1
|
Shaw P, Dey Bhowmik A, Gopinatha Pillai MS, Robbins N, Dwivedi SKD, Rao G. Anoikis resistance in Cancer: Mechanisms, therapeutic strategies, potential targets, and models for enhanced understanding. Cancer Lett 2025; 624:217750. [PMID: 40294841 DOI: 10.1016/j.canlet.2025.217750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/01/2025] [Accepted: 04/26/2025] [Indexed: 04/30/2025]
Abstract
Anoikis, defined as programmed cell death triggered by the loss of cell-extracellular matrix (ECM) and cell-cell interactions, is crucial for maintaining tissue homeostasis and preventing aberrant cell migration. Cancer cells, however, display anoikis resistance (AR) which in turn enables cancer metastasis. AR results from alterations in apoptotic signaling, metabolic reprogramming, autophagy modulation, and epigenetic changes, allowing cancer cells to survive in detached conditions. In this review we describe the mechanisms underlying both anoikis and AR, focusing on intrinsic and extrinsic pathways, disrupted cell-ECM interactions, and autophagy in cancer. Recent findings (i.e., between 2014 and 2024) on epigenetic regulation of AR and its role in metastasis are discussed. Therapeutic strategies targeting AR, including chemical inhibitors, are highlighted alongside a network analysis of 122 proteins reported to be associated with AR which identifies 53 hub proteins as potential targets. We also evaluate in vitro and in vivo models for studying AR, emphasizing their role in advancing metastasis research. Our overall goal is to guide future studies and therapeutic developments to counter cancer metastasis.
Collapse
Affiliation(s)
- Pallab Shaw
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA; Department of Pathology, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA
| | - Arpan Dey Bhowmik
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA; Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA
| | - Mohan Shankar Gopinatha Pillai
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA; Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA
| | - Nathan Robbins
- James E. Hurley School of Science and Mathematics, Oklahoma Baptist University, Shawnee, OK, USA
| | - Shailendra Kumar Dhar Dwivedi
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA; Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA
| | - Geeta Rao
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA; Department of Pathology, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA.
| |
Collapse
|
2
|
Khamrui E, Banerjee S, Mukherjee DD, Biswas K. Emerging role of MAPK signaling in glycosphingolipid-associated tumorigenesis. Glycoconj J 2024; 41:343-360. [PMID: 39368037 DOI: 10.1007/s10719-024-10168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024]
Abstract
Glycosphingolipids (GSLs) are a type of amphipathic lipid molecules consisting of hydrophobic ceramide backbone bound to carbohydrate moiety clustered in the cell surface microdomains named 'lipid rafts' and are known to participate in cell-cell communication as well as intra-cellular signaling, thereby facilitating critical normal cellular processes and functions. Over the past several decades, various GSLs have been reported to be aberrantly expressed in different cancers, many of which have been associated with their prognosis. The wide implication of MAPK signaling in controlling tumor growth, progression, and metastasis through activation of an upstream signaling cascade, often originating in the cell membrane, justifies the rationale for its plausible influence on MAPK signaling. This review highlights the role of GSLs and their metabolites in regulating different signaling pathways towards modulation of tumor cell growth, migration, and adhesion by interacting with various receptors [epidermal growth factor receptor (EGFR), and platelet derived growth factor receptor (PDGFR), and other receptor tyrosine kinases (RTKs)] leading to activation of the MAPK pathway. Furthermore, GSLs can influence the activity and localization of downstream signaling components in the MAPK pathway by regulating the activation state of kinases, which in turn, regulate the activity of MAPKs. Additionally, this review further consolidates the GSL-mediated modulation of MAPK pathway components through the regulation of gene expression. Finally, recent findings on GSL-MAPK crosstalk will be explored in this article for the identification of potential anti-cancer therapeutic targets.
Collapse
Affiliation(s)
- Elora Khamrui
- Department of Biological Sciences, Bose Institute, EN-80, Bidhan Nagar, Salt Lake, Sector-V, Kolkata, West Bengal, 700091, India
| | - Sounak Banerjee
- Department of Biological Sciences, Bose Institute, EN-80, Bidhan Nagar, Salt Lake, Sector-V, Kolkata, West Bengal, 700091, India
| | - Dipanwita Das Mukherjee
- Department of Biological Sciences, Bose Institute, EN-80, Bidhan Nagar, Salt Lake, Sector-V, Kolkata, West Bengal, 700091, India
| | - Kaushik Biswas
- Department of Biological Sciences, Bose Institute, EN-80, Bidhan Nagar, Salt Lake, Sector-V, Kolkata, West Bengal, 700091, India.
| |
Collapse
|
3
|
Sarkar A, Banerjee S, Biswas K. Multi-dimensional role of gangliosides in modulating cancer hallmarks and their prospects in targeted cancer therapy. Front Pharmacol 2023; 14:1282572. [PMID: 38089042 PMCID: PMC10711107 DOI: 10.3389/fphar.2023.1282572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/14/2023] [Indexed: 12/10/2024] Open
Abstract
Gangliosides are glycosphingolipids with prevalence in nervous tissue and their involvement in certain neuronal diseases have been widely known. Interestingly, many recent studies highlighted their importance in the development and progression of various cancers through orchestration of multiple attributes of tumorigenesis, i.e., promoting migration, invasion, escaping the host immune system, and influencing other cancer hallmarks. Therefore, the multidimensional role of gangliosides in different cancers has established them as potential cancer targets. However, the tremendous structural complexity and functional heterogeneity are the major challenges in ganglioside research. Moreover, despite numerous immunotherapeutic attempts to target different gangliosides, it has failed to yield consistent results in clinical trials owing to their poor immunogenicity, a broad range of cross-reactivity, severe side effects, lack of uniform expression as well as heterogeneity. The recent identification of selective O-acetylated ganglioside expression in cancer tissues, but not in normal tissues, has strengthened their potential as a better and specific target for treating cancer patients. It was further supported by reduced cross-reactivity and side effects in clinical trials, although poor immunogenicity remains a major concern. Therefore, in addition to characterization and identification of the biological importance of O-acetylated gangliosides, their specific and efficient targeting in cancer through engineered antibodies is an emerging area of glycobiology research. This review highlights the modulatory effect of select gangliosides on different hallmarks of cancer and presents the overall development of ganglioside targeted immunotherapies along with recent progress. Here, we have also discussed its potential for future modifications aimed towards improvement in ganglioside-based cancer therapies.
Collapse
Affiliation(s)
| | | | - Kaushik Biswas
- Department of Biological Sciences, Bose Institute, Kolkata, India
| |
Collapse
|
4
|
Bruserud Ø, Mosevoll KA, Bruserud Ø, Reikvam H, Wendelbo Ø. The Regulation of Neutrophil Migration in Patients with Sepsis: The Complexity of the Molecular Mechanisms and Their Modulation in Sepsis and the Heterogeneity of Sepsis Patients. Cells 2023; 12:cells12071003. [PMID: 37048076 PMCID: PMC10093057 DOI: 10.3390/cells12071003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Common causes include gram-negative and gram-positive bacteria as well as fungi. Neutrophils are among the first cells to arrive at an infection site where they function as important effector cells of the innate immune system and as regulators of the host immune response. The regulation of neutrophil migration is therefore important both for the infection-directed host response and for the development of organ dysfunctions in sepsis. Downregulation of CXCR4/CXCL12 stimulates neutrophil migration from the bone marrow. This is followed by transmigration/extravasation across the endothelial cell barrier at the infection site; this process is directed by adhesion molecules and various chemotactic gradients created by chemotactic cytokines, lipid mediators, bacterial peptides, and peptides from damaged cells. These mechanisms of neutrophil migration are modulated by sepsis, leading to reduced neutrophil migration and even reversed migration that contributes to distant organ failure. The sepsis-induced modulation seems to differ between neutrophil subsets. Furthermore, sepsis patients should be regarded as heterogeneous because neutrophil migration will possibly be further modulated by the infecting microorganisms, antimicrobial treatment, patient age/frailty/sex, other diseases (e.g., hematological malignancies and stem cell transplantation), and the metabolic status. The present review describes molecular mechanisms involved in the regulation of neutrophil migration; how these mechanisms are altered during sepsis; and how bacteria/fungi, antimicrobial treatment, and aging/frailty/comorbidity influence the regulation of neutrophil migration.
Collapse
Affiliation(s)
- Øystein Bruserud
- Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Correspondence:
| | - Knut Anders Mosevoll
- Section for Infectious Diseases, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Section for Infectious Diseases, Department of Clinical Research, University of Bergen, 5021 Bergen, Norway
| | - Øyvind Bruserud
- Department for Anesthesiology and Intensive Care, Haukeland University Hospital, 5021 Bergen, Norway
| | - Håkon Reikvam
- Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Øystein Wendelbo
- Section for Infectious Diseases, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Faculty of Health, VID Specialized University, Ulriksdal 10, 5009 Bergen, Norway
| |
Collapse
|
5
|
Pan-Cancer Analysis of B4GALNT1 as a Potential Prognostic and Immunological Biomarker. J Immunol Res 2022; 2022:4355890. [PMID: 35935585 PMCID: PMC9352475 DOI: 10.1155/2022/4355890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Background. Gangliosides act as important roles in tumor progression. B4GALNT1 is a key enzyme in ganglioside biosynthesis. B4GALNT1 expression is linked to tumorigenesis and the prognosis of tumor patients. Nevertheless, the role of B4GALNT1 in pan-cancer remains unclear. Methods. Several databases, including TCGA, GEO, GTEx, NCI-60, and TIMER, were searched. Methods including correlation analysis, Cox regression analysis, and Kaplan-Meier analysis were used to explore the expression pattern, prognosis, tumor infiltration pattern, genetics and epigenetics, and drug sensitivity of B4GALNT1 in pan-cancer patients from the above datasets. Results. B4GALNT1 was found to be aberrantly expressed in multiple types of tumors. The survival status of tumor patients was significantly related to B4GALNT1 expression, but the correlations were tumor-specific. Moreover, the expression of B4GALNT1 was associated with ImmuneScore and StromalScore in 21 and 27 tumor types, respectively. Also, B4GALNT1 was significantly associated with TMB, MSI, MMR, and DNA methylation. Additionally, the sensitivity of 9 drugs was correlated with the expression of B4GALNT1. Conclusion. A correlation of B4GALNT1 expression with prognosis exists in multiple types of cancers. In addition, B4GALNT1 expression may play a role in TME and tumor immunity regulation. Further investigation of the biological mechanisms of its different roles in tumorigenesis and clinical application as a biomarker is still required.
Collapse
|
6
|
Debnath S, Sarkar A, Mukherjee DD, Ray S, Mahata B, Mahata T, Parida PK, Das T, Mukhopadhyay R, Ghosh Z, Biswas K. Eriodictyol mediated selective targeting of the TNFR1/FADD/TRADD axis in cancer cells induce apoptosis and inhibit tumor progression and metastasis. Transl Oncol 2022; 21:101433. [PMID: 35462210 PMCID: PMC9046888 DOI: 10.1016/j.tranon.2022.101433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 12/03/2022] Open
Abstract
While the anti-inflammatory activities of Eriodictyol, a plant-derived flavonoid is well-known, reports on its anti-cancer efficacy and selective cytotoxicity in cancer cells are still emerging. However, little is known regarding its mechanism of selective anti-cancer activities. Here, we show the mechanism of selective cytotoxicity of Eriodictyol towards cancer cells compared to normal cells. Investigation reveals that Eriodictyol significantly upregulates TNFR1 expression in tumor cells (HeLa and SK-RC-45) while sparing the normal cells (HEK, NKE and WI-38), which display negligible TNFR1 expression, irrespective of the absence or presence of Eriodictyol. Further investigation of the molecular events reveal that Eriodictyol induces apoptosis through expression of the pro-apoptotic DISC components leading to activation of the caspase cascade. In addition, CRISPR-Cas9 mediated knockout of TNFR1 completely blocks apoptosis in HeLa cells in response to Eriodictyol, confirming that Eriodictyol induced cancer cell apoptosis is indeed TNFR1-dependent. Finally, in vivo data demonstrates that Eriodictyol not only impedes tumor growth and progression, but also inhibits metastasis in mice implanted with 4T1 breast cancer cells. Thus, our study has identified Eriodictyol as a compound with high selectivity towards cancer cells through TNFR1 and suggests that it can be further explored for its prospect in cancer therapeutics.
Collapse
Affiliation(s)
- Shibjyoti Debnath
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, 700054, India
| | - Abhisek Sarkar
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, 700054, India
| | | | - Subha Ray
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, 700054, India
| | - Barun Mahata
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, 700054, India
| | - Tarun Mahata
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, 700054, India
| | - Pravat K Parida
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, 700054, India
| | - Troyee Das
- The Bioinformatics Center, Bose Institute, Kolkata, West Bengal, 700054, India
| | - Rupak Mukhopadhyay
- Department of Molecular Biology & Biotechnology, Tezpur University, Assam 784028
| | - Zhumur Ghosh
- The Bioinformatics Center, Bose Institute, Kolkata, West Bengal, 700054, India
| | - Kaushik Biswas
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, 700054, India.
| |
Collapse
|
7
|
Glycosyltransferases in Cancer: Prognostic Biomarkers of Survival in Patient Cohorts and Impact on Malignancy in Experimental Models. Cancers (Basel) 2022; 14:cancers14092128. [PMID: 35565254 PMCID: PMC9100214 DOI: 10.3390/cancers14092128] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Glycosylation changes are a main feature of cancer. Some carbohydrate epitopes and expression levels of glycosyltransferases have been used or proposed as prognostic markers, while many experimental works have investigated the role of glycosyltransferases in malignancy. Using the transcriptomic data of the 21 TCGA cohorts, we correlated the expression level of 114 glycosyltransferases with the overall survival of patients. Methods: Using the Oncolnc website, we determined the Kaplan−Meier survival curves for the patients falling in the 15% upper or lower percentile of mRNA expression of each glycosyltransferase. Results: Seventeen glycosyltransferases involved in initial steps of N- or O-glycosylation and of glycolipid biosynthesis, in chain extension and sialylation were unequivocally associated with bad prognosis in a majority of cohorts. Four glycosyltransferases were associated with good prognosis. Other glycosyltransferases displayed an extremely high predictive value in only one or a few cohorts. The top were GALNT3, ALG6 and B3GNT7, which displayed a p < 1 × 10−9 in the low-grade glioma (LGG) cohort. Comparison with published experimental data points to ALG3, GALNT2, B4GALNT1, POFUT1, B4GALT5, B3GNT5 and ST3GAL2 as the most consistently malignancy-associated enzymes. Conclusions: We identified several cancer-associated glycosyltransferases as potential prognostic markers and therapeutic targets.
Collapse
|
8
|
Mansoori M, Abdi Rad I, Mirzaei A, Tam KJ, Mohsen Hosseini S, Mahmodlu R, Mansouri F, Saeednejad Zanjani L, Madjd Z. Does GD2 synthase (GD2S) detect cancer stem cells in blood samples of breast carcinomas? J Appl Biomed 2021; 19:181-189. [PMID: 34907737 DOI: 10.32725/jab.2021.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 09/03/2021] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Cancer stem cells (CSCs) are a theorized subset of cells within the tumor that is thought to drive disease recurrence and metastatic spread. The aim of this study is to investigate mRNA and protein levels of ganglioside GD2 synthase (GD2S), in breast cancer (BC) patients. METHODS 65 PBMCs of preoperative BC patients without chemotherapy were compared to PBMCs after chemotherapy and controls. RESULTS GD2S were significantly higher in BC patients after chemotherapy compared to pre-chemotherapy at both mRNA and protein. GD2S was higher in pre-chemotherapy blood samples compared to control samples. CONCLUSIONS Higher expression of GD2S in BC samples compared to healthy control indicates the potential utility of GD2S as a marker of malignancy.
Collapse
Affiliation(s)
- Maryam Mansoori
- Iran University of Medical Sciences, Oncopathology Research Center, Tehran, Iran.,Iran University of Medical Sciences, Faculty of Advanced Technologies in Medicine, Department of Molecular Medicine, Tehran, Iran
| | - Isa Abdi Rad
- Urmia University of Medical Sciences, Cellular and Molecular Research Center, Urmia, Iran
| | - Alireza Mirzaei
- Iran University of Medical Sciences, Shafa Orthopedic Hospital, Bone and Joint Reconstruction Research Center, Tehran, Iran
| | - Kevin J Tam
- University of British Columbia, Vancouver Prostate Centre, Department of Urologic Sciences, Vancouver, Canada
| | - Seyed Mohsen Hosseini
- Omid specialty and subspecialty Hospital, Oncology and Radiotherapy Ward, Urmia, Iran
| | - Rahim Mahmodlu
- Urmia University of Medical Sciences, Faculty of Medicine, Imam Khomeini Hospital, Department of Surgery, Urmia, Iran
| | - Fatemeh Mansouri
- Urmia University of Medical Sciences, Faculty of Medicine, Department of Genetics and Immunology, Urmia, Iran
| | | | - Zahra Madjd
- Iran University of Medical Sciences, Oncopathology Research Center, Tehran, Iran.,Iran University of Medical Sciences, Faculty of Advanced Technologies in Medicine, Department of Molecular Medicine, Tehran, Iran
| |
Collapse
|
9
|
Jiang T, Wu H, Lin M, Yin J, Tan L, Ruan Y, Feng M. B4GALNT1 promotes progression and metastasis in lung adenocarcinoma through JNK/c-Jun/Slug pathway. Carcinogenesis 2020; 42:621-630. [PMID: 33367717 DOI: 10.1093/carcin/bgaa141] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/05/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the most common types of cancer and has a low survival rate. β-1,4-N-Acetyl galactosaminyltransferase 1 (B4GALNT1), which is involved in the synthesis of complex gangliosides, is highly expressed in the progression of various cancers. This study aimed to elucidate the biological functions of B4GALNT1 in LUAD progression and metastasis. We observed that B4GALNT1 overexpression showed enhanced cell migration and invasion in vitro, and promoted tumor metastasis, with reduced survival in mice. Mechanistically, B4GALNT1 regulated metastatic potential of LUAD through activating the JNK/c-Jun/Slug pathway, and with the form of its enzymatic activity. Clinical samples confirmed that B4GALNT1 expression was upregulated in LUAD, and B4GALNT1 was correlated with c-Jun/Slug expression, lymph node involvement, advanced clinical stage, and reduced overall survival. Collectively, our results suggest that B4GALNT1 promotes progression and metastasis of LUAD through activating JNK/c-Jun/Slug signaling, and with the form of its enzymatic activity.
Collapse
Affiliation(s)
- Tian Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, China
| | - Hao Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Department of Clinical Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Miao Lin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, China
| | - Jun Yin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, China
| | - Yuanyuan Ruan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Mingxiang Feng
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, China
| |
Collapse
|
10
|
Yoshida H, Koodie L, Jacobsen K, Hanzawa K, Miyamoto Y, Yamamoto M. B4GALNT1 induces angiogenesis, anchorage independence growth and motility, and promotes tumorigenesis in melanoma by induction of ganglioside GM2/GD2. Sci Rep 2020; 10:1199. [PMID: 31988291 PMCID: PMC6985110 DOI: 10.1038/s41598-019-57130-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/22/2019] [Indexed: 12/11/2022] Open
Abstract
β-1,4-N-Acetyl-Galactosaminyltransferase 1 (B4GALNT1) encodes the key enzyme B4GALNT1 to generate gangliosides GM2/GD2. GM2/GD2 gangliosides are surface glycolipids mainly found on brain neurons as well as peripheral nerves and skin melanocytes and are reported to exacerbate the malignant potential of melanomas. In order to elucidate the mechanism, we performed functional analyses of B4GALNT1-overexpressing cells. We analyzed ganglioside pattern on four melanoma and two neuroblastoma cell lines by high performance liquid chromatography (HPLC). We overexpressed B4GALNT1 in GM2/GD2-negative human melanoma cell line (SH4) and confirmed production of GM2/GD2 by HPLC. They showed higher anchorage independence growth (AIG) in colony formation assay, and exhibited augmented motility. In vitro, cell proliferation was not affected by GM2/GD2 expression. In vivo, GM2/GD2-positive SH4 clones showed significantly higher tumorigenesis in NOD/Scid/IL2Rγ-null mice, and immunostaining of mouse CD31 revealed that GM2/GD2 induced remarkable angiogenesis. No differences were seen in melanoma stem cell and Epithelial-Mesenchymal Transition markers between GM2/GD2-positive and -negative SH4 cells. We therefore concluded that B4GALNT1, and consequently GM2/GD2, enhanced tumorigenesis via induction of angiogenesis, AIG, and cell motility. RNA-Seq suggested periostin as a potential key factor for angiogenesis and AIG. These findings may lead to development of novel therapy for refractory melanoma.
Collapse
Affiliation(s)
- Hideki Yoshida
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lisa Koodie
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kari Jacobsen
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ken Hanzawa
- Department of Molecular Biology, Osaka International Cancer Institute, Osaka, Japan
| | - Yasuhide Miyamoto
- Department of Molecular Biology, Osaka International Cancer Institute, Osaka, Japan
| | - Masato Yamamoto
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
11
|
Lupeol alters viability of SK-RC-45 (Renal cell carcinoma cell line) by modulating its mitochondrial dynamics. Heliyon 2019; 5:e02107. [PMID: 31417967 PMCID: PMC6690575 DOI: 10.1016/j.heliyon.2019.e02107] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/18/2019] [Accepted: 07/15/2019] [Indexed: 01/14/2023] Open
Abstract
Renal cell carcinoma (RCC) is the most common kidney cancer leading to 140,000 deaths per year. Among all RCCs 80% evolve from the epithelial proximal tubular cells within the kidney. There is a high tendency of developing chemoresistance and resistance to radiation therapy in most RCC patients. Therefore, kidney resection is considered as the most effective treatments for patients having localized RCC. There is a high tendency of post-operative recurrence among 20-40% of the patients and this recurrence is not curable. It is also clear that modern medicine has no curative treatment options against metastatic RCC. Lupeol [lup-20(29)-en-3β-ol] is a pentacyclic triterpenoid compound naturally found in various edible fruits and in many traditionally used medicinal plants, and has been demonstrated as effective against highly metastatic melanoma and prostate cancers. The present study was designed to evaluate the effect of lupeol to RCC with molecular details. Treatment with lupeol on SK-RC-45 (a RCC cell line) with the LC50 dose of 40μM (for 48 h) induces mitochondrial hyper fission which eventually leads to apoptosis while SK-RC-45 counteracts by enhancing autophagy-mediated selective removal of fragmented mitochondria. This is the first study which concurrently reports the effects of lupeol on RCC and its effect on the mitochondrial dynamics of a cell. Herein, we conclude that lupeol has potential to be an effective agent against RCC with the modulation of mitochondrial dynamics.
Collapse
|
12
|
Chowdhury S, Ghosh S, Das AK, Sil PC. Ferulic Acid Protects Hyperglycemia-Induced Kidney Damage by Regulating Oxidative Insult, Inflammation and Autophagy. Front Pharmacol 2019; 10:27. [PMID: 30804780 PMCID: PMC6371841 DOI: 10.3389/fphar.2019.00027] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 01/10/2019] [Indexed: 12/31/2022] Open
Abstract
Oxidative insult, inflammation, apoptosis and autophagy play a pivotal role in the etiology of diabetic nephropathy, a global health concern. Ferulic acid, a phytochemical, is reported to protect against varied diseased conditions. However, the ameliorative role and mechanisms of ferulic acid in averting STZ-mediated nephrotoxicity largely remains unknown. For in vivo study, a single intraperitoneal injection of streptozotocin (50 mg kg-1 body wt.) was administered in experimental rats to induce diabetes. The diabetic rats exhibited a rise in blood glucose level as well as kidney to body weight ratio, a decrease in serum insulin level, severe kidney tissue damage and dysfunction. Elevation of intracellular ROS level, altered mitochondrial membrane potential and cellular redox balance impairment shown the participation of oxidative stress in hyperglycemia-triggered renal injury. Treatment with ferulic acid (50 mg kg-1 body wt., orally for 8 weeks), post-diabetic induction, could markedly ameliorate kidney injury, renal cell apoptosis, inflammation and defective autophagy in the kidneys. The underlying mechanism for such protection involved the modulation of AGEs, MAPKs (p38, JNK, and ERK 1/2), NF-κB mediated inflammatory pathways, mitochondria-dependent and -independent apoptosis as well as autophagy induction. In cultured NRK-52E cells, ferulic acid (at an optimum dose of 75 μM) could counter excessive ROS generation, induce autophagy and inhibit apoptotic death of cells under high glucose environment. Blockade of autophagy could significantly eradicate the protective effect of ferulic acid in high glucose-mediated cell death. Together, the study confirmed that ferulic acid, exhibiting hypoglycemic, antioxidant, anti-inflammatory, anti-apoptotic activities and role in autophagy, could circumvent oxidative stress-mediated renal cell damage.
Collapse
Affiliation(s)
| | | | | | - Parames C. Sil
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| |
Collapse
|
13
|
Banerjee A, Mahata B, Dhir A, Mandal TK, Biswas K. Elevated histone H3 acetylation and loss of the Sp1-HDAC1 complex de-repress the GM2-synthase gene in renal cell carcinoma. J Biol Chem 2019; 294:1005-1018. [PMID: 30463940 PMCID: PMC6341395 DOI: 10.1074/jbc.ra118.004485] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/16/2018] [Indexed: 11/06/2022] Open
Abstract
GM2-synthase produces sialic acid-containing glycosphingolipids called gangliosides, and its mRNA overexpression and the gangliosides it generates are linked to tumor progression, migration, and suppression of tumor-specific host immune responses. However, the mechanism underlying GM2-synthase de-repression in renal cell carcinoma (RCC) is poorly understood. Here, we demonstrate that higher GM2-synthase mRNA expression levels in various cancer cells and in human RCC tumors correlate with higher histone acetylation levels (H3K9, H3K14, or both) at region +38/+187 relative to the transcription start site (TSS) of the GM2-synthase gene than in normal kidney epithelial (NKE) cells or healthy adjacent tissues. An increase in GM2-synthase mRNA expression in cells treated with a histone deacetylase (HDAC) inhibitor was accompanied by increased histone acetylation levels at this promoter region. DNA methylation around the TSS was absent in both RCC cell lines and NKE cells. Of note, both the transcription factor Sp1 and corepressor HDAC1 associated with the +38/+187 region when the GM2-synthase gene was repressed in NKE and tumor-adjacent tissues, indicating plausible site-specific repressive roles of HDAC1 and Sp1 in GM2-synthase mRNA expression. Site-directed mutagenesis of the Sp1-binding site within the +38/+187 region relieved repressed luciferase activity of this region by limiting HDAC1 recruitment. Moreover, Sp1 or HDAC1 knock down increased GM2-synthase transcription, and butyrate-mediated activation of GM2-synthase mRNA expression in SK-RC-45 cells was accompanied by Sp1 and HDAC1 loss from the +38/+187 region. Taken together, we have identified an epigenetic mechanism for the de-repression of the GM2-synthase gene in RCC.
Collapse
Affiliation(s)
- Avisek Banerjee
- From the Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal 700 054 India and
| | - Barun Mahata
- From the Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal 700 054 India and
| | - Arjun Dhir
- From the Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal 700 054 India and
| | - Tapan Kumar Mandal
- Department of Urology, Nil Ratan Sircar Medical College and Hospital, Kolkata, West Bengal 700 014 India
| | - Kaushik Biswas
- From the Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal 700 054 India and
| |
Collapse
|
14
|
Banerjee S, Ghosh S, Sinha K, Chowdhury S, Sil PC. Sulphur dioxide ameliorates colitis related pathophysiology and inflammation. Toxicology 2019; 412:63-78. [PMID: 30503585 DOI: 10.1016/j.tox.2018.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 11/13/2018] [Accepted: 11/28/2018] [Indexed: 01/06/2023]
Abstract
Colitis is an inflammatory disease of the gastrointestinal tract. Inflammation, oxidative stress and cell death constitute the backbone of colitis. Most of the drugs prescribed for inflammatory bowel disease (IBD) have various side effects. In this scenario, we would like to determine the therapeutic role sulphur dioxide, a gaso-transmitter produced through the metabolism of cysteine in colitis. Colitis was induced through intrarectal administration of 2,4,6-trinitrobenzenesulfonic acid (TNBS) in male Wistar rats. Rats were administered with 0.9% saline containing Na2SO3 and NaHSO3 (3:1 ratio; i.e., 0.54 mmol/kg and 0.18 mmol/kg body weight) orally 1 h after colitis induction followed by the administration of the same solution after each 12 h for 72 h. TNBS administration resulted in increased oxidative stress, NF-ĸ B and inflammasome activation, ER stress and autophagy. Moreover, TNBS administration also resulted in activation of p53 and apoptosis. SO2 reversed all these alterations and ameliorated colitis in rats. Administration of an inhibitor of endogenous SO2 production along with TNBS exacerbated colitis. Results suggest that down-regulation of SO2 / glutamate oxaloacetate transaminase pathway is involved in IBD. The protective role of SO2 in colitis is attributed to its anti-inflammatory and anti-oxidant nature. Down-regulation of SO2/glutamate oxaloacetate transaminase pathway is involved in IBD. Since SO2 is not toxic at low concentration and endogenously produced, it may be used with prescribed drugs for synergistic effect after intensive research. Our result demonstrated the therapeutic role of SO2 in colitis for the first time.
Collapse
Affiliation(s)
- Sharmistha Banerjee
- Division of Molecular Medicine, Bose Institute P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Sumit Ghosh
- Division of Molecular Medicine, Bose Institute P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Krishnendu Sinha
- Department of Zoology, Jhargram Raj college, Jhargram 721507, India
| | - Sayantani Chowdhury
- Division of Molecular Medicine, Bose Institute P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute P-1/12, CIT Scheme VII M, Kolkata, 700054, India.
| |
Collapse
|
15
|
Insight into the molecular mechanism of miR-192 regulating Escherichia coli resistance in piglets. Biosci Rep 2018; 38:BSR20171160. [PMID: 29363554 PMCID: PMC5821941 DOI: 10.1042/bsr20171160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/31/2017] [Accepted: 01/23/2018] [Indexed: 11/21/2022] Open
Abstract
MicroRNAs (miRNAs) have important roles in many cellular processes, including cell proliferation, growth and development, and disease control. Previous study demonstrated that the expression of two highly homologous miRNAs (miR-192 and miR-215) was up-regulated in weaned piglets with Escherichia coli F18 infection. However, the potential molecular mechanism of miR-192 in regulating E. coli infection remains unclear in pigs. In the present study, we analyzed the relationship between level of miR-192 and degree of E. coli resistance using transcription activator-like effector nuclease (TALEN), in vitro bacterial adhesion assays, and target genes research. A TALEN expression vector that specifically recognizes the pig miR-192 was constructed and then monoclonal epithelial cells defective in miR-192 were established. We found that miR-192 knockout led to enhance the adhesion ability of the E. coli strains F18ab, F18ac and K88ac, meanwhile increase the expression of target genes (DLG5 and ALCAM) by qPCR and Western blotting analysis. The results suggested that miR-192 and its key target genes (DLG5 and ALCAM) could have a key role in E. coli infection. Based on our findings, we propose that further investigation of miR-192 function is likely to lead to insights into the molecular mechanisms of E. coli infection.
Collapse
|
16
|
Abstract
Tumor-associated gangliosides play important roles in regulation of signal transduction induced by growth-factor receptors including EGFR, FGFR, HGF and PDGFR in a specific microdomain called glycosynapse in the cancer cell membranes, and in interaction with glycan recognition molecules involved in cell adhesion and immune regulation including selectins and siglecs. As the genes involved in the synthesis and degradation of tumor-associated gangliosides were identified, biological functions became clearer from the experimental results employing forced overexpression and/or knockdown/knockout of the genes. Studies on the regulatory mechanisms for their expression also achieved great advancements. Epigenetic silencing of glycan-related genes is a dominant mechanism in glycan alteration at early stages of carcinogenesis. Development of hypoxia resistance involving activation of a transcription factor HIF, and acquisition of cancer stem cell-like characteristics through epithelial-mesenchymal transition are important mechanisms for glycan modulations in the later stages of cancer progression. In the initial stages of studies, the gangliosides which specifically appear in cancers attracted attention under the name of tumor-associated gangliosides. However, it became apparent that not only the cancer-associated gangliosides but also the normal gangliosides present in nonmalignant cells and tissues perform important biological functions, and some of them tend to disappear in cancer cells resulting in the loss of the physiological functions, and this sometimes facilitates progression of cancers.
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Reception and transmission of signals across the plasma membrane has been a function generally attributed to transmembrane proteins. In the last 3 years, however, a growing number of reports have further acknowledged important contributions played by membrane lipids in the process of signal transduction. RECENT FINDINGS In particular, the constituency of membrane lipids can regulate how proteins with SH2 domains and molecules like K-Ras expose their catalytic domains to the cytosol and interact with effectors and second messengers. Recent reports have also shown that the degree of saturation of phospholipids can reduce the activation of certain G-protein-coupled receptors, and signaling downstream to Toll-like receptor 4 with consequences to nuclear factor kappa B activation and inflammation. Levels of specific gangliosides in the membrane were reported to activate integrins in a cell-autonomous manner affecting tumor cell migration. Furthermore, high resolution of the association of cholesterol with the smoothened receptor has clarified its participation in sonic hedgehog signaling. These are some of the key advancements that have further propelled our understanding of the broad versatile contributions of membrane lipids in signal transduction. SUMMARY As we gain definitive detail regarding the impact of lipid-protein interactions and their consequences to cell function, the options for therapeutic targeting expand with the possibility of greater specificity.
Collapse
Affiliation(s)
- Hannah Sunshine
- Molecular, Cellular and Integrative Physiology Graduate Program, UCLA
| | - M. Luisa Iruela-Arispe
- Departments of Molecular, Cell and Developmental Biology, UCLA, Los Angeles, California 90095
- Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
18
|
Structural annotation of Beta-1,4- N -acetyl galactosaminyltransferase 1 (B4GALNT1) causing Hereditary Spastic Paraplegia 26. Gene 2017; 626:258-263. [DOI: 10.1016/j.gene.2017.05.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 11/23/2022]
|
19
|
Mahata B, Biswas K. Generation of Stable Knockout Mammalian Cells by TALEN-Mediated Locus-Specific Gene Editing. Methods Mol Biol 2017; 1498:107-120. [PMID: 27709571 DOI: 10.1007/978-1-4939-6472-7_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Precise and targeted genome editing using Transcription Activator-Like Effector Endonucleases (TALENs) has been widely used and proven to be an extremely effective and specific knockout strategy in both cultured cells and animal models. The current chapter describes a protocol for the construction and generation of TALENs using serial and hierarchical digestion and ligation steps, and using the synthesized TALEN pairs to achieve locus-specific targeted gene editing in mammalian cell lines using a modified clonal selection strategy in an easy and cost-efficient manner.
Collapse
Affiliation(s)
- Barun Mahata
- P1/12 CIT Scheme VIIM, Division of Molecular Medicine, Bose Institute, Kolkata, 700054, India
| | - Kaushik Biswas
- P1/12 CIT Scheme VIIM, Division of Molecular Medicine, Bose Institute, Kolkata, 700054, India.
| |
Collapse
|
20
|
Yu AL, Hung JT, Ho MY, Yu J. Alterations of Glycosphingolipids in Embryonic Stem Cell Differentiation and Development of Glycan-Targeting Cancer Immunotherapy. Stem Cells Dev 2016; 25:1532-1548. [DOI: 10.1089/scd.2016.0138] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alice L. Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Jung-Tung Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Yi Ho
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
21
|
Glycosphingolipid dynamics in human embryonic stem cell and cancer: their characterization and biomedical implications. Glycoconj J 2016; 34:765-777. [PMID: 27549315 DOI: 10.1007/s10719-016-9715-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/09/2016] [Accepted: 07/13/2016] [Indexed: 01/16/2023]
Abstract
Glycosphingolipids (GSLs) are composed of complex glycans linked to sphingosines and various fatty acid chains. Antibodies against several GSLs designated as stage-specific embryonic antigens (SSEAs), have been widely used to characterize differentiation of embryonic stem (ES) cells. In view of the cross-reactivities of these antibodies with multiple glycans, a few laboratories have employed advanced mass spectrometry (MS) technologies to define the dynamic changes of surface GSLs upon ES differentiation. However, the amphiphilic nature and heterogeneity of GSLs make them difficult to decipher. In our studies, systematic survey of GSL expression profiles in human ES cells and differentiated derivatives was conducted, primarily with matrix-assisted laser desorption/ionization MS (MALDI-MS) and MS/MS analyses. In addition to the well-known ES-specific markers, SSEA-3 and SSEA-4, several previously undisclosed globo- and lacto-series GSLs, including Gb4Cer, Lc4Cer, fucosyl Lc4Cer, Globo H, and disialyl Gb5Cer were identified in the undifferentiated human ES and induced pluripotent stem cells. Furthermore, during differentiation to embryoid body outgrowth, the core structures of GSLs switched from globo- and lacto- to ganglio-series. Lineage-specific differentiation was also marked by alterations of specific GSLs. During differentiation into neural progenitors, core structures shifted to primarily ganglio-series dominated by GD3. GSL patterns shifted to prominent expression of Gb4Cer with little SSEA-3 and- 4 or GD3 during endodermal differentiation. Several issues relevant to MS analysis and novel GSLs in ES cells were discussed. Finally, unique GSL signatures in ES and cancer cells are exploited in glycan-targeted anti-cancer immunotherapy and their mechanistic investigations were discussed using anti-GD2 mAb and Globo H as examples.
Collapse
|
22
|
Kundu M, Mahata B, Banerjee A, Chakraborty S, Debnath S, Ray SS, Ghosh Z, Biswas K. Ganglioside GM2 mediates migration of tumor cells by interacting with integrin and modulating the downstream signaling pathway. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:1472-1489. [PMID: 27066976 DOI: 10.1016/j.bbamcr.2016.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 04/01/2016] [Accepted: 04/06/2016] [Indexed: 11/19/2022]
Abstract
The definitive role of ganglioside GM2 in mediating tumor-induced growth and progression is still unknown. Here we report a novel role of ganglioside GM2 in mediating tumor cell migration and uncovered its mechanism. Data shows differential expression levels of GM2-synthase as well as GM2 in different human cancer cells. siRNA mediated knockdown of GM2-synthase in CCF52, A549 and SK-RC-26B cells resulted in significant inhibition of tumor cell migration as well as invasion in vitro without affecting cellular proliferation. Over-expression of GM2-synthase in low-GM2 expressing SK-RC-45 cells resulted in a consequent increase in migration thus confirming the potential role GM2 and its downstream partners play in tumor cell migration and motility. Further, treatment of SK-RC-45 cells with exogenous GM2 resulted in a dramatic increase in migratory and invasive capacity with no change in proliferative capacity, thereby confirming the role of GM2 in tumorigenesis specifically by mediating tumor migration and invasion. Gene expression profiling of GM2-synthase silenced cells revealed altered expression of several genes involved in cell migration primarily those controlling the integrin mediated signaling. GM2-synthase knockdown resulted in decreased phosphorylation of FAK, Src as well as Erk, while over-expression and/or exogenous GM2 treatment caused increased FAK and Erk phosphorylation respectively. Again, GM2 mediated invasion and Erk phosphorylation is blocked in integrin knockdown SK-RC-45 cells, thus confirming that GM2 mediated migration and phosphorylation of Erk is integrin dependent. Finally, confocal microscopy suggested co-localization while co-immunoprecipitation and surface plasmon resonance (SPR) confirmed direct interaction of membrane bound ganglioside, GM2 with the integrin receptor.
Collapse
Affiliation(s)
- Manjari Kundu
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal 700054, India
| | - Barun Mahata
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal 700054, India
| | - Avisek Banerjee
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal 700054, India
| | - Sohini Chakraborty
- The Bioinformatics Center, Bose Institute, Kolkata, West Bengal 700054, India
| | - Shibjyoti Debnath
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal 700054, India
| | | | - Zhumur Ghosh
- The Bioinformatics Center, Bose Institute, Kolkata, West Bengal 700054, India
| | - Kaushik Biswas
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal 700054, India.
| |
Collapse
|
23
|
Mabashi-Asazuma H, Kuo CW, Khoo KH, Jarvis DL. Modifying an Insect Cell N-Glycan Processing Pathway Using CRISPR-Cas Technology. ACS Chem Biol 2015; 10:2199-208. [PMID: 26241388 DOI: 10.1021/acschembio.5b00340] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fused lobes (FDL) is an enzyme that simultaneously catalyzes a key trimming reaction and antagonizes elongation reactions in the insect N-glycan processing pathway. Accordingly, FDL function accounts, at least in part, for major differences in the N-glycosylation patterns of glycoproteins produced by insect and mammalian cells. In this study, we used the CRISPR-Cas9 system to edit the fdl gene in Drosophila melanogaster S2 cells. CRISPR-Cas9 editing produced a high frequency of site-specific nucleotide insertions and deletions, reduced the production of insect-type, paucimannosidic products (Man3GlcNAc2), and led to the production of partially elongated, mammalian-type complex N-glycans (GlcNAc2Man3GlcNAc2) in S2 cells. As CRISPR-Cas9 has not been widely used to analyze or modify protein glycosylation pathways or edit insect cell genes, these results underscore its broad utility as a tool for these purposes. Our results also confirm the key role of FDL at the major branch point distinguishing insect and mammalian N-glycan processing pathways. Finally, the new FDL-deficient S2 cell derivative produced in this study will enable future bottom-up glycoengineering efforts designed to isolate insect cell lines that can efficiently produce recombinant glycoproteins with chemically predefined oligosaccharide side-chain structures.
Collapse
Affiliation(s)
- Hideaki Mabashi-Asazuma
- Department
of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Chu-Wei Kuo
- Institute
of Biological Chemistry, Academia Sinica 128 Nankang, Taipei 115, Taiwan
| | - Kay-Hooi Khoo
- Institute
of Biological Chemistry, Academia Sinica 128 Nankang, Taipei 115, Taiwan
| | - Donald L. Jarvis
- Department
of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, United States
- GlycoBac,
LLC, Laramie, Wyoming 82072, United States
| |
Collapse
|
24
|
Marshall KM, Laval M, Estacio O, Hudson DF, Kalitsis P, Shulkes A, Baldwin GS, Patel O. Activation by zinc of the human gastrin gene promoter in colon cancer cells in vitro and in vivo. Metallomics 2015; 7:1390-8. [PMID: 26404630 DOI: 10.1039/c5mt00147a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over-expression of growth factors can contribute to the development and progression of cancer, and gastrins in particular have been implicated in accelerating the development of gastrointestinal cancers. Previously our group showed that hypoxia, cobalt chloride (a hypoxia mimetic) and zinc chloride could activate the expression of the gastrin gene in vitro. To characterise activation of the gastrin promoter by zinc ions further in vivo, TALEN technology was used to engineer a luciferase reporter construct into the endogenous human gastrin gene promoter in SW480 colon cancer cells. Gastrin promoter activity in the resultant Gast(luc) SW480 colon cancer cells was then measured by bioluminescence in cell culture and in tumour xenografts in SCID mice. Activation of intracellular signalling pathways was assessed by Western blotting. Activation of the gastrin promoter by zinc ions was concentration dependent in vitro and in vivo. Zinc ions significantly stimulated phosphorylation of ERK1/2 (MAPK pathway) but not of Akt (PI3K pathway). We conclude that the endogenous gastrin promoter is responsive to zinc ions, likely via activation of the MAPK pathway.
Collapse
Affiliation(s)
- Kathryn M Marshall
- The Department of Surgery, University of Melbourne, Austin Health, Studley Rd, Heidelberg, Victoria 3084, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Mahata B, Biswas S, Rayman P, Chahlavi A, Ko J, Bhattacharjee A, Li YT, Li Y, Das T, Sa G, Raychaudhuri B, Vogelbaum MA, Tannenbaum C, Finke JH, Biswas K. GBM Derived Gangliosides Induce T Cell Apoptosis through Activation of the Caspase Cascade Involving Both the Extrinsic and the Intrinsic Pathway. PLoS One 2015. [PMID: 26226135 PMCID: PMC4520498 DOI: 10.1371/journal.pone.0134425] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Previously we demonstrated that human glioblastoma cell lines induce apoptosis in peripheral blood T cells through partial involvement of secreted gangliosides. Here we show that GBM-derived gangliosides induce apoptosis through involvement of the TNF receptor and activation of the caspase cascade. Culturing T lymphocytes with GBM cell line derived gangliosides (10-20μg/ml) demonstrated increased ROS production as early as 18 hrs as indicated by increased uptake of the dye H2DCFDA while western blotting demonstrated mitochondrial damage as evident by cleavage of Bid to t-Bid and by the release of cytochrome-c into the cytosol. Within 48-72 hrs apoptosis was evident by nuclear blebbing, trypan blue positivity and annexinV/7AAD staining. GBM-ganglioside induced activation of the effector caspase-3 along with both initiator caspases (-9 and -8) in T cells while both the caspase-8 and -9 inhibitors were equally effective in blocking apoptosis (60% protection) confirming the role of caspases in the apoptotic process. Ganglioside-induced T cell apoptosis did not involve production of TNF-α since anti-human TNFα antibody was unable to protect T cells from nuclear blebbing and subsequent cell death. However, confocal microscopy demonstrated co-localization of GM2 ganglioside with the TNF receptor and co-immunoprecipitation experiments showed recruitment of death domains FADD and TRADD with the TNF receptor post ganglioside treatment, suggesting direct interaction of gangliosides with the TNF receptor. Further confirmation of the interaction between GM2 and TNFR1 was obtained from confocal microscopy data with wild type and TNFR1 KO (TALEN mediated) Jurkat cells, which clearly demonstrated co-localization of GM2 and TNFR1 in the wild type cells but not in the TNFR1 KO clones. Thus, GBM-ganglioside can mediate T cell apoptosis by interacting with the TNF receptor followed by activation of both the extrinsic and the intrinsic pathway of caspases.
Collapse
Affiliation(s)
- Barun Mahata
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Soumika Biswas
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, United States of America
| | - Patricia Rayman
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, United States of America
| | - Ali Chahlavi
- Spine and Brain Institute, St. Vincent Medical Center, Jacksonville, Florida, United States of America
| | - Jennifer Ko
- Pathology Institute, Cleveland Clinic, Cleveland, United States of America
| | | | - Yu-Teh Li
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States of America
| | - Yuntao Li
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, United States of America
| | - Tanya Das
- Division of Molecular Medicine, Bose Institute, Kolkata, India
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, United States of America
| | - Gaurisankar Sa
- Division of Molecular Medicine, Bose Institute, Kolkata, India
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, United States of America
| | - Baisakhi Raychaudhuri
- Brain Tumor and Neuro-oncology Center in the Neurological Institute, Cleveland Clinic, Cleveland, United States of America
| | - Michael A. Vogelbaum
- Brain Tumor and Neuro-oncology Center in the Neurological Institute, Cleveland Clinic, Cleveland, United States of America
| | - Charles Tannenbaum
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, United States of America
| | - James H. Finke
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, United States of America
| | - Kaushik Biswas
- Division of Molecular Medicine, Bose Institute, Kolkata, India
- * E-mail:
| |
Collapse
|