1
|
Yi J, Du J, Chen X, Nie RC, Hu GS, Wang L, Zhang YY, Chen S, Wen XS, Luo DX, He H, Liu W. A circRNA-mRNA pairing mechanism regulates tumor growth and endocrine therapy resistance in ER-positive breast cancer. Proc Natl Acad Sci U S A 2025; 122:e2420383122. [PMID: 40233410 PMCID: PMC11874584 DOI: 10.1073/pnas.2420383122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/13/2025] [Indexed: 04/17/2025] Open
Abstract
The molecular mechanisms underlying estrogen receptor (ER)-positive breast carcinogenesis and drug resistance remain incompletely understood. Elevated expression of CCND1 is linked to enhanced invasiveness, poorer prognosis, and resistance to drug therapies in ER-positive breast cancer. In this study, we identify a highly expressed circular RNA (circRNA) derived from FOXK2, called circFOXK2, which plays a key role in stabilizing CCND1 mRNA, thereby promoting cell cycle progression, cell growth, and endocrine therapy resistance in ER-positive breast cancer cells. Mechanistically, circFOXK2 binds directly to CCND1 mRNA via RNA-RNA pairing and recruits the RNA-binding protein ELAVL1/HuR, stabilizing the CCND1 mRNA and enhancing CCND1 protein levels. This results in activation of the CCND1-CDK4/6-p-RB-E2F signaling axis, driving the transcription of downstream E2F target genes and facilitating the G1/S transition during cell cycle progression. Notably, targeting circFOXK2 with antisense oligonucleotide (ASO-circFOXK2) suppresses ER-positive breast cancer cell growth both in vitro and in vivo. Moreover, combination therapy with ASO-circFOXK2 and tamoxifen exhibits synergistic effects and restores tamoxifen sensitivity in tamoxifen-resistant cells. Clinically, high circFOXK2 expression is positively correlated with CCND1 levels in both ER-positive breast cancer cell lines and patient tumor tissues. Overall, our findings reveal the critical role of circFOXK2 in stabilizing the oncogene CCND1 and promoting cancer progression, positioning circFOXK2 as a potential therapeutic target for ER-positive breast cancer in clinical settings.
Collapse
MESH Headings
- Humans
- Breast Neoplasms/genetics
- Breast Neoplasms/drug therapy
- Breast Neoplasms/pathology
- Breast Neoplasms/metabolism
- Female
- Drug Resistance, Neoplasm/genetics
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Cyclin D1/genetics
- Cyclin D1/metabolism
- Animals
- Mice
- Cell Line, Tumor
- Cell Proliferation/genetics
- Cell Proliferation/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Estrogen/metabolism
- Receptors, Estrogen/genetics
- Gene Expression Regulation, Neoplastic
- Antineoplastic Agents, Hormonal/pharmacology
- ELAV-Like Protein 1/metabolism
- ELAV-Like Protein 1/genetics
- Tamoxifen/pharmacology
- Mice, Nude
- MCF-7 Cells
Collapse
Affiliation(s)
- Jia Yi
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
- Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
- Yu-Yue Pathology Scientific Research Center, Chongqing400039, China
- Jinfeng Laboratory, Chongqing401329, China
| | - Jiao Du
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
- Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
| | - Xue Chen
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
- Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
| | - Rui-chao Nie
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
- Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen361102, Fujian, China
| | - Guo-sheng Hu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
- Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
| | - Lei Wang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
- Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
| | - Yue-ying Zhang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
- Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
| | - Shang Chen
- Laboratory Medicine Centre, Shenzhen Nanshan People’s Hospital, Shenzhen518052, Guangdong, China
| | - Xiao-sha Wen
- Laboratory Medicine Centre, Shenzhen Nanshan People’s Hospital, Shenzhen518052, Guangdong, China
| | - Di-xian Luo
- The Third Affiliated Hospital (Luohu Hospital), Shenzhen University, Shenzhen518000, Guangdong, China
| | - Hua He
- Department of Neurosurgery, Third Affiliated Hospital, Naval Medical University, Shanghai200438, China
| | - Wen Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
- Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen361102, Fujian, China
| |
Collapse
|
2
|
Pei S, Zhang D, Li Z, Liu J, Li Z, Chen J, Xie Z. The Role of the Fox Gene in Breast Cancer Progression. Int J Mol Sci 2025; 26:1415. [PMID: 40003882 PMCID: PMC11855465 DOI: 10.3390/ijms26041415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/25/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Forkhead box (FOX) genes are a family of transcription factors that participate in many biological activities, from early embryogenesis to the formation of organs, and from regulation of glucose metabolism to regulation of longevity. Given the extensive influence in the multicellular process, FOX family proteins are responsible for the progression of many types of cancers, especially lung cancer, breast cancer, prostate cancer, and other cancers. Breast cancer is the most common cancer among women, and 2.3 million women were diagnosed in 2020. So, various drugs targeting the FOX signaling pathway have been developed to inhibit breast cancer progression. While the role of the FOX family gene in cancer development has not received enough attention, discovering more potential drugs targeting the FOX signaling pathway is urgently demanded. Here, we review the main members in the FOX gene family and summarize their signaling pathway, including the regulation of the FOX genes and their effects on breast cancer progression. We hope this review will emphasize the understanding of the role of the FOX gene in breast cancer and inspire the discovery of effective anti-breast cancer medicines targeting the FOX gene in the future.
Collapse
Affiliation(s)
- Shaoxuan Pei
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Dechun Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Zhuohan Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Jinkai Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Ziyi Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Jianrui Chen
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Zhenzhen Xie
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
| |
Collapse
|
3
|
Roohy F, Moghanibashi M, Tahmasebi S. Bioinformatic and experimental analyses of GATA3 and its regulatory miRNAs in breast Cancer. Discov Oncol 2024; 15:588. [PMID: 39448444 PMCID: PMC11502614 DOI: 10.1007/s12672-024-01479-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND GATA binding protein 3 (GATA3) is a transcription factor that plays a critical role in the differentiation and function of luminal epithelial cells in the breast. MicroRNAs (miRNAs) are small non-coding RNAs that modulate gene expression and their dysregulation has been implicated in cancer. The purpose of this study was to investigate the expression of GATA3 and its corresponding targeting miRNAs in breast cancer. MATERIALS AND METHODS In this study, we used bioinformatic tools, including the miRWalk database and RNA Hybrid online tool, to identify potential miRNAs that target the GATA3 mRNA. Then, we collected frozen tissue specimens from 67 breast cancer patients and 67 adjacent normal breast tissue samples and evaluated the expression levels of GATA3, hsa-miR-433-3p, and hsa-miR-144-3p using quantitative RT-PCR. RESULTS We found that hsa-miR-433-3p and hsa-miR-144-3p are potential miRNAs that target the GATA3 mRNA, and we found that both were significantly downregulated in breast cancer tissues relative to adjacent normal breast tissues (P < 0.0001). We also observed a significant upregulation of the GATA3 mRNA in breast cancer tissues (P < 0.0001). Additionally, we found that their dysregulation was associated with clinicopathological features such as invasive carcinoma and carcinoma in situ subtypes, tumor grade, estrogen receptor status, progesterone receptor status, and HER2 status. CONCLUSIONS Our study represents the first attempt to investigate the expression of GATA3 and its targeting miRNAs simultaneously in breast cancer. Our findings suggest that dysregulation of these genes may contribute to breast cancer development and progression.
Collapse
Affiliation(s)
- Fatemeh Roohy
- Department of Biology, Faculty of Basic Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Mehdi Moghanibashi
- Department of Genetics, Faculty of Basic Sciences, Kazerun Branch, Islamic Azad University, Kazerun, P.O. Box: 73135-168, Iran.
| | - Sedigheh Tahmasebi
- Breast Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Sakaguchi M. The role of insulin signaling with FOXO and FOXK transcription factors. Endocr J 2024; 71:939-944. [PMID: 38987195 PMCID: PMC11778369 DOI: 10.1507/endocrj.ej24-0205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/05/2024] [Indexed: 07/12/2024] Open
Abstract
Insulin is an essential hormone for animal activity and survival, and it controls the metabolic functions of the entire body. Throughout the evolution of metazoan animals and the development of their brains, a sustainable energy supply has been essential to overcoming the competition for survival under various environmental stresses. Managing energy for metabolism, preservation, and consumption inevitably involves high oxidative stress, causing tissue damage in various organs. In both mice and humans, excessive dietary intake can lead to insulin resistance in various organs, ultimately displaying metabolic syndrome and type 2 diabetes. Insulin signals require thorough regulation to maintain metabolism across diverse environments. Recent studies demonstrated that two types of forkhead-box family transcription factors, FOXOs and FOXKs, are related to the switching of insulin signals during fasting and feeding states. Insulin signaling plays a role in supporting higher activity during periods of sufficient food supply and in promoting survival during times of insufficient food supply. The insulin receptor depends on the tyrosine phosphatase feedback of insulin signaling to maintain adipocyte insulin responsiveness. α4, a regulatory subunit of protein phosphatase 2A (PP2A), has been shown to play a crucial role in modulating insulin signaling pathways by regulating the phosphorylation status of key proteins involved in these pathways. This short review summarizes the current understanding of the molecular mechanism related to the regulation of insulin signals.
Collapse
Affiliation(s)
- Masaji Sakaguchi
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
5
|
Yu Y, Cao WM, Cheng F, Shi Z, Han L, Yi J, da Silva EM, Dopeso H, Chen H, Yang J, Wang X, Zhang C, Zhang H. FOXK2 amplification promotes breast cancer development and chemoresistance. Cancer Lett 2024; 597:217074. [PMID: 38901667 PMCID: PMC11290987 DOI: 10.1016/j.canlet.2024.217074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 05/22/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
Oncogene activation through DNA amplification or overexpression is a crucial driver of cancer initiation and progression. The FOXK2 gene, located on chromosome 17q25, encodes a transcription factor with a forkhead DNA-binding domain. Analysis of genomic datasets reveals that FOXK2 is frequently amplified and overexpressed in breast cancer, correlating with poor patient survival. Knockdown of FOXK2 significantly inhibited breast cancer cell proliferation, migration, anchorage-independent growth, and delayed tumor growth in a xenograft mouse model. Additionally, inhibiting FOXK2 sensitized breast cancer cells to chemotherapy. Co-overexpression of FOXK2 and mutant PI3KCA transformed non-tumorigenic MCF-10A cells, suggesting a role for FOXK2 in PI3KCA-driven tumorigenesis. CCNE2, PDK1, and ESR1 were identified as transcriptional targets of FOXK2 in MCF-7 cells. Small-molecule inhibitors of CCNE2/CDK2 (dinaciclib) and PDK1 (dichloroacetate) exhibited synergistic anti-tumor effects with PI3KCA inhibitor (alpelisib) in vitro. Inhibition of FOXK2 by dinaciclib synergistically enhanced the anti-tumor effects of alpelisib in a xenograft mouse model. Collectively, these findings highlight the oncogenic function of FOXK2 and suggest that FOXK2 and its downstream genes represent potential therapeutic targets in breast cancer.
Collapse
Affiliation(s)
- Yang Yu
- Center for Cancer and Immunology Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20010, USA
| | - Wen-Ming Cao
- Department of Pathology & Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Feng Cheng
- Center for Cancer and Immunology Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20010, USA
| | - Zhongcheng Shi
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lili Han
- Department of Pathology & Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jinling Yi
- Texas Children's Hospital, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Edaise M da Silva
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Higinio Dopeso
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Hui Chen
- Department of Pathology & Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jianhua Yang
- Center for Cancer and Immunology Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20010, USA; Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20010, USA
| | - Xiaosong Wang
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Chunchao Zhang
- Center for Cancer and Immunology Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20010, USA; Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20010, USA.
| | - Hong Zhang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
6
|
Hou ZH, Tao M, Dong J, Qiu HM, Li F, Bai XY. KLF11 promotes the proliferation of breast cancer cells by inhibiting p53-MDM2 signaling. Cell Signal 2024; 120:111238. [PMID: 38810862 DOI: 10.1016/j.cellsig.2024.111238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Abnormal Krüppel-like factor 11 (KLF11) expression is frequently found in tumor tissues and is associated with cancer prognosis, but its biological functions and corresponding mechanisms remain elusive. Here, we demonstrated that KLF11 functions as an oncoprotein to promote tumor proliferation in breast cancer cells. Mechanistically, at the transcription level, KLF11 decreased TP53 mRNA expression. Notably, KLF11 also interacted with and stabilized MDM2 through inhibiting MDM2 ubiquitination and subsequent degradation. This increase in MDM2 in turn accelerated the ubiquitin-mediated proteolysis of p53, leading to the reduced expression of p53 and its target genes, including CDKN1A, BAX, and NOXA1. Accordingly, data from animals further confirmed that KLF11 significantly upregulated the growth of breast cancer cells and was inversely correlated with p53 expression. Taken together, our findings reveal a novel mechanism for breast cancer progression in which the function of the tumor suppressor p53 is dramatically weakened.
Collapse
Affiliation(s)
- Zhi-Han Hou
- Chronic Disease Research Center, Medical College, Dalian University, 116622 Dalian, Liaoning, China
| | - Min Tao
- Chronic Disease Research Center, Medical College, Dalian University, 116622 Dalian, Liaoning, China
| | - Jiang Dong
- Chronic Disease Research Center, Medical College, Dalian University, 116622 Dalian, Liaoning, China
| | - Hong-Mei Qiu
- Chronic Disease Research Center, Medical College, Dalian University, 116622 Dalian, Liaoning, China
| | - Fan Li
- Chronic Disease Research Center, Medical College, Dalian University, 116622 Dalian, Liaoning, China
| | - Xiao-Yan Bai
- Chronic Disease Research Center, Medical College, Dalian University, 116622 Dalian, Liaoning, China..
| |
Collapse
|
7
|
Zhang C, Xu Y, Zhu X, Zhang X, Wang F, Hu L, Lu H, Tao C, Xu K, Zhang Z, Li D, Shi T, Zhang R. Phosphorylation of FOXK2 at Thr13 and Ser30 by PDK2 sustains glycolysis through a positive feedback manner in ovarian cancer. Oncogene 2024; 43:1985-1999. [PMID: 38734828 PMCID: PMC11196215 DOI: 10.1038/s41388-024-03052-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Ovarian cancer is one of the most common gynecological malignant tumors with insidious onset, strong invasiveness, and poor prognosis. Metabolic alteration, particularly aerobic glycolysis, which is tightly regulated by transcription factors, is associated with the malignant behavior of OC. We screened FOXK2 in this study as a key transcription factor that regulates glycolysis in OC. FOXK2 is overly expressed in OC, and poor prognosis is predicted by overexpression. FOXK2 promotes OC cell proliferation both in vitro and in vivo and cell migration in vitro. Further studies showed that PDK2 directly binds to the forkhead-associated (FHA) domain of FOXK2 to phosphorylate FOXK2 at Thr13 and Ser30, thereby enhancing the transcriptional activity of FOXK2. FOXK2 transcriptionally regulates the expression of PDK2, thus forming positive feedback to sustain glycolysis in OC cells.
Collapse
Affiliation(s)
- Cancan Zhang
- Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, Shanghai, China
- Shanghai Geriatric Medical Center, Shanghai, 201104, China
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinyin Xu
- Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, Shanghai, China
| | - Xinyue Zhu
- Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, Shanghai, China
| | - Xueli Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengmian Wang
- Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, Shanghai, China
| | - Lipeng Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huan Lu
- Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, Shanghai, China
| | - Chunlin Tao
- Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, Shanghai, China
| | - Kai Xu
- Department of Gynecologic Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhigang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongxue Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Tingyan Shi
- Department of Gynecologic Oncology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Rong Zhang
- Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, Shanghai, China.
- Shanghai Geriatric Medical Center, Shanghai, 201104, China.
| |
Collapse
|
8
|
Xing X, Que X, Zheng S, Wang S, Song Q, Yao Y, Zhang P. Emerging roles of FOXK2 in cancers and metabolic disorders. Front Oncol 2024; 14:1376496. [PMID: 38741782 PMCID: PMC11089157 DOI: 10.3389/fonc.2024.1376496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
FOXK2, a member of the Forkhead box K (FOXK) transcription factor family, is widely expressed in various tissues and organs throughout the body. FOXK2 plays crucial roles in cell proliferation, differentiation, autophagy, de novo nucleotide biosynthesis, DNA damage response, and aerobic glycolysis. Although FOXK2 is recognized as an oncogene in colorectal cancer and hepatocellular carcinoma, it acts as a tumor suppressor in breast cancer, cervical cancer, and non-small cell lung cancer (NSCLC). This review provides an overview of the recent progress in understanding the regulatory mechanisms of FOXK2 and its downstream targets, highlights the significant impact of FOXK2 dysregulation on cancer etiology, and discusses the potential of targeting FOXK2 for cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Yao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Masclef L, Ahmed O, Iannantuono N, Gagnon J, Gushul-Leclaire M, Boulay K, Estavoyer B, Echbicheb M, Poy M, Boubacar KA, Boubekeur A, Menggad S, Schcolnik-Cabrera A, Balsalobre A, Bonneil E, Thibault P, Hulea L, Tanaka Y, Antoine-Mallette F, Drouin J, Affar EB. O-GlcNAcylation of FOXK1 orchestrates the E2F pathway and promotes oncogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582838. [PMID: 38463952 PMCID: PMC10925292 DOI: 10.1101/2024.03.01.582838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Gene transcription is a highly regulated process, and deregulation of transcription factors activity underlies numerous pathologies including cancer. Albeit near four decades of studies have established that the E2F pathway is a core transcriptional network that govern cell division in multi-cellular organisms1,2, the molecular mechanisms that underlie the functions of E2F transcription factors remain incompletely understood. FOXK1 and FOXK2 transcription factors have recently emerged as important regulators of cell metabolism, autophagy and cell differentiation3-6. While both FOXK1 and FOXK2 interact with the histone H2AK119ub deubiquitinase BAP1 and possess many overlapping functions in normal biology, their specific functions as well as deregulation of their transcriptional activity in cancer is less clear and sometimes contradictory7-13. Here, we show that elevated expression of FOXK1, but not FOXK2, in primary normal cells promotes transcription of E2F target genes associated with increased proliferation and delayed entry into cellular senescence. FOXK1 expressing cells are highly prone to cellular transformation revealing important oncogenic properties of FOXK1 in tumor initiation. High expression of FOXK1 in patient tumors is also highly correlated with E2F gene expression. Mechanistically, we demonstrate that FOXK1, but not FOXK2, is specifically modified by O-GlcNAcylation. FOXK1 O-GlcNAcylation is modulated during the cell cycle with the highest levels occurring during the time of E2F pathway activation at G1/S. Moreover, loss of FOXK1 O-GlcNAcylation impairs FOXK1 ability to promote cell proliferation, cellular transformation and tumor growth. Mechanistically, expression of FOXK1 O-GlcNAcylation-defective mutants results in reduced recruitment of BAP1 to gene regulatory regions. This event is associated with a concomitant increase in the levels of histone H2AK119ub and a decrease in the levels of H3K4me1, resulting in a transcriptional repressive chromatin environment. Our results define an essential role of O-GlcNAcylation in modulating the functions of FOXK1 in controlling the cell cycle of normal and cancer cells through orchestration of the E2F pathway.
Collapse
Affiliation(s)
- Louis Masclef
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, CIUSSS de l’Est-de-l’Île de Montréal, 5415 boulevard de l’Assomption, Montréal, QC, H1T 2M4, Canada
| | - Oumaima Ahmed
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, CIUSSS de l’Est-de-l’Île de Montréal, 5415 boulevard de l’Assomption, Montréal, QC, H1T 2M4, Canada
| | - Nicholas Iannantuono
- Institut de Recherche en Immunologie et en Cancérologie, Université de Montréal (IRIC), Montréal, QC, H3T 1J4, Canada
| | - Jessica Gagnon
- Institut de Recherche en Immunologie et en Cancérologie, Université de Montréal (IRIC), Montréal, QC, H3T 1J4, Canada
| | - Mila Gushul-Leclaire
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, CIUSSS de l’Est-de-l’Île de Montréal, 5415 boulevard de l’Assomption, Montréal, QC, H1T 2M4, Canada
| | - Karine Boulay
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, CIUSSS de l’Est-de-l’Île de Montréal, 5415 boulevard de l’Assomption, Montréal, QC, H1T 2M4, Canada
| | - Benjamin Estavoyer
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, CIUSSS de l’Est-de-l’Île de Montréal, 5415 boulevard de l’Assomption, Montréal, QC, H1T 2M4, Canada
| | - Mohamed Echbicheb
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, CIUSSS de l’Est-de-l’Île de Montréal, 5415 boulevard de l’Assomption, Montréal, QC, H1T 2M4, Canada
| | - Marty Poy
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, CIUSSS de l’Est-de-l’Île de Montréal, 5415 boulevard de l’Assomption, Montréal, QC, H1T 2M4, Canada
| | - Kalidou Ali Boubacar
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, CIUSSS de l’Est-de-l’Île de Montréal, 5415 boulevard de l’Assomption, Montréal, QC, H1T 2M4, Canada
| | - Amina Boubekeur
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, CIUSSS de l’Est-de-l’Île de Montréal, 5415 boulevard de l’Assomption, Montréal, QC, H1T 2M4, Canada
| | - Saad Menggad
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, CIUSSS de l’Est-de-l’Île de Montréal, 5415 boulevard de l’Assomption, Montréal, QC, H1T 2M4, Canada
| | - Alejandro Schcolnik-Cabrera
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, CIUSSS de l’Est-de-l’Île de Montréal, 5415 boulevard de l’Assomption, Montréal, QC, H1T 2M4, Canada
| | - Aurelio Balsalobre
- Laboratoire de Génétique Moléculaire, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - Eric Bonneil
- Institut de Recherche en Immunologie et en Cancérologie, Université de Montréal (IRIC), Montréal, QC, H3T 1J4, Canada
| | - Pierre Thibault
- Institut de Recherche en Immunologie et en Cancérologie, Université de Montréal (IRIC), Montréal, QC, H3T 1J4, Canada
| | - Laura Hulea
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, CIUSSS de l’Est-de-l’Île de Montréal, 5415 boulevard de l’Assomption, Montréal, QC, H1T 2M4, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Yoshiaki Tanaka
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, CIUSSS de l’Est-de-l’Île de Montréal, 5415 boulevard de l’Assomption, Montréal, QC, H1T 2M4, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Frédérick Antoine-Mallette
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, CIUSSS de l’Est-de-l’Île de Montréal, 5415 boulevard de l’Assomption, Montréal, QC, H1T 2M4, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Jacques Drouin
- Laboratoire de Génétique Moléculaire, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - El Bachir Affar
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, CIUSSS de l’Est-de-l’Île de Montréal, 5415 boulevard de l’Assomption, Montréal, QC, H1T 2M4, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| |
Collapse
|
10
|
Yu Y, Cao WM, Cheng F, Shi Z, Han L, Yi JL, da Silva EM, Dopeso H, Chen H, Yang J, Wang X, Zhang C, Zhang H. FOXK2 amplification and overexpression promotes breast cancer development and chemoresistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.28.542643. [PMID: 37398114 PMCID: PMC10312425 DOI: 10.1101/2023.05.28.542643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Activation of oncogenes through DNA amplification/overexpression plays an important role in cancer initiation and progression. Chromosome 17 has many cancer-associated genetic anomalies. This cytogenetic anomaly is strongly associated with poor prognosis of breast cancer. FOXK2 gene is located on 17q25 and encodes a transcriptional factor with a forkhead DNA binding domain. By integrative analysis of public genomic datasets of breast cancers, we found that FOXK2 is frequently amplified and overexpressed in breast cancers. FOXK2 overexpression in breast cancer patients is associated with poor overall survival. FOXK2 knockdown significantly inhibits cell proliferation, invasion and metastasis, and anchorage-independent growth, as well as causes G0/G1 cell cycle arrest in breast cancer cells. Moreover, inhibition of FOXK2 expression sensitizes breast cancer cells to frontline anti-tumor chemotherapies. More importantly, co-overexpression of FOXK2 and PI3KCA with oncogenic mutations (E545K or H1047R) induces cellular transformation in non-tumorigenic MCF10A cells, suggesting that FOXK2 is an oncogene in breast cancer and is involved in PI3KCA-driven tumorigenesis. Our study identified CCNE2, PDK1, and Estrogen receptor alpha (ESR1) as direct transcriptional targets of FOXK2 in MCF-7 cells. Blocking CCNE2- and PDK1-mediated signaling by using small molecule inhibitors has synergistic anti-tumor effects in breast cancer cells. Furthermore, FOXK2 inhibition by gene knockdown or inhibitors for its transcriptional targets (CCNE2 and PDK1) in combination with PI3KCA inhibitor, Alpelisib, showed synergistic anti-tumor effects on breast cancer cells with PI3KCA oncogenic mutations. In summary, we provide compelling evidence that FOXK2 plays an oncogenic role in breast tumorigenesis and targeting FOXK2-mediated pathways may be a potential therapeutic strategy in breast cancer.
Collapse
Affiliation(s)
- Yang Yu
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC, USA
| | - Wen-Ming Cao
- Department of Pathology & Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Feng Cheng
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC, USA
| | - Zhongcheng Shi
- Advanced Technology Cores, Baylor College of Medicine, Houston, USA
| | - Lili Han
- Department of Pathology & Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jin-Ling Yi
- Texas Children’s Hospital, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Edaise M da Silva
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Higinio Dopeso
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hui Chen
- Department of Pathology & Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jianhua Yang
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC, USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Xiaosong Wang
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chunchao Zhang
- Texas Children’s Hospital, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Hong Zhang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
11
|
Kang Y, Zhang K, Sun L, Zhang Y. Regulation and roles of FOXK2 in cancer. Front Oncol 2022; 12:967625. [PMID: 36172141 PMCID: PMC9510715 DOI: 10.3389/fonc.2022.967625] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/17/2022] [Indexed: 12/24/2022] Open
Abstract
Forkhead box K2 (FOXK2) is a member of the forkhead box transcription factor family that contains an evolutionarily conserved winged-helix DNA-binding domain. Recently, an increasing number of studies have demonstrated that FOXK2 plays an important role in the transcriptional regulation of cancer. Here, we provide an overview of the mechanisms underlying the regulation of FOXK2 expression and function and discuss the roles of FOXK2 in tumor pathogenesis. Additionally, we evaluated the prognostic value of FOXK2 expression in patients with various cancers. This review presents an overview of the different roles of FOXK2 in tumorigenesis and will help inform the design of experimental studies involving FOXK2. Ultimately, the information presented here will help enhance the therapeutic potential of FOXK2 as a cancer target.
Collapse
|
12
|
Nagel S, Pommerenke C, Quentmeier H, Meyer C, Kaufmann M, MacLeod RAF. Genomic Aberrations Generate Fusion Gene FOXK2::TP63 and Activate NFKB1 in Cutaneous T-Cell Lymphoma. Biomedicines 2022; 10:biomedicines10082038. [PMID: 36009586 PMCID: PMC9406051 DOI: 10.3390/biomedicines10082038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/21/2022] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is a severe lymphoid malignancy with a worse prognosis lacking curative treatment regimens. Several gene mutations and deregulated pathways, including NFkB signaling, have been implicated in its pathogenesis. Accordingly, CTCL cell line HUT-78 reportedly contains mutated NFKB2, which is constitutively activated via partial gene deletion, also demonstrating that genomic rearrangements cause driving mutations in this malignancy. Here, along with HUT-78, we analyzed CTCL cell line HH to identify additional aberrations underlying gene deregulation. Karyotyping and genomic profiling of HH showed several rearrangements worthy of detailed investigation. Corresponding to the established karyotype, RNA-seq data and PCR analysis confirmed the presence of t(3;17)(q28;q25), generating a novel fusion gene, FOXK2::TP63. Furthermore, chromosomal rearrangement t(1;4)(p32;q25) was connected to amplification at 4q24–26, affecting aberrant NFKB1 overexpression thereat. Transcription factor binding-site analysis and knockdown experiments demonstrated that IRF4 contributed to NFKB1 expression. Within the same amplicon, we identified amplification and overexpression of NFkB signaling activator CAMK2D (4q26) and p53-inhibitor UBE2D3 (4q24). Genomic profiling data for HUT-78 detailed a deletion at 10q25 underlying reported NFKB2 activation. Moreover, amplifications of ID1 (20q11) and IKZF2 (2q34) in this cell line drove overexpression of these NK cell differentiation factors and possibly thus formed corresponding lineage characteristics. Target gene analysis for NFKB1 via siRNA-mediated knockdown in HH revealed activation of TP63, MIR155, and NOTCH pathway component RBPJ. Finally, treatment of HH with NFkB inhibitor demonstrated a role for NFkB in supporting proliferation, while usage of inhibitor DAPT showed significant survival effects via the NOTCH pathway. Collectively, our data suggest that NFkB and/or NOTCH inhibitors may represent reasonable treatment options for subsets of CTCL patients.
Collapse
|
13
|
Yu M, Yu H, Mu N, Wang Y, Ma H, Yu L. The Function of FoxK Transcription Factors in Diseases. Front Physiol 2022; 13:928625. [PMID: 35903069 PMCID: PMC9314541 DOI: 10.3389/fphys.2022.928625] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Forkhead box (FOX) transcription factors play a crucial role in the regulation of many diseases, being an evolutionarily conserved superfamily of transcription factors. In recent years, FoxK1/2, members of its family, has been the subject of research. Even though FoxK1 and FoxK2 have some functional overlap, increasing evidence indicates that the regulatory functions of FoxK1 and FoxK2 are not the same in various physiological and disease states. It is important to understand the biological function and mechanism of FoxK1/2 for better understanding pathogenesis of diseases, predicting prognosis, and finding new therapeutic targets. There is, however, a lack of comprehensive and systematic analysis of the similarities and differences of FoxK1/2 roles in disease, prompting us to perform a literature review.
Collapse
Affiliation(s)
- Mujun Yu
- School of Life Sciences, Yan'an University, Yan'an, China
| | - Haozhen Yu
- School of Basic Medical Sciences, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Nan Mu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yishi Wang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Heng Ma
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Lu Yu
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
14
|
He Z, Ye L, Yang D, Ma Z, Deng F, He Z, Hu J, Chen H, Zheng L, Pu Y, Jiao Y, Chen Q, Gao K, Xiong J, Lai B, Gu X, Huang X, Yang S, Zhang M, Yan T. Identification, characterization and functional analysis of gonadal long noncoding RNAs in a protogynous hermaphroditic teleost fish, the ricefield eel (Monopterus albus). BMC Genomics 2022; 23:450. [PMID: 35725373 PMCID: PMC9208217 DOI: 10.1186/s12864-022-08679-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/09/2022] [Indexed: 11/11/2022] Open
Abstract
Background An increasing number of long noncoding RNAs (lncRNAs) have been found to play important roles in sex differentiation and gonad development by regulating gene expression at the epigenetic, transcriptional and posttranscriptional levels. The ricefield eel, Monopterus albus, is a protogynous hermaphroditic fish that undergoes a sequential sex change from female to male. However, the roles of lncRNA in the sex change is unclear. Results Herein, we performed RNA sequencing to analyse lncRNA expression patterns in five different stages of M. albus development to investigate the roles of lncRNAs in the sex change process. A total of 12,746 lncRNAs (1503 known lncRNAs and 11,243 new lncRNAs) and 2901 differentially expressed lncRNAs (DE-lncRNAs) were identified in the gonads. The target genes of the DE-lncRNAs included foxo1, foxm1, smad3, foxr1, camk4, ar and tgfb3, which were mainly enriched in signalling pathways related to gonadal development, such as the insulin signalling pathway, MAPK signalling pathway, and calcium signalling pathway. We selected 5 highly expressed DE-lncRNAs (LOC109952131, LOC109953466, LOC109954337, LOC109954360 and LOC109958454) for full length amplification and expression pattern verification. They were all expressed at higher levels in ovaries and intersex gonads than in testes, and exhibited specific time-dependent expression in ovarian tissue incubated with follicle-stimulating hormone (FSH) and human chorionic gonadotropin (hCG). The results of quantitative real-time PCR (qRT-PCR) analysis and a dual-luciferase assay showed that znf207, as the gene targeted by LOC109958454, was expressed in multiple tissues and gonadal developmental stages of M. albus, and its expression was also inhibited by the hormones FSH and hCG. Conclusions These results provide new insights into the role of lncRNAs in gonad development, especially regarding natural sex changes in fish, which will be useful for enhancing our understanding of sequential hermaphroditism and sex changes in the ricefield eel (M. albus) and other teleosts. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08679-2.
Collapse
Affiliation(s)
- Zhi He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lijuan Ye
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Deying Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhijun Ma
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Faqiang Deng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhide He
- Luzhou Municipal Bureau of Agriculture and Rural Affairs, Luzhou, 646000, Sichuan, China
| | - Jiaxiang Hu
- Sichuan Water Conservancy Vocational College, Chengdu, 611231, Sichuan, China
| | - Hongjun Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Li Zheng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yong Pu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yuanyuan Jiao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qiqi Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Kuo Gao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jinxin Xiong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Bolin Lai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaobin Gu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoli Huang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shiyong Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mingwang Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Taiming Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
15
|
Liu Y, Wang Y, Li X, Jia Y, Wang J, Ao X. FOXO3a in cancer drug resistance. Cancer Lett 2022; 540:215724. [DOI: 10.1016/j.canlet.2022.215724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/07/2023]
|
16
|
Liu Y, Ao X, Yu W, Zhang Y, Wang J. Biogenesis, functions, and clinical implications of circular RNAs in non-small cell lung cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:50-72. [PMID: 34938606 PMCID: PMC8645422 DOI: 10.1016/j.omtn.2021.11.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lung cancer (LC) is the leading cause of cancer-related deaths worldwide, with high morbidity and mortality. Non-small cell lung cancer (NSCLC) is a major pathological type of LC and accounts for more than 80% of all cases. Circular RNAs (circRNAs) are a large class of non-coding RNAs (ncRNAs) with covalently closed-loop structures, a high abundance, and tissue-specific expression patterns. They participate in various pathophysiological processes by regulating complex gene networks involved in proliferation, apoptosis, migration, and epithelial-to-mesenchymal transition (EMT), as well as metastasis. A growing number of studies have revealed that the dysregulation of circRNAs contributes to many aspects of cancer progression, such as its occurrence, metastasis, and recurrence, suggesting their great potential as efficient and specific biomarkers in the diagnosis, prognosis, and therapeutic targeting of NSCLC. In this review, we systematically elucidate the characteristics, biogenesis, and functions of circRNAs and focus on their molecular mechanisms in NSCLC progression. Moreover, we highlight their clinical implications in NSCLC treatment.
Collapse
Affiliation(s)
- Ying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266021, China.,School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Xiang Ao
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Wanpeng Yu
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266021, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| |
Collapse
|
17
|
Liu Y, Ao X, Wang Y, Li X, Wang J. Long Non-Coding RNA in Gastric Cancer: Mechanisms and Clinical Implications for Drug Resistance. Front Oncol 2022; 12:841411. [PMID: 35155266 PMCID: PMC8831387 DOI: 10.3389/fonc.2022.841411] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer (GC) is the third leading cause of cancer-related deaths worldwide, with high recurrence and mortality rate. Chemotherapy, including 5-fluorouracil (5-FU), adriamycin (ADR), vincristine (VCR), paclitaxel (PTX), and platinum drugs, remains one of the fundamental methods of GC treatment and has efficiently improved patients’ prognosis. However, most patients eventually develop resistance to chemotherapeutic agents, leading to the failure of clinical treatment and patients’ death. Recent studies suggest that long non-coding RNAs (lncRNAs) are involved in the drug resistance of GC by modulating the expression of drug resistance-related genes via sponging microRNAs (miRNAs). Moreover, lncRNAs also play crucial roles in GC drug resistance via a variety of mechanisms, such as the regulation of the oncogenic signaling pathways, inhibition of apoptosis, induction of autophagy, modulation of cancer stem cells (CSCs), and promotion of the epithelial-to-mesenchymal transition (EMT) process. Some of lncRNAs exhibit great potential as diagnostic and prognostic biomarkers, as well as therapeutic targets for GC patients. Therefore, understanding the role of lncRNAs and their mechanisms in GC drug resistance may provide us with novel insights for developing strategies for individual diagnosis and therapy. In this review, we summarize the recent findings on the mechanisms underlying GC drug resistance regulated by lncRNAs. We also discuss the potential clinical applications of lncRNAs as biomarkers and therapeutic targets in GC.
Collapse
Affiliation(s)
- Ying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
- *Correspondence: Ying Liu,
| | - Xiang Ao
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Yu Wang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xiaoge Li
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
18
|
Liu Y, Ao X, Zhou X, Du C, Kuang S. The regulation of PBXs and their emerging role in cancer. J Cell Mol Med 2022; 26:1363-1379. [PMID: 35068042 PMCID: PMC8899182 DOI: 10.1111/jcmm.17196] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/11/2021] [Accepted: 01/05/2022] [Indexed: 12/14/2022] Open
Abstract
Pre‐B‐cell leukaemia transcription factor (PBX) proteins are a subfamily of evolutionarily conserved, atypical homeodomain transcription factors that belong to the superfamily of three amino acid loop extension (TALE) homeodomain proteins. Members of the PBX family play crucial roles in regulating multiple pathophysiological processes, such as the development of organs, congenital cardiac defects and carcinogenesis. The dysregulation of PBXs has been shown to be closely associated with many diseases, particularly cancer. However, the detailed mechanisms of PBX dysregulation in cancer progression are still inconclusive. In this review, we summarize the recent advances in the structures, functions and regulatory mechanisms of PBXs, and discuss their underlying mechanisms in cancer progression. We also highlight the great potential of PBXs as biomarkers for the early diagnosis and prognostic evaluation of cancer as well as their therapeutic applications. The information reviewed here may expand researchers’ understanding of PBXs and could strengthen the clinical implication of PBXs in cancer treatment.
Collapse
Affiliation(s)
- Ying Liu
- Institute for Translational Medicine The Affiliated Hospital of Qingdao University Qingdao Medical College Qingdao University Qingdao China
- School of Basic Medical Sciences Qingdao Medical College Qingdao University Qingdao China
| | - Xiang Ao
- School of Basic Medical Sciences Qingdao Medical College Qingdao University Qingdao China
| | - Xuehao Zhou
- Institute for Translational Medicine The Affiliated Hospital of Qingdao University Qingdao Medical College Qingdao University Qingdao China
- School of Basic Medical Sciences Qingdao Medical College Qingdao University Qingdao China
| | - Chengcheng Du
- Institute for Translational Medicine The Affiliated Hospital of Qingdao University Qingdao Medical College Qingdao University Qingdao China
- School of Basic Medical Sciences Qingdao Medical College Qingdao University Qingdao China
| | - Shouxiang Kuang
- Institute for Translational Medicine The Affiliated Hospital of Qingdao University Qingdao Medical College Qingdao University Qingdao China
- School of Basic Medical Sciences Qingdao Medical College Qingdao University Qingdao China
| |
Collapse
|
19
|
Li S, Wang P, Ju H, Zhu T, Shi J, Huang Y. FOXK2 promotes the proliferation of papillary thyroid cancer cell by down-regulating autophagy. J Cancer 2022; 13:858-868. [PMID: 35154454 PMCID: PMC8824878 DOI: 10.7150/jca.60730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 12/04/2021] [Indexed: 01/07/2023] Open
Abstract
Papillary thyroid cancer (PTC) is the most common endocrine system tumor. FOXK2 is involved in the development of different types of cancers, however, its function has not been investigated in papillary thyroid cancer. In the present study, we demonstrated that FOXK2 expression was up-regulated in papillary thyroid carcinoma tissues compared with matched normal tissues. Importantly, we found that FOXK2 expression was significantly associated with the tumor size, T stage, and TNM stage. Furthermore, stable knockdown of FOXK2 markedly inhibited PTC cell proliferation, significantly increased the ratio of LC3-II/LC3-I, and reduced p62 expression, whereas overexpression of FOXK2 showed opposite effects. In FOXK2 knockdown cell lines, mCherry-GFP-LC3 immunofluorescence demonstrated increased punctate aggregates of mCherry-GFP-LC3, and transmission electron microscopy revealed increased numbers of autophagosomes. Autophagy-related protein ULK1, VPS34, and FOXO3 were markedly up-regulated by FOXK2 knockdown and down-regulated by FOXK2 overexpression. Finally, autophagy inhibitor 3-MA attenuated autophagy activation and rescued the inhibition of cell proliferation caused by FOXK2 knockdown, suggesting that FOXK2 silencing inhibits cell proliferation through up-regulating autophagy. These findings revealed an important role of FOXK2 in PTC progression and suggested that FOXK2 might be a potential new target for the diagnosis and treatment of PTC.
Collapse
Affiliation(s)
- Songze Li
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.,Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital &Institute, Shenyang, Liaoning 110122, China
| | - Pengliang Wang
- Department of Gastroenterology, Tianjin Medical University Cancer Hospital, City Key Laboratory of Tianjin Cancer Center and National Clinical Research Center for Cancer, Tianjin, China
| | - Hao Ju
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Tiantong Zhu
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jingwen Shi
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Ying Huang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.,✉ Corresponding author: E-mail:
| |
Collapse
|
20
|
Liu Y, Ao X, Ji G, Zhang Y, Yu W, Wang J. Mechanisms of Action And Clinical Implications of MicroRNAs in the Drug Resistance of Gastric Cancer. Front Oncol 2021; 11:768918. [PMID: 34912714 PMCID: PMC8667691 DOI: 10.3389/fonc.2021.768918] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignant tumors of digestive systems worldwide, with high recurrence and mortality. Chemotherapy is still the standard treatment option for GC and can effectively improve the survival and life quality of GC patients. However, with the emergence of drug resistance, the clinical application of chemotherapeutic agents has been seriously restricted in GC patients. Although the mechanisms of drug resistance have been broadly investigated, they are still largely unknown. MicroRNAs (miRNAs) are a large group of small non-coding RNAs (ncRNAs) widely involved in the occurrence and progression of many cancer types, including GC. An increasing amount of evidence suggests that miRNAs may play crucial roles in the development of drug resistance by regulating some drug resistance-related proteins as well as gene expression. Some also exhibit great potential as novel biomarkers for predicting drug response to chemotherapy and therapeutic targets for GC patients. In this review, we systematically summarize recent advances in miRNAs and focus on their molecular mechanisms in the development of drug resistance in GC progression. We also highlight the potential of drug resistance-related miRNAs as biomarkers and therapeutic targets for GC patients.
Collapse
Affiliation(s)
- Ying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China.,School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xiang Ao
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Guoqiang Ji
- Clinical Laboratory, Linqu People's Hospital, Linqu, China
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Wanpeng Yu
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
21
|
Qu X, Li Q, Tu S, Yang X, Wen W. ELF5 inhibits the proliferation and invasion of breast cancer cells by regulating CD24. Mol Biol Rep 2021; 48:5023-5032. [PMID: 34146197 DOI: 10.1007/s11033-021-06495-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 06/11/2021] [Indexed: 11/29/2022]
Abstract
E74-like factor five (ELF5) is a basic transcription factor that plays a key role in breast tissue and gland development. However, the molecular mechanism of ELF5 in breast cancer cells has not been elucidated. In this study, we examined the effect of ELF5 on the human breast cancer cell lines MCF-7 and T47D and confirmed that ELF5 can inhibit cell proliferation, migration and invasion. In further research, the relationship between ELF5 and CD24 was characterized in breast cancer cells. We found that CD24 was a target gene of ELF5 through chromatin immunoprecipitation (ChIP) -Sequence assays, and proved that ELF5 could bind to the ETS cis-element on the proximal promoter of the CD24 gene and regulate the expression of CD24. Moreover, overexpression of ELF5 in MCF-7 cells significantly increased both the mRNA and protein levels of CD24, while knockdown of CD24 expression restored cell proliferation, migration and invasion through adaptive ELF5 expression in MCF-7 cells. Therefore, these data suggest that ELF5 inhibits migration and invasion of breast cancer cells by regulating CD24 expression, which make provides a molecular mechanism for ELF5 to inhibit breast cancer from a new perspective and provides further theoretical support for the treatment and prevention of breast cancer.
Collapse
Affiliation(s)
- Xinjian Qu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, 116024, Liaoning, China.
| | - Qianqian Li
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Simei Tu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Xiaocheng Yang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Wen Wen
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, 116024, Liaoning, China
| |
Collapse
|
22
|
Yang Y, Li S, Li B, Li Y, Xia K, Aman S, Yang Y, Ahmad B, Zhao B, Wu H. FBXL10 promotes ERRα protein stability and proliferation of breast cancer cells by enhancing the mono-ubiquitylation of ERRα. Cancer Lett 2021; 502:108-119. [PMID: 33450359 DOI: 10.1016/j.canlet.2021.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/21/2020] [Accepted: 01/06/2021] [Indexed: 01/25/2023]
Abstract
The underlying mechanism of orphan nuclear receptor estrogen-related receptor α (ERRα) in breast cancer was investigated by identifying its interaction partners using mass spectrometry. F-box and leucine-rich repeat protein 10 (FBXL10), which modulates various physiological processes, may interact with ERRα in breast cancer. Here, we investigated the interaction between FBXL10 and ERRα, and their protein expression and correlation in breast cancer. Mechanical studies revealed that FBXL10 stabilized ERRα protein levels by reducing its poly-ubiquitylation and promoting its mono-ubiquitylation. The reporter gene assay and examination of ERRα target genes validated the increased transcriptional activity of ERRα due to its increased protein levels by FBXL10. FBXL10 also increased ERRα enrichment at the promoter region of its target genes. Functionally, FBXL10 facilitated the ERRα/peroxisome proliferator-activated receptor gamma coactivator 1 β (PGC1β)-mediated proliferation and tumorigenesis of breast cancer cells in vitro and in vivo. Our results uncovered a molecular mechanism linking the mono-ubiquitylation and protein stability of ERRα to functional interaction with FBXL10. Moreover, a novel regulatory axis of FBXL10 and ERRα regulating the proliferation and tumorigenesis of breast cancer cells was established.
Collapse
Affiliation(s)
- Yangyang Yang
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Shujing Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Bowen Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Yanan Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Kangkai Xia
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Sattout Aman
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Yuxi Yang
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Bashir Ahmad
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Binggong Zhao
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Huijian Wu
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning Province, China.
| |
Collapse
|
23
|
Mao H, Xu X, Cao H, Dong X, Zou X, Xu N, Yin Z. Comparative Transcriptome Profiling of mRNA and lncRNA of Ovaries in High and Low Egg Production Performance in Domestic Pigeons ( Columba livia). Front Genet 2021; 12:571325. [PMID: 33833772 PMCID: PMC8021926 DOI: 10.3389/fgene.2021.571325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 03/01/2021] [Indexed: 12/22/2022] Open
Abstract
Egg production performance is one of the most important economic traits in pigeon industry. However, little is known regarding how egg production performance is regulated by long non-coding RNAs (lncRNAs) in pigeons. To evaluate the lncRNAs and mRNAs in ovaries associated with egg production performance in domestic pigeons, high-throughput RNA sequencing of ovaries between high and low egg production performance groups were performed and analyzed in this study. A total of 34,346 mRNAs and 24,601 lncRNAs were identified, including 14,525 known lncRNAs and 10,076 novel lncRNAs, of which 811 mRNAs and 148 lncRNAs (P < 0.05) were significantly differentially expressed (DE) between the groups of high and low egg production performance. GO and KEGG annotation analysis indicated that the target genes of DE lncRNAs and DE mRNAs were related to cell differentiation, ATP binding and methylation. Moreover, we found that FOXK2, a target gene of lncRNA MSTRG.7894.4, was involved in regulating estrogen receptors. Our study provided a catalog of lncRNAs and mRNAs associated with egg production performance, and they deserve further study to deepen the understanding of biological processes in the ovaries of pigeons.
Collapse
Affiliation(s)
- Haiguang Mao
- Animal Science College, Zhejiang University, Hangzhou, Zhejiang, China
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo, Zhejiang, China
| | - Xiuli Xu
- Animal Science College, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haiyue Cao
- Animal Science College, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinyang Dong
- Animal Science College, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoting Zou
- Animal Science College, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ningying Xu
- Animal Science College, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhaozheng Yin
- Animal Science College, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
24
|
Acetylation of ELF5 suppresses breast cancer progression by promoting its degradation and targeting CCND1. NPJ Precis Oncol 2021; 5:20. [PMID: 33742100 PMCID: PMC7979705 DOI: 10.1038/s41698-021-00158-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
E74-like ETS transcription factor 5 (ELF5) is involved in a wide spectrum of biological processes, e.g., mammogenesis and tumor progression. We have identified a list of p300-interacting proteins in human breast cancer cells. Among these, ELF5 was found to interact with p300 via acetylation, and the potential acetylation sites were identified as K130, K134, K143, K197, K228, and K245. Furthermore, an ELF5-specific deacetylase, SIRT6, was also identified. Acetylation of ELF5 promoted its ubiquitination and degradation, but was also essential for its antiproliferative effect against breast cancer, as overexpression of wild-type ELF5 and sustained acetylation-mimicking ELF5 mutant could inhibit the expression of its target gene CCND1. Taken together, the results demonstrated a novel regulation of ELF5 as well as shedding light on its important role in modulation of breast cancer progression.
Collapse
|
25
|
Li B, Mu L, Li Y, Xia K, Yang Y, Aman S, Ahmad B, Li S, Wu H. TIMELESS inhibits breast cancer cell invasion and metastasis by down-regulating the expression of MMP9. Cancer Cell Int 2021; 21:38. [PMID: 33430865 PMCID: PMC7798230 DOI: 10.1186/s12935-021-01752-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 01/02/2021] [Indexed: 12/20/2022] Open
Abstract
Breast cancer is the first killer leading to female death, and tumor metastasis is one of the important factors leading to the death of patients, but the specific mechanism of breast cancer metastasis is not very clear at present. Our study showed that overexpression of TIMELESS could significantly inhibit the invasion and metastasis of breast cancer cells ZR-75-30 and the assembly of F-actin protein. On the contrary, knockdown of TIMELESS promoted the invasion and metastasis of breast cancer cells. Further study revealed that TIMELESS overexpression decreased the mRNA and protein levels of MMP9. Furthermore, TIMELESS could interact with p65, leading to repress the association of p65 and its acetyltransferase CBP and down-regulating the acetylation level of p65, which inhibited the activation of NF-κB signal pathway. In conclusion, our research showed that TIMELESS may repress the invasion and metastasis of breast cancer cells via inhibiting the acetylation of p65, inhibiting the activation of NF-κB, thus down-regulating the expression of MMP9, and then inhibiting the invasion and metastasis of breast cancer cells.
Collapse
Affiliation(s)
- Bowen Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, Liaoning, China
| | - Liying Mu
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, Liaoning, China
| | - Yanan Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, Liaoning, China
| | - Kangkai Xia
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, Liaoning, China
| | - Yuxi Yang
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, Liaoning, China
| | - Sattout Aman
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, Liaoning, China
| | - Bashir Ahmad
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, Liaoning, China
| | - Shujing Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, Liaoning, China.
| | - Huijian Wu
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, Liaoning, China.
| |
Collapse
|
26
|
Lu H, Shi C, Liu X, Liang C, Yang C, Wan X, Li L, Liu Y. Identification of ZG16B as a prognostic biomarker in breast cancer. Open Med (Wars) 2020; 16:1-13. [PMID: 33336077 PMCID: PMC7718615 DOI: 10.1515/med-2021-0004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023] Open
Abstract
Zymogen granule protein 16B (ZG16B) has been identified in various cancers, while so far the association between ZG16B and breast cancer hasn’t been explored. Our aim is to confirm whether it can serve as a prognostic biomarker in breast cancer. In this study, Oncomine, Cancer Cell Line Encyclopedia (CCLE), Ualcan, and STRING database analyses were conducted to detect the expression level of ZG16B in breast cancer with different types. Kaplan–Meier plotter was used to analyze the prognosis of patients with high or low expression of ZG16B. We found that ZG16B was significantly upregulated in breast cancer. Moreover, ZG16B was closely associated with foregone biomarkers and crucial factors in breast cancer. In the survival analysis, high expression of ZG16B represents a favorable prognosis in patients. Our work demonstrates the latent capacity of ZG16B to be a biomarker for prognosis of breast cancer.
Collapse
Affiliation(s)
- Haotian Lu
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, 266071, China
| | - Chunying Shi
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, 266071, China
| | - Xinyu Liu
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, 266071, China
| | - Chen Liang
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, 266071, China
| | - Chaochao Yang
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, 266071, China
| | - Xueqi Wan
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, 266071, China
| | - Ling Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, 266071, China
| | - Ying Liu
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, 266071, China.,Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
27
|
Kong J, Zhang Q, Liang X, Sun W. FOXK2 downregulation suppresses EMT in hepatocellular carcinoma. Open Med (Wars) 2020; 15:702-708. [PMID: 33313412 PMCID: PMC7706124 DOI: 10.1515/med-2020-0129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/18/2022] Open
Abstract
Forkhead box K2 (FOXK2) was first identified as an NFAT-like interleukin-binding factor. FOXK2 has been reported to act as either oncogene or tumor suppressor. However, functional and regulating mechanisms of FOXK2 in epithelial–mesenchymal transition (EMT) in hepatocellular carcinoma (HCC) remain unclear. An FOXK2-specific siRNA was employed to decrease the endogenous expression of FOXK2. MTT assay, colony formation and transwell assay were used to evaluate proliferation, migration and invasion of Hep3B and HCCLM3 cells, respectively. The protein expression associated with EMT and Akt signaling pathways was evaluated using western blot. FOXK2 downregulation could inhibit cell proliferation and colony formation and suppress migration and invasion in Hep3B and HCCLM3 cells. The expression of E-cadherin was significantly upregulated, and the expression of snail and p-Akt was significantly downregulated in siFOXK2-transfected cells compared with control cells. SF1670 induced the expression of p-Akt and snail and suppressed the expression of E-cadherin in Hep3B and HCCLM3 cells. SF1670 promoted the invasion and colony formation of Hep3B and HCCLM3 cells. SF1670 partly inhibited the effect of FOXK2 suppression on Hep3B and HCCLM3 cells. In conclusion, this study revealed that FOXK2 downregulation suppressed the EMT in HCC partly through inhibition of the Akt signaling pathway.
Collapse
Affiliation(s)
- Jian Kong
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100043, China
| | - Qingyun Zhang
- Department of General Surgery, Affiliated Hospital of Chengde Medical University, Hebei 067000, China
| | - Xuefeng Liang
- Blood center of Shandong Province, Shandong 250000, China
| | - Wenbing Sun
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100043, China
| |
Collapse
|
28
|
TCF21: a critical transcription factor in health and cancer. J Mol Med (Berl) 2020; 98:1055-1068. [DOI: 10.1007/s00109-020-01934-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 05/07/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023]
|
29
|
Ao X, Ding W, Ge H, Zhang Y, Ding D, Liu Y. PBX1 is a valuable prognostic biomarker for patients with breast cancer. Exp Ther Med 2020; 20:385-394. [PMID: 32565927 PMCID: PMC7286203 DOI: 10.3892/etm.2020.8705] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
Pre-B-cell leukemia transcription factor (PBX) proteins have important roles in the development of numerous organs. To date, four members of the PBX family have been identified to be involved in human cancer but little is known about their expression patterns and precise functions in breast cancer (BC) progression. The aim of the present study was to determine whether they have the potential to be prognostic biomarkers in patients with BC. The expression patterns of PBXs were evaluated using Oncomine, Cancer Cell Line Encyclopedia and Gene expression-based Outcome for Breast cancer Online algorithm analyses. The prognostic value of PBX1 was determined by Kaplan-Meier plotter analysis. It was observed that, among all PBX family members, only PBX1 was significantly upregulated in BC vs. normal tissues. Meta-analysis in the Oncomine database revealed that PBX1 was significantly upregulated in invasive breast carcinoma stroma, ductal breast carcinoma, invasive lobular breast carcinoma, invasive mixed breast carcinoma and male breast carcinoma compared with normal tissues. In addition, PBX1 was significantly correlated with forkhead box protein A1. Subtype analysis indicated that PBX1 overexpression was associated with luminal-like and hormone receptor-sensitive subtypes. In the survival analysis, a high expression level of PBX1 was associated with poor prognosis of patients with estrogen receptor (ER)-positive, luminal A and luminal B subtypes of BC. The results of the present study indicate that PBX1 may serve as a specific biomarker and essential prognostic factor for ER-positive, luminal A and luminal B subtypes of BC.
Collapse
Affiliation(s)
- Xiang Ao
- Center for Precision Medicine, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Wei Ding
- Department of Comprehensive Internal Medicine, Affiliated Hospital, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Hu Ge
- Center for Precision Medicine, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, Shandong 266021, P.R. China.,Department of Molecular Informatics, Hengrui Pharmaceutical Co., Ltd., Shanghai 200245, P.R. China
| | - Yuan Zhang
- Center for Precision Medicine, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Dan Ding
- Center for Precision Medicine, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Ying Liu
- Center for Precision Medicine, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, Shandong 266021, P.R. China
| |
Collapse
|
30
|
Du F, Qiao C, Li X, Chen Z, liu H, Wu S, Hu S, Qiu Z, Qian M, Tian D, Wu K, Fan D, Nie Y, Xia L. Forkhead box K2 promotes human colorectal cancer metastasis by upregulating ZEB1 and EGFR. Am J Cancer Res 2019; 9:3879-3902. [PMID: 31281520 PMCID: PMC6587343 DOI: 10.7150/thno.31716] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/23/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Metastasis is the major reason for high recurrence rates and poor survival among patients with colorectal cancer (CRC). However, the underlying molecular mechanism of CRC metastasis is unclear. This study aimed to investigate the role of forkhead box K2 (FOXK2), one of the most markedly increased FOX genes in CRC, and the mechanism by which it is deregulated in CRC metastasis. Methods: FOXK2 levels were analyzed in two independent human CRC cohorts (cohort I, n = 363; cohort II, n = 390). In vitro Transwell assays and in vivo lung and liver metastasis models were used to examine CRC cell migration, invasion and metastasis. Chromatin immunoprecipitation and luciferase reporter assays were used to measure the binding of transcription factors to the promoters of FOXK2, zinc finger E-box binding homeobox 1 (ZEB1) and epidermal growth factor receptor (EGFR). Cetuximab was utilized to treat FOXK2-mediated metastatic CRC. Results: FOXK2 was significantly upregulated in human CRC tissues, was correlated with more aggressive features and indicated a poor prognosis. FOXK2 overexpression promoted CRC migration, invasion and metastasis, while FOXK2 downregulation had the opposite effects. ZEB1 and EGFR were determined to be direct transcriptional targets of FOXK2 and were essential for FOXK2-mediated CRC metastasis. Moreover, activation of EGFR signaling by EGF enhanced FOXK2 expression via the extracellular regulated protein kinase (ERK) and nuclear factor (NF)-κB pathways. The EGFR monoclonal antibody cetuximab significantly inhibited FOXK2-promoted CRC metastasis. In clinical CRC tissues, FOXK2 expression was positively correlated with the expression of p65, ZEB1 and EGFR. CRC patients who coexpressed p65/FOXK2, FOXK2/ZEB1 and FOXK2/EGFR had poorer prognosis. Conclusions: FOXK2 serves as a prognostic biomarker in CRC. Cetuximab can block the EGF-NF-κB-FOXK2-EGFR feedback loop and suppress CRC metastasis.
Collapse
|
31
|
Liu Y, Ding W, Ge H, Ponnusamy M, Wang Q, Hao X, Wu W, Zhang Y, Yu W, Ao X, Wang J. FOXK transcription factors: Regulation and critical role in cancer. Cancer Lett 2019; 458:1-12. [PMID: 31132431 DOI: 10.1016/j.canlet.2019.05.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 12/25/2022]
Abstract
Growing evidence suggests that alterations of gene expression including expression and activities of transcription factors are closely associated with carcinogenesis. Forkhead Box Class K (FOXK) proteins, FOXK1 and FOXK2, are a family of evolutionarily conserved transcriptional factors, which have recently been recognized as key transcriptional regulators involved in many types of cancer. Members of the FOXK family mediate a wide spectrum of biological processes, including cell proliferation, differentiation, apoptosis, autophagy, cell cycle progression, DNA damage and tumorigenesis. Therefore, the deregulation of FOXKs can affect the cell fate and they promote tumorigenesis as well as cancer progression. The mechanisms of FOXKs regulation including post-translational modifications (PTMs), microRNAs (miRNAs) and protein-protein interactions are well demonstrated. However, the detailed mechanisms of FOXKs activation and deregulation in cancer progression are still inconclusive. In this review, we summarize the regulatory mechanisms of FOXKs expression and activity, and their role in the development and progression of cancer. We have discussed whether FOXKs act as tumor suppressors/oncoproteins in tumor cells and their therapeutic applications in malignant diseases are also discussed. This review may assist in designing experimental studies involving FOXKs and it would strength the therapeutic potential of FOXKs as targets for cancers.
Collapse
Affiliation(s)
- Ying Liu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Wei Ding
- Department of Comprehensive Internal Medicine, Affiliated Hospital, Qingdao University, Qingdao 266003, China
| | - Hu Ge
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China; Molecular Informatics Department, Hengrui Pharmaceutical Co., Ltd., Shanghai 200245, China
| | - Murugavel Ponnusamy
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Qiong Wang
- Molecular Informatics Department, Hengrui Pharmaceutical Co., Ltd., Shanghai 200245, China
| | - Xiaodan Hao
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Wei Wu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yuan Zhang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Wanpeng Yu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xiang Ao
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Jianxun Wang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China; School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
32
|
FOXK2 Transcription Factor and Its Emerging Roles in Cancer. Cancers (Basel) 2019; 11:cancers11030393. [PMID: 30897782 PMCID: PMC6468357 DOI: 10.3390/cancers11030393] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/01/2019] [Accepted: 03/14/2019] [Indexed: 12/14/2022] Open
Abstract
Forkhead box (FOX) transcription factors compose a large family of regulators of key biological processes within a cell. FOXK2 is a member of FOX family, whose biological functions remain relatively unexplored, despite its description in the early nineties. More recently, growing evidence has been pointing towards a role of FOXK2 in cancer, which is likely to be context-dependent and tumour-specific. Here, we provide an overview of important aspects concerning the mechanisms of regulation of FOXK2 expression and function, as well as its complex interactions at the chromatin level, which orchestrate how it differentially regulates the expression of gene targets in pathophysiology. Particularly, we explore the emerging functions of FOXK2 as a regulator of a broad range of cancer features, such as cell proliferation and survival, DNA damage, metabolism, migration, invasion and metastasis. Finally, we discuss the prognostic value of assessing FOXK2 expression in cancer patients and how it can be potentially targeted for future anticancer interventions.
Collapse
|
33
|
Zhao J, Zou H, Han C, Ma J, Zhao J, Tang J. Circlular RNA BARD1 (Hsa_circ_0001098) overexpression in breast cancer cells with TCDD treatment could promote cell apoptosis via miR-3942/BARD1 axis. Cell Cycle 2018; 17:2731-2744. [PMID: 30521417 DOI: 10.1080/15384101.2018.1556058] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Breast cancer threatened the health of millions of people around the world. Here we explored the influence of TCDD on the expression of circRNA_BARD1 (circ_0001098) in breast cancer and studied the potential molecular mechanism of circRNA_BARD1. The data from GSE76608 was applied to analyze differentially expressed circRNAs and mRNAs. The expressions of circRNA_BARD1, BARD1, miR-3942-3p, miR-4760-3p and apoptosis-related protein p53 were detected by qRT-PCR or western blot. Circinteractome, TargetScan, CIRCNET and dual luciferase reporter assay were employed to uncover the target relationship between circRNA_BARD1/BARD1 and miR-3942-3p/miR-4760-3p. Flow cytometric analysis was used to reveal cell cycle and cell apoptosis. Immunofluorescence was applied to determinate γ-H2AX level. Xenograft assay and in vivo 3-D imaging was implemented to further verify the conclusions in vitro. CircRNA_BARD1 (circ_0001098) was up-regulated in breast cancer with the treatment of TCDD and the up-regulation of circRNA_BARD1 could restrain cell proliferation, block cell cycle and promote cell apoptosis. Moreover, the target relationship between circRNA_BARD1/BARD1 and miR-3942-3p was confirmed. In addition, miR-3942-3p overexpression promoted the disease progression and BARD1 up-regulation inhibited the disease progression in the breast cancer. Similarly, circRNA_BARD1 overexpression induced by TCDD suppressed the growth and metastasis of tumor in vivo. In conclusion, TCDD induced circ_0001098 overexpression and then suppressed breast cancer tumorigenesis via miR-3942-3p/BARD1 axis. The finding of TCDD-circRNA-miRNA-mRNA axis might bring a new perspective for cure strategy of breast cancer.
Collapse
Affiliation(s)
- Jianzhu Zhao
- a Department of Oncology , Shengjing Hospital of China Medical University , Shenyang , China
| | - Huawei Zou
- a Department of Oncology , Shengjing Hospital of China Medical University , Shenyang , China
| | - Chengbo Han
- a Department of Oncology , Shengjing Hospital of China Medical University , Shenyang , China
| | - Jietao Ma
- a Department of Oncology , Shengjing Hospital of China Medical University , Shenyang , China
| | - Jungang Zhao
- b Department of Thoracic Surgery , Shengjing Hospital of China Medical University , Shenyang , China
| | - Jun Tang
- b Department of Thoracic Surgery , Shengjing Hospital of China Medical University , Shenyang , China
| |
Collapse
|
34
|
Ye Y, Wu Y, Wang J. Pyrroline-5-carboxylate reductase 1 promotes cell proliferation via inhibiting apoptosis in human malignant melanoma. Cancer Manag Res 2018; 10:6399-6407. [PMID: 30568501 PMCID: PMC6267761 DOI: 10.2147/cmar.s166711] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Introduction Human malignant melanoma (MM) is a highly malignant tumor of cutaneous melanocytes with a fast progression. We investigated the cellular effects of pyrroline-5- carboxylate reductase 1 (PYCR1) in the MM cell lines, A375 and M14. Methods Cell Counting Kit-8 assay, transwell assay, and flow cytometry analysis were performed to evaluate the proliferation, migration and apoptosis of MM cell lines, respectively. To gain more insight into the role of PYCR1 in tumor growth, we analyzed the AKT phosphorylation level in PYCR1-specific siRNA (siPYCR1) and negative control (NC) cells. Results Biochemical analysis revealed a clear increase in PYCR1 expression in human MM samples, and its high expression predicted a poor prognosis. Silencing of PYCR1 suppressed the proliferation and migration of A375 and M14 cells. The percentage of apoptosis in cells transfected with siPYCR1 significantly increased in comparison to that of cells transfected with negative control siRNA (NC). The enhanced apoptosis in PYCR1 knockdown cells was consistent with an increased level of markers of apoptosis. siPYCR1 inhibited AKT phosphorylation, as well as the expression of its downstream protein, P70, suggesting that PYCR1 promoted cell growth of the MM cell lines A375 and M14 through stimulation of the AKT pathway. Moreover, forkhead box K2 and regulatory associated protein of MTOR complex 1 shared a similar expression pattern to that of PYCR1 and were significantly downregulated in PYCR1 knockdown cells. Conclusion PYCR1 promoted tumor progression through the AKT pathway in human MM in vitro. Our results expand the knowledge of PYCR1 functions in solid tumors and provide a potential target for the clinical treatment of human MM.
Collapse
Affiliation(s)
- Yingyi Ye
- Department of Dermatology, Ningbo No.2 Hospital, Ningbo, Zhejiang, China,
| | - Yingying Wu
- Department of Oncology, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Jinyan Wang
- Department of Dermatology, Ningbo No.2 Hospital, Ningbo, Zhejiang, China,
| |
Collapse
|
35
|
Xu Z, Yang Y, Li B, Li Y, Xia K, Yang Y, Li X, Wang M, Li S, Wu H. Checkpoint suppressor 1 suppresses transcriptional activity of ERα and breast cancer cell proliferation via deacetylase SIRT1. Cell Death Dis 2018; 9:559. [PMID: 29752474 PMCID: PMC5948204 DOI: 10.1038/s41419-018-0629-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/13/2018] [Accepted: 04/18/2018] [Indexed: 02/08/2023]
Abstract
Breast cancer is a highly heterogeneous carcinoma in women worldwide, but the underlying mechanisms that account for breast cancer initiation and development have not been fully established. Mounting evidence indicates that Checkpoint suppressor 1 (CHES1) is tightly associated with tumorigenesis and prognosis in many types of cancer. However, the definitive function of CHES1 in breast cancer remains to be explored. Here we showed that CHES1 had a physical interaction with estrogen receptor-α (ERα) and repressed the transactivation of ERα in breast cancer cells. Mechanistically, the interaction between CHES1 and ERα enhanced the recruitment of nicotinamide adenine dinucleotide (NAD+) deacetylase Sirtuin 1 (SIRT1), and it further induced SIRT1-mediated ERα deacetylation and repression on the promoter-binding enrichment of ERα. In addition, we also found that the expression of CHES1 was repressed by estrogen-ERα signaling and the expression level of CHES1 was significantly downregulated in ERα-positive breast cancer. The detailed mechanism was that ERα may directly bind to CHES1 potential promoter via recognizing the conserved estrogen response element (ERE) motif in response to estrogen stimulation. Functionally, CHES1 inhibited ERα-mediated proliferation and tumorigenesis of breast cancer cells in vivo and in vitro. Totally, these results identified a negative cross-regulatory loop between ERα and CHES1 that was required for growth of breast cancer cells, it might uncover novel insight into molecular mechanism of CHES1 involved in breast cancer and provide new avenues for molecular-targeted therapy in hormone-regulated breast cancer.
Collapse
Affiliation(s)
- Zhaowei Xu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Yangyang Yang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Bowen Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Yanan Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Kangkai Xia
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Yuxi Yang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Xiahui Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Miao Wang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Shujing Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Huijian Wu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China.
| |
Collapse
|
36
|
Chen H, Xu Z, Li X, Yang Y, Li B, Li Y, Xia K, Wang J, Li S, Wang M, Wu H. α-catenin SUMOylation increases IκBα stability and inhibits breast cancer progression. Oncogenesis 2018. [PMID: 29540699 PMCID: PMC5852976 DOI: 10.1038/s41389-018-0037-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
α-catenin has been demonstrated to suppress several different types of cancers. Here we demonstrate that α-catenin is modified by SUMO protein, which covalently binds α-catenin at the carboxy terminus at lysine 870. Substitution of lysine 870 with arginine completely abolishes α-catenin SUMOylation. This modification can be removed by SENP1. However, α-catenin SUMOylation does not affect its stability and subcellular localization. In addition, we observed that the SUMOylation-deficient α-catenin mutant has a reduced interaction with IκBα which prevents subsequent ubiquitination of IκBα, and therefore a reduced suppression of expression of the NF-κB target genes TNF-α, IL-8, VEGF, and uPA. In addition, the α-catenin SUMOylation mutant shows impaired suppression of tumor growth. These results demonstrate that SUMOylation at lysine 870 of α-catenin plays a key role in the suppression of the NF-κB pathway, which inhibits breast cancer tumor growth and migration.
Collapse
Affiliation(s)
- Huan Chen
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Zhaowei Xu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Xiahui Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Yangyang Yang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Bowen Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Yanan Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Kangkai Xia
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Jian Wang
- School of Life Science and Medicine, Dalian University of Technology, Panjin, China
| | - Shujing Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Miao Wang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China.
| | - Huijian Wu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China. .,School of Life Science and Medicine, Dalian University of Technology, Panjin, China.
| |
Collapse
|
37
|
Nestal de Moraes G, Ji Z, Fan LYN, Yao S, Zona S, Sharrocks AD, Lam EWF. SUMOylation modulates FOXK2-mediated paclitaxel sensitivity in breast cancer cells. Oncogenesis 2018; 7:29. [PMID: 29540677 PMCID: PMC5852961 DOI: 10.1038/s41389-018-0038-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/31/2018] [Accepted: 02/08/2018] [Indexed: 01/13/2023] Open
Abstract
The forkhead transcription factor FOXK2 plays a critical role in suppressing tumorigenesis and mediating cytotoxic drug action in breast cancer. However, the mechanism by which the biological function of FOXK2 is regulated remains poorly understood. Here, we investigated the role of SUMOylation in modulating FOXK2-mediated drug sensitivity. We identified SUMOylation consensus motifs within the FOXK2 sequence and constructed two SUMOylation-defective double mutants by converting lysine 527 and 633 to arginines and glutamic acid 529 and 635 to alanines, respectively. We found that both the FOXK2 SUMOylation-deficient (K527/633 R) and (E529/635 A) mutants were ineffective in mediating the cytotoxic function of paclitaxel when compared to the wild-type (WT) FOXK2. When overexpressed, unlike the wild-type (WT) FOXK2, the K527/633 R mutant had little effect on the sensitivity of MCF-7 and MDA-MB-231 cells to paclitaxel, as examined by cell viability and clonogenic assays. Our results also showed that MCF-7 cells overexpressing the K527/633 R mutant form of FOXK2 or the empty expression vector have lower protein and mRNA levels of its tumour suppressive transcriptional target FOXO3 compared to the wild-type FOXK2. Consistently, ChIP assays revealed that unlike wild-type FOXK2, the SUMOylation-defective (K527/633 R) mutant is unable to bind to the FOXO3 promoter, despite expressing comparable levels of protein and having the same subcellular localization as the wild-type FOXK2 in MCF-7 cells. Interestingly, expression of neither the wild-type nor the K527/633 R mutant FOXK2 had any effect on the proliferation and paclitaxel sensitivity of the MCF-7 TaxR paclitaxel-resistant cells. In agreement, both the wild-type and the (K527/633 R) mutant FOXK2 failed to bind to the endogenous FOXO3 promoter in these cells. Collectively, our results suggest that SUMOylation positively regulates FOXK2 transcriptional activity and has a role in mediating the cytotoxic response to paclitaxel through the tumour suppressor FOXO3.
Collapse
Affiliation(s)
- Gabriela Nestal de Moraes
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), Du Cane Road, London, W12 0NN, UK
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Praça da Cruz Vermelha, 23/6° andar, Centro, 20230-130, Rio de Janeiro, Brazil
| | - Zongling Ji
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Lavender Y-N Fan
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), Du Cane Road, London, W12 0NN, UK
| | - Shang Yao
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), Du Cane Road, London, W12 0NN, UK
| | - Stefania Zona
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), Du Cane Road, London, W12 0NN, UK
| | - Andrew D Sharrocks
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
38
|
Wang B, Zhang X, Wang W, Zhu Z, Tang F, Wang D, Liu X, Zhuang H, Yan X. Forkhead box K2 inhibits the proliferation, migration, and invasion of human glioma cells and predicts a favorable prognosis. Onco Targets Ther 2018. [PMID: 29520156 PMCID: PMC5833792 DOI: 10.2147/ott.s157126] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Purpose Forkhead box K2 (FOXK2) is a member of the forkhead box family of transcription factors. Recently, researchers discovered that overexpression of FOXK2 inhibits the proliferation and metastasis of breast cancer, non-small cell lung cancer, and colorectal cancer, and is related to the clinical prognosis. However, in hepatocellular carcinoma, FOXK2 results in the opposite phenotypes. Currently, the contribution of FOXK2 to glioma pathogenesis is not clear. Patients and methods We evaluated the expression of FOXK2 in 151 glioma patients using immunohistochemistry assays. The associations among the expression of FOXK2, clinicopathological parameters, and the prognosis of glioma patients were statistically analyzed. We downregulated and upregulated the level of FOXK2 in glioma cells by transfections with small interfering RNA and plasmids. Then, we investigated the effects on tumor cell behavior in vitro by Cell Counting Kit-8 assays, colony-formation assay, transwell assay, and the epithelial-to-mesenchymal transition (EMT) biomarker levels. Results The clinical data showed that expression of FOXK2 gradually decreased with increasing World Health Organization (WHO) grades and a low level of FOXK2 indicates a poor prognosis. FOXK2 expression is negatively correlated with Ki67 expression and the WHO degree but is not correlated with other clinicopathological parameters, including sex, age, Karnofsky Performance Status, tumor diameter, O-6-methylguanine-DNA methyltransferase, and glutathione S-transferase pi. FOXK2 knockdown enhances glioma cell proliferation, migration, invasion, and EMT process, and, in contrast, FOXK2 overexpression inhibits glioma cell proliferation, migration, invasion, and the EMT process. Conclusion Expression of FOXK2 gradually decreases with increasing WHO grades. FOXK2 inhibits tumor proliferation, migration, and invasion. FOXK2 is a critical mediator of the EMT process.
Collapse
Affiliation(s)
- Bo Wang
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China.,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin, China.,Tianjin Neurosurgical Institute, Tianjin, China
| | - XueBin Zhang
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin, China.,Tianjin Neurosurgical Institute, Tianjin, China.,Department of Pathology, Tianjin Huanhu Hospital, Tianjin, China
| | - Wei Wang
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China.,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin, China.,Tianjin Neurosurgical Institute, Tianjin, China
| | - ZhiZhong Zhu
- Department of Rehabilitation, Tianjin Huanhu Hospital, Tianjin, China
| | - Fan Tang
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin, China.,Tianjin Neurosurgical Institute, Tianjin, China.,Department of Pathology, Tianjin Huanhu Hospital, Tianjin, China
| | - Dong Wang
- Department of Neurosurgery, Tianjin Medical University, General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China.,Tianjin Neurological Institute, Tianjin, China
| | - Xi Liu
- Department of Gastroenterology, Tianjin NanKai Hospital, Tianjin, China
| | - Hao Zhuang
- Department of Hepatic Biliary Pancreatic Surgery, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - XiaoLing Yan
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin, China.,Tianjin Neurosurgical Institute, Tianjin, China.,Department of Pathology, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
39
|
Ao X, Li S, Xu Z, Yang Y, Chen M, Jiang X, Wu H. Sumoylation of TCF21 downregulates the transcriptional activity of estrogen receptor-alpha. Oncotarget 2018; 7:26220-34. [PMID: 27028856 PMCID: PMC5041976 DOI: 10.18632/oncotarget.8354] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 03/06/2016] [Indexed: 12/18/2022] Open
Abstract
Aberrant estrogen receptor-α (ERα) signaling is recognized as a major contributor to the development of breast cancer. However, the molecular mechanism underlying the regulation of ERα in breast cancer is still inconclusive. In this study, we showed that the transcription factor 21 (TCF21) interacted with ERα, and repressed its transcriptional activity in a HDACs-dependent manner. We also showed that TCF21 could be sumoylated by the small ubiquitin-like modifier SUMO1, and this modification could be reversed by SENP1. Sumoylation of TCF21 occurred at lysine residue 24 (K24). Substitution of K24 with arginine resulted in complete abolishment of sumoylation. Sumoylation stabilized TCF21, but did not affect its subcellular localization. Sumoylation of TCF21 also enhanced its interaction with HDAC1/2 without affecting its interaction with ERα. Moreover, sumoylation of TCF21 promoted its repression of ERα transcriptional activity, and increased the recruitment of HDAC1/2 to the pS2 promoter. Consistent with these observations, sumoylation of TCF21 could inhibit the growth of ERα-positive breast cancer cells and decreased the proportion of S-phase cells in the cell cycle. These findings suggested that TCF21 might act as a negative regulator of ERα, and its sumoylation inhibited the transcriptional activity of ERα through promoting the recruitment of HDAC1/2.
Collapse
Affiliation(s)
- Xiang Ao
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, People's Republic of China
| | - Shujing Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, People's Republic of China
| | - Zhaowei Xu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, People's Republic of China
| | - Yangyang Yang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, People's Republic of China
| | - Min Chen
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, People's Republic of China
| | - Xiao Jiang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, People's Republic of China
| | - Huijian Wu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, People's Republic of China.,School of Life Science and Medicine, Dalian University of Technology, Panjin 114221, Liaoning, People's Republic of China
| |
Collapse
|
40
|
Zhang F, Ma X, Li H, Zhang Y, Li X, Chen L, Guo G, Gao Y, Gu L, Xie Y, Duan J, Zhang X. FOXK2 suppresses the malignant phenotype and induces apoptosis through inhibition of EGFR in clear-cell renal cell carcinoma. Int J Cancer 2018; 142:2543-2557. [PMID: 29368368 DOI: 10.1002/ijc.31278] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 08/18/2017] [Accepted: 01/18/2018] [Indexed: 12/26/2022]
Abstract
Forkhead box K2 (FOXK2) belongs to the forkhead box transcription factor family. Recent studies have revealed that FOXK2 plays essential roles in cancer cell proliferation and survival. However, the biological function of FOXK2 in renal cell carcinoma remains unexplored. In our study, we demonstrated that FOXK2 mRNA and protein levels were decreased in clear-cell renal cell carcinoma (ccRCC) tissues compared to those in corresponding non-tumor renal tissues, and decreased FOXK2 levels were associated with poor prognosis in ccRCC patients after nephrectomy. FOXK2 suppressed proliferation, migration and invasion capabilities of ccRCC cells and induced cellular apoptosis in vitro. Moreover, we found that FOXK2 overexpression inhibited xenograft tumor growth and promoted apoptosis in vivo. Genome-wide transcriptome profiling using FOXK2 overexpressed 769-P cells revealed that the epidermal growth factor receptor (EGFR) was a potential downstream gene of FOXK2. Overexpression of EGFR is able to rescue the inhibited proliferation capacity and the enhanced apoptosis capacity due to the overexpression of FOXK2 in 769-P cells. Collectively, our results indicate that FOXK2 inhibits the malignant phenotype of ccRCC and acts as a tumor suppressor possibly through the inhibition of EGFR.
Collapse
Affiliation(s)
- Fan Zhang
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xin Ma
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Hongzhao Li
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xintao Li
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Luyao Chen
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Gang Guo
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Yu Gao
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Liangyou Gu
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Yongpeng Xie
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese PLA General Hospital, Beijing, People's Republic of China.,Medical School, Nankai University, Tianjin, People's Republic of China
| | - Junyao Duan
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese PLA General Hospital, Beijing, People's Republic of China.,Medical School, Nankai University, Tianjin, People's Republic of China
| | - Xu Zhang
- State Key Laboratory of Kidney Diseases, Department of Urology, Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
41
|
Jia Z, Wang M, Li S, Li X, Bai XY, Xu Z, Yang Y, Li B, Li Y, Wu H. U-box ubiquitin ligase PPIL2 suppresses breast cancer invasion and metastasis by altering cell morphology and promoting SNAI1 ubiquitination and degradation. Cell Death Dis 2018; 9:63. [PMID: 29352246 PMCID: PMC5833831 DOI: 10.1038/s41419-017-0094-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/17/2017] [Accepted: 10/24/2017] [Indexed: 01/30/2023]
Abstract
Metastasis is the leading cause of breast cancer fatalities. To develop new therapeutic strategies, the mechanisms underlying breast cancer invasion and metastasis need to be further investigated. Peptidylprolyl isomerase (cyclophilin)-like 2 (PPIL2) is a U-box-type E3 ubiquitin ligase belonging to the cyclophilin family. Proteins within this family are the major cytosolic binding proteins of the immunosuppressant drug cyclosporine A (CsA). Although PPIL2 has been reported to potentially be involved in cell migration, its role in breast cancer is still unclear. Herein, we demonstrate that PPIL2 suppressed metastasis in a breast cancer model by altering cell morphology and suppressing the epithelial–mesenchymal transition (EMT) process. Moreover, elevated PPIL2 inhibited EMT and breast cancer invasion by interacting with the classical EMT transcription factor, SNAI1, to enhance its ubiquitin-dependent degradation. Furthermore, PPIL2 protein level and stability was upregulated after CsA treatment, indicating that PPIL2 might be involved in CsA-mediated repression of EMT in breast cancer. Analysis of tissue samples taken from breast cancer patients showed a significant correlation between the expression of PPIL2 and the degree of cancer invasion and metastasis. In summary, these results would shed light on a potential clinical use of CsA in breast cancer patients.
Collapse
Affiliation(s)
- Zhaojun Jia
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Miao Wang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Shujing Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Xiahui Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Xiao-Yan Bai
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Zhaowei Xu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Yangyang Yang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Bowen Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Yanan Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Huijian Wu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
42
|
Bai XY, Li S, Wang M, Li X, Yang Y, Xu Z, Li B, Li Y, Xia K, Chen H, Wu H. Krüppel-like factor 9 down-regulates matrix metalloproteinase 9 transcription and suppresses human breast cancer invasion. Cancer Lett 2018; 412:224-235. [DOI: 10.1016/j.canlet.2017.10.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 01/09/2023]
|
43
|
Wang M, Wu H, Li S, Xu Z, Li X, Yang Y, Li B, Li Y, Guo J, Chen H. SYNJ2BP promotes the degradation of PTEN through the lysosome-pathway and enhances breast tumor metastasis via PI3K/AKT/SNAI1 signaling. Oncotarget 2017; 8:89692-89706. [PMID: 29163781 PMCID: PMC5685702 DOI: 10.18632/oncotarget.21058] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 09/03/2017] [Indexed: 12/22/2022] Open
Abstract
SYNJ2BP plays an important role in breast cancer metastasis. However, the molecular mechanism associated with the function of SYNJ2BP in metastasis remains unclear. In this study, we investigated the role of SYNJ2BP in tumor metastasis and established the associated underlying mechanism. Over-expression of SYNJ2BP promoted both cell migration and invasion. In contrast, silencing SYNJ2BP caused the suppression of cell migration and invasion. SYNJ2BP increased the levels of phosphorylation for AKT and GSK3β, which could be inhibited by the PI3K inhibitor, LY294002, and the GSK3β inhibitor, LiCl, and regulated the accumulation of SNAI1 in the nucleus and the expression of the SNAI1 target gene, E-cadherin (EMT marker). It is known that the stability of PTEN is regulated by ubiquitination. However, in this study, we additionally demonstrated that SYNJ2BP mediated the degradation of PTEN protein by the lysosome-pathway and induced the activation of PI3K/AKT signaling by promoting the co-localization of PTEN with autophagy-lysosomes and the expression of LC3-II and p62. In vivo study, the overexpression of SYNJ2BP significantly increased the metastasis of 4T1 cells in BALB/c mice. In addition, SYNJ2BP was highly expressed in breast carcinoma (p = 0.0031), but not in normal breast tissue, while analysis of tissue samples taken from SNAI1-positive human breast cancers showed a significant correlation between the expression of SYNJ2BP and that of p-AKT (p < 0.005). Collectively, our data identified a tumor inducer, SYNJ2BP, which could activate the PI3K/AKT/GSK3β/SNAI1 signaling pathway through the lysosome-mediated degradation of PTEN, and promote both EMT and tumor metastasis during the progression of breast cancer.
Collapse
Affiliation(s)
- Miao Wang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Huijian Wu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China.,School of Life Science and Medicine, Dalian University of Technology, Panjin, China
| | - Shujing Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Zhaowei Xu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Xiahui Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Yangyang Yang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Bowen Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Yanan Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Jing Guo
- School of Life Science and Medicine, Dalian University of Technology, Panjin, China
| | - Huan Chen
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| |
Collapse
|
44
|
Wang J, Li W, Zhao Y, Kang D, Fu W, Zheng X, Pang X, Du G. Members of FOX family could be drug targets of cancers. Pharmacol Ther 2017; 181:183-196. [PMID: 28830838 DOI: 10.1016/j.pharmthera.2017.08.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
FOX families play important roles in biological processes, including metabolism, development, differentiation, proliferation, apoptosis, migration, invasion and longevity. Here we are focusing on roles of FOX members in cancers, FOX members and drug resistance, FOX members and stem cells. Finally, FOX members as drug targets of cancer treatment were discussed. Future perspectives of FOXC1 research were described in the end.
Collapse
Affiliation(s)
- Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050 Beijing, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050 Beijing, China
| | - Wan Li
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050 Beijing, China
| | - Ying Zhao
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050 Beijing, China
| | - De Kang
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050 Beijing, China
| | - Weiqi Fu
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050 Beijing, China
| | - Xiangjin Zheng
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050 Beijing, China
| | - Xiaocong Pang
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050 Beijing, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050 Beijing, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050 Beijing, China.
| |
Collapse
|
45
|
Sarkar S, Ghosh A, Banerjee S, Maity G, Das A, Larson MA, Gupta V, Haque I, Tawfik O, Banerjee SK. CCN5/WISP-2 restores ER-∝ in normal and neoplastic breast cells and sensitizes triple negative breast cancer cells to tamoxifen. Oncogenesis 2017; 6:e340. [PMID: 28530705 PMCID: PMC5569333 DOI: 10.1038/oncsis.2017.43] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/27/2017] [Accepted: 04/05/2017] [Indexed: 12/11/2022] Open
Abstract
CCN5/WISP-2 is an anti-invasive molecule and prevents breast cancer (BC)
progression. However, it is not well understood how CCN5 prevents invasive phenotypes
of BC cells. CCN5 protein expression is detected in estrogen receptor-α
(ER-α) -positive normal breast epithelial cells as well as BC cells, which are
weakly invasive and rarely metastasize depending on the functional status of
ER-α. A unique molecular relation between CCN5 and ER-α has been
established as the components of the same signaling pathway that coordinate some
essential signals associated with the proliferation as well as delaying the disease
progression from a non-invasive to invasive phenotypes. Given the importance of this
connection, we determined the role of CCN5 in regulation of ER-α in different
cellular settings and their functional relationship. In a genetically engineered
mouse model, induced expression of CCN5 in the mammary ductal epithelial cells by
doxycycline promotes ER-α expression. Similarly, CCN5 regulates ER-α
expression and activity in normal and neoplastic breast cells, as documented in
various in vitro settings such as mouse mammary gland culture, human mammary
epithelial cell and different BC cell cultures in the presence or absence of human
recombinant CCN5 (hrCCN5) protein. Mechanistically, at least in the BC cells, CCN5 is
sufficient to induce ER-α expression at the transcription level via interacting
with integrins-α6β1 and suppressing Akt followed by activation of FOXO3a.
Moreover, in vitro and in vivo functional assays indicate that CCN5
treatment promotes response to tamoxifen in triple-negative BC (TNBC) cells possibly
via restoring ER-α. Collectively, these studies implicates that the combination
treatments of CCN5 (via activation of CCN5 or hrCCN5 treatment) and tamoxifen as
potential therapies for TNBC.
Collapse
Affiliation(s)
- S Sarkar
- Cancer Research Unit, Kansas City VA Medical Center, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - A Ghosh
- Cancer Research Unit, Kansas City VA Medical Center, Kansas City, MO, USA.,Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Centre, Kansas City, KS, USA
| | - S Banerjee
- Cancer Research Unit, Kansas City VA Medical Center, Kansas City, MO, USA.,Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Centre, Kansas City, KS, USA
| | - G Maity
- Cancer Research Unit, Kansas City VA Medical Center, Kansas City, MO, USA.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - A Das
- Cancer Research Unit, Kansas City VA Medical Center, Kansas City, MO, USA.,Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Centre, Kansas City, KS, USA
| | - M A Larson
- Transgenic and Gene-targeting Institutional Facilities, University of Kansas Medical Centre, Kansas City, KS, USA
| | - V Gupta
- Cancer Research Unit, Kansas City VA Medical Center, Kansas City, MO, USA.,Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Centre, Kansas City, KS, USA
| | - I Haque
- Cancer Research Unit, Kansas City VA Medical Center, Kansas City, MO, USA.,Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Centre, Kansas City, KS, USA
| | - O Tawfik
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - S K Banerjee
- Cancer Research Unit, Kansas City VA Medical Center, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.,Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Centre, Kansas City, KS, USA.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
46
|
Qian Y, Xia S, Feng Z. Sox9 mediated transcriptional activation of FOXK2 is critical for colorectal cancer cells proliferation. Biochem Biophys Res Commun 2016; 483:475-481. [PMID: 28007600 DOI: 10.1016/j.bbrc.2016.12.119] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 12/18/2016] [Indexed: 12/11/2022]
Abstract
FOXK2, which belongs to the fork head DNA binding protein family, has been shown to play a critical role in tumorigenesis. Here, we detected FOXK2 expression and its clinical significance in colorectal cancer, which has not been fully investigated before. Results from public database and our cohort indicated that FOXK2 was transcriptionally activated in colorectal cancer tissues compared to non-cancer tissues. High expression of FOXK2 was significantly correlated with poor survival. In vitro cell experiments suggested that FOXK2 promoted cell proliferation. Furthermore, we found that oncogene SOX9 was responsible for the up-regulation of FOXK2 by directly binding on its promoter. Depletion of FOXK2 attenuated SOX9 induced cell growth. In addition, we observed that the expression of FOXK2 was significantly associated with the expression of SOX9 both in the public database and our colorectal cancer tissues. The patients with SOX9+FOXK2+ had a poor overall survival (p = 0.0084). In conclusion, our data suggested that SOX9 transcriptionally activated FOXK2 was involved in the pathogenesis of colorectal cancer and might be a novel target for colorectal cancer therapy.
Collapse
Affiliation(s)
- Yu Qian
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Suhua Xia
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Zhenyu Feng
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, China
| |
Collapse
|
47
|
Shan L, Zhou X, Liu X, Wang Y, Su D, Hou Y, Yu N, Yang C, Liu B, Gao J, Duan Y, Yang J, Li W, Liang J, Sun L, Chen K, Xuan C, Shi L, Wang Y, Shang Y. FOXK2 Elicits Massive Transcription Repression and Suppresses the Hypoxic Response and Breast Cancer Carcinogenesis. Cancer Cell 2016; 30:708-722. [PMID: 27773593 DOI: 10.1016/j.ccell.2016.09.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/08/2016] [Accepted: 09/20/2016] [Indexed: 12/20/2022]
Abstract
Although clinically associated with severe developmental defects, the biological function of FOXK2 remains poorly explored. Here we report that FOXK2 interacts with transcription corepressor complexes NCoR/SMRT, SIN3A, NuRD, and REST/CoREST to repress a cohort of genes including HIF1β and EZH2 and to regulate several signaling pathways including the hypoxic response. We show that FOXK2 inhibits the proliferation and invasion of breast cancer cells and suppresses the growth and metastasis of breast cancer. Interestingly, FOXK2 is transactivated by ERα and transrepressed via reciprocal successive feedback by HIF1β/EZH2. Significantly, the expression of FOXK2 is progressively lost during breast cancer progression, and low FOXK2 expression is strongly correlated with higher histologic grades, positive lymph nodes, and ERα-/PR-/HER2- status, all indicators of poor prognosis.
Collapse
Affiliation(s)
- Lin Shan
- Department of Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China
| | - Xing Zhou
- Department of Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China
| | - Xinhua Liu
- Department of Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China
| | - Yue Wang
- Department of Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China
| | - Dongxue Su
- Department of Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China
| | - Yongqiang Hou
- Department of Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China
| | - Na Yu
- Department of Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China
| | - Chao Yang
- Department of Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China
| | - Beibei Liu
- Department of Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China
| | - Jie Gao
- Department of Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China
| | - Yang Duan
- Department of Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China
| | - Jianguo Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wanjin Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jing Liang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Luyang Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Chenghao Xuan
- Department of Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China
| | - Lei Shi
- Department of Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China
| | - Yan Wang
- Department of Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China
| | - Yongfeng Shang
- Department of Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
48
|
New concepts on BARD1: Regulator of BRCA pathways and beyond. Int J Biochem Cell Biol 2016; 72:1-17. [DOI: 10.1016/j.biocel.2015.12.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 01/09/2023]
|
49
|
Pérez-Solis MA, Maya-Nuñez G, Casas-González P, Olivares A, Aguilar-Rojas A. Effects of the lifestyle habits in breast cancer transcriptional regulation. Cancer Cell Int 2016; 16:7. [PMID: 26877711 PMCID: PMC4752785 DOI: 10.1186/s12935-016-0284-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 02/03/2016] [Indexed: 12/31/2022] Open
Abstract
Through research carried out in the last 25 years about the breast cancer etiology, it has been possible to estimate that less than 10 % of patients who are diagnosed with the condition are carriers of some germline or somatic mutation. The clinical reports of breast cancer patients with healthy twins and the development of disease in women without high penetrance mutations detected, warn the participation more factors in the transformation process. The high incidence of mammary adenocarcinoma in the modern woman and the urgent need for new methods of prevention and early detection have demanded more information about the role that environment and lifestyle have on the transformation of mammary gland epithelial cells. Obesity, alcoholism and smoking are factors that have shown a close correlation with the risk of developing breast cancer. And although these conditions affect different cell regulation levels, the study of its effects in the mechanisms of transcriptional and epigenetic regulation is considered critical for a better understanding of the loss of identity of epithelial cells during carcinogenesis of this tissue. The main objective of this review was to establish the importance of changes occurring to transcriptional level in the mammary gland as a consequence of acute or chronic exposure to harmful products such as obesity-causing foods, ethanol and cigarette smoke components. At analyze the main studies related to topic, it has concluded that the understanding of effects caused by the lifestyle factors in performance of the transcriptional mechanisms that determine gene expression of the mammary gland epithelial cells, may help explain the development of this disease in women without genetic propensity and different phenotypic manifestations of this cancer type.
Collapse
Affiliation(s)
- Marco Allán Pérez-Solis
- Research Unit in Reproductive Medicine, Hospital de Ginecobstetricia “Luis Castelazo Ayala”, Instituto Mexicano del Seguro Social, No. 289 Río Magdalena, Tizapan San Angel, 01090 Mexico, DF Mexico
| | - Guadalupe Maya-Nuñez
- Research Unit in Reproductive Medicine, Hospital de Ginecobstetricia “Luis Castelazo Ayala”, Instituto Mexicano del Seguro Social, No. 289 Río Magdalena, Tizapan San Angel, 01090 Mexico, DF Mexico
| | - Patricia Casas-González
- Research Unit in Reproductive Medicine, Hospital de Ginecobstetricia “Luis Castelazo Ayala”, Instituto Mexicano del Seguro Social, No. 289 Río Magdalena, Tizapan San Angel, 01090 Mexico, DF Mexico
| | - Aleida Olivares
- Research Unit in Reproductive Medicine, Hospital de Ginecobstetricia “Luis Castelazo Ayala”, Instituto Mexicano del Seguro Social, No. 289 Río Magdalena, Tizapan San Angel, 01090 Mexico, DF Mexico
| | - Arturo Aguilar-Rojas
- Research Unit in Reproductive Medicine, Hospital de Ginecobstetricia “Luis Castelazo Ayala”, Instituto Mexicano del Seguro Social, No. 289 Río Magdalena, Tizapan San Angel, 01090 Mexico, DF Mexico
| |
Collapse
|
50
|
Bi H, Li S, Qu X, Wang M, Bai X, Xu Z, Ao X, Jia Z, Jiang X, Yang Y, Wu H. DEC1 regulates breast cancer cell proliferation by stabilizing cyclin E protein and delays the progression of cell cycle S phase. Cell Death Dis 2015; 6:e1891. [PMID: 26402517 PMCID: PMC4650443 DOI: 10.1038/cddis.2015.247] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 07/24/2015] [Accepted: 07/28/2015] [Indexed: 02/07/2023]
Abstract
Breast cancer that is accompanied by a high level of cyclin E expression usually exhibits poor prognosis and clinical outcome. Several factors are known to regulate the level of cyclin E during the cell cycle progression. The transcription factor DEC1 (also known as STRA13 and SHARP2) plays an important role in cell proliferation and apoptosis. Nevertheless, the mechanism of its role in cell proliferation is poorly understood. In this study, using the breast cancer cell lines MCF-7 and T47D, we showed that DEC1 could inhibit the cell cycle progression of breast cancer cells independently of its transcriptional activity. The cell cycle-dependent timing of DEC1 overexpression could affect the progression of the cell cycle through regulating the level of cyclin E protein. DEC1 stabilized cyclin E at the protein level by interacting with cyclin E. Overexpression of DEC1 repressed the interaction between cyclin E and its E3 ligase Fbw7α, consequently reducing the level of polyunbiquitinated cyclin E and increased the accumulation of non-ubiquitinated cyclin E. Furthermore, DEC1 also promoted the nuclear accumulation of Cdk2 and the formation of cyclin E/Cdk2 complex, as well as upregulating the activity of the cyclin E/Cdk2 complex, which inhibited the subsequent association of cyclin A with Cdk2. This had the effect of prolonging the S phase and suppressing the growth of breast cancers in a mouse xenograft model. These events probably constitute the essential steps in DEC1-regulated cell proliferation, thus opening up the possibility of a protein-based molecular strategy for eliminating cancer cells that manifest a high-level expression of cyclin E.
Collapse
Affiliation(s)
- H Bi
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - S Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - X Qu
- School of Life Science and Medicine, Dalian University of Technology, Panjin 124221, China
| | - M Wang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - X Bai
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Z Xu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - X Ao
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Z Jia
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - X Jiang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Y Yang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - H Wu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China.,School of Life Science and Medicine, Dalian University of Technology, Panjin 124221, China
| |
Collapse
|