1
|
Feugang JM, Gad A, Menjivar NG, Ishak GM, Gebremedhn S, Gastal MO, Dlamini NH, Prochazka R, Gastal EL, Tesfaye D. Seasonal influence on miRNA expression dynamics of extracellular vesicles in equine follicular fluid. J Anim Sci Biotechnol 2024; 15:137. [PMID: 39380110 PMCID: PMC11462823 DOI: 10.1186/s40104-024-01097-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/27/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Ovarian follicular fluid (FF) is a dynamic environment that changes with the seasons, affecting follicle development, ovulation, and oocyte quality. Cells in the follicles release tiny particles called extracellular vesicles (EVs) containing vital regulatory molecules, such as microRNAs (miRNAs). These miRNAs are pivotal in facilitating communication within the follicles through diverse signaling and information transfer forms. EV-coupled miRNA signaling is implicated to be associated with ovarian function, follicle and oocyte growth and response to various environmental insults. Herein, we investigated how seasonal variations directly influence the ovulatory and anovulatory states of ovarian follicles and how are they associated with follicular fluid EV-coupled miRNA dynamics in horses. RESULTS Ultrasonographic monitoring and follicular fluid aspiration of preovulatory follicles in horses during the anovulatory (spring: non-breeding) and ovulatory (spring, summer, and fall: breeding) seasons and subsequent EV isolation and miRNA profiling identified significant variation in EV-miRNA cargo content. We identified 97 miRNAs with differential expression among the groups and specific clusters of miRNAs involved in the spring transition (miR-149, -200b, -206, -221, -328, and -615) and peak breeding period (including miR-143, -192, -451, -302b, -100, and let-7c). Bioinformatic analyses showed enrichments in various biological functions, e.g., transcription factor activity, transcription and transcription regulation, nucleic acid binding, sequence-specific DNA binding, p53 signaling, and post-translational modifications. Cluster analyses revealed distinct sets of significantly up- and down-regulated miRNAs associated with spring anovulatory (Cluster 1) and summer ovulation-the peak breeding season (Clusters 4 and 6). CONCLUSIONS The findings from the current study shed light on the dynamics of FF-EV-coupled miRNAs in relation to equine ovulatory and anovulatory seasons, and their roles in understanding the mechanisms involved in seasonal shifts and ovulation during the breeding season warrant further investigation.
Collapse
Affiliation(s)
- Jean M Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Ahmed Gad
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Nico G Menjivar
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Ghassan M Ishak
- Department of Surgery and Obstetrics, College of Veterinary Medicine, University of Baghdad, Baghdad, 10011, Iraq
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| | | | - Melba O Gastal
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Notsile H Dlamini
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Radek Prochazka
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, 27721, Czech Republic
| | - Eduardo L Gastal
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Dawit Tesfaye
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
2
|
Pal A, Vasudevan V, Houle F, Lantin M, Maniates K, Huberdeau MQ, Abbott A, Simard M. Defining the contribution of microRNA-specific Argonautes with slicer capability in animals. Nucleic Acids Res 2024; 52:5002-5015. [PMID: 38477356 PMCID: PMC11109967 DOI: 10.1093/nar/gkae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
microRNAs regulate gene expression through interaction with an Argonaute protein. While some members of this protein family retain an enzymatic activity capable of cleaving RNA molecules complementary to Argonaute-bound small RNAs, the role of the slicer residues in the canonical microRNA pathway is still unclear in animals. To address this, we created Caenorhabditis elegans strains with mutated slicer residues in the endogenous ALG-1 and ALG-2, the only two slicing Argonautes essential for the miRNA pathway in this animal model. We observe that the mutation in ALG-1 and ALG-2 catalytic residues affects overall animal fitness and causes phenotypes reminiscent of miRNA defects only when grown and maintained at restrictive temperature. Furthermore, the analysis of global miRNA expression shows that the slicer residues of ALG-1 and ALG-2 contribute differentially to regulate the level of specific subsets of miRNAs in young adults. We also demonstrate that altering the catalytic tetrad of those miRNA-specific Argonautes does not result in any defect in the production of canonical miRNAs. Together, these data support that the slicer residues of miRNA-specific Argonautes contribute to maintaining levels of a set of miRNAs for optimal viability and fitness in animals particularly exposed to specific growing conditions.
Collapse
Affiliation(s)
- Anisha Pal
- CHU de Québec-Université Laval Research Center (Oncology Division), Quebec City, Quebec G1R 3S3, Canada
- Université Laval Cancer Research Centre, Quebec City, Quebec G1R 3S3, Canada
| | - Vaishnav Vasudevan
- CHU de Québec-Université Laval Research Center (Oncology Division), Quebec City, Quebec G1R 3S3, Canada
- Université Laval Cancer Research Centre, Quebec City, Quebec G1R 3S3, Canada
| | - François Houle
- CHU de Québec-Université Laval Research Center (Oncology Division), Quebec City, Quebec G1R 3S3, Canada
- Université Laval Cancer Research Centre, Quebec City, Quebec G1R 3S3, Canada
| | - Michael Lantin
- CHU de Québec-Université Laval Research Center (Oncology Division), Quebec City, Quebec G1R 3S3, Canada
- Université Laval Cancer Research Centre, Quebec City, Quebec G1R 3S3, Canada
| | - Katherine A Maniates
- Waksman Institute of Microbiology and Department of Genetics, Rutgers University, USA
| | - Miguel Quévillon Huberdeau
- CHU de Québec-Université Laval Research Center (Oncology Division), Quebec City, Quebec G1R 3S3, Canada
- Université Laval Cancer Research Centre, Quebec City, Quebec G1R 3S3, Canada
| | - Allison L Abbott
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Martin J Simard
- CHU de Québec-Université Laval Research Center (Oncology Division), Quebec City, Quebec G1R 3S3, Canada
- Université Laval Cancer Research Centre, Quebec City, Quebec G1R 3S3, Canada
| |
Collapse
|
3
|
Mol N, Priya A, Singh AK, Mago P, Shalimar, Ray AK. "Unravelling the impacts of climatic heat events on cardiovascular health in animal models". ENVIRONMENTAL RESEARCH 2024; 248:118315. [PMID: 38301760 DOI: 10.1016/j.envres.2024.118315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
Climate change has led to an increase in high ambient temperatures, causing extreme heat events worldwide. According to the World Meteorological Organization (WMO), July 2023 marked a historic milestone as the Earth reached its hottest recorded temperature, precisely hitting the critical threshold of 1.5 °C set by the Paris Agreement. This distressing development led to a stark warning from the United Nations, signaling the dawn of what they call "an era of global boiling". The increasing global temperatures can result in high heat stress which leads to various physiological and biochemical alterations in the human body. Given that cardiovascular diseases (CVDs) are a leading cause of morbidity and mortality globally, heat events exacerbate this public health issue. While clinical and in-vitro studies have suggested a range of pathophysiological and biochemical mechanisms underlying the body's response to heat stress, the complex nature of organ-system level interactions makes precise investigation challenging. To address this knowledge gap effectively, the use of animal models exposed to acute or chronic heat stress can be invaluable. These models can closely replicate the multifaceted effects observed in humans during heat stress conditions. Despite extensive independent reviews, limited focus has been shed on the high heat-induced cardiovascular complications and their mechanisms, particularly utilizing animal models. Therefore, in this comprehensive review, we highlight the crucial biomarkers altered during heat stress, contributing significantly to various CVDs. We explore potential mechanisms underlying heat-induced cardiovascular dysfunction and damage, delving into various animal models. While traditional rodent models are commonly employed, we also examine less conventional models, including ruminants, broilers, canines, and primates. Furthermore, we delve into various potential therapeutic approaches and preventive measures. These insights hold significant promise for the development of more effective clinical interventions against the effects of heat stress on the human cardiovascular system.
Collapse
Affiliation(s)
- Nidhi Mol
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Anjali Priya
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Alok Kumar Singh
- Department of Zoology, Ramjas College, University of Delhi, New Delhi, India
| | - Payal Mago
- Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi, India; Campus of Open Learning, University of Delhi, New Delhi, India
| | - Shalimar
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Ashwini Kumar Ray
- Department of Environmental Studies, University of Delhi, New Delhi, India.
| |
Collapse
|
4
|
Chen Z, Li C, Huang H, Shi YL, Wang X. Research Progress of Aging-related MicroRNAs. Curr Stem Cell Res Ther 2024; 19:334-350. [PMID: 36892029 DOI: 10.2174/1574888x18666230308111043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 03/10/2023]
Abstract
Senescence refers to the irreversible state in which cells enter cell cycle arrest due to internal or external stimuli. The accumulation of senescent cells can lead to many age-related diseases, such as neurodegenerative diseases, cardiovascular diseases, and cancers. MicroRNAs are short non-coding RNAs that bind to target mRNA to regulate gene expression after transcription and play an important regulatory role in the aging process. From nematodes to humans, a variety of miRNAs have been confirmed to alter and affect the aging process. Studying the regulatory mechanisms of miRNAs in aging can further deepen our understanding of cell and body aging and provide a new perspective for the diagnosis and treatment of aging-related diseases. In this review, we illustrate the current research status of miRNAs in aging and discuss the possible prospects for clinical applications of targeting miRNAs in senile diseases.
Collapse
Affiliation(s)
- Zhongyu Chen
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Chenxu Li
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Haitao Huang
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Yi-Ling Shi
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Xiaobo Wang
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
- Key Laboratory of University Cell Biology, Dali, Yunnan, 671000, China
| |
Collapse
|
5
|
Chipman LB, Luc S, Nicastro IA, Hulahan JJ, Dann DC, Bodas DM, Pasquinelli AE. Expression, not sequence, distinguishes miR-238 from its miR-239ab sister miRNAs in promoting longevity in Caenorhabditis elegans. PLoS Genet 2023; 19:e1011055. [PMID: 38011256 PMCID: PMC10703411 DOI: 10.1371/journal.pgen.1011055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 12/07/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression by base-pairing to target sequences in messenger RNAs (mRNAs) and recruiting factors that induce translational repression and mRNA decay. In animals, nucleotides 2-8 at the 5' end of the miRNA, called the seed region, are often necessary and sometimes sufficient for functional target interactions. MiRNAs that contain identical seed sequences are grouped into families where individual members have the potential to share targets and act redundantly. A rare exception seemed to be the miR-238/239ab family in Caenorhabditis elegans, as previous work indicated that loss of miR-238 reduced lifespan while deletion of the miR-239ab locus resulted in enhanced longevity and thermal stress resistance. Here, we re-examined these potentially opposing roles using new strains that individually disrupt each miRNA sister. We confirmed that loss of miR-238 is associated with a shortened lifespan but could detect no longevity or stress phenotypes in animals lacking miR-239a or miR-239b, individually or in combination. Additionally, dozens of genes were mis-regulated in miR-238 mutants but almost no gene expression changes were detected in either miR-239a or miR-239b mutants compared to wild type animals. We present evidence that the lack of redundancy between miR-238 and miR-239ab is independent of their sequence differences; miR-239a or miR-239b could substitute for the longevity role of miR-238 when expressed from the miR-238 locus. Altogether, these studies disqualify miR-239ab as negative regulators of aging and demonstrate that expression, not sequence, dictates the specific role of miR-238 in promoting longevity.
Collapse
Affiliation(s)
- Laura B. Chipman
- Molecular Biology Department, School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - San Luc
- Molecular Biology Department, School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Ian A. Nicastro
- Molecular Biology Department, School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Jesse J. Hulahan
- Molecular Biology Department, School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Delaney C. Dann
- Molecular Biology Department, School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Devavrat M. Bodas
- Molecular Biology Department, School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Amy E. Pasquinelli
- Molecular Biology Department, School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
6
|
Gad A, Joyce K, Menjivar NG, Heredia D, Rojas CS, Tesfaye D, Gonella-Diaza A. Extracellular vesicle-microRNAs mediated response of bovine ovaries to seasonal environmental changes. J Ovarian Res 2023; 16:101. [PMID: 37221550 DOI: 10.1186/s13048-023-01181-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/05/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Among the various seasonal environmental changes, elevated ambient temperature during the summer season is a main cause of stress in dairy and beef cows, leading to impaired reproductive function and fertility. Follicular fluid extracellular vesicles (FF-EVs) play an important role in intrafollicular cellular communication by, in part, mediating the deleterious effects of heat stress (HS). Here we aimed to investigate the changes in FF-EV miRNA cargoes in beef cows in response to seasonal changes: summer (SUM) compared to the winter (WIN) season using high throughput sequencing of FF-EV-coupled miRNAs. In addition to their biological relevance, the potential mechanisms involved in the packaging and release of those miRNAs as a response to environmental HS were elucidated. RESULTS Sequencing analysis revealed that an average of 6.6% of the EV-RNA mapped reads were annotated to bovine miRNAs. Interestingly, miR-148a, miR-99a-5p, miR-10b, and miR-143 were the top four miRNAs in both groups accounting for approximately 52 and 62% of the total miRNA sequence reads in the SUM and WIN groups, respectively. A group of 16 miRNAs was up-regulated and 8 miRNAs were down-regulated in the SUM compared to the WIN group. Five DE-miRNAs (miR-10a, miR-10b, miR-26a, let-7f, and miR-1246) were among the top 20 expressed miRNA lists. Sequence motif analysis revealed the appearance of two specific motifs in 13 out of the 16 upregulated miRNAs under HS conditions. Both motifs were found to be potentially bonded by specific RNA binding proteins including Y-box binding proteins (YBX1 and YBX2) and RBM42. CONCLUSION Our findings indicate that FF EV-coupled miRNA profile varies under seasonal changes. These miRNAs could be a good indicator of the cellular mechanism in mediating HS response and the potential interplay between miRNA motifs and RNA binding proteins can be one of the mechanisms governing the packaging and release of miRNAs via EVs to facilitate cellular survival.
Collapse
Affiliation(s)
- Ahmed Gad
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Kamryn Joyce
- North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Marianna, FL, USA
| | - Nico Graham Menjivar
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Daniella Heredia
- North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Marianna, FL, USA
| | - Camila Santos Rojas
- North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Marianna, FL, USA
| | - Dawit Tesfaye
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Angela Gonella-Diaza
- North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Marianna, FL, USA
| |
Collapse
|
7
|
Matai L, Slack FJ. MicroRNAs in Age-Related Proteostasis and Stress Responses. Noncoding RNA 2023; 9:26. [PMID: 37104008 PMCID: PMC10143298 DOI: 10.3390/ncrna9020026] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/28/2023] Open
Abstract
Aging is associated with the accumulation of damaged and misfolded proteins through a decline in the protein homeostasis (proteostasis) machinery, leading to various age-associated protein misfolding diseases such as Huntington's or Parkinson's. The efficiency of cellular stress response pathways also weakens with age, further contributing to the failure to maintain proteostasis. MicroRNAs (miRNAs or miRs) are a class of small, non-coding RNAs (ncRNAs) that bind target messenger RNAs at their 3'UTR, resulting in the post-transcriptional repression of gene expression. From the discovery of aging roles for lin-4 in C. elegans, the role of numerous miRNAs in controlling the aging process has been uncovered in different organisms. Recent studies have also shown that miRNAs regulate different components of proteostasis machinery as well as cellular response pathways to proteotoxic stress, some of which are very important during aging or in age-related pathologies. Here, we present a review of these findings, highlighting the role of individual miRNAs in age-associated protein folding and degradation across different organisms. We also broadly summarize the relationships between miRNAs and organelle-specific stress response pathways during aging and in various age-associated diseases.
Collapse
Affiliation(s)
| | - Frank J. Slack
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Matai L, Stathis T, Lee JD, Parsons C, Saxena T, Shlomchik K, Slack FJ. The conserved microRNA-229 family controls low-insulin signaling and dietary restriction induced longevity through interactions with SKN-1/NRF2. Aging Cell 2023; 22:e13785. [PMID: 36748780 PMCID: PMC10086521 DOI: 10.1111/acel.13785] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 12/12/2022] [Accepted: 01/05/2023] [Indexed: 02/08/2023] Open
Abstract
Several microRNAs have emerged as regulators of pathways that control aging. For example, miR-228 is required for normal lifespan and dietary restriction (DR) mediated longevity through interaction with PHA-4 and SKN-1 transcription factors in Caenorhabditis elegans. miR-229,64,65, and 66, a cluster of microRNAs located adjacent to each other on chromosome III, are in the same family as miR-228, albeit with slight differences in the miR-228 seed sequence. We demonstrate that, in contrast to the anti-longevity role of miR-228, the miR-229-66 cluster is required for normal C. elegans lifespan and for the longevity observed in mir-228 mutants. miR-229-66 is also critical for lifespan extension observed under DR and reduced insulin signaling (IIS) and by constitutive nuclear SKN-1. Both DR and low-IIS upregulate the expression of the miRNA cluster, which is dependent on transcription factors PHA-4, SKN-1, and DAF-16. In turn, the expression of SKN-1 and DAF-16 requires mir-229,64,65,66. miR-229-66 targets the odd-skipped-related transcription factor, odd-2 to regulate lifespan. Knockdown of odd-2 increases lifespan, suppresses the short lifespan of mir-229,64,65,66(nDf63) III mutants, and alters levels of SKN-1 in the ASI neurons. Together with SKN-1, the miRNA cluster also indirectly regulates several genes in the xenobiotic detoxification pathway which increases wild-type lifespan and significantly rescues the short lifespan of mir-229,64,65,66(nDf63) III mutants. Thus, by interacting with SKN-1, miR-229-66 transduces the effects of DR and low-IIS in lifespan extension in C. elegans. Given that this pathway is conserved, it is possible that a similar mechanism regulates aging in more complex organisms.
Collapse
Affiliation(s)
- Latika Matai
- HMS Initiative for RNA Medicine, Department of PathologyBeth Israel Deaconess Medical Center, Harvard Medical SchoolBostonMassachusettsUSA
| | - Thalyana Stathis
- Department of Molecular, Cellular and Developmental BiologyYale UniversityNew HavenConnecticutUSA
| | - Jonathan D. Lee
- HMS Initiative for RNA Medicine, Department of PathologyBeth Israel Deaconess Medical Center, Harvard Medical SchoolBostonMassachusettsUSA
| | - Christine Parsons
- Department of Molecular, Cellular and Developmental BiologyYale UniversityNew HavenConnecticutUSA
| | - Tanvi Saxena
- HMS Initiative for RNA Medicine, Department of PathologyBeth Israel Deaconess Medical Center, Harvard Medical SchoolBostonMassachusettsUSA
| | - Kovi Shlomchik
- Department of Molecular, Cellular and Developmental BiologyYale UniversityNew HavenConnecticutUSA
| | - Frank J. Slack
- HMS Initiative for RNA Medicine, Department of PathologyBeth Israel Deaconess Medical Center, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
9
|
The Thermal Stress Coping Network of the Nematode Caenorhabditis elegans. Int J Mol Sci 2022; 23:ijms232314907. [PMID: 36499234 PMCID: PMC9737000 DOI: 10.3390/ijms232314907] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/11/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Response to hyperthermia, highly conserved from bacteria to humans, involves transcriptional upregulation of genes involved in battling the cytotoxicity caused by misfolded and denatured proteins, with the aim of proteostasis restoration. C. elegans senses and responds to changes in growth temperature or noxious thermal stress by well-defined signaling pathways. Under adverse conditions, regulation of the heat shock response (HSR) in C. elegans is controlled by a single transcription factor, heat-shock factor 1 (HSF-1). HSR and HSF-1 in particular are proven to be central to survival under proteotoxic stress, with additional roles in normal physiological processes. For years, it was a common belief that upregulation of heat shock proteins (HSPs) by HSF-1 was the main and most important step toward thermotolerance. However, an ever-growing number of studies have shown that targets of HSF-1 involved in cytoskeletal and exoskeletal integrity preservation as well as other HSF-1 dependent and independent pathways are equally important. In this review, we follow the thermal stimulus from reception by the nematode nerve endings till the activation of cellular response programs. We analyze the different HSF-1 functions in HSR as well as all the recently discovered mechanisms that add to the knowledge of the heat stress coping network of C. elegans.
Collapse
|
10
|
Palakolanu SR, Gupta S, Yeshvekar RK, Chakravartty N, Kaliamoorthy S, Shankhapal AR, Vempati AS, Kuriakose B, Lekkala SP, Philip M, Perumal RC, Lachagari VBR, Bhatnagar-Mathur P. Genome-wide miRNAs profiles of pearl millet under contrasting high vapor pressure deficit reveal their functional roles in drought stress adaptations. PHYSIOLOGIA PLANTARUM 2022; 174:e13521. [PMID: 34392545 DOI: 10.1111/ppl.13521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/22/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Pearl millet (Pennisetum glaucum [L.] R. Br.) is an important crop capable of growing in harsh and marginal environments, with the highest degree of tolerance to drought and heat stresses among cereals. Diverse germplasm of pearl millet shows a significant phenotypic variation in response to abiotic stresses, making it a unique model to study the mechanisms responsible for stress mitigation. The present study focuses on identifying the physiological response of two pearl millet high-resolution cross (HRC) genotypes, ICMR 1122 and ICMR 1152, in response to low and high vapor pressure deficit (VPD). Under high VPD conditions, ICMR 1152 exhibited a lower transpiration rate (Tr), higher transpiration efficiency, and lower root sap exudation than ICMR 1122. Further, Pg-miRNAs expressed in the contrasting genotypes under low and high VPD conditions were identified by deep sequencing analysis. A total of 116 known and 61 novel Pg-miRNAs were identified from ICMR 1152, while 26 known and six novel Pg-miRNAs were identified from ICMR 1122 genotypes, respectively. While Pg-miR165, 168, 170, and 319 families exhibited significant differential expression under low and high VPD conditions in both genotypes, ICMR 1152 showed abundant expression of Pg-miR167, Pg-miR172, Pg-miR396 Pg-miR399, Pg-miR862, Pg-miR868, Pg-miR950, Pg-miR5054, and Pg-miR7527 indicating their direct and indirect role in root physiology and abiotic stress responses. Drought responsive Pg-miRNA targets showed upregulation in response to high VPD stress, further narrowing down the miRNAs involved in regulation of drought tolerance in pearl millet.
Collapse
Affiliation(s)
- Sudhakar Reddy Palakolanu
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | - Saurabh Gupta
- AgriGenome Labs Pvt. Ltd, Hyderabad, Telangana, India
| | - Richa K Yeshvekar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds, UK
| | | | - Sivasakthi Kaliamoorthy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | | | - Ashwini Soumya Vempati
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | | | | | | | | | | | - Pooja Bhatnagar-Mathur
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| |
Collapse
|
11
|
Evans B, Furlong HA, de Lencastre A. Parkinson's disease and microRNAs - Lessons from model organisms and human studies. Exp Gerontol 2021; 155:111585. [PMID: 34634413 PMCID: PMC8596463 DOI: 10.1016/j.exger.2021.111585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/24/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
Parkinson's disease (PD) is a progressive, age-associated neurodegenerative disorder that affects an estimated 10 million people worldwide. PD is characterized by proteinaceous, cytoplasmic inclusions containing α-synuclein, called Lewy Bodies, which form in dopaminergic neurons in an age-dependent manner, and are associated with the emergence of characteristic PD symptoms such as resting tremor, rigidity, slow movements and postural instability. Although considerable progress has been made in recent years in identifying genetic and environmental factors that are associated with PD, early diagnosis and therapeutic options remain severely lacking. Recently, microRNAs (miRNAs) have emerged as novel therapeutic targets in various diseases, such as cancer and neurodegenerative diseases. MiRNAs have been shown to play roles in various aging and neurodegenerative disease models across phyla. More recently, studies have identified specific roles for miRNAs and their targets in the pathogenesis and progression of PD in several model organisms. Here, we discuss the evolving field of miRNAs, their association with PD, and the outlook for the future.
Collapse
Affiliation(s)
- Brian Evans
- Department of Biological Sciences, Quinnipiac University, Hamden, CT 06518, USA
| | - Howard A Furlong
- Frank H. Netter MD School of Medicine at Quinnipiac University, North Haven, CT 06473, USA
| | | |
Collapse
|
12
|
Pagliuso DC, Bodas DM, Pasquinelli AE. Recovery from heat shock requires the microRNA pathway in Caenorhabditis elegans. PLoS Genet 2021; 17:e1009734. [PMID: 34351906 PMCID: PMC8370650 DOI: 10.1371/journal.pgen.1009734] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/17/2021] [Accepted: 07/22/2021] [Indexed: 12/16/2022] Open
Abstract
The heat shock response (HSR) is a highly conserved cellular process that promotes survival during stress. A hallmark of the HSR is the rapid induction of heat shock proteins (HSPs), such as HSP-70, by transcriptional activation. Once the stress is alleviated, HSPs return to near basal levels through incompletely understood mechanisms. Here, we show that the microRNA pathway acts during heat shock recovery in Caenorhabditis elegans. Depletion of the miRNA Argonaute, Argonaute Like Gene 1 (ALG-1), after an episode of heat shock resulted in decreased survival and perdurance of high hsp-70 levels. We present evidence that regulation of hsp-70 is dependent on miR-85 and sequences in the hsp-70 3’UTR that contain target sites for this miRNA. Regulation of hsp-70 by the miRNA pathway was found to be particularly important during recovery from HS, as animals that lacked miR-85 or its target sites in the hsp-70 3’UTR overexpressed HSP-70 and exhibited reduced viability. In summary, our findings show that down-regulation of hsp-70 by miR-85 after HS promotes survival, highlighting a previously unappreciated role for the miRNA pathway during recovery from stress. In the natural world, organisms constantly face stressful conditions such as oxidative stress, pathogen infection, starvation and heat stress. While many studies have focused on the cellular response to stress, less is known about how gene expression re-sets after the stress has been ameliorated. Here, we show that the microRNA pathway plays a critical role during the recovery phase after an episode of heat shock in the nematode, Caenorhabditis elegans. Elevated temperatures induce high expression of heat shock proteins (HSPs), including HSP-70, that provide protection from the damaging effects of high heat. We found that restoration of basal levels of HSP-70 after heat shock depends on Argonaute Like Gene 1 and miR-85. Moreover, loss of miRNA-mediated repression of HSP-70 results in compromised survival following heat shock. Our study draws attention to the recovery phase of the heat shock response and highlights an important role for the microRNA pathway in re-establishing gene expression programs needed for organismal viability post stress.
Collapse
Affiliation(s)
- Delaney C. Pagliuso
- Division of Biology, University of California, San Diego, La Jolla, California, United States of America
| | - Devavrat M. Bodas
- Division of Biology, University of California, San Diego, La Jolla, California, United States of America
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Amy E. Pasquinelli
- Division of Biology, University of California, San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
13
|
Brosnan CA, Palmer AJ, Zuryn S. Cell-type-specific profiling of loaded miRNAs from Caenorhabditis elegans reveals spatial and temporal flexibility in Argonaute loading. Nat Commun 2021; 12:2194. [PMID: 33850152 PMCID: PMC8044110 DOI: 10.1038/s41467-021-22503-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 03/18/2021] [Indexed: 12/13/2022] Open
Abstract
Multicellularity has coincided with the evolution of microRNAs (miRNAs), small regulatory RNAs that are integrated into cellular differentiation and homeostatic gene-regulatory networks. However, the regulatory mechanisms underpinning miRNA activity have remained largely obscured because of the precise, and thus difficult to access, cellular contexts under which they operate. To resolve these, we have generated a genome-wide map of active miRNAs in Caenorhabditis elegans by revealing cell-type-specific patterns of miRNAs loaded into Argonaute (AGO) silencing complexes. Epitope-labelled AGO proteins were selectively expressed and immunoprecipitated from three distinct tissue types and associated miRNAs sequenced. In addition to providing information on biological function, we define adaptable miRNA:AGO interactions with single-cell-type and AGO-specific resolution. We demonstrate spatial and temporal dynamicism, flexibility of miRNA loading, and suggest miRNA regulatory mechanisms via AGO selectivity in different tissues and during ageing. Additionally, we resolve widespread changes in AGO-regulated gene expression by analysing translatomes specifically in neurons.
Collapse
Affiliation(s)
- Christopher A Brosnan
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia.
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia.
| | - Alexander J Palmer
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Steven Zuryn
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
14
|
Penso-Dolfin L, Haerty W, Hindle A, Di Palma F. microRNA profiling in the Weddell seal suggests novel regulatory mechanisms contributing to diving adaptation. BMC Genomics 2020; 21:303. [PMID: 32293246 PMCID: PMC7158035 DOI: 10.1186/s12864-020-6675-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/13/2020] [Indexed: 12/19/2022] Open
Abstract
Background The Weddell Seal (Leptonychotes weddelli) represents a remarkable example of adaptation to diving among marine mammals. This species is capable of diving > 900 m deep and remaining underwater for more than 60 min. A number of key physiological specializations have been identified, including the low levels of aerobic, lipid-based metabolism under hypoxia, significant increase in oxygen storage in blood and muscle; high blood volume and extreme cardiovascular control. These adaptations have been linked to increased abundance of key proteins, suggesting an important, yet still understudied role for gene reprogramming. In this study, we investigate the possibility that post-transcriptional gene regulation by microRNAs (miRNAs) has contributed to the adaptive evolution of diving capacities in the Weddell Seal. Results Using small RNA data across 4 tissues (brain, heart, muscle and plasma), in 3 biological replicates, we generate the first miRNA annotation in this species, consisting of 559 high confidence, manually curated miRNA loci. Evolutionary analyses of miRNA gain and loss highlight a high number of Weddell seal specific miRNAs. Four hundred sixteen miRNAs were differentially expressed (DE) among tissues, whereas 80 miRNAs were differentially expressed (DE) across all tissues between pups and adults and age differences for specific tissues were detected in 188 miRNAs. mRNA targets of these altered miRNAs identify possible protective mechanisms in individual tissues, particularly relevant to hypoxia tolerance, anti-apoptotic pathways, and nitric oxide signal transduction. Novel, lineage-specific miRNAs associated with developmental changes target genes with roles in angiogenesis and vasoregulatory signaling. Conclusions Altogether, we provide an overview of miRNA composition and evolution in the Weddell seal, and the first insights into their possible role in the specialization to diving.
Collapse
Affiliation(s)
- Luca Penso-Dolfin
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich, NR47UZ, UK. .,German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - Wilfried Haerty
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich, NR47UZ, UK
| | - Allyson Hindle
- Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA.,University of Nevada Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV, 89154, USA
| | - Federica Di Palma
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich, NR47UZ, UK
| |
Collapse
|
15
|
Nehammer C, Ejlerskov P, Gopal S, Handley A, Ng L, Moreira P, Lee H, Issazadeh-Navikas S, Rubinsztein DC, Pocock R. Interferon-β-induced miR-1 alleviates toxic protein accumulation by controlling autophagy. eLife 2019; 8:49930. [PMID: 31799933 PMCID: PMC6914338 DOI: 10.7554/elife.49930] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/03/2019] [Indexed: 12/22/2022] Open
Abstract
Appropriate regulation of autophagy is crucial for clearing toxic proteins from cells. Defective autophagy results in accumulation of toxic protein aggregates that detrimentally affect cellular function and organismal survival. Here, we report that the microRNA miR-1 regulates the autophagy pathway through conserved targeting of the orthologous Tre-2/Bub2/CDC16 (TBC) Rab GTPase-activating proteins TBC-7 and TBC1D15 in Caenorhabditis elegans and mammalian cells, respectively. Loss of miR-1 causes TBC-7/TBC1D15 overexpression, leading to a block on autophagy. Further, we found that the cytokine interferon-β (IFN-β) can induce miR-1 expression in mammalian cells, reducing TBC1D15 levels, and safeguarding against proteotoxic challenges. Therefore, this work provides a potential therapeutic strategy for protein aggregation disorders.
Collapse
Affiliation(s)
- Camilla Nehammer
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia.,Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Patrick Ejlerskov
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, United Kingdom
| | - Sandeep Gopal
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Ava Handley
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Leelee Ng
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Pedro Moreira
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Huikyong Lee
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, United Kingdom
| | - Shohreh Issazadeh-Navikas
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David C Rubinsztein
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, United Kingdom.,UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom
| | - Roger Pocock
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia.,Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Schreiner WP, Pagliuso DC, Garrigues JM, Chen JS, Aalto AP, Pasquinelli AE. Remodeling of the Caenorhabditis elegans non-coding RNA transcriptome by heat shock. Nucleic Acids Res 2019; 47:9829-9841. [PMID: 31396626 PMCID: PMC6765114 DOI: 10.1093/nar/gkz693] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/23/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
Elevated temperatures activate a heat shock response (HSR) to protect cells from the pathological effects of protein mis-folding, cellular mis-organization, organelle dysfunction and altered membrane fluidity. This response includes activation of the conserved transcription factor heat shock factor 1 (HSF-1), which binds heat shock elements (HSEs) in the promoters of genes induced by heat shock (HS). The upregulation of protein-coding genes (PCGs), such as heat shock proteins and cytoskeletal regulators, is critical for cellular survival during elevated temperatures. While the transcriptional response of PCGs to HS has been comprehensively analyzed in a variety of organisms, the effect of this stress on the expression of non-coding RNAs (ncRNAs) has not been systematically examined. Here we show that in Caenorhabditis elegans HS induces up- and downregulation of specific ncRNAs from multiple classes, including miRNA, piRNA, lincRNA, pseudogene and repeat elements. Moreover, some ncRNA genes appear to be direct targets of the HSR, as they contain HSF-1 bound HSEs in their promoters and their expression is regulated by this factor during HS. These results demonstrate that multiple ncRNA genes respond to HS, some as direct HSF-1 targets, providing new candidates that may contribute to organismal survival during this stress.
Collapse
Affiliation(s)
- William P Schreiner
- Division of Biology, University of California, San Diego, La Jolla, CA 92093-0349, USA
| | - Delaney C Pagliuso
- Division of Biology, University of California, San Diego, La Jolla, CA 92093-0349, USA
| | - Jacob M Garrigues
- Division of Biology, University of California, San Diego, La Jolla, CA 92093-0349, USA
| | - Jerry S Chen
- Division of Biology, University of California, San Diego, La Jolla, CA 92093-0349, USA
| | - Antti P Aalto
- Division of Biology, University of California, San Diego, La Jolla, CA 92093-0349, USA
| | - Amy E Pasquinelli
- Division of Biology, University of California, San Diego, La Jolla, CA 92093-0349, USA
| |
Collapse
|
17
|
A secreted microRNA disrupts autophagy in distinct tissues of Caenorhabditis elegans upon ageing. Nat Commun 2019; 10:4827. [PMID: 31645592 PMCID: PMC6811558 DOI: 10.1038/s41467-019-12821-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 09/05/2019] [Indexed: 12/25/2022] Open
Abstract
Macroautophagy, a key player in protein quality control, is proposed to be systematically impaired in distinct tissues and causes coordinated disruption of protein homeostasis and ageing throughout the body. Although tissue-specific changes in autophagy and ageing have been extensively explored, the mechanism underlying the inter-tissue regulation of autophagy with ageing is poorly understood. Here, we show that a secreted microRNA, mir-83/miR-29, controls the age-related decrease in macroautophagy across tissues in Caenorhabditis elegans. Upregulated in the intestine by hsf-1/HSF1 with age, mir-83 is transported across tissues potentially via extracellular vesicles and disrupts macroautophagy by suppressing CUP-5/MCOLN, a vital autophagy regulator, autonomously in the intestine as well as non-autonomously in body wall muscle. Mutating mir-83 thereby enhances macroautophagy in different tissues, promoting protein homeostasis and longevity. These findings thus identify a microRNA-based mechanism to coordinate the decreasing macroautophagy in various tissues with age. Decreased autophagy is a hallmark of ageing, but its inter-tissue regulation is poorly understood. Here, Zhou et al. identify mir-83 in C. elegans, which is transported across tissues and suppresses autophagy, contributing to age-related decline.
Collapse
|
18
|
Lee C, Shin H, Kimble J. Dynamics of Notch-Dependent Transcriptional Bursting in Its Native Context. Dev Cell 2019; 50:426-435.e4. [PMID: 31378588 PMCID: PMC6724715 DOI: 10.1016/j.devcel.2019.07.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 05/23/2019] [Accepted: 07/01/2019] [Indexed: 12/16/2022]
Abstract
Transcription is well known to be inherently stochastic and episodic, but the regulation of transcriptional dynamics is not well understood. Here, we analyze how Notch signaling modulates transcriptional bursting during animal development. Our focus is Notch regulation of transcription in germline stem cells of the nematode C. elegans. Using the MS2 system to visualize nascent transcripts and live imaging to record dynamics, we analyze bursting as a function of position within the intact animal. We find that Notch-dependent transcriptional activation is indeed "bursty"; that wild-type Notch modulates burst duration (ON-time) rather than duration of pauses between bursts (OFF-time) or mean burst intensity; and that a mutant Notch receptor, which is compromised for assembly into the Notch transcription factor complex, primarily modifies burst size (duration × intensity). These analyses thus visualize the effect of a canonical signaling pathway on metazoan transcriptional bursting in its native context.
Collapse
Affiliation(s)
- ChangHwan Lee
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Heaji Shin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
19
|
mir-234 controls neuropeptide release at the Caenorhabditis elegans neuromuscular junction. Mol Cell Neurosci 2019; 98:70-81. [PMID: 31200102 DOI: 10.1016/j.mcn.2019.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 01/16/2023] Open
Abstract
miR-137 is a highly conserved microRNA (miRNA) that is associated with the control of brain function and the etiology of psychiatric disorders including schizophrenia and bipolar disorder. The Caenorhabditis elegans genome encodes a single miR-137 ortholog called mir-234, the function of which is unknown. Here we show that mir-234 is expressed in a subset of sensory, motor and interneurons in C. elegans. Using a mir-234 deletion strain, we systematically examined the development and function of these neurons in addition to global C. elegans behaviors. We were however unable to detect phenotypes associated with loss of mir-234, possibly due to genetic redundancy. To circumvent this issue, we overexpressed mir-234 in mir-234-expressing neurons to uncover possible phenotypes. We found that mir-234-overexpression endows resistance to the acetylcholinesterase inhibitor aldicarb, suggesting modification of neuromuscular junction (NMJ) function. Further analysis revealed that mir-234 controls neuropeptide levels, therefore positing a cause of NMJ dysfunction. Together, our data suggest that mir-234 functions to control the expression of target genes that are important for neuropeptide maturation and/or transport in C. elegans. SIGNIFICANCE STATEMENT: The miR-137 family of miRNAs is linked to the control of brain function in humans. Defective regulation of miR-137 is associated with psychiatric disorders that include schizophrenia and bipolar disorder. Previous studies have revealed that miR-137 is required for the development of dendrites and for controlling the release of fast-acting neurotransmitters. Here, we analyzed the function a miR-137 family member (called mir-234) in the nematode animal model using anatomical, behavioral, electrophysiological and neuropeptide analysis. We reveal for the first time that mir-234/miR-137 is required for the release of slow-acting neuropeptides, which may also be of relevance for controlling human brain function.
Collapse
|
20
|
Ma F, Liu Z, Huang J, Li Y, Kang Y, Liu X, Wang J. High-throughput sequencing reveals microRNAs in response to heat stress in the head kidney of rainbow trout (Oncorhynchus mykiss). Funct Integr Genomics 2019; 19:775-786. [PMID: 31076931 DOI: 10.1007/s10142-019-00682-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 02/11/2019] [Accepted: 04/30/2019] [Indexed: 12/26/2022]
Abstract
Recently, the research of animal microRNAs (miRNAs) has attracted wide attention for its regulatory effect in the development process and the response to abiotic stresses. Rainbow trout is a commercially and cold water fish species, and usually encounters heat stress, which affects its growth and leads to a huge economic loss. But there were few investigations about the roles of miRNAs in heat stress in rainbow trout. In this study, miRNAs of rainbow trout which were involved in heat stress were identified by high-throughput sequencing of six small RNA libraries from head kidney tissues under control (18 °C) and heat-treated (24 °C) conditions. A total of 392 conserved miRNAs and 989 novel miRNAs were identified, of which 78 miRNAs were expressed in different response to heat stress. Ten of these miRNAs were further validated by quantitative real-time PCR. In addition to, including 393 negative correlation miRNA-target gene pairs, several important regulatory pathways were involved in heat stress of the potential target genes, including protein processing in endoplasmic reticulum, NOD-like receptor signaling pathway, and phagosome. Our data significantly advance understanding of heat stress regulatory mechanism of miRNA in the head kidney of rainbow trout, which provide a useful resource for the cultivation of rainbow trout.
Collapse
Affiliation(s)
- Fang Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhe Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Jinqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yongjuan Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yujun Kang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiaoxia Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jianfu Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
21
|
Li S, Xu X, Zheng Z, Zheng J, Shakeel M, Jin F. MicroRNA expression profiling of Plutella xylostella after challenge with B. thuringiensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 93:115-124. [PMID: 30582949 DOI: 10.1016/j.dci.2018.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/15/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
The diamondback moth, Plutella xylostella, the main pest of brassica crops, has developed resistance to almost all major classes of insecticides as the farmers rely on insecticides to control this pest. An extensive use of broad-spectrum insecticides against P. xylostella promotes the selection of insecticide resistance, destroy natural enemies, and pollute the environment. In this scenario, it is imperative to use genetic methods such as gene silencing technology as an alternate approach against this pest. Evidence shows that microRNAs play pivotal roles in the regulation of target genes at the post-transcription level and show differential expression under various biological processes. However, the knowledge of their role in insect immunity is still in its infancy. In the present study, we aimed at exploring the response of P. xylostella miRNAs against B. thuringiensis at different time courses (6, 12, 18, 24, and 36 h) by using small RNA sequencing. After data filtration, a combined set of 149 miRNAs was identified from all the libraries. Interestingly, a couple of conserved miRNAs such as miR-1, Let-7, miR-275, miR-184, and miR-10 were listed as abundantly expressed miRNAs after exposure to B. thuringiensis. It is worth mentioning that the differential expression analysis revealed that miR-2, a conserved miRNA, was up-regulated following infection. Furthermore, we experimentally validated the involvement of miR-2b-3p in the regulation of corresponding target trypsin. Our luciferase assay results revealed that miR-2b-3p mimic significantly down-regulated the target gene trypsin indicating that it might play a crucial role in the defense mechanism of P. xylostella against B. thuringiensis infection. On the whole, our findings provide insights into the possible regulatory role of miRNAs in insect immunity in response to microorganisms.
Collapse
Affiliation(s)
- Shuzhong Li
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Guangzhou, PR China
| | - Xiaoxia Xu
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Guangzhou, PR China
| | - Zhihua Zheng
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Guangzhou, PR China
| | - Jinlong Zheng
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Guangzhou, PR China
| | - Muhammad Shakeel
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Guangzhou, PR China.
| | - Fengliang Jin
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Guangzhou, PR China.
| |
Collapse
|
22
|
The Role of miRNAs in Drosophila melanogaster Male Courtship Behavior. Genetics 2019; 211:925-942. [PMID: 30683757 DOI: 10.1534/genetics.118.301901] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 01/19/2019] [Indexed: 11/18/2022] Open
Abstract
Drosophila melanogaster courtship, although stereotypical, continually changes based on cues received from the courtship subject. Such adaptive responses are mediated via rapid and widespread transcriptomic reprogramming, a characteristic now widely attributed to microRNAs (miRNAs), along with other players. Here, we conducted a large-scale miRNA knockout screen to identify miRNAs that affect various parameters of male courtship behavior. Apart from identifying miRNAs that impact male-female courtship, we observed that miR-957 mutants performed significantly increased male-male courtship and "chaining" behavior, whereby groups of males court one another. We tested the effect of miR-957 reduction in specific neuronal cell clusters, identifying miR-957 activity in Doublesex (DSX)-expressing and mushroom body clusters as an important regulator of male-male courtship interactions. We further characterized the behavior of miR-957 mutants and found that these males court male subjects vigorously, but do not elicit courtship. Moreover, they fail to lower courtship efforts toward females with higher levels of antiaphrodisiac pheromones. At the level of individual pheromones, miR-957 males show a reduced inhibitory response to both 7-Tricosene (7-T) and cis-vaccenyl acetate, with the effect being more pronounced in the case of 7-T. Overall, our results indicate that a single miRNA can contribute to the regulation of complex behaviors, including detection or processing of chemicals that control important survival strategies such as chemical mate-guarding, and the maintenance of sex- and species-specific courtship barriers.
Collapse
|
23
|
Graham AM, Barreto FS. Novel microRNAs are associated with population divergence in transcriptional response to thermal stress in an intertidal copepod. Mol Ecol 2018; 28:584-599. [PMID: 30548575 DOI: 10.1111/mec.14973] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 12/29/2022]
Abstract
The role of gene expression in adaptation to differing thermal environments has been assayed extensively. Yet, in most natural systems, analyses of gene expression reveal only one level of the complexity of regulatory machineries. MicroRNAs (miRNAs) are small noncoding RNAs which are key components of many gene regulatory networks, and they play important roles in a variety of cellular pathways by modulating post-transcriptional quantities of mRNA available for protein synthesis. The characterization of miRNA loci and their regulatory dynamics in nonmodel systems are still largely understudied. In this study, we examine the role of miRNAs in response to high thermal stress in the intertidal copepod Tigriopus californicus. Allopatric populations of this species show varying levels of local adaptation with respect to thermal regimes, and previous studies showed divergence in gene expression between populations from very different thermal environments. We examined the transcriptional response to temperature stress in two populations separated by only 8 km by utilizing RNA-seq to quantify both mRNA and miRNA levels. Using the currently available genome sequence, we first describe the repertoire of miRNAs in T. californicus and assess the degree to which transcriptional response to temperature stress is governed by miRNA activity. The two populations showed large differences in the number of genes involved, the magnitude of change in commonly used genes and in the number of miRNAs involved in transcriptional modulation during stress. Our results suggest that an increased level of regulatory network complexity may underlie improved survivorship under thermal stress in one of the populations.
Collapse
Affiliation(s)
- Allie M Graham
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon
| | - Felipe S Barreto
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon
| |
Collapse
|
24
|
The critical role of microRNAs in stress response: Therapeutic prospect and limitation. Pharmacol Res 2018; 142:294-302. [PMID: 30553824 DOI: 10.1016/j.phrs.2018.12.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022]
Abstract
Stress response refers to the systemic nonspecific response upon exposure to strong stimulation or chronic stress, such as severe trauma, shock, infection, burn, major surgery or improper environment, which disturb organisms and damage their physical and psychological health. However, the pathogenesis of stress induced disorder remains complicated and diverse under different stress exposure. Recently, studies have revealed a specific role of microRNAs (miRNAs) in regulating cellular function under different types of stress, suggesting a significant role in the treatment and prevention of stress-related diseases, such as stress ulcer, posttraumatic stress disorder, stress-induced cardiomyopathy and so on. This paper have reviewed the literature on microRNA related stress diseases in different databases including PubMed, Web of Science, and the MiRbase. It considers only peer-reviewed papers published in English between 2004 and 2018. This review summarizes new advances in principles and mechanisms of miRNAs regulating stress signalling pathway and the role of miRNAs in human stress diseases. This comprehensive review is to provide an integrated account of how different stresses affect miRNAs and how stress-miRNA pathways may, in turn, be linked with disease, which offers some potential strategies for stress disorder treatment. Furthermore, the limitation of current studies and challenges for clinical use are discussed.
Collapse
|
25
|
Identification and characterization of microRNAs in the liver of rainbow trout in response to heat stress by high-throughput sequencing. Gene 2018; 679:274-281. [DOI: 10.1016/j.gene.2018.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/30/2018] [Accepted: 09/06/2018] [Indexed: 01/30/2023]
|
26
|
Li C, Xu D. Understanding microRNAs regulation in heat shock response in the sea cucumber Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2018; 81:214-220. [PMID: 30016683 DOI: 10.1016/j.fsi.2018.07.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
The sea cucumber Apostichopus japonicus is a valuable species in China. The extreme high temperature in the summer often results in high mortality. MicroRNAs (miRNAs) play important post-transcriptional regulatory roles in gene expression and can influence heat shock response (HSR) greatly. In this study, we determined the expression profiles of miRNAs under heat stress (HS) in A. japonicus by using high-throughput sequencing technique. Among the differential expression miRNAs, we highlighted 41 differentially expressed miRNAs, many of which were involved in immunity process and disease regulation. Gene ontology and pathway analyses of putative target genes were also carried out. Cell-substrate adherens junction and cell-substrate junction were significantly enriched in GO analysis. Moreover, we made a correlation analysis between remarkable miRNAs and the differentially expressed genes (DEGs) in sea cucumbers under HS. We identified 17 key miRNA-target pairs potentially regulated HSR of sea cucumbers. These results will provide new insights about miRNAs regulation and molecular adaptive mechanisms in sea cucumbers under HS.
Collapse
Affiliation(s)
- Chao Li
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Dongxue Xu
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
27
|
Litke R, Boulanger É, Fradin C. Caenorhabditis elegans, un modèle d’étude du vieillissement. Med Sci (Paris) 2018; 34:571-579. [DOI: 10.1051/medsci/20183406017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Le vieillissement est un processus physiologique complexe qui accompagne l’avancée en âge de tout organisme vivant. L’utilisation d’organismes modèles considérés comme simples a été fondamentale pour la compréhension des mécanismes impliqués dans ce processus. Caenorhabditis elegans, nématode utilisé initialement pour établir les bases génétiques et moléculaires du développement, est devenu un des modèles d’étude du vieillissement. L’utilisation de cet invertébré a permis de détecter un lien direct entre l’activation de voies de signalisation cellulaire et la longévité. Si C. elegans ne permet pas d’analyser le processus complet du vieillissement humain, il reste un modèle de choix pour étudier des mécanismes et phénotypes particuliers du vieillissement.
Collapse
|
28
|
Recent Molecular Genetic Explorations of Caenorhabditis elegans MicroRNAs. Genetics 2018; 209:651-673. [PMID: 29967059 PMCID: PMC6028246 DOI: 10.1534/genetics.118.300291] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/30/2018] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs are small, noncoding RNAs that regulate gene expression at the post-transcriptional level in essentially all aspects of Caenorhabditis elegans biology. More than 140 genes that encode microRNAs in C. elegans regulate development, behavior, metabolism, and responses to physiological and environmental changes. Genetic analysis of C. elegans microRNA genes continues to enhance our fundamental understanding of how microRNAs are integrated into broader gene regulatory networks to control diverse biological processes, including growth, cell division, cell fate determination, behavior, longevity, and stress responses. As many of these microRNA sequences and the related processing machinery are conserved over nearly a billion years of animal phylogeny, the assignment of their functions via worm genetics may inform the functions of their orthologs in other animals, including humans. In vivo investigations are especially important for microRNAs because in silico extrapolation of their functions using mRNA target prediction programs can easily assign microRNAs to incorrect genetic pathways. At this mezzanine level of microRNA bioinformatic sophistication, genetic analysis continues to be the gold standard for pathway assignments.
Collapse
|
29
|
Heat stress responses in spermatozoa: Mechanisms and consequences for cattle fertility. Theriogenology 2018; 113:102-112. [DOI: 10.1016/j.theriogenology.2018.02.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 02/08/2018] [Accepted: 02/10/2018] [Indexed: 01/06/2023]
|
30
|
Abstract
MicroRNAs (miRNAs) are ∼22 nt RNAs that direct posttranscriptional repression of mRNA targets in diverse eukaryotic lineages. In humans and other mammals, these small RNAs help sculpt the expression of most mRNAs. This article reviews advances in our understanding of the defining features of metazoan miRNAs and their biogenesis, genomics, and evolution. It then reviews how metazoan miRNAs are regulated, how they recognize and cause repression of their targets, and the biological functions of this repression, with a compilation of knockout phenotypes that shows that important biological functions have been identified for most of the broadly conserved miRNAs of mammals.
Collapse
Affiliation(s)
- David P Bartel
- Howard Hughes Medical Institute and Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
31
|
Inukai S, Pincus Z, de Lencastre A, Slack FJ. A microRNA feedback loop regulates global microRNA abundance during aging. RNA (NEW YORK, N.Y.) 2018; 24:159-172. [PMID: 29114017 PMCID: PMC5769744 DOI: 10.1261/rna.062190.117] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/29/2017] [Indexed: 06/07/2023]
Abstract
Expression levels of many microRNAs (miRNAs) change during aging, notably declining globally in a number of organisms and tissues across taxa. However, little is known about the mechanisms or the biological relevance for this change. We investigated the network of genes that controls miRNA transcription and processing during C. elegans aging. We found that miRNA biogenesis genes are highly networked with transcription factors and aging-associated miRNAs. In particular, miR-71, known to influence life span and itself up-regulated during aging, represses alg-1/Argonaute expression post-transcriptionally during aging. Increased ALG-1 abundance in mir-71 loss-of-function mutants led to globally increased miRNA expression. Interestingly, these mutants demonstrated widespread mRNA expression dysregulation and diminished levels of variability both in gene expression and in overall life span. Thus, the progressive molecular decline often thought to be the result of accumulated damage over an organism's life may be partially explained by a miRNA-directed mechanism of age-associated decline.
Collapse
Affiliation(s)
- Sachi Inukai
- Department of Molecular, Cellular and Developmental Biology, Yale University, P.O. Box 208103, New Haven, Connecticut 06520, USA
- Institute for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Zachary Pincus
- Department of Developmental Biology
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Alexandre de Lencastre
- Department of Molecular, Cellular and Developmental Biology, Yale University, P.O. Box 208103, New Haven, Connecticut 06520, USA
| | - Frank J Slack
- Department of Molecular, Cellular and Developmental Biology, Yale University, P.O. Box 208103, New Haven, Connecticut 06520, USA
- Institute for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
32
|
Sengar GS, Deb R, Singh U, Raja TV, Kant R, Sajjanar B, Alex R, Alyethodi RR, Kumar A, Kumar S, Singh R, Jakhesara SJ, Joshi CG. Differential expression of microRNAs associated with thermal stress in Frieswal (Bos taurus x Bos indicus) crossbred dairy cattle. Cell Stress Chaperones 2018; 23:155-170. [PMID: 28776223 PMCID: PMC5741590 DOI: 10.1007/s12192-017-0833-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/15/2017] [Accepted: 07/19/2017] [Indexed: 12/13/2022] Open
Abstract
Environmental temperature is one of the important abiotic factors that influence the normal physiological function and productive performance of dairy cattle. Temperature stress evokes complex responses that are essential for safeguarding of cellular integrity and animal health. Post-transcriptional regulation of gene expression by miRNA plays a key role cellular stress responses. The present study investigated the differential expression of miRNA in Frieswal (Holstein Friesian × Sahiwal) crossbred dairy cattle that are distinctly adapted to environmental temperature stress as they were evolved by using the temperate dairy breed Holstein Friesian. The results indicated that there was a significant variation in the physiological and biochemical indicators estimated under summer stress. The differential expression of miRNA was observed under heat stress when compared to the normal winter season. Out of the total 420 miRNAs, 65 were differentially expressed during peak summer temperatures. Most of these miRNAs were found to target heat shock responsive genes especially members of heat shock protein (HSP) family, and network analysis revealed most of them having stress-mediated effects on signaling mechanisms. Being greater in their expression profile during peak summer, bta-miR-2898 was chosen for reporter assay to identify its effect on the target HSPB8 (heat shock protein 22) gene in stressed bovine PBMC cell cultured model. Comprehensive understanding of the biological regulation of stress responsive mechanism is critical for developing approaches to reduce the production losses due to environmental heat stress in dairy cattle.
Collapse
Affiliation(s)
- Gyanendra Singh Sengar
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, Uttar Pradesh, 250 001, India.
- Sam Higginbottom University of Agriculture Technology and Science, Allahabad, India.
| | - Rajib Deb
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, Uttar Pradesh, 250 001, India.
| | - Umesh Singh
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, Uttar Pradesh, 250 001, India
| | - T V Raja
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, Uttar Pradesh, 250 001, India
| | - Rajiv Kant
- Sam Higginbottom University of Agriculture Technology and Science, Allahabad, India
| | - Basavraj Sajjanar
- School of Atmospheric Stress Management, National Institute of Abiotic Stress Management, Baramati, Maharashtra, India
| | - Rani Alex
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, Uttar Pradesh, 250 001, India
| | - R R Alyethodi
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, Uttar Pradesh, 250 001, India
| | - Ashish Kumar
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, Uttar Pradesh, 250 001, India
| | - Sushil Kumar
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, Uttar Pradesh, 250 001, India
| | - Rani Singh
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, Uttar Pradesh, 250 001, India
| | - Subhash J Jakhesara
- Department of Animal Biotechnology, Anand Agricultural University, Anand, Gujarat, India
| | - C G Joshi
- Department of Animal Biotechnology, Anand Agricultural University, Anand, Gujarat, India
| |
Collapse
|
33
|
Xu J, Xu X, Li S, Wang S, Xu X, Zhou X, Yu J, Yu X, Shakeel M, Jin F. Genome-Wide Profiling of Plutella xylostella Immunity-Related miRNAs after Isaria fumosorosea Infection. Front Physiol 2017; 8:1054. [PMID: 29311981 PMCID: PMC5735356 DOI: 10.3389/fphys.2017.01054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/01/2017] [Indexed: 12/19/2022] Open
Abstract
The development of resistance by Plutella xylostella to almost all insecticides is of significant concern all over the world. Entomopathogenic fungi such as Isaria fumosorosea have been used as an alternative to insecticides. However, the knowledge of miRNA-regulated reactions against entomopathogenic fungi is still in its infant stage. In the present study, P. xylostella was challenged with I. fumosorosea at four different time points (12, 18, 24, and 36 h) including a control, to build miRNA libraries by Illumina sequencing. The results of differential expression analysis exhibited that 23 miRNAs were differentially expressed, compared to control, in all treatments. It is worth mentioning, of these, some conserved miRNAs such as miR-2, miR-9a, miR-745, miR-7b, and miR-2767, known to play critical roles in host-pathogen interaction, were also identified. Furthermore, differentially expressed miRNAs were validated by RT-qPCR. Our results provide an essential information for further functional studies of the interaction between I. fumosorosea and P. xylostella at the post-transcriptional level.
Collapse
Affiliation(s)
- Jin Xu
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiaoxia Xu
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Shuzhong Li
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Shuang Wang
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | | | | | - Jialin Yu
- Beijing Genomic Institute, Shenzhen, China
| | - Xiaoqiang Yu
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Muhammad Shakeel
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Fengliang Jin
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
34
|
Savvateeva-Popova EV, Zhuravlev AV, Brázda V, Zakharov GA, Kaminskaya AN, Medvedeva AV, Nikitina EA, Tokmatcheva EV, Dolgaya JF, Kulikova DA, Zatsepina OG, Funikov SY, Ryazansky SS, Evgen‘ev MB. Drosophila Model for the Analysis of Genesis of LIM-kinase 1-Dependent Williams-Beuren Syndrome Cognitive Phenotypes: INDELs, Transposable Elements of the Tc1/ Mariner Superfamily and MicroRNAs. Front Genet 2017; 8:123. [PMID: 28979292 PMCID: PMC5611441 DOI: 10.3389/fgene.2017.00123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/04/2017] [Indexed: 12/18/2022] Open
Abstract
Genomic disorders, the syndromes with multiple manifestations, may occur sporadically due to unequal recombination in chromosomal regions with specific architecture. Therefore, each patient may carry an individual structural variant of DNA sequence (SV) with small insertions and deletions (INDELs) sometimes less than 10 bp. The transposable elements of the Tc1/mariner superfamily are often associated with hotspots for homologous recombination involved in human genetic disorders, such as Williams Beuren Syndromes (WBS) with LIM-kinase 1-dependent cognitive defects. The Drosophila melanogaster mutant agnts3 has unusual architecture of the agnostic locus harboring LIMK1: it is a hotspot of chromosome breaks, ectopic contacts, underreplication, and recombination. Here, we present the analysis of LIMK1-containing locus sequencing data in agnts3 and three D. melanogaster wild-type strains-Canton-S, Berlin, and Oregon-R. We found multiple strain-specific SVs, namely, single base changes and small INDEls. The specific feature of agnts3 is 28 bp A/T-rich insertion in intron 1 of LIMK1 and the insertion of mobile S-element from Tc1/mariner superfamily residing ~460 bp downstream LIMK1 3'UTR. Neither of SVs leads to amino acid substitutions in agnts3 LIMK1. However, they apparently affect the nucleosome distribution, non-canonical DNA structure formation and transcriptional factors binding. Interestingly, the overall expression of miRNAs including the biomarkers for human neurological diseases, is drastically reduced in agnts3 relative to the wild-type strains. Thus, LIMK1 DNA structure per se, as well as the pronounced changes in total miRNAs profile, probably lead to LIMK1 dysregulation and complex behavioral dysfunctions observed in agnts3 making this mutant a simple plausible Drosophila model for WBS.
Collapse
Affiliation(s)
- Elena V. Savvateeva-Popova
- Department of Neurogenetics, Pavlov Institute of Physiology, Russian Academy of SciencesSt. Petersburg, Russia
| | - Aleksandr V. Zhuravlev
- Department of Neurogenetics, Pavlov Institute of Physiology, Russian Academy of SciencesSt. Petersburg, Russia
| | - Václav Brázda
- Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics, Academy of Sciences of the Czech RepublicBrno, Czechia
| | - Gennady A. Zakharov
- Department of Neurogenetics, Pavlov Institute of Physiology, Russian Academy of SciencesSt. Petersburg, Russia
| | - Alena N. Kaminskaya
- Department of Neurogenetics, Pavlov Institute of Physiology, Russian Academy of SciencesSt. Petersburg, Russia
| | - Anna V. Medvedeva
- Department of Neurogenetics, Pavlov Institute of Physiology, Russian Academy of SciencesSt. Petersburg, Russia
| | - Ekaterina A. Nikitina
- Department of Neurogenetics, Pavlov Institute of Physiology, Russian Academy of SciencesSt. Petersburg, Russia
- Department of Human and Animal Anatomy and Physiology, Herzen State Pedagogical UniversitySt. Petersburg, Russia
| | - Elena V. Tokmatcheva
- Department of Neurogenetics, Pavlov Institute of Physiology, Russian Academy of SciencesSt. Petersburg, Russia
| | - Julia F. Dolgaya
- Department of Neurogenetics, Pavlov Institute of Physiology, Russian Academy of SciencesSt. Petersburg, Russia
| | - Dina A. Kulikova
- Department of Molecular Mechanisms of Development, Koltzov Institute of Developmental Biology, Russian Academy of SciencesMoscow, Russia
| | - Olga G. Zatsepina
- Department of Molecular Mechanisms of Biological Adaptation, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Sergei Y. Funikov
- Department of Molecular Mechanisms of Biological Adaptation, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Sergei S. Ryazansky
- Department of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of SciencesMoscow, Russia
| | - Michail B. Evgen‘ev
- Department of Molecular Mechanisms of Biological Adaptation, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| |
Collapse
|
35
|
Brunquell J, Snyder A, Cheng F, Westerheide SD. HSF-1 is a regulator of miRNA expression in Caenorhabditis elegans. PLoS One 2017; 12:e0183445. [PMID: 28837599 PMCID: PMC5570370 DOI: 10.1371/journal.pone.0183445] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 08/06/2017] [Indexed: 12/16/2022] Open
Abstract
The ability of an organism to sense and adapt to environmental stressors is essential for proteome maintenance and survival. The highly conserved heat shock response is a survival mechanism employed by all organisms, including the nematode Caenorhabditis elegans, upon exposure to environmental extremes. Transcriptional control of the metazoan heat shock response is mediated by the heat shock transcription factor HSF-1. In addition to regulating global stress-responsive genes to promote stress-resistance and survival, HSF-1 has recently been shown to regulate stress-independent functions in controlling development, metabolism, and longevity. However, the indirect role of HSF-1 in coordinating stress-dependent and -independent processes through post-transcriptional regulation is largely unknown. MicroRNAs (miRNAs) have emerged as a class of post-transcriptional regulators that control gene expression through translational repression or mRNA degradation. To determine the role of HSF-1 in regulating miRNA expression, we have performed high-throughput small RNA-sequencing in C. elegans grown in the presence and absence of hsf-1 RNAi followed by treatment with or without heat shock. This has allowed us to uncover the miRNAs regulated by HSF-1 via heat-dependent and -independent mechanisms. Integrated miRNA/mRNA target-prediction analyses suggest HSF-1 as a post-transcriptional regulator of development, metabolism, and longevity through regulating miRNA expression. This provides new insight into the possible mechanism by which HSF-1 controls these processes. We have also uncovered oxidative stress response factors and insulin-like signaling factors as a common link between processes affected by HSF-1-regulated miRNAs in stress-dependent and -independent mechanisms, respectively. This may provide a role for miRNAs in regulating cross-talk between various stress responses. Our work therefore uncovers an interesting potential role for HSF-1 in post-transcriptionally controlling gene expression in C. elegans, and suggests a mechanism for cross-talk between stress responses.
Collapse
Affiliation(s)
- Jessica Brunquell
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, Florida, United States of America
| | - Alana Snyder
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, Florida, United States of America
| | - Feng Cheng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida, United States of America
- Department of Biostatistics, College of Public Health, University of South Florida, Tampa, Florida, United States of America
- * E-mail: (SDW); (FC)
| | - Sandy D. Westerheide
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, Florida, United States of America
- * E-mail: (SDW); (FC)
| |
Collapse
|
36
|
|
37
|
Gajigan AP, Conaco C. A microRNA regulates the response of corals to thermal stress. Mol Ecol 2017; 26:3472-3483. [DOI: 10.1111/mec.14130] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/20/2017] [Accepted: 03/23/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Andrian P. Gajigan
- Marine Science Institute; University of the Philippines Diliman; Quezon City Philippines
| | - Cecilia Conaco
- Marine Science Institute; University of the Philippines Diliman; Quezon City Philippines
| |
Collapse
|
38
|
Borbolis F, Flessa CM, Roumelioti F, Diallinas G, Stravopodis DJ, Syntichaki P. Neuronal function of the mRNA decapping complex determines survival of Caenorhabditis elegans at high temperature through temporal regulation of heterochronic gene expression. Open Biol 2017; 7:160313. [PMID: 28250105 PMCID: PMC5376704 DOI: 10.1098/rsob.160313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/04/2017] [Indexed: 12/18/2022] Open
Abstract
In response to adverse environmental cues, Caenorhabditis elegans larvae can temporarily arrest development at the second moult and form dauers, a diapause stage that allows for long-term survival. This process is largely regulated by certain evolutionarily conserved signal transduction pathways, but it is also affected by miRNA-mediated post-transcriptional control of gene expression. The 5'-3' mRNA decay mechanism contributes to miRNA-mediated silencing of target mRNAs in many organisms but how it affects developmental decisions during normal or stress conditions is largely unknown. Here, we show that loss of the mRNA decapping complex activity acting in the 5'-3' mRNA decay pathway inhibits dauer formation at the stressful high temperature of 27.5°C, and instead promotes early developmental arrest. Our genetic data suggest that this arrest phenotype correlates with dysregulation of heterochronic gene expression and an aberrant stabilization of lin-14 mRNA at early larval stages. Restoration of neuronal dcap-1 activity was sufficient to rescue growth phenotypes of dcap-1 mutants at both high and normal temperatures, implying the involvement of common developmental timing mechanisms. Our work unveils the crucial role of 5'-3' mRNA degradation in proper regulation of heterochronic gene expression programmes, which proved to be essential for survival under stressful conditions.
Collapse
Affiliation(s)
- Fivos Borbolis
- Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, Athens 11527, Greece
- Faculty of Biology, School of Science, University of Athens, Athens, Greece
| | - Christina-Maria Flessa
- Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, Athens 11527, Greece
- Faculty of Biology, School of Science, University of Athens, Athens, Greece
| | - Fani Roumelioti
- Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, Athens 11527, Greece
- School of Medicine, University of Athens, Athens, Greece
| | - George Diallinas
- Faculty of Biology, School of Science, University of Athens, Athens, Greece
| | | | - Popi Syntichaki
- Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, Athens 11527, Greece
| |
Collapse
|
39
|
Sun L, Zhi L, Shakoor S, Liao K, Wang D. microRNAs Involved in the Control of Innate Immunity in Candida Infected Caenorhabditis elegans. Sci Rep 2016; 6:36036. [PMID: 27796366 PMCID: PMC5086856 DOI: 10.1038/srep36036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 10/10/2016] [Indexed: 12/15/2022] Open
Abstract
The role of microRNAs (miRNAs) in regulating innate immune response to Candida albicans infection in Caenorhabditis elegans is still largely unclear. Using small RNA SOLiD deep sequencing technique, we profiled the miRNAs that were dysregulated by C. albicans infection. We identified 16 miRNAs that were up-regulated and 4 miRNAs that were down-regulated in nematodes infected with C. albicans. Bioinformatics analysis implied that these dysregulated miRNAs may be involved in the control of many important biological processes. Using available mutants, we observed that mir-251 and mir-252 loss-of-function mutants were resistant to C. albicans infection, whereas mir-360 mutants were hypersensitive to C. albicans infection. The expression pattern of antimicrobial genes suggested that mir-251, mir-252, and mir-360 played crucial roles in regulating the innate immune response to C. albicans infection. Fungal burden might be closely associated with altered lifespan and innate immune response in mir-251, mir-252, and mir-360 mutants. Moreover, mir-251 and mir-252 might function downstream of p38 mitogen activated protein kinase (MAPK) or IGF-1/insulin-like pathway to regulate the innate immune response to C. albicans infection. Our results provide an important molecular basis for further elucidating how miRNA-mRNA networks may control the innate immune response to C. albicans infection.
Collapse
Affiliation(s)
- Lingmei Sun
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Lingtong Zhi
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Shumaila Shakoor
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Kai Liao
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| |
Collapse
|
40
|
Ferraz RC, Camara H, De-Souza EA, Pinto S, Pinca APF, Silva RC, Sato VN, Castilho BA, Mori MA. IMPACT is a GCN2 inhibitor that limits lifespan in Caenorhabditis elegans. BMC Biol 2016; 14:87. [PMID: 27717342 PMCID: PMC5054600 DOI: 10.1186/s12915-016-0301-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/18/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The General Control Nonderepressible 2 (GCN2) kinase is a conserved member of the integrated stress response (ISR) pathway that represses protein translation and helps cells to adapt to conditions of nutrient shortage. As such, GCN2 is required for longevity and stress resistance induced by dietary restriction (DR). IMPACT is an ancient protein that inhibits GCN2. RESULTS Here, we tested whether IMPACT down-regulation mimics the effects of DR in C. elegans. Knockdown of the C. elegans IMPACT homolog impt-1 activated the ISR pathway and increased lifespan and stress resistance of worms in a gcn-2-dependent manner. Impt-1 knockdown exacerbated DR-induced longevity and required several DR-activated transcription factors to extend lifespan, among them SKN-1 and DAF-16, which were induced during larval development and adulthood, respectively, in response to impt-1 RNAi. CONCLUSIONS IMPACT inhibits the ISR pathway, thus limiting the activation of stress response factors that are beneficial during aging and required under DR.
Collapse
Affiliation(s)
- Rafael C Ferraz
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Henrique Camara
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Campinas, Brazil
| | - Evandro A De-Souza
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Campinas, Brazil
| | - Silas Pinto
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Campinas, Brazil
| | - Ana Paula F Pinca
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Campinas, Brazil
| | - Richard C Silva
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Vitor N Sato
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Beatriz A Castilho
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marcelo A Mori
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.
- Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Campinas, Brazil.
| |
Collapse
|
41
|
Funikov SY, Ryazansky SS, Kanapin AA, Logacheva MD, Penin AA, Snezhkina AV, Shilova VY, Garbuz DG, Evgen'ev MB, Zatsepina OG. Interplay between RNA interference and heat shock response systems in Drosophila melanogaster. Open Biol 2016; 6:160224. [PMID: 27805906 PMCID: PMC5090062 DOI: 10.1098/rsob.160224] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/26/2016] [Indexed: 12/20/2022] Open
Abstract
The genome expression pattern is strongly modified during the heat shock response (HSR) to form an adaptive state. This may be partly achieved by modulating microRNA levels that control the expression of a great number of genes that are embedded within the gene circuitry. Here, we investigated the cross-talk between two highly conserved and universal house-keeping systems, the HSR and microRNA machinery, in Drosophila melanogaster We demonstrated that pronounced interstrain differences in the microRNA levels are alleviated after heat shock (HS) to form a uniform microRNA pattern. However, individual strains exhibit different patterns of microRNA expression during the course of recovery. Importantly, HS-regulated microRNAs may target functionally similar HS-responsive genes involved in the HSR. Despite the observed general downregulation of primary microRNA precursor expression as well as core microRNA pathway genes after HS, the levels of many mature microRNAs are upregulated. This indicates that the regulation of miRNA expression after HS occurs at transcriptional and post-transcriptional levels. It was also shown that deletion of all hsp70 genes had no significant effect on microRNA biogenesis but might influence the dynamics of microRNA expression during the HSR.
Collapse
Affiliation(s)
- S Yu Funikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - S S Ryazansky
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russian Federation
| | | | - M D Logacheva
- Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - A A Penin
- Lomonosov Moscow State University, Moscow 119991, Russian Federation
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow 127051, Russian Federation
| | - A V Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - V Yu Shilova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - D G Garbuz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - M B Evgen'ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - O G Zatsepina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russian Federation
| |
Collapse
|
42
|
Li X, Li L, Sun Y, Wu J, Wang G. Comparison of the effect of recombinant bovine wild and mutant lipopolysaccharide-binding protein in lipopolysaccharide-challenged bovine mammary epithelial cells. Cell Stress Chaperones 2016; 21:439-52. [PMID: 26813383 PMCID: PMC4837180 DOI: 10.1007/s12192-016-0671-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 12/26/2022] Open
Abstract
Lipopolysaccharide (LPS)-binding protein (LBP) plays a crucial role in the recognition of bacterial components, such as LPS that causes an immune response. The aim of this study was to compare the different effects of recombinant bovine wild LBP and mutant LBP (67 Ala → Thr) on the LPS-induced inflammatory response of bovine mammary epithelial cells (BMECs). When BMECs were treated with various concentrations of recombinant bovine lipopolysaccharide-binding protein (RBLBP) (1, 5, 10, and 15 μg/mL) for 12 h, RBLBP of 5 μg/mL increased the apoptosis of BMECs induced by LPS without cytotoxicity, and mutant LBP resulted in a higher cell apoptosis than wild LBP did. By gene-chip microarray and bioinformatics, the data identified 2306 differentially expressed genes that were changed significantly between the LPS-induced inflamed BMECs treated with 5 μg/mL of mutant LBP and the BMECs only treated with 10 μg/mL of LPS (fold change ≥2). Meanwhile, 1585 genes were differently expressed between the inflamed BMECs treated with 5 μg/mL of wild LBP and 10 μg/mL of LPS-treated BMECs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that these differentially expressed genes were involved in different pathways that regulate the inflammation response. It predicted that carriers of this mutation increase the risk for a more severe inflammatory response. Our study provides an overview of the gene expression profile between wild LBP and mutant LBP on the LPS-induced inflammatory response of BMECs, which will lead to further understanding of the potential effects of LBP mutations on bovine mammary glands.
Collapse
Affiliation(s)
- Xiaojuan Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Lian Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Yu Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Jie Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Genlin Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China.
| |
Collapse
|
43
|
Chen KL, Fu YY, Shi MY, Li HX. Down-regulation of miR-181a can reduce heat stress damage in PBMCs of Holstein cows. In Vitro Cell Dev Biol Anim 2016; 52:864-71. [PMID: 27130682 DOI: 10.1007/s11626-016-0045-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/14/2016] [Indexed: 01/09/2023]
Abstract
Heat stress can weaken the immune system and even increase livestock's susceptibility to disease. MicroRNA (miR) is short non-coding RNA that functions in post-transcriptional regulation of gene expression and some phenotypes. Our recent study found that miR-181a is highly expressed in the serum of heat-stressed Holstein cows, but the potential function of miR-181a is still not clarified. In this study, peripheral blood mononuclear cells (PBMCs), isolated from Holstein cows' peripheral blood, were used to investigate the effects of miR-181a inhibitor on heat stress damage. Our results showed that significant apoptosis and oxidative damage were induced by heat stress in PBMCs. However, with apoptosis, the levels of reactive oxygen species (ROS) and content of malondialdehyde (MDA) were reduced, while the content of glutathione (GSH) and the activity of superoxide dismutase (SOD) were increased even under heat stress conditions after transfecting miR-181a inhibitors to PBMCs. Meanwhile, mRNA expression of bax and caspase-3 was significantly decreased, but mRNA expression of bcl-2 was increased in transfected PBMCs. In conclusion, our results demonstrated that down-regulation of miR-181a can reduce heat stress damage in PBMCs of Holstein cows.
Collapse
Affiliation(s)
- Kun-Lin Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuan-Yuan Fu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Min-Yan Shi
- Luoyang Normal University, Luoyang, Henan Province, 471000, China
| | - Hui-Xia Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
44
|
Liew YJ, Ryu T, Aranda M, Ravasi T. miRNA Repertoires of Demosponges Stylissa carteri and Xestospongia testudinaria. PLoS One 2016; 11:e0149080. [PMID: 26871907 PMCID: PMC4752309 DOI: 10.1371/journal.pone.0149080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 01/26/2016] [Indexed: 11/23/2022] Open
Abstract
MicroRNAs (miRNAs) are small regulatory RNAs that are involved in many biological process in eukaryotes. They play a crucial role in modulating genetic expression of their targets, which makes them integral components of transcriptional regulatory networks. As sponges (phylum Porifera) are commonly considered the most basal metazoan, the in-depth capture of miRNAs from these organisms provides additional clues to the evolution of miRNA families in metazoans. Here, we identified the core proteins involved in the biogenesis of miRNAs, and obtained evidence for bona fide miRNA sequences for two marine sponges Stylissa carteri and Xestospongia testudinaria (11 and 19 respectively). Our analysis identified several miRNAs that are conserved amongst demosponges, and revealed that all of the novel miRNAs identified in these two species are specific to the class Demospongiae.
Collapse
Affiliation(s)
- Yi Jin Liew
- Division of Biological and Environmental Sciences & Engineering, King Abdullah University of Science and Technology, Thuwal, 23955–6900, Kingdom of Saudi Arabia
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, 23955–6900, Kingdom of Saudi Arabia
| | - Taewoo Ryu
- Division of Biological and Environmental Sciences & Engineering, King Abdullah University of Science and Technology, Thuwal, 23955–6900, Kingdom of Saudi Arabia
- KAUST Environmental Epigenetics Program (KEEP), King Abdullah University of Science and Technology, Thuwal, 23955–6900, Kingdom of Saudi Arabia
| | - Manuel Aranda
- Division of Biological and Environmental Sciences & Engineering, King Abdullah University of Science and Technology, Thuwal, 23955–6900, Kingdom of Saudi Arabia
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, 23955–6900, Kingdom of Saudi Arabia
- * E-mail: (MA); (TR)
| | - Timothy Ravasi
- Division of Biological and Environmental Sciences & Engineering, King Abdullah University of Science and Technology, Thuwal, 23955–6900, Kingdom of Saudi Arabia
- KAUST Environmental Epigenetics Program (KEEP), King Abdullah University of Science and Technology, Thuwal, 23955–6900, Kingdom of Saudi Arabia
- * E-mail: (MA); (TR)
| |
Collapse
|
45
|
Cătană CS, Calin GA, Berindan-Neagoe I. Inflamma-miRs in Aging and Breast Cancer: Are They Reliable Players? Front Med (Lausanne) 2015; 2:85. [PMID: 26697428 PMCID: PMC4678211 DOI: 10.3389/fmed.2015.00085] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/13/2015] [Indexed: 12/13/2022] Open
Abstract
Human aging is characterized by chronic low-grade inflammation known as “inflammaging.” Persistent low-level inflammation also plays a key role in all stages of breast cancer since “inflammaging” is the potential link between cancer and aging through NF-kB pathways highly influenced by specific miRs. Micro-RNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression at a posttranscriptional level. Inflamma-miRs have been implicated in the regulation of immune and inflammatory responses. Their abnormal expression contributes to the chronic pro-inflammatory status documented in normal aging and major age-related diseases (ARDs), inflammaging being a significant mortality risk factor in both cases. Nevertheless, the correct diagnosis of inflammaging is difficult to make and its hidden contribution to negative health outcomes remains unknown. This methodological work flow was aimed at defining crucial unanswered questions about inflammaging that can be used to clarify aging-related miRNAs in serum and cell lines as well as their targets, thus confirming their role in aging and breast cancer tumorigenesis. Moreover, we aim to highlight the links between the pro-inflammatory mechanism underlying the cancer and aging processes and the precise function of certain miRNAs in cellular senescence (CS). In addition, miRNAs and cancer genes represent the basis for new therapeutic findings indicating that both cancer and ARDs genes are possible candidates involved in CS and vice versa. Our goal is to obtain a focused review that could facilitate future approaches in the investigation of the mechanisms by which miRNAs control the aging process by acting as efficient ARDs inflammatory biomarkers. An understanding of the sources and modulation of inflamma-miRs along with the identification of their specific target genes could enhance their therapeutic potential.
Collapse
Affiliation(s)
- Cristina Sorina Cătană
- Department of Biochemistry, Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - George A Calin
- Department of Experimental Therapeutics, MD Anderson Cancer Center, University of Texas , Houston, TX , USA ; Non-Coding RNA Center, MD Anderson Cancer Center, University of Texas , Houston, TX , USA
| | - Ioana Berindan-Neagoe
- Department of Experimental Therapeutics, MD Anderson Cancer Center, University of Texas , Houston, TX , USA ; Research Center for Functional Genomics, Biomedicine and Translational Medicine, Institute of Doctoral Studies, Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania ; Department of Experimental Pathology, Ion Chiricuta Institute of Oncology , Cluj Napoca , Romania
| |
Collapse
|