using cell experiments. Results Upregulated miR-19b expression was observed in breast cancer tissues and cells compared with the controls (all P<0.05). The miR-19b expression was associated with distant metastasis and TNM stage. The survival curves showed that high miR-19b was correlated with poor overall survival of the patients (log-rank P=0.002). Furthermore, miR-19b was proven to be an independent prognostic factor for patients. By using miR-19b mimic and inhibitor, cell proliferation, migration, and invasion were enhanced by miR-19b overexpression but were suppressed by reduction of miR-19b (all P<0.05). Besides, PI3K/AKT was demonstrated to be activated by miR-19b in breast cancer cells. Conclusion The overexpression of miR-19b serves as a candidate prognostic biomarker of breast cancer and may be involved in the tumor progression through PI3K/AKT pathway.
Collapse
Affiliation(s)
- Chuansheng Li
- Department of General Surgery, Shanxian Central Hospital, Heze, Shandong, China,
| | - Jingwei Zhang
- Department of General Surgery, Shanxian Central Hospital, Heze, Shandong, China,
| | - Zhongliang Ma
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Fan Zhang
- Department of General Surgery, Shanxian Central Hospital, Heze, Shandong, China,
| | - Wenlong Yu
- Department of General Surgery, Shanxian Central Hospital, Heze, Shandong, China,
| |
Collapse
|
40
|
Liu DT, Yao HR, Li YY, Song YY, Su MY. MicroRNA-19b promotes the migration and invasion of ovarian cancer cells by inhibiting the PTEN/AKT signaling pathway. Oncol Lett 2018; 16:559-565. [PMID: 29963131 PMCID: PMC6019979 DOI: 10.3892/ol.2018.8695] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 01/30/2018] [Indexed: 12/17/2022] Open
Abstract
Local and systemic metastasis is the main reason for the poor survival rate of patients with ovarian cancer (OC). MicroRNAs (miRNAs/miRs) are short non-coding RNAs that serve critical roles in the initiation and progression of OC. The present study demonstrated that expression of miR-19b was significantly increased in OC tissues and cell lines. Analysis of clinicopathological features revealed that the increased expression of miR-19b was associated with advanced International Federation of Gynecology and Obstetrics stage and lymphatic metastasis of OC patients. Loss-of-function experiments demonstrated that the silencing of miR-19b reduced the migration and invasion of OVCAR-3 cells; contrarily, the overexpression of miR-19b facilitated the migration and invasion of CAOV-3 cells. Furthermore, miR-19b regulated the expression of phosphatase and tensin homolog (PTEN) and the activity of the PTEN/RAC serine/threonine-protein kinase pathway in vitro. Notably, the results of dual-luciferase reporter assays indicated that PTEN was a direct downstream target of miR-19b in OC. Taken together, the results of the current study demonstrated that miR-19b serves an oncogenic role in the progression of OC, and could potentially act as a biomarker and therapeutic target for OC patients.
Collapse
Affiliation(s)
- Dan-Tong Liu
- Department of Gynecology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Hai-Rong Yao
- Department of Gynecology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Yan-Ying Li
- Department of Gynecology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Yang-Yang Song
- Department of Gynecology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Meng-Ya Su
- Department of Gynecology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| |
Collapse
|
41
|
Wei YP, Wang XH, Liu G, Zhang JF, Yang YX, Zhang J, Song XL, Li ZD, Zhao LD. Matrine exerts inhibitory effects in melanoma through the regulation of miR-19b-3p/PTEN. Int J Oncol 2018; 53:791-800. [PMID: 29845233 DOI: 10.3892/ijo.2018.4414] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/30/2018] [Indexed: 11/06/2022] Open
Abstract
Matrine, one of the main alkaloid components extracted from the traditional Chinese herb, Sophora flavescens Ait, has various pharmacological effects, and has been reported to exert antitumor activity in melanoma. In the current study, the molecular mechanisms underlying the inhibitory effects of matrine were investigated in melanoma cell line. It was initially confirmed that matrine inhibited proliferation, invasion and induced apoptosis in human A375 and SK-MEL-2 melanoma cell lines in vitro. Subsequently, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis demonstrated that the expression of microRNA (miR)-19b-3p was significantly increased in melanoma cells and was downregulated by treatment with matrine. Furthermore, downregulated miR-19b-3p exerted effects similar to 500 µg/ml matrine on cell proliferation, invasion and apoptosis. Phosphatase and tensin homolog (PTEN) mRNA was identified as a direct target of miR-19b-3p through bioinformatics analysis and a dual-luciferase reporter assay. Additionally, western blotting and RT-qPCR analysis demonstrated that the expression of PTEN protein and mRNA were increased by the treatment with matrine. Furthermore, silencing of PTEN expression reversed the effects of matrine and miR-19b-3p downregulation in A375 and SK-MEL-2 cells. Taken together, the results indicated that matrine may suppress cell proliferation and invasion and induce cell apoptosis partially via miR-19b-3p targeting of PTEN.
Collapse
Affiliation(s)
- Yan Ping Wei
- Department of Dermatology, The People's Hospital of Jiaozuo City, Jiaozuo, Henan 454000, P.R. China
| | - Xiang Hua Wang
- Department of Dermatology, The People's Hospital of Jiaozuo City, Jiaozuo, Henan 454000, P.R. China
| | - Gang Liu
- Department of Dermatology, The People's Hospital of Jiaozuo City, Jiaozuo, Henan 454000, P.R. China
| | - Jin Feng Zhang
- Department of Dermatology, The People's Hospital of Jiaozuo City, Jiaozuo, Henan 454000, P.R. China
| | - Yong Xian Yang
- Department of Dermatology, The People's Hospital of Jiaozuo City, Jiaozuo, Henan 454000, P.R. China
| | - Juan Zhang
- Department of Dermatology, The People's Hospital of Jiaozuo City, Jiaozuo, Henan 454000, P.R. China
| | - Xiao Li Song
- Department of Dermatology, The People's Hospital of Jiaozuo City, Jiaozuo, Henan 454000, P.R. China
| | - Zhong Dong Li
- Department of Hematology, The People's Hospital of Jiaozuo City, Jiaozuo, Henan 454000, P.R. China
| | - Lin Dong Zhao
- Department of Dermatology, The People's Hospital of Jiaozuo City, Jiaozuo, Henan 454000, P.R. China
| |
Collapse
|
42
|
Chai L, Kang XJ, Sun ZZ, Zeng MF, Yu SR, Ding Y, Liang JQ, Li TT, Zhao J. MiR-497-5p, miR-195-5p and miR-455-3p function as tumor suppressors by targeting hTERT in melanoma A375 cells. Cancer Manag Res 2018; 10:989-1003. [PMID: 29760567 PMCID: PMC5937487 DOI: 10.2147/cmar.s163335] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background hTERT gene plays an important role in melanoma, although the specific mechanism involved is unclear. The aim of this study was to screen and identify the relative miRNAs with the regulation of hTERT in melanoma. Materials and methods Quantitative real-time polymerase chain reaction (q-PCR) and immunohistochemistry were performed to detect hTERT mRNA and protein expression in 36 formalin-fixed paraffin-embedded melanoma tissues and 36 age- and sex-matched pigmented nevi cases, respectively. Bioinformatics analysis and custom miRNA polymerase chain reaction array were determined for predicting, screening and verifying miRNAs with the regulation of the hTERT gene. To investigate the biological functions, miRNAs mimics or inhibitors were transfected into melanoma A375 cells. The relative expression of miR-497-5p, miR-195-5p, miR-455-3p and hTERT mRNA was determined by q-PCR. The protein expression of hTERT was detected by Western blot. 3-(4,5-Dimethylthiazolyl-2-yl)-2,5-biphenyl tetrazolium bromide and flow cytometry were employed to detect cell proliferation ability, cell apoptosis and cell cycle. Transwell and wound healing assays were used to observe cell invasion and migration abilities. A direct target gene of miRNAs was analyzed by a dual luciferase reporter activity assay. Results MiR-497-5p, miR-195-5p, miR-455-3p were significantly downregulated, while hTERT was upregulated in melanoma tissues. hTERT expression level was inversely correlated with miR-497-5p, miR-195-5p and miR-455-3p. Overexpression of miR-497-5p, miR-195-5p and miR-455-3p inhibited A375 cell proliferation, migration and invasion, arrested the cell cycle, induced cell apoptosis and decreased hTERT expression at both mRNA and protein levels. Suppression of miR-497-5p, miR-195-5p and miR-455-3p partially reversed the inhibitory effects. Finally, hTERT was identified as a direct target of miR-497-5p, miR-195-5p and miR-455-3p. Conclusions MiR-497-5p, miR-195-5p and miR-455-3p act as tumor suppressors by targeting hTERT in melanoma A375 cells. Therefore, miR-497-5p, miR-195-5p and miR-455-3p could be potential targeted therapeutic choice for melanoma.
Collapse
Affiliation(s)
- Li Chai
- Xinjiang Medical University, Urumqi, China
| | - Xiao-Jing Kang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Zhen-Zhu Sun
- Department of Pathology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Ming-Feng Zeng
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Shi-Rong Yu
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Yuan Ding
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Jun-Qin Liang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Ting-Ting Li
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Juan Zhao
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| |
Collapse
|
43
|
MicroRNA Regulation of Telomerase Reverse Transcriptase (TERT): Micro Machines Pull Strings of Papier-Mâché Puppets. Int J Mol Sci 2018; 19:ijms19041051. [PMID: 29614790 PMCID: PMC5979469 DOI: 10.3390/ijms19041051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/12/2018] [Accepted: 03/26/2018] [Indexed: 12/31/2022] Open
Abstract
Substantial fraction of high-quality information is continuously being added into the existing pool of knowledge related to the biology of telomeres. Based on the insights gleaned from decades of research, it is clear that chromosomal stability needs a highly controlled and dynamic balance of DNA gain and loss in each terminal tract of telomeric repeats. Telomeres are formed by tandem repeats of TTAGGG sequences, which are gradually lost with each round of division of the cells. Targeted inhibition of telomerase to effectively induce apoptosis in cancer cells has attracted tremendous attention and overwhelmingly increasingly list of telomerase inhibitors truthfully advocates pharmacological significance of telomerase. Telomerase reverse transcriptase (TERT) is a multi-talented and catalytically active component of the telomerase-associated protein machinery. Different proteins of telomerase-associated machinery work in a synchronized and orchestrated manner to ensure proper maintenance of telomeric length of chromosomes. Rapidly emerging scientific findings about regulation of TERT by microRNAs has revolutionized our understanding related to the biology of telomeres and telomerase. In this review, we have comprehensively discussed how different miRNAs regulate TERT in different cancers. Use of miRNA-based therapeutics against TERT in different cancers needs detailed research in preclinical models for effective translation of laboratory findings to clinically effective therapeutics.
Collapse
|
44
|
KMT2A promotes melanoma cell growth by targeting hTERT signaling pathway. Cell Death Dis 2017; 8:e2940. [PMID: 28726783 PMCID: PMC5550845 DOI: 10.1038/cddis.2017.285] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 01/08/2023]
Abstract
Melanoma is an aggressive cutaneous malignancy, illuminating the exact mechanisms and finding novel therapeutic targets are urgently needed. In this study, we identified KMT2A as a potential target, which promoted the growth of human melanoma cells. KMT2A knockdown significantly inhibited cell viability and cell migration and induced apoptosis, whereas KMT2A overexpression effectively promoted cell proliferation in various melanoma cell lines. Further study showed that KMT2A regulated melanoma cell growth by targeting the hTERT-dependent signal pathway. Knockdown of KMT2A markedly inhibited the promoter activity and expression of hTERT, and hTERT overexpression rescued the viability inhibition caused by KMT2A knockdown. Moreover, KMT2A knockdown suppressed tumorsphere formation and the expression of cancer stem cell markers, which was also reversed by hTERT overexpression. In addition, the results from a xenograft mouse model confirmed that KMT2A promoted melanoma growth via hTERT signaling. Finally, analyses of clinical samples demonstrated that the expression of KMT2A and hTERT were positively correlated in melanoma tumor tissues, and KMT2A high expression predicted poor prognosis in melanoma patients. Collectively, our results indicate that KMT2A promotes melanoma growth by activating the hTERT signaling, suggesting that the KMT2A/hTERT signaling pathway may be a potential therapeutic target for melanoma.
Collapse
|
45
|
Cimino-Reale G, Gandellini P, Santambrogio F, Recagni M, Zaffaroni N, Folini M. miR-380-5p-mediated repression of TEP1 and TSPYL5 interferes with telomerase activity and favours the emergence of an "ALT-like" phenotype in diffuse malignant peritoneal mesothelioma cells. J Hematol Oncol 2017; 10:140. [PMID: 28716051 PMCID: PMC5513108 DOI: 10.1186/s13045-017-0510-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/10/2017] [Indexed: 02/06/2023] Open
Abstract
Background Understanding the molecular/cellular underpinnings of diffuse malignant peritoneal mesothelioma (DMPM), a fatal malignancy with limited therapeutic options, is of utmost importance for the fruitful management of the disease. In this context, we previously found that telomerase activity (TA), which accounts for the limitless proliferative potential of cancer cells, is prognostic for disease relapse and cancer-related death in DMPM patients. Consequently, the identification of factors involved in telomerase activation/regulation may pave the way towards the development of novel therapeutic interventions for the disease. Here, the capability of miR-380-5p, a microRNA negligibly expressed in telomerase-positive DMPM clinical specimens, to interfere with telomerase-mediated telomere maintenance and, hence, with cancer cell growth was assessed on preclinical models of DMPM. Methods DMPM cells were transfected with a miR-380-5p synthetic precursor, and the effects of miRNA replacement were evaluated in terms of growing capability, induction of apoptosis and interference with TA. Reiterated weekly transfections were also performed in order to analyse the phenotype arising upon prolonged miR-380-5p reconstitution in DMPM cells. Results The ectopic expression of miR-380-5p elicited a remarkable inhibition of TA and resulted in DMPM cell growth impairment and apoptosis induction. In particular, we demonstrated for the first time that these effects were the result of a molecular circuitry converging on telomerase associated protein 1 (TEP1), where the miRNA was able to target the gene both directly in unconventional targeting modality and indirectly via p53 accumulation consequent to miRNA-mediated downregulation of testis-specific protein, Y-encoded-like 5 gene. Moreover, miR-380-5p did not cause telomere attrition and cell growth arrest in long-term DMPM transfectants, which in turn showed slightly elongated telomeres and molecular features (e.g. c-circle DNA and reduced expression levels of chromatin remodeler ATRX) resembling an alternative lengthening of telomeres (ALT) phenotype. Conclusions miR-380-5p interferes with TA in DMPM cells by targeting TEP1. Notably, in the long-term setting, miR-380-5p-mediated impairment of TA did not result in telomere attrition. Instead, a phenotype reminiscent of ALT emerged in DMPM cells as possible compensatory pathway that safeguards DMPM cell growth, an event that may be regarded as a potential resistance mechanism to anticancer therapies based on telomerase inhibitors. Electronic supplementary material The online version of this article (doi:10.1186/s13045-017-0510-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Graziella Cimino-Reale
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo, 42 - 20133, Milano, Italy
| | - Paolo Gandellini
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo, 42 - 20133, Milano, Italy
| | - Francesca Santambrogio
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo, 42 - 20133, Milano, Italy
| | - Marta Recagni
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo, 42 - 20133, Milano, Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo, 42 - 20133, Milano, Italy
| | - Marco Folini
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo, 42 - 20133, Milano, Italy.
| |
Collapse
|
46
|
Moridikia A, Mirzaei H, Sahebkar A, Salimian J. MicroRNAs: Potential candidates for diagnosis and treatment of colorectal cancer. J Cell Physiol 2017; 233:901-913. [PMID: 28092102 DOI: 10.1002/jcp.25801] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is known as the third common cancer worldwide and an important public health problem in different populations. Several genetics and environmental risk factors are involved in the development and progression of CRC including chromosomal abnormalities, epigenetic alterations, and unhealthy lifestyle. Identification of risk factors and biomarkers could lead to a better understanding of molecular pathways involved in CRC pathogenesis. MicroRNAs (miRNAs) are important regulatory molecules which could affect a variety of cellular and molecular targets in CRC. A large number of studies have indicated deregulations of some known tissue-specific miRNAs, for example, miR-21, miR-9, miR-155, miR-17, miR-19, let-7, and miR-24 as well as circulating miRNAs, for example, miR-181b, miR-21, miR-183, let-7g, miR-17, and miR-126, in patients with CRC. In the current review, we focus on the findings of preclinical and clinical studies performed on tissue-specific and circulating miRNAs as diagnostic biomarkers and therapeutic targets for the detection of patients at various stages of CRC.
Collapse
Affiliation(s)
- Abdullah Moridikia
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Mashhad University of Medical Science, Mashhad, Iran
| | - Jafar Salimian
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Ling H, Girnita L, Buda O, Calin GA. Non-coding RNAs: the cancer genome dark matter that matters! Clin Chem Lab Med 2017; 55:705-714. [PMID: 27988500 DOI: 10.1515/cclm-2016-0740] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/10/2016] [Indexed: 12/19/2022]
Abstract
Protein-coding genes comprise only 3% of the human genome, while the genes that are transcribed into RNAs but do not code for proteins occupy majority of the genome. Once considered as biological darker matter, non-coding RNAs are now being recognized as critical regulators in cancer genome. Among the many types of non-coding RNAs, microRNAs approximately 20 nucleotides in length are best characterized and their mechanisms of action are well generalized. microRNA exerts oncogenic or tumor suppressor function by regulation of protein-coding genes via sequence complementarity. The expression of microRNA is aberrantly regulated in all cancer types, and both academia and biotech companies have been keenly pursuing the potential of microRNA as cancer biomarker for early detection, prognosis, and therapeutic response. The key involvement of microRNAs in cancer also prompted interest on exploration of therapeutic values of microRNAs as anticancer drugs and drug targets. MRX34, a liposome-formulated miRNA-34 mimic, developed by Mirna Therapeutics, becomes the first microRNA therapeutic entering clinical trial for the treatment of hepatocellular carcinoma, renal cell carcinoma, and melanoma. In this review, we presented a general overview of microRNAs in cancer biology, the potential of microRNAs as cancer biomarkers and therapeutic targets, and associated challenges.
Collapse
Affiliation(s)
- Hui Ling
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Leonard Girnita
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm
| | - Octavian Buda
- History of Medicine Department, 'Carol Davila' University of Medicine and Pharmacy Blvd. Eroii Sanitari, Bucharest
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| |
Collapse
|
48
|
Huang T, Yin L, Wu J, Gu JJ, Wu JZ, Chen D, Yu HL, Ding K, Zhang N, Du MY, Qian LX, Lu ZW, He X. MicroRNA-19b-3p regulates nasopharyngeal carcinoma radiosensitivity by targeting TNFAIP3/NF-κB axis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:188. [PMID: 27919278 PMCID: PMC5139034 DOI: 10.1186/s13046-016-0465-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/22/2016] [Indexed: 12/22/2022]
Abstract
Background Nasopharyngeal carcinoma (NPC) is among the most common squamous cell carcinoma in South China and Southeast Asia. Radiotherapy is the primary treatment for NPC. However, radioresistance acts as a significant factor that limits the efficacy of radiotherapy for NPC patients. Growing evidence supports that microRNAs (miRNAs) play an important role in radiation response. Methods Real-time quantitative PCR was used to analyze the expression of miR-19b-3p in NPC cell lines and NP69. miR-19b-3p expression profiles in NPC tissues were obtained from the Gene Expression Omnibus database. The effect of miR-19b-3p on radiosensitivity was evaluated by cell viability assays, colony formation assays and in vivo experiment. Apoptosis and cell cycle were examined by flow cytometry. Luciferase reporter assay was used to assess the target genes of miR-19b-3p. Expression of target proteins and downstream molecules were analyzed by Western blot. Results miR-19b-3p was upregulated in NPC and served as an independent predictor for reduced patient survival. Radioresponse assays showed that miR-19b-3p overexpression resulted in decreased sensitivity to irradiation, whereas miR-19b-3p downregulation resulted in increased sensitivity to irradiation in vitro. Moreover, miR-19b-3p decreased the sensitivity of NPC cells to irradiation in vivo. Luciferase reporter assay confirmed that TNFAIP3 was a direct target gene of miR-19b-3p. Knockdown of TNFAIP3 reduced sensitivity to irradiation, whereas upregulation of TNFAIP3 expression reversed the inhibitory effects of miR-19b-3p on NPC cell radiosensitivity. Mechanistically, we found that miR-19b-3p increased NPC cell radioresistance by activating the TNFAIP3/ NF-κB axis. Conclusions miR-19b-3p contributes to the radioresistance of NPC by activating the TNFAIP3/ NF-κB axis. miR-19b-3p is a determinant of NPC radioresponse and may serve as a potential therapeutic target in NPC treatment. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0465-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Teng Huang
- The Fourth Clinical School of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, 42 Bai Zi Ting Road, Nanjing, Jiangsu, 210000, China
| | - Li Yin
- Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, 42 Bai Zi Ting Road, Nanjing, Jiangsu, 210000, China.,Research Center of Clinical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China
| | - Jing Wu
- Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, 42 Bai Zi Ting Road, Nanjing, Jiangsu, 210000, China.,Research Center of Clinical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China
| | - Jia-Jia Gu
- Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, 42 Bai Zi Ting Road, Nanjing, Jiangsu, 210000, China.,Research Center of Clinical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China
| | - Jian-Zhong Wu
- Research Center of Clinical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China
| | - Dan Chen
- Research Center of Clinical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China
| | - Hong-Liang Yu
- Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, 42 Bai Zi Ting Road, Nanjing, Jiangsu, 210000, China.,Research Center of Clinical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China
| | - Kai Ding
- Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, 42 Bai Zi Ting Road, Nanjing, Jiangsu, 210000, China
| | - Nan Zhang
- The Fourth Clinical School of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, 42 Bai Zi Ting Road, Nanjing, Jiangsu, 210000, China
| | - Ming-Yu Du
- Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, 42 Bai Zi Ting Road, Nanjing, Jiangsu, 210000, China
| | - Lu-Xi Qian
- The Fourth Clinical School of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, 42 Bai Zi Ting Road, Nanjing, Jiangsu, 210000, China
| | - Zhi-Wei Lu
- The Fourth Clinical School of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, 42 Bai Zi Ting Road, Nanjing, Jiangsu, 210000, China
| | - Xia He
- The Fourth Clinical School of Nanjing Medical University, Nanjing, Jiangsu, China. .,Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, 42 Bai Zi Ting Road, Nanjing, Jiangsu, 210000, China.
| |
Collapse
|
49
|
Barut F, Udul P, Kokturk F, Kandemir NO, Keser SH, Ozdamar SO. Clinicopathological features and pituitary homeobox 1 gene expression in the progression and prognosis of cutaneous malignant melanoma. Kaohsiung J Med Sci 2016; 32:494-500. [PMID: 27742032 DOI: 10.1016/j.kjms.2016.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/14/2016] [Accepted: 06/27/2016] [Indexed: 11/27/2022] Open
Abstract
The evidence that PITX1 (pituitary homeobox 1) is a significant tumor suppressor in human cancer remains largely circumstantial, but it clearly warrants further study as little is known about the tumor-inhibitory roles of PITX1 in cutaneous malignant melanoma. The aims of this study were to investigate PITX1 gene expression in patients with cutaneous malignant melanoma and to evaluate its potential relevance to clinicopathological characteristics and tumor cell proliferation. Clinicopathological findings of patients with cutaneous malignant melanoma were analyzed retrospectively. PITX1 and Ki-67 expression were detected by immunohistochemistry in malignant melanoma and healthy tissue samples from each patient. Labeling indices were calculated based on PITX1 gene and Ki-67 expression. The correlation between PITX1and Ki-67 expressions was analyzed in cutaneous malignant melanoma cases. The relationship between PITX1 expression intensity and clinicopathological characteristics was also analyzed. PITX1 expression was observed in all (100%) normal healthy skin tissue samples. In addition, PITX1 expression was found in 56 (80%) and was absent in 14 (20%) of the 70 cutaneous malignant melanoma cases. Ki-67 positive expression was only detected in the 14 (20%) PITX1-negative cases. PITX1-positive tumor cells were observed on the surface, but Ki-67 positive tumor cells were observed in deeper zones of the tumor nests. PITX1 expression was downregulated in human cutaneous malignant melanoma lesions compared with healthy skin tissue, but Ki-67 expression was upregulated in concordance with the progression of cutaneous malignant melanoma. PITX1 expression may be involved in tumor progression and is a potential tumor suppressor gene and prognostic marker for cutaneous malignant melanoma.
Collapse
Affiliation(s)
- Figen Barut
- Department of Pathology, Faculty of Medicine, Bulent Ecevit University, Zonguldak, Turkey.
| | - Perihan Udul
- Department of Pathology, Faculty of Medicine, Bulent Ecevit University, Zonguldak, Turkey
| | - Furuzan Kokturk
- Department of Biostatistics, Faculty of Medicine, Bulent Ecevit University, Zonguldak, Turkey
| | - Nilufer Onak Kandemir
- Department of Pathology, Faculty of Medicine, Bulent Ecevit University, Zonguldak, Turkey
| | - Sevinc Hallac Keser
- Department of Pathology, Dr. Lutfi Kırdar Training and Research Hospital, Istanbul, Turkey
| | - Sukru Oguz Ozdamar
- Department of Pathology, Faculty of Medicine, Bulent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
50
|
Transcription Regulation of the Human Telomerase Reverse Transcriptase (hTERT) Gene. Genes (Basel) 2016; 7:genes7080050. [PMID: 27548225 PMCID: PMC4999838 DOI: 10.3390/genes7080050] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/23/2016] [Accepted: 08/01/2016] [Indexed: 12/11/2022] Open
Abstract
Embryonic stem cells and induced pluripotent stem cells have the ability to maintain their telomere length via expression of an enzymatic complex called telomerase. Similarly, more than 85%–90% of cancer cells are found to upregulate the expression of telomerase, conferring them with the potential to proliferate indefinitely. Telomerase Reverse Transcriptase (TERT), the catalytic subunit of telomerase holoenzyme, is the rate-limiting factor in reconstituting telomerase activity in vivo. To date, the expression and function of the human Telomerase Reverse Transcriptase (hTERT) gene are known to be regulated at various molecular levels (including genetic, mRNA, protein and subcellular localization) by a number of diverse factors. Among these means of regulation, transcription modulation is the most important, as evident in its tight regulation in cancer cell survival as well as pluripotent stem cell maintenance and differentiation. Here, we discuss how hTERT gene transcription is regulated, mainly focusing on the contribution of trans-acting factors such as transcription factors and epigenetic modifiers, as well as genetic alterations in hTERT proximal promoter.
Collapse
|