1
|
Obafemi OT, Ayeleso AO, Adewale OB, Unuofin J, Ekundayo BE, Ntwasa M, Lebelo SL. Animal models in biomedical research: Relevance of Drosophila melanogaster. Heliyon 2025; 11:e41605. [PMID: 39850441 PMCID: PMC11754520 DOI: 10.1016/j.heliyon.2024.e41605] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/25/2025] Open
Abstract
Animal models have become veritable tools in gaining insight into the pathogenesis and progression of several human diseases. These models could range in complexity from Caenorhabditis elegans to non-human primates. With the aid of these animal models, a lot of new knowledge has been gained about several diseases which otherwise would not have been possible. Most times, the utilization of these animal models is predicated on the level of homology they share with humans, which suggests that outcomes of studies using them could be extrapolated to humans. However, this has not always been the case. Drosophila melanogaster is becoming increasingly relevant as preferred model for understanding the biochemical basis of several human diseases. Apart from its relatively short lifespan, high fecundity and ease of rearing, the simplicity of its genome and lower redundancy of its genes when compared with vertebrate models, as well as availability of genetic tool kit for easy manipulation of its genome, have all contributed to its emergence as a valid animal model of human diseases. This review aimed at highlighting the contributions of selected animal models in biomedical research with a focus on the relevance of Drosophila melanogaster in understanding the biochemical basis of some diseases that have continued to plague mankind.
Collapse
Affiliation(s)
- Olabisi Tajudeen Obafemi
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, University of South Africa, 1710, Johannesburg, South Africa
| | - Ademola Olabode Ayeleso
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, University of South Africa, 1710, Johannesburg, South Africa
- Biochemistry Programme, College of Agriculture, Engineering and Science, Bowen University, PMB 284, Iwo, Osun State, Nigeria
| | | | - Jeremiah Unuofin
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, University of South Africa, 1710, Johannesburg, South Africa
| | | | - Monde Ntwasa
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, University of South Africa, 1710, Johannesburg, South Africa
| | - Sogolo Lucky Lebelo
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, University of South Africa, 1710, Johannesburg, South Africa
| |
Collapse
|
2
|
Tumova S, Dolezel D, Jindra M. Conserved and Unique Roles of bHLH-PAS Transcription Factors in Insects - From Clock to Hormone Reception. J Mol Biol 2023; 436:168332. [PMID: 39491146 DOI: 10.1016/j.jmb.2023.168332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
A dozen bHLH-PAS transcription factors have evolved since the dawn of the animal kingdom; nine of them have mutual orthologs between arthropods and vertebrates. These proteins are master regulators in a range of developmental processes from organogenesis, nervous system formation and functioning, to cell fate decisions defining identity of limbs or photoreceptors for color vision. Among the functionally best conserved are bHLH-PAS proteins acting in the animal circadian clock. On the other side of the spectrum are fundamental physiological mechanisms such as those underlying xenobiotic detoxification, oxygen homeostasis, and metabolic adaptation to hypoxia, infection or tumor progression. Predictably, malfunctioning of bHLH-PAS regulators leads to pathologies. Performance of the individual bHLH-PAS proteins is modulated at multiple levels including dimerization and other protein-protein interactions, proteasomal degradation, and by binding low-molecular weight ligands. Despite the vast evolutionary gap dividing arthropods and vertebrates, and the differences in their anatomy, many functions of orthologous bHLH-PAS proteins are remarkably similar, including at the molecular level. Our phylogenetic analysis shows that one bHLH-PAS protein type has been lost during vertebrate evolution. This protein has a unique function as a receptor of the sesquiterpenoid juvenile hormones of insects and crustaceans. Although some other bHLH-PAS proteins are regulated by binding small molecules, the juvenile hormone receptor presents an unprecedented case, since all other non-peptide animal hormones activate members of the nuclear receptor family. The purpose of this review is to compare and highlight parallels and differences in functioning of bHLH-PAS proteins between insects and vertebrates.
Collapse
Affiliation(s)
- Sarka Tumova
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - David Dolezel
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Marek Jindra
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic.
| |
Collapse
|
3
|
Sharpe JL, Morgan J, Nisbet N, Campbell K, Casali A. Modelling Cancer Metastasis in Drosophila melanogaster. Cells 2023; 12:cells12050677. [PMID: 36899813 PMCID: PMC10000390 DOI: 10.3390/cells12050677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Cancer metastasis, the process by which tumour cells spread throughout the body and form secondary tumours at distant sites, is the leading cause of cancer-related deaths. The metastatic cascade is a highly complex process encompassing initial dissemination from the primary tumour, travel through the blood stream or lymphatic system, and the colonisation of distant organs. However, the factors enabling cells to survive this stressful process and adapt to new microenvironments are not fully characterised. Drosophila have proven a powerful system in which to study this process, despite important caveats such as their open circulatory system and lack of adaptive immune system. Historically, larvae have been used to model cancer due to the presence of pools of proliferating cells in which tumours can be induced, and transplanting these larval tumours into adult hosts has enabled tumour growth to be monitored over longer periods. More recently, thanks largely to the discovery that there are stem cells in the adult midgut, adult models have been developed. We focus this review on the development of different Drosophila models of metastasis and how they have contributed to our understanding of important factors determining metastatic potential, including signalling pathways, the immune system and the microenvironment.
Collapse
Affiliation(s)
- Joanne L. Sharpe
- School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK
| | - Jason Morgan
- School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK
| | - Nicholas Nisbet
- School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK
| | - Kyra Campbell
- School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK
- Correspondence: (K.C.); (A.C.)
| | - Andreu Casali
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida and IRBLleida, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
- Correspondence: (K.C.); (A.C.)
| |
Collapse
|
4
|
Sollazzo M, Paglia S, Di Giacomo S, Grifoni D. Apoptosis inhibition restrains primary malignant traits in different Drosophila cancer models. Front Cell Dev Biol 2023; 10:1043630. [PMID: 36704198 PMCID: PMC9871239 DOI: 10.3389/fcell.2022.1043630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Tumor cells exploit multiple mechanisms to evade apoptosis, hence the strategies aimed at reactivating cell death in cancer. However, recent studies are revealing that dying cells play remarkable pro-oncogenic roles. Among the mechanisms promoting cell death, cell competition, elicited by disparities in MYC activity in confronting cells, plays the primary role of assuring tissue robustness during development from Drosophila to mammals: cells with high MYC levels (winners) overproliferate while killing suboptimal neighbors (losers), whose death is essential to process completion. This mechanism is coopted by tumor cells in cancer initiation, where host cells succumb to high-MYC-expressing precancerous neighbors. Also in this case, inhibition of cell death restrains aberrant cell competition and rescues tissue structure. Inhibition of apoptosis may thus emerge as a good strategy to counteract cancer progression in competitive contexts; of note, we recently found a positive correlation between cell death amount at the tumor/stroma interface and MYC levels in human cancers. Here we used Drosophila to investigate the functional role of competition-dependent apoptosis in advanced cancers, observing dramatic changes in mass dimensions and composition following a boost in cell competition, rescued by apoptosis inhibition. This suggests the role of competition-dependent apoptosis be not confined to the early stages of tumorigenesis. We also show that apoptosis inhibition, beside restricting cancer mass, is sufficient to rescue tissue architecture and counteract cell migration in various cancer contexts, suggesting that a strong activation of the apoptotic pathways intensifies cancer burden by affecting distinct phenotypic traits at different stages of the disease.
Collapse
Affiliation(s)
- Manuela Sollazzo
- CanceЯEvolutionLab, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Simona Paglia
- CanceЯEvolutionLab, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Simone Di Giacomo
- CanceЯEvolutionLab, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Daniela Grifoni
- CanceЯEvolutionLab, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy,CanceЯEvolutionLab, Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy,*Correspondence: Daniela Grifoni,
| |
Collapse
|
5
|
Jiang H, Kimura T, Hai H, Yamamura R, Sonoshita M. Drosophila as a toolkit to tackle cancer and its metabolism. Front Oncol 2022; 12:982751. [PMID: 36091180 PMCID: PMC9458318 DOI: 10.3389/fonc.2022.982751] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer is one of the most severe health problems worldwide accounting for the second leading cause of death. Studies have indicated that cancers utilize different metabolic systems as compared with normal cells to produce extra energy and substances required for their survival, which contributes to tumor formation and progression. Recently, the fruit fly Drosophila has been attracting significant attention as a whole-body model for elucidating the cancer mechanisms including metabolism. This tiny organism offers a valuable toolkit with various advantages such as high genetic conservation and similar drug response to mammals. In this review, we introduce flies modeling for cancer patient genotypes which have pinpointed novel therapeutic targets and drug candidates in the salivary gland, thyroid, colon, lung, and brain. Furthermore, we introduce fly models for metabolic diseases such as diabetes mellitus, obesity, and cachexia. Diabetes mellitus and obesity are widely acknowledged risk factors for cancer, while cachexia is a cancer-related metabolic condition. In addition, we specifically focus on two cancer metabolic alterations: the Warburg effect and redox metabolism. Indeed, flies proved useful to reveal the relationship between these metabolic changes and cancer. Such accumulating achievements indicate that Drosophila offers an efficient platform to clarify the mechanisms of cancer as a systemic disease.
Collapse
Affiliation(s)
- Hui Jiang
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Taku Kimura
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Department of Oral Diagnosis and Medicine, Graduate school of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Han Hai
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Ryodai Yamamura
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan
- *Correspondence: Ryodai Yamamura, ; Masahiro Sonoshita,
| | - Masahiro Sonoshita
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan
- *Correspondence: Ryodai Yamamura, ; Masahiro Sonoshita,
| |
Collapse
|
6
|
Munnik C, Xaba MP, Malindisa ST, Russell BL, Sooklal SA. Drosophila melanogaster: A platform for anticancer drug discovery and personalized therapies. Front Genet 2022; 13:949241. [PMID: 36003330 PMCID: PMC9393232 DOI: 10.3389/fgene.2022.949241] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/06/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is a complex disease whereby multiple genetic aberrations, epigenetic modifications, metabolic reprogramming, and the microenvironment contribute to the development of a tumor. In the traditional anticancer drug discovery pipeline, drug candidates are usually screened in vitro using two-dimensional or three-dimensional cell culture. However, these methods fail to accurately mimic the human disease state. This has led to the poor success rate of anticancer drugs in the preclinical stages since many drugs are abandoned due to inefficacy or toxicity when transitioned to whole-organism models. The common fruit fly, Drosophila melanogaster, has emerged as a beneficial system for modeling human cancers. Decades of fundamental research have shown the evolutionary conservation of key genes and signaling pathways between flies and humans. Moreover, Drosophila has a lower genetic redundancy in comparison to mammals. These factors, in addition to the advancement of genetic toolkits for manipulating gene expression, allow for the generation of complex Drosophila genotypes and phenotypes. Numerous studies have successfully created Drosophila models for colorectal, lung, thyroid, and brain cancers. These models were utilized in the high-throughput screening of FDA-approved drugs which led to the identification of several compounds capable of reducing proliferation and rescuing phenotypes. More noteworthy, Drosophila has also unlocked the potential for personalized therapies. Drosophila ‘avatars’ presenting the same mutations as a patient are used to screen multiple therapeutic agents targeting multiple pathways to find the most appropriate combination of drugs. The outcomes of these studies have translated to significant responses in patients with adenoid cystic carcinoma and metastatic colorectal cancers. Despite not being widely utilized, the concept of in vivo screening of drugs in Drosophila is making significant contributions to the current drug discovery pipeline. In this review, we discuss the application of Drosophila as a platform in anticancer drug discovery; with special focus on the cancer models that have been generated, drug libraries that have been screened and the status of personalized therapies. In addition, we elaborate on the biological and technical limitations of this system.
Collapse
Affiliation(s)
- Chamoné Munnik
- Department of Life and Consumer Sciences, University of South Africa, Pretoria, South Africa
| | - Malungi P. Xaba
- Department of Life and Consumer Sciences, University of South Africa, Pretoria, South Africa
| | - Sibusiso T. Malindisa
- Department of Life and Consumer Sciences, University of South Africa, Pretoria, South Africa
| | - Bonnie L. Russell
- Department of Life and Consumer Sciences, University of South Africa, Pretoria, South Africa
- Buboo (Pty) Ltd, The Innovation Hub, Pretoria, South Africa
| | - Selisha A. Sooklal
- Department of Life and Consumer Sciences, University of South Africa, Pretoria, South Africa
- *Correspondence: Selisha A. Sooklal,
| |
Collapse
|
7
|
Medina A, Bellec K, Polcowñuk S, Cordero JB. Investigating local and systemic intestinal signalling in health and disease with Drosophila. Dis Model Mech 2022; 15:274860. [PMID: 35344037 PMCID: PMC8990086 DOI: 10.1242/dmm.049332] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Whole-body health relies on complex inter-organ signalling networks that enable organisms to adapt to environmental perturbations and to changes in tissue homeostasis. The intestine plays a major role as a signalling centre by producing local and systemic signals that are relayed to the body and that maintain intestinal and organismal homeostasis. Consequently, disruption of intestinal homeostasis and signalling are associated with systemic diseases and multi-organ dysfunction. In recent years, the fruit fly Drosophila melanogaster has emerged as a prime model organism to study tissue-intrinsic and systemic signalling networks of the adult intestine due to its genetic tractability and functional conservation with mammals. In this Review, we highlight Drosophila research that has contributed to our understanding of how the adult intestine interacts with its microenvironment and with distant organs. We discuss the implications of these findings for understanding intestinal and whole-body pathophysiology, and how future Drosophila studies might advance our knowledge of the complex interplay between the intestine and the rest of the body in health and disease. Summary: We outline work in the fruit fly Drosophila melanogaster that has contributed knowledge on local and whole-body signalling coordinated by the adult intestine, and discuss its implications in intestinal pathophysiology and associated systemic dysfunction.
Collapse
Affiliation(s)
- Andre Medina
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK.,CRUK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Karen Bellec
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Sofia Polcowñuk
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Julia B Cordero
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK.,CRUK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| |
Collapse
|
8
|
Bilder D, Ong K, Hsi TC, Adiga K, Kim J. Tumour-host interactions through the lens of Drosophila. Nat Rev Cancer 2021; 21:687-700. [PMID: 34389815 PMCID: PMC8669834 DOI: 10.1038/s41568-021-00387-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
There is a large gap between the deep understanding of mechanisms driving tumour growth and the reasons why patients ultimately die of cancer. It is now appreciated that interactions between the tumour and surrounding non-tumour (sometimes referred to as host) cells play critical roles in mortality as well as tumour progression, but much remains unknown about the underlying molecular mechanisms, especially those that act beyond the tumour microenvironment. Drosophila has a track record of high-impact discoveries about cell-autonomous growth regulation, and is well suited to now probe mysteries of tumour - host interactions. Here, we review current knowledge about how fly tumours interact with microenvironmental stroma, circulating innate immune cells and distant organs to influence disease progression. We also discuss reciprocal regulation between tumours and host physiology, with a particular focus on paraneoplasias. The fly's simplicity along with the ability to study lethality directly provide an opportunity to shed new light on how cancer actually kills.
Collapse
Affiliation(s)
- David Bilder
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| | - Katy Ong
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Tsai-Ching Hsi
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Kavya Adiga
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Jung Kim
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
9
|
Drosophila Accessory Gland: A Complementary In Vivo Model to Bring New Insight to Prostate Cancer. Cells 2021; 10:cells10092387. [PMID: 34572036 PMCID: PMC8468328 DOI: 10.3390/cells10092387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer is the most common cancer in aging men. Despite recent progress, there are still few effective treatments to cure its aggressive and metastatic stages. A better understanding of the molecular mechanisms driving disease initiation and progression appears essential to support the development of more efficient therapies and improve patient care. To do so, multiple research models, such as cell culture and mouse models, have been developed over the years and have improved our comprehension of the biology of the disease. Recently, a new model has been added with the use of the Drosophila accessory gland. With a high level of conservation of major signaling pathways implicated in human disease, this functional equivalent of the prostate represents a powerful, inexpensive, and rapid in vivo model to study epithelial carcinogenesis. The purpose of this review is to quickly overview the existing prostate cancer models, including their strengths and limitations. In particular, we discuss how the Drosophila accessory gland can be integrated as a convenient complementary model by bringing new understanding in the mechanisms driving prostate epithelial tumorigenesis, from initiation to metastatic formation.
Collapse
|
10
|
Lam Wong KK, Verheyen EM. Metabolic reprogramming in cancer: mechanistic insights from Drosophila. Dis Model Mech 2021; 14:1-17. [PMID: 34240146 PMCID: PMC8277969 DOI: 10.1242/dmm.048934] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cancer cells constantly reprogram their metabolism as the disease progresses. However, our understanding of the metabolic complexity of cancer remains incomplete. Extensive research in the fruit fly Drosophila has established numerous tumor models ranging from hyperplasia to neoplasia. These fly tumor models exhibit a broad range of metabolic profiles and varying nutrient sensitivity. Genetic studies show that fly tumors can use various alternative strategies, such as feedback circuits and nutrient-sensing machinery, to acquire and consolidate distinct metabolic profiles. These studies not only provide fresh insights into the causes and functional relevance of metabolic reprogramming but also identify metabolic vulnerabilities as potential targets for cancer therapy. Here, we review the conceptual advances in cancer metabolism derived from comparing and contrasting the metabolic profiles of fly tumor models, with a particular focus on the Warburg effect, mitochondrial metabolism, and the links between diet and cancer. Summary: Recent research in fruit flies has demonstrated that tumors rewire their metabolism by using diverse strategies that involve feedback regulation, nutrient sensing, intercellular or even inter-organ interactions, yielding new molecules as potential cancer markers or drug targets.
Collapse
Affiliation(s)
- Kenneth Kin Lam Wong
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.,Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.,Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
11
|
Tamamouna V, Rahman MM, Petersson M, Charalambous I, Kux K, Mainor H, Bolender V, Isbilir B, Edgar BA, Pitsouli C. Remodelling of oxygen-transporting tracheoles drives intestinal regeneration and tumorigenesis in Drosophila. Nat Cell Biol 2021; 23:497-510. [PMID: 33972730 PMCID: PMC8567841 DOI: 10.1038/s41556-021-00674-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 03/31/2021] [Indexed: 02/03/2023]
Abstract
The Drosophila trachea, as the functional equivalent of mammalian blood vessels, senses hypoxia and oxygenates the body. Here, we show that the adult intestinal tracheae are dynamic and respond to enteric infection, oxidative agents and tumours with increased terminal branching. Increased tracheation is necessary for efficient damage-induced intestinal stem cell (ISC)-mediated regeneration and is sufficient to drive ISC proliferation in undamaged intestines. Gut damage or tumours induce HIF-1α (Sima in Drosophila), which stimulates tracheole branching via the FGF (Branchless (Bnl))-FGFR (Breathless (Btl)) signalling cascade. Bnl-Btl signalling is required in the intestinal epithelium and the trachea for efficient damage-induced tracheal remodelling and ISC proliferation. Chemical or Pseudomonas-generated reactive oxygen species directly affect the trachea and are necessary for branching and intestinal regeneration. Similarly, tracheole branching and the resulting increase in oxygenation are essential for intestinal tumour growth. We have identified a mechanism of tracheal-intestinal tissue communication, whereby damage and tumours induce neo-tracheogenesis in Drosophila, a process reminiscent of cancer-induced neoangiogenesis in mammals.
Collapse
Affiliation(s)
- Vasilia Tamamouna
- University of Cyprus, Department of Biological Sciences, 1 Panepistimiou Avenue, 2109 Aglantzia, Cyprus
| | - M. Mahidur Rahman
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Monika Petersson
- German Cancer Research Center (DKFZ)-Center for Molecular Biology (ZMBH), University of Heidelberg Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Irini Charalambous
- University of Cyprus, Department of Biological Sciences, 1 Panepistimiou Avenue, 2109 Aglantzia, Cyprus
| | - Kristina Kux
- University of Cyprus, Department of Biological Sciences, 1 Panepistimiou Avenue, 2109 Aglantzia, Cyprus
| | - Hannah Mainor
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Verena Bolender
- German Cancer Research Center (DKFZ)-Center for Molecular Biology (ZMBH), University of Heidelberg Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Buse Isbilir
- German Cancer Research Center (DKFZ)-Center for Molecular Biology (ZMBH), University of Heidelberg Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Bruce A. Edgar
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA,Corresponding authors ,
| | - Chrysoula Pitsouli
- University of Cyprus, Department of Biological Sciences, 1 Panepistimiou Avenue, 2109 Aglantzia, Cyprus,Corresponding authors ,
| |
Collapse
|
12
|
Chen D, Roychowdhury-Sinha A, Prakash P, Lan X, Fan W, Goto A, Hoffmann JA. A time course transcriptomic analysis of host and injected oncogenic cells reveals new aspects of Drosophila immune defenses. Proc Natl Acad Sci U S A 2021; 118:e2100825118. [PMID: 33737397 PMCID: PMC8000351 DOI: 10.1073/pnas.2100825118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Oncogenic RasV12 cells [A. Simcox et al., PLoS Genet 4, e1000142 (2008)] injected into adult males proliferated massively after a lag period of several days, and led to the demise of the flies after 2 to 3 wk. The injection induced an early massive transcriptomic response that, unexpectedly, included more than 100 genes encoding chemoreceptors of various families. The kinetics of induction and the identities of the induced genes differed markedly from the responses generated by injections of microbes. Subsequently, hundreds of genes were up-regulated, attesting to intense catabolic activities in the flies, active tracheogenesis, and cuticulogenesis, as well as stress and inflammation-type responses. At 11 d after the injections, GFP-positive oncogenic cells isolated from the host flies exhibited a markedly different transcriptomic profile from that of the host and distinct from that at the time of their injection, including in particular up-regulated expression of genes typical for cells engaged in the classical antimicrobial response of Drosophila.
Collapse
Affiliation(s)
- Di Chen
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, 511436 Guangzhou, China;
- Insect Models of Innate Immunity (M3I; UPR9022), CNRS, University of Strasbourg, F-67084 Strasbourg, France
| | | | - Pragya Prakash
- Insect Models of Innate Immunity (M3I; UPR9022), CNRS, University of Strasbourg, F-67084 Strasbourg, France
| | - Xiao Lan
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, 511436 Guangzhou, China
| | - Wenmin Fan
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, 511436 Guangzhou, China
| | - Akira Goto
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, 511436 Guangzhou, China;
- Insect Models of Innate Immunity (M3I; UPR9022), CNRS, University of Strasbourg, F-67084 Strasbourg, France
| | - Jules A Hoffmann
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, 511436 Guangzhou, China;
- Insect Models of Innate Immunity (M3I; UPR9022), CNRS, University of Strasbourg, F-67084 Strasbourg, France
- University of Strasbourg Institute for Advanced Study, 67000 Strasbourg, France
| |
Collapse
|
13
|
Newton H, Wang YF, Camplese L, Mokochinski JB, Kramer HB, Brown AEX, Fets L, Hirabayashi S. Systemic muscle wasting and coordinated tumour response drive tumourigenesis. Nat Commun 2020; 11:4653. [PMID: 32938923 PMCID: PMC7495438 DOI: 10.1038/s41467-020-18502-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/13/2020] [Indexed: 12/29/2022] Open
Abstract
Cancer cells demand excess nutrients to support their proliferation, but how tumours exploit extracellular amino acids during systemic metabolic perturbations remain incompletely understood. Here, we use a Drosophila model of high-sugar diet (HSD)-enhanced tumourigenesis to uncover a systemic host-tumour metabolic circuit that supports tumour growth. We demonstrate coordinate induction of systemic muscle wasting with tumour-autonomous Yorkie-mediated SLC36-family amino acid transporter expression as a proline-scavenging programme to drive tumourigenesis. We identify Indole-3-propionic acid as an optimal amino acid derivative to rationally target the proline-dependency of tumour growth. Insights from this whole-animal Drosophila model provide a powerful approach towards the identification and therapeutic exploitation of the amino acid vulnerabilities of tumourigenesis in the context of a perturbed systemic metabolic network.
Collapse
Affiliation(s)
- Holly Newton
- Medical Research Council London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Yi-Fang Wang
- Medical Research Council London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Laura Camplese
- Medical Research Council London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Joao B Mokochinski
- Medical Research Council London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Holger B Kramer
- Medical Research Council London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - André E X Brown
- Medical Research Council London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Louise Fets
- Medical Research Council London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Susumu Hirabayashi
- Medical Research Council London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
14
|
Alvarez-Ochoa E, Froldi F, Cheng LY. Interorgan communication in development and cancer. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e394. [PMID: 32852143 DOI: 10.1002/wdev.394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 06/22/2020] [Accepted: 07/16/2020] [Indexed: 11/10/2022]
Abstract
Studies in model organisms have demonstrated that extensive communication occurs between distant organs both during development and in diseases such as cancer. Organs communicate with each other to coordinate growth and reach the correct size, while the fate of tumor cells depend on the outcome of their interaction with the immune system and peripheral tissues. In this review, we outline recent studies in Drosophila, which have enabled an improved understanding of the complex crosstalk between organs in the context of both organismal and tumor growth. We argue that Drosophila is a powerful model organism for studying these interactions, and these studies have the potential for improving our understanding of signaling pathways and candidate factors that mediate this conserved interorgan crosstalk. This article is categorized under: Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Early Embryonic Development > Development to the Basic Body Plan Invertebrate Organogenesis > Flies.
Collapse
Affiliation(s)
- Edel Alvarez-Ochoa
- Peter MacCallum Cancer Centre, Parkville, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Francesca Froldi
- Peter MacCallum Cancer Centre, Parkville, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Louise Y Cheng
- Peter MacCallum Cancer Centre, Parkville, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia.,The Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
15
|
Strategies for Functional Interrogation of Big Cancer Data Using Drosophila Cancer Models. Int J Mol Sci 2020; 21:ijms21113754. [PMID: 32466549 PMCID: PMC7312059 DOI: 10.3390/ijms21113754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Rapid development of high throughput genome analysis technologies accompanied by significant reduction in costs has led to the accumulation of an incredible amount of data during the last decade. The emergence of big data has had a particularly significant impact in biomedical research by providing unprecedented, systems-level access to many disease states including cancer, and has created promising opportunities as well as new challenges. Arguably, the most significant challenge cancer research currently faces is finding effective ways to use big data to improve our understanding of molecular mechanisms underlying tumorigenesis and developing effective new therapies. Functional exploration of these datasets and testing predictions from computational approaches using experimental models to interrogate their biological relevance is a key step towards achieving this goal. Given the daunting scale and complexity of the big data available, experimental systems like Drosophila that allow large-scale functional studies and complex genetic manipulations in a rapid, cost-effective manner will be of particular importance for this purpose. Findings from these large-scale exploratory functional studies can then be used to formulate more specific hypotheses to be explored in mammalian models. Here, I will discuss several strategies for functional exploration of big cancer data using Drosophila cancer models.
Collapse
|
16
|
Rambur A, Lours-Calet C, Beaudoin C, Buñay J, Vialat M, Mirouse V, Trousson A, Renaud Y, Lobaccaro JMA, Baron S, Morel L, de Joussineau C. Sequential Ras/MAPK and PI3K/AKT/mTOR pathways recruitment drives basal extrusion in the prostate-like gland of Drosophila. Nat Commun 2020; 11:2300. [PMID: 32385236 PMCID: PMC7210301 DOI: 10.1038/s41467-020-16123-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
One of the most important but less understood step of epithelial tumourigenesis occurs when cells acquire the ability to leave their epithelial compartment. This phenomenon, described as basal epithelial cell extrusion (basal extrusion), represents the first step of tumour invasion. However, due to lack of adequate in vivo model, implication of emblematic signalling pathways such as Ras/Mitogen-Activated Protein Kinase (MAPK) and phosphoinositide 3 kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signalling pathways, is scarcely described in this phenomenon. We have developed a unique model of basal extrusion in the Drosophila accessory gland. There, we demonstrate that both Ras/MAPK and PI3K/AKT/mTOR pathways are necessary for basal extrusion. Furthermore, as in prostate cancer, we show that these pathways are co-activated. This occurs through set up of Epidermal Growth Factor Receptor (EGFR) and Insulin Receptor (InR) dependent autocrine loops, a phenomenon that, considering human data, could be relevant for prostate cancer.
Collapse
Affiliation(s)
- Amandine Rambur
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28 place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, 63009, Clermont-Ferrand, France
| | - Corinne Lours-Calet
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28 place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, 63009, Clermont-Ferrand, France
| | - Claude Beaudoin
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28 place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, 63009, Clermont-Ferrand, France
| | - Julio Buñay
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28 place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, 63009, Clermont-Ferrand, France
| | - Marine Vialat
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28 place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, 63009, Clermont-Ferrand, France
| | - Vincent Mirouse
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28 place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
| | - Amalia Trousson
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28 place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, 63009, Clermont-Ferrand, France
| | - Yoan Renaud
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28 place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
| | - Jean-Marc A Lobaccaro
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28 place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, 63009, Clermont-Ferrand, France
| | - Silvère Baron
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28 place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, 63009, Clermont-Ferrand, France
| | - Laurent Morel
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28 place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, 63009, Clermont-Ferrand, France
| | - Cyrille de Joussineau
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28 place Henri Dunant, BP38, 63001, Clermont-Ferrand, France.
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, 63009, Clermont-Ferrand, France.
| |
Collapse
|
17
|
Mendes N, Dias Carvalho P, Martins F, Mendonça S, Malheiro AR, Ribeiro A, Carvalho J, Velho S. Animal Models to Study Cancer and Its Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:389-401. [PMID: 32130710 DOI: 10.1007/978-3-030-34025-4_20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cancers are complex tissues composed by genetically altered cancer cells and stromal elements such as inflammatory/immune cells, fibroblasts, endothelial cells and pericytes, neuronal cells, and a non-cellular component, the extracellular matrix. The complex network of interactions and crosstalk established between cancer cells and the supportig cellular and non-cellular components of the microenvironment are of extreme importance for tumor initiation and progression, strongly impacting the course and the outcome of the disease. Therefore, a better understanding of the tumorigenic processes implies the combined study of the cancer cell and the biologic, chemical and mechanic constituents of the tumor microenvironment, as their concerted action plays a major role in the carcinogenic pathway and is a key determinant of the efficacy of anti-cancer treatments. The use of animal models (e.g. Mouse, Zebrafish and Drosophila) to study cancer has greatly impacted our understanding of the processes governing initiation, progression and metastasis and allowed the discovery and pre-clinical validation of novel cancer treatments as it allows to recreate tumor development in a more pathophysiologic environment.
Collapse
Affiliation(s)
- N Mendes
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal.
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal.
| | - P Dias Carvalho
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal
| | - F Martins
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal
| | - S Mendonça
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal
| | - A R Malheiro
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IBMC, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
| | - A Ribeiro
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal
| | - J Carvalho
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal
| | - S Velho
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal.
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal.
| |
Collapse
|
18
|
Mishra-Gorur K, Li D, Ma X, Yarman Y, Xue L, Xu T. Spz/Toll-6 signal guides organotropic metastasis in Drosophila. Dis Model Mech 2019; 12:dmm039727. [PMID: 31477571 PMCID: PMC6826028 DOI: 10.1242/dmm.039727] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/20/2019] [Indexed: 12/23/2022] Open
Abstract
Targeted cell migration plays important roles in developmental biology and disease processes, including in metastasis. Drosophila tumors exhibit traits characteristic of human cancers, providing a powerful model to study developmental and cancer biology. We now find that cells derived from Drosophila eye-disc tumors also display organ-specific metastasis, invading receptive organs but not wing disc. Toll receptors are known to affect innate immunity and the tumor inflammatory microenvironment by modulating the NF-κB pathway. Our RNA interference (RNAi) screen and genetic analyses show that Toll-6 is required for migration and invasion of the tumor cells. Further, receptive organs express Toll ligands [Spätzle (Spz) family molecules], and ectopic Spz expression renders the wing disc receptive to metastasis. Finally, Toll-6 promotes metastasis by activating JNK signaling, a key regulator of cell migration. Hence, we report Toll-6 and Spz as a new pair of guidance molecules mediating organ-specific metastatic behavior and highlight a novel signaling mechanism for Toll-family receptors.
Collapse
Affiliation(s)
- Ketu Mishra-Gorur
- Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Daming Li
- Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Xianjue Ma
- Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, New Haven, CT 06519, USA
- School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| | - Yanki Yarman
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Lei Xue
- Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, New Haven, CT 06519, USA
- Shanghai Key Laboratory for Signaling and Diseases, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Tian Xu
- Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, New Haven, CT 06519, USA
- School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| |
Collapse
|
19
|
Fereres S, Hatori R, Hatori M, Kornberg TB. Cytoneme-mediated signaling essential for tumorigenesis. PLoS Genet 2019; 15:e1008415. [PMID: 31568500 PMCID: PMC6786653 DOI: 10.1371/journal.pgen.1008415] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/10/2019] [Accepted: 09/11/2019] [Indexed: 11/18/2022] Open
Abstract
Communication between neoplastic cells and cells of their microenvironment is critical to cancer progression. To investigate the role of cytoneme-mediated signaling as a mechanism for distributing growth factor signaling proteins between tumor and tumor-associated cells, we analyzed EGFR and RET Drosophila tumor models and tested several genetic loss-of-function conditions that impair cytoneme-mediated signaling. Neuroglian, capricious, Irk2, SCAR, and diaphanous are genes that cytonemes require during normal development. Neuroglian and Capricious are cell adhesion proteins, Irk2 is a potassium channel, and SCAR and Diaphanous are actin-binding proteins, and the only process to which they are known to contribute jointly is cytoneme-mediated signaling. We observed that diminished function of any one of these genes suppressed tumor growth and increased organism survival. We also noted that EGFR-expressing tumor discs have abnormally extensive tracheation (respiratory tubes) and ectopically express Branchless (Bnl, a FGF) and FGFR. Bnl is a known inducer of tracheation that signals by a cytoneme-mediated process in other contexts, and we determined that exogenous over-expression of dominant negative FGFR suppressed tumor growth. Our results are consistent with the idea that cytonemes move signaling proteins between tumor and stromal cells and that cytoneme-mediated signaling is required for tumor growth and malignancy. The growth of many types of tumors depend on productive interactions with stromal, non-tumor neighbors, and although there is evidence that tumor and stromal cells exchange signaling proteins and growth factors that they produce, the mechanism by which these proteins move between the signaling cells has not been investigated and is not known. Our previous work has shown that normal cells make transient chemical synapses at sites where specialized filopodia called cytonemes contact signaling partners, and in this work we explore the possibility that tumors use the same mechanism to communicate with stromal cells. We show that cytoneme-mediated signaling is essential for growth of Drosophila tumors that model human EGFR over-expression and RET-driven disease. Remarkably, inhibition of cytonemes cures flies of lethal tumors.
Collapse
Affiliation(s)
- Sol Fereres
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, United States of America
| | - Ryo Hatori
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, United States of America
| | - Makiko Hatori
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, United States of America
| | - Thomas B. Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
20
|
The multifaceted contribution of α-ketoglutarate to tumor progression: An opportunity to exploit? Semin Cell Dev Biol 2019; 98:26-33. [PMID: 31175937 DOI: 10.1016/j.semcdb.2019.05.031] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 01/25/2023]
Abstract
The thriving field that constitutes cancer metabolism has unveiled some groundbreaking facts over the past two decades, at the heart of which is the TCA cycle and its intermediates. As such and besides its metabolic role, α-ketoglutarate was shown to withstand a wide range of physiological reactions from protection against oxidative stress, collagen and bone maintenance to development and immunity. Most importantly, it constitutes the rate-limiting substrate of 2-oxoglutarate-dependent dioxygenases family enzymes, which are involved in hypoxia sensing and in the shaping of cellular epigenetic landscape, two major drivers of oncogenic transformation. Based on literature reports, we hereby review the benefits of this metabolite as a possible novel adjuvant therapeutic opportunity to target tumor progression. This article is part of the special issue "Mitochondrial metabolic alterations in cancer cells and related therapeutic targets".
Collapse
|
21
|
Paglia S, Sollazzo M, Di Giacomo S, Strocchi S, Grifoni D. Exploring MYC relevance to cancer biology from the perspective of cell competition. Semin Cancer Biol 2019; 63:49-59. [PMID: 31102666 DOI: 10.1016/j.semcancer.2019.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 12/13/2022]
Abstract
Cancer has long been regarded and treated as a foreign body appearing by mistake inside a living organism. However, now we know that cancer cells communicate with neighbours, thereby creating modified environments able to support their unusual need for nutrients and space. Understanding the molecular basis of these bi-directional interactions is thus mandatory to approach the complex nature of cancer. Since their discovery, MYC proteins have been showing to regulate a steadily increasing number of processes impacting cell fitness, and are consistently found upregulated in almost all human tumours. Of interest, MYC takes part in cell competition, an evolutionarily conserved fitness comparison strategy aimed at detecting weakened cells, which are then committed to death, removed from the tissue and replaced by fitter neighbours. During physiological development, MYC-mediated cell competition is engaged to eliminate cells with suboptimal MYC levels, so as to guarantee selective growth of the fittest and proper homeostasis, while transformed cells expressing high levels of MYC coopt cell competition to subvert tissue constraints, ultimately disrupting homeostasis. Therefore, the interplay between cells with different MYC levels may result in opposite functional outcomes, depending on the nature of the players. In the present review, we describe the most recent findings on the role of MYC-mediated cell competition in different contexts, with a special emphasis on its impact on cancer initiation and progression. We also discuss the relevance of competition-associated cell death to cancer disease.
Collapse
Affiliation(s)
- Simona Paglia
- CanceЯEvolutionLab, University of Bologna, Department of Pharmacy and Biotechnology, Via Selmi 3, 40126, Bologna, Italy.
| | - Manuela Sollazzo
- CanceЯEvolutionLab, University of Bologna, Department of Pharmacy and Biotechnology, Via Selmi 3, 40126, Bologna, Italy.
| | - Simone Di Giacomo
- CanceЯEvolutionLab, University of Bologna, Department of Pharmacy and Biotechnology, Via Selmi 3, 40126, Bologna, Italy.
| | - Silvia Strocchi
- CanceЯEvolutionLab, University of Bologna, Department of Pharmacy and Biotechnology, Via Selmi 3, 40126, Bologna, Italy.
| | - Daniela Grifoni
- CanceЯEvolutionLab, University of Bologna, Department of Pharmacy and Biotechnology, Via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|
22
|
Mirzoyan Z, Sollazzo M, Allocca M, Valenza AM, Grifoni D, Bellosta P. Drosophila melanogaster: A Model Organism to Study Cancer. Front Genet 2019; 10:51. [PMID: 30881374 PMCID: PMC6405444 DOI: 10.3389/fgene.2019.00051] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/21/2019] [Indexed: 12/26/2022] Open
Abstract
Cancer is a multistep disease driven by the activation of specific oncogenic pathways concomitantly with the loss of function of tumor suppressor genes that act as sentinels to control physiological growth. The conservation of most of these signaling pathways in Drosophila, and the ability to easily manipulate them genetically, has made the fruit fly a useful model organism to study cancer biology. In this review we outline the basic mechanisms and signaling pathways conserved between humans and flies responsible of inducing uncontrolled growth and cancer development. Second, we describe classic and novel Drosophila models used to study different cancers, with the objective to discuss their strengths and limitations on their use to identify signals driving growth cell autonomously and within organs, drug discovery and for therapeutic approaches.
Collapse
Affiliation(s)
- Zhasmine Mirzoyan
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Manuela Sollazzo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Mariateresa Allocca
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | | | - Daniela Grifoni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Paola Bellosta
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.,Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.,Department of Biosciences, University of Milan, Milan, Italy.,Department of Medicine, NYU Langone Medical Center, New York, NY, United States
| |
Collapse
|
23
|
Kurelac I, Iommarini L, Vatrinet R, Amato LB, De Luise M, Leone G, Girolimetti G, Umesh Ganesh N, Bridgeman VL, Ombrato L, Columbaro M, Ragazzi M, Gibellini L, Sollazzo M, Feichtinger RG, Vidali S, Baldassarre M, Foriel S, Vidone M, Cossarizza A, Grifoni D, Kofler B, Malanchi I, Porcelli AM, Gasparre G. Inducing cancer indolence by targeting mitochondrial Complex I is potentiated by blocking macrophage-mediated adaptive responses. Nat Commun 2019; 10:903. [PMID: 30796225 PMCID: PMC6385215 DOI: 10.1038/s41467-019-08839-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 01/30/2019] [Indexed: 02/08/2023] Open
Abstract
Converting carcinomas in benign oncocytomas has been suggested as a potential anti-cancer strategy. One of the oncocytoma hallmarks is the lack of respiratory complex I (CI). Here we use genetic ablation of this enzyme to induce indolence in two cancer types, and show this is reversed by allowing the stabilization of Hypoxia Inducible Factor-1 alpha (HIF-1α). We further show that on the long run CI-deficient tumors re-adapt to their inability to respond to hypoxia, concordantly with the persistence of human oncocytomas. We demonstrate that CI-deficient tumors survive and carry out angiogenesis, despite their inability to stabilize HIF-1α. Such adaptive response is mediated by tumor associated macrophages, whose blockage improves the effect of CI ablation. Additionally, the simultaneous pharmacological inhibition of CI function through metformin and macrophage infiltration through PLX-3397 impairs tumor growth in vivo in a synergistic manner, setting the basis for an efficient combinatorial adjuvant therapy in clinical trials.
Collapse
Affiliation(s)
- Ivana Kurelac
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Via Massarenti 9, 40138, Bologna, Italy
- Tumor-Host Interaction Lab, The Francis Crick Institute, 1 Midland Rd, NW1 1AT, London, UK
| | - Luisa Iommarini
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Renaud Vatrinet
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Via Massarenti 9, 40138, Bologna, Italy
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Laura Benedetta Amato
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Monica De Luise
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Giulia Leone
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Giulia Girolimetti
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Nikkitha Umesh Ganesh
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | | | - Luigi Ombrato
- Tumor-Host Interaction Lab, The Francis Crick Institute, 1 Midland Rd, NW1 1AT, London, UK
| | - Marta Columbaro
- Laboratory of Musculoskeletal Cell Biology, IRCCS Istituto Ortopedico Rizzoli, Via Giulio Cesare Pupilli 1, 40136, Bologna, Italy
| | - Moira Ragazzi
- Anatomia Patologica, Azienda Ospedaliera S. Maria Nuova di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Lara Gibellini
- Dipartimento di Scienze Mediche e Chirurgiche materno infantili e dell'adulto, Università degli Studi di Modena e Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Manuela Sollazzo
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Rene Gunther Feichtinger
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Muellner Hauptstraße 48, 5020, Salzburg, Austria
| | - Silvia Vidali
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Muellner Hauptstraße 48, 5020, Salzburg, Austria
| | - Maurizio Baldassarre
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Sarah Foriel
- Khondrion BV, Philips van Leydenlaan 15, 6525 EX, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine (RCMM) at the Department of Pediatrics, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6500 HB, Nijmegen, The Netherlands
| | - Michele Vidone
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Andrea Cossarizza
- Dipartimento di Scienze Mediche e Chirurgiche materno infantili e dell'adulto, Università degli Studi di Modena e Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Daniela Grifoni
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Muellner Hauptstraße 48, 5020, Salzburg, Austria
| | - Ilaria Malanchi
- Tumor-Host Interaction Lab, The Francis Crick Institute, 1 Midland Rd, NW1 1AT, London, UK.
| | - Anna Maria Porcelli
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, Via Selmi 3, 40126, Bologna, Italy.
- Centro Interdipartimentale di Ricerca Industriale Scienze della Vita e Tecnologie per la Salute, Università di Bologna, Via Tolara di Sopra 41/E, 40064, Ozzano dell'Emilia, Italy.
| | - Giuseppe Gasparre
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Via Massarenti 9, 40138, Bologna, Italy.
- Centro di Ricerca Biomedica Applicata (CRBA), Università di Bologna, Via Massarenti 9, 40138, Bologna, Italy.
| |
Collapse
|
24
|
Abstract
Cancer is a cumulative manifestation of several complicated disease states that affect multiple organs. Over the last few decades, the fruit fly Drosophila melanogaster, has become a successful model for studying human cancers. The genetic simplicity and vast arsenal of genetic tools available in Drosophila provides a unique opportunity to address questions regarding cancer initiation and progression that would be extremely challenging in other model systems. In this chapter we provide a historical overview of Drosophila as a model organism for cancer research, summarize the multitude of genetic tools available, offer a brief comparison between different model organisms and cell culture platforms used in cancer studies and briefly discuss some of the latest models and concepts in recent Drosophila cancer research.
Collapse
|
25
|
Sollazzo M, Genchi C, Paglia S, Di Giacomo S, Pession A, de Biase D, Grifoni D. High MYC Levels Favour Multifocal Carcinogenesis. Front Genet 2018; 9:612. [PMID: 30619451 PMCID: PMC6297171 DOI: 10.3389/fgene.2018.00612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 11/20/2018] [Indexed: 02/05/2023] Open
Abstract
The term "field cancerisation" describes the formation of tissue sub-areas highly susceptible to multifocal tumourigenesis. In the earlier stages of cancer, cells may indeed display a series of molecular alterations that allow them to proliferate faster, eventually occupying discrete tissue regions with irrelevant morphological anomalies. This behaviour recalls cell competition, a process based on a reciprocal fitness comparison: when cells with a growth advantage arise in a tissue, they are able to commit wild-type neighbours to death and to proliferate at their expense. It is known that cells expressing high MYC levels behave as super-competitors, able to kill and replace less performant adjacent cells; given MYC upregulation in most human cancers, MYC-mediated cell competition is likely to pioneer field cancerisation. Here we show that MYC overexpression in a sub-territory of the larval wing epithelium of Drosophila is sufficient to trigger a number of cellular responses specific to mammalian pre-malignant tissues. Moreover, following induction of different second mutations, high MYC-expressing epithelia were found to be susceptible to multifocal growth, a hallmark of mammalian pre-cancerous fields. In summary, our study identified an early molecular alteration implicated in field cancerisation and established a genetically amenable model which may help study the molecular basis of early carcinogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Daniela Grifoni
- Cancer Evolution Laboratory, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
26
|
Paul MS, Singh A, Dutta D, Mutsuddi M, Mukherjee A. Notch signals modulate lgl mediated tumorigenesis by the activation of JNK signaling. BMC Res Notes 2018; 11:247. [PMID: 29661224 PMCID: PMC5902968 DOI: 10.1186/s13104-018-3350-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/06/2018] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES Oncogenic potential of Notch signaling and its cooperation with other factors to affect proliferation are widely established. Notch exhibits a cooperative effect with loss of a cell polarity gene, scribble to induce neoplastic overgrowth. Oncogenic Ras also show cooperative effect with loss of cell polarity genes such as scribble (scrib), lethal giant larvae (lgl) and discs large to induce neoplastic overgrowth and invasion. Our study aims at assessing the cooperation of activated Notch with loss of function of lgl in tumor overgrowth, and the mode of JNK signaling activation in this context. RESULTS In the present study, we use Drosophila as an in vivo model to show the synergy between activated Notch (N act ) and loss of function of lgl (lgl-IR) in tumor progression. Coexpression of N act and lgl-IR results in massive tumor overgrowth and displays hallmarks of cancer, such as MMP1 upregulation and loss of epithelial integrity. We further show activation of JNK signaling and upregulation of its receptor, Grindelwald in N act /lgl-IR tumor. In contrast to previously described Notch act /scrib-/- tumor, our experiments in N act /lgl-IR tumor showed the presence of dying cells along with tumorous overgrowth.
Collapse
Affiliation(s)
- Maimuna Sali Paul
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi, 221 005, India
| | - Ankita Singh
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi, 221 005, India
| | - Debdeep Dutta
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi, 221 005, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi, 221 005, India.
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi, 221 005, India.
| |
Collapse
|
27
|
Qiang KM, Zhou F, Beckingham KM. A Burrowing/Tunneling Assay for Detection of Hypoxia in Drosophila melanogaster Larvae. J Vis Exp 2018. [PMID: 29658928 PMCID: PMC5933256 DOI: 10.3791/57131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Oxygen deprivation in animals can result from exposure to low atmospheric oxygen levels or from internal tissue damage that interferes with oxygen distribution. It is also possible that aberrant behavior of oxygen-sensing neurons could induce hypoxia-like behavior in the presence of normal oxygen levels. In D. melanogaster, development at low oxygen levels results in inhibition of growth and sluggish behavior during the larval phases. However, these established manifestations of oxygen deficit overlap considerably with the phenotypes of many mutations that regulate growth, stress responses or locomotion. As result, there is currently no assay available to identify i) cellular hypoxia induced by a mutation or ii) hypoxia-like behavior when induced by abnormal neuronal behavior. We have recently identified two distinctive behaviors in D. melanogaster larvae that occur at normal oxygen levels in response to internal detection of hypoxia. First, at all stages, such larvae avoid burrowing into food, often straying far away from a food source. Second, tunneling into a soft substratum, which normally occurs during the wandering third instar stage is completely abolished if larvae are hypoxic. The assay described here is designed to detect and quantitate these behaviors and thus to provide a way to detect hypoxia induced by internal damage rather than low external oxygen. Assay plates with an agar substratum and a central plug of yeast paste are used to support animals through larval life. The positions and state of the larvae are tracked daily as they proceed from first to third instar. The extent of tunneling into the agar substratum during wandering phase is quantitated after pupation using NIH ImageJ. The assay will be of value in determining when hypoxia is a component of a mutant phenotype and thus provide insight into possible sites of action of the gene in question.
Collapse
Affiliation(s)
- Karen M Qiang
- Department of Biosciences, Rice University; Yale Medical School
| | - Fanli Zhou
- Department of Biosciences, Rice University
| | | |
Collapse
|
28
|
Parvy JP, Hodgson JA, Cordero JB. Drosophila as a Model System to Study Nonautonomous Mechanisms Affecting Tumour Growth and Cell Death. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7152962. [PMID: 29725601 PMCID: PMC5872677 DOI: 10.1155/2018/7152962] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/04/2018] [Indexed: 12/26/2022]
Abstract
The study of cancer has represented a central focus in medical research for over a century. The great complexity and constant evolution of the pathology require the use of multiple research model systems and interdisciplinary approaches. This is necessary in order to achieve a comprehensive understanding into the mechanisms driving disease initiation and progression, to aid the development of appropriate therapies. In recent decades, the fruit fly Drosophila melanogaster and its associated powerful genetic tools have become a very attractive model system to study tumour-intrinsic and non-tumour-derived processes that mediate tumour development in vivo. In this review, we will summarize recent work on Drosophila as a model system to study cancer biology. We will focus on the interactions between tumours and their microenvironment, including extrinsic mechanisms affecting tumour growth and how tumours impact systemic host physiology.
Collapse
Affiliation(s)
- Jean-Philippe Parvy
- CRUK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Joseph A. Hodgson
- CRUK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Julia B. Cordero
- CRUK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| |
Collapse
|
29
|
Modelling Cooperative Tumorigenesis in Drosophila. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4258387. [PMID: 29693007 PMCID: PMC5859872 DOI: 10.1155/2018/4258387] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/21/2018] [Indexed: 12/13/2022]
Abstract
The development of human metastatic cancer is a multistep process, involving the acquisition of several genetic mutations, tumour heterogeneity, and interactions with the surrounding microenvironment. Due to the complexity of cancer development in mammals, simpler model organisms, such as the vinegar fly, Drosophila melanogaster, are being utilized to provide novel insights into the molecular mechanisms involved. In this review, we highlight recent advances in modelling tumorigenesis using the Drosophila model, focusing on the cooperation of oncogenes or tumour suppressors, and the interaction of mutant cells with the surrounding tissue in epithelial tumour initiation and progression.
Collapse
|
30
|
Stephens R, Lim K, Portela M, Kvansakul M, Humbert PO, Richardson HE. The Scribble Cell Polarity Module in the Regulation of Cell Signaling in Tissue Development and Tumorigenesis. J Mol Biol 2018; 430:3585-3612. [PMID: 29409995 DOI: 10.1016/j.jmb.2018.01.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 01/22/2023]
Abstract
The Scribble cell polarity module, comprising Scribbled (Scrib), Discs-large (Dlg) and Lethal-2-giant larvae (Lgl), has a tumor suppressive role in mammalian epithelial cancers. The Scribble module proteins play key functions in the establishment and maintenance of different modes of cell polarity, as well as in the control of tissue growth, differentiation and directed cell migration, and therefore are major regulators of tissue development and homeostasis. Whilst molecular details are known regarding the roles of Scribble module proteins in cell polarity regulation, their precise mode of action in the regulation of other key cellular processes remains enigmatic. An accumulating body of evidence indicates that Scribble module proteins play scaffolding roles in the control of various signaling pathways, which are linked to the control of tissue growth, differentiation and cell migration. Multiple Scrib, Dlg and Lgl interacting proteins have been discovered, which are involved in diverse processes, however many function in the regulation of cellular signaling. Herein, we review the components of the Scrib, Dlg and Lgl protein interactomes, and focus on the mechanism by which they regulate cellular signaling pathways in metazoans, and how their disruption leads to cancer.
Collapse
Affiliation(s)
- Rebecca Stephens
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Krystle Lim
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Marta Portela
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute (CSIC), Avenida Doctor Arce, 37, Madrid 28002, Spain
| | - Marc Kvansakul
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Patrick O Humbert
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia; Department of Biochemistry & Molecular Biology, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Helena E Richardson
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia; Department of Biochemistry & Molecular Biology, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Anatomy & Neurobiology, University of Melbourne, Melbourne, Victoria 3010, Australia.
| |
Collapse
|
31
|
Daniel SG, Russ AD, Guthridge KM, Raina AI, Estes PS, Parsons LM, Richardson HE, Schroeder JA, Zarnescu DC. miR-9a mediates the role of Lethal giant larvae as an epithelial growth inhibitor in Drosophila. Biol Open 2018; 7:bio.027391. [PMID: 29361610 PMCID: PMC5829493 DOI: 10.1242/bio.027391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Drosophila lethal giant larvae (lgl) encodes a conserved tumor suppressor with established roles in cell polarity, asymmetric division, and proliferation control. Lgl's human orthologs, HUGL1 and HUGL2, are altered in human cancers, however, its mechanistic role as a tumor suppressor remains poorly understood. Based on a previously established connection between Lgl and Fragile X protein (FMRP), a miRNA-associated translational regulator, we hypothesized that Lgl may exert its role as a tumor suppressor by interacting with the miRNA pathway. Consistent with this model, we found that lgl is a dominant modifier of Argonaute1 overexpression in the eye neuroepithelium. Using microarray profiling we identified a core set of ten miRNAs that are altered throughout tumorigenesis in Drosophila lgl mutants. Among these are several miRNAs previously linked to human cancers including miR-9a, which we found to be downregulated in lgl neuroepithelial tissues. To determine whether miR-9a can act as an effector of Lgl in vivo, we overexpressed it in the context of lgl knock-down by RNAi and found it able to reduce the overgrowth phenotype caused by Lgl loss in epithelia. Furthermore, cross-comparisons between miRNA and mRNA profiling in lgl mutant tissues and human breast cancer cells identified thrombospondin (tsp) as a common factor altered in both fly and human breast cancer tumorigenesis models. Our work provides the first evidence of a functional connection between Lgl and the miRNA pathway, demonstrates that miR-9a mediates Lgl's role in restricting epithelial proliferation, and provides novel insights into pathways controlled by Lgl during tumor progression. Summary: Mir-9a overexpression can suppress the overgrowth phenotype caused by Lgl knock-down in epithelia. Gene profiling identifies pathways dysregulated in lgl mutants and shared features between flies and human cancer cells.
Collapse
Affiliation(s)
- Scott G Daniel
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Atlantis D Russ
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA.,Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85721, USA.,Arizona Cancer Center, University of Arizona, Tucson, AZ 85721, USA
| | - Kathryn M Guthridge
- Cell Cycle and Development Laboratory, Research Division, Peter MacCallum Cancer Center, Melbourne, Victoria 3000, Australia
| | - Ammad I Raina
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Patricia S Estes
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Linda M Parsons
- Cell Cycle and Development Laboratory, Research Division, Peter MacCallum Cancer Center, Melbourne, Victoria 3000, Australia.,Department of Genetics, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Helena E Richardson
- Cell Cycle and Development Laboratory, Research Division, Peter MacCallum Cancer Center, Melbourne, Victoria 3000, Australia.,Sir Peter MacCallum Department of Oncology, Department of Anatomy & Neuroscience, Department of Biochemistry & Molecular Biology, University of Melbourne, Melbourne, Victoria 3000, Australia.,Department of Biochemistry & Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Joyce A Schroeder
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA.,Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85721, USA.,Arizona Cancer Center, University of Arizona, Tucson, AZ 85721, USA
| | - Daniela C Zarnescu
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA .,Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85721, USA.,Arizona Cancer Center, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
32
|
Calleja M, Morata G, Casanova J. Tumorigenic Properties of Drosophila Epithelial Cells Mutant for lethal giant larvae. Dev Dyn 2018; 245:834-43. [PMID: 27239786 DOI: 10.1002/dvdy.24420] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/23/2016] [Accepted: 05/23/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Mutations in Drosophila tumor suppressor genes (TSGs) lead to the formation of invasive tumors in the brain and imaginal discs. RESULTS Here we studied the tumorigenic properties of imaginal discs mutant for the TSG gene lethal giant larvae (lgl). lgl mutant cells display the characteristic features of mammalian tumor cells: they can proliferate indefinitely, induce additional tracheogenesis (an insect counterpart of vasculogenesis) and invade neighboring tissues. Lgl mutant tissues exhibit high apoptotic levels, which lead to the activation of the Jun-N-Terminal Kinase (JNK) pathway. We propose that JNK is a key factor in the acquisition of these tumorigenic properties; it promotes cell proliferation and induces high levels of Mmp1 and confers tumor cells capacity to invade wild-type tissue. Noteworthy, lgl RNAi-mediated down-regulation does not produce similar transformations in the central nervous system (CNS), thereby indicating a fundamental difference between the cells of developing imaginal discs and those of differentiated organs. We discuss these results in the light of the "single big-hit origin" of some human pediatric or developmental cancers. CONCLUSIONS Down-regulation of lgl in imaginal discs is sufficient to enhance tracheogenesis and to promote invasion and colonization of other larval structures including the CNS. Developmental Dynamics 245:834-843, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Ginés Morata
- Centro de Biología Molecular, CSIC-UAM, Madrid, Spain
| | - Jordi Casanova
- Institut de Biologia Molecular de Barcelona (CSIC) Barcelona, Catalonia, Spain.,Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| |
Collapse
|
33
|
Herranz H, Cohen SM. Drosophila as a Model to Study the Link between Metabolism and Cancer. J Dev Biol 2017; 5:E15. [PMID: 29615570 PMCID: PMC5831792 DOI: 10.3390/jdb5040015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 11/27/2017] [Accepted: 11/30/2017] [Indexed: 12/15/2022] Open
Abstract
Cellular metabolism has recently been recognized as a hallmark of cancer. Investigating the origin and effects of the reprogrammed metabolism of tumor cells, and identifying its genetic mediators, will improve our understanding of how these changes contribute to disease progression and may suggest new approaches to therapy. Drosophila melanogaster is emerging as a valuable model to study multiple aspects of tumor formation and malignant transformation. In this review, we discuss the use of Drosophila as model to study how changes in cellular metabolism, as well as metabolic disease, contribute to cancer.
Collapse
Affiliation(s)
- Héctor Herranz
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, 2200 N Copenhagen, Denmark.
| | - Stephen M Cohen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, 2200 N Copenhagen, Denmark.
| |
Collapse
|
34
|
Di Giacomo S, Sollazzo M, de Biase D, Ragazzi M, Bellosta P, Pession A, Grifoni D. Human Cancer Cells Signal Their Competitive Fitness Through MYC Activity. Sci Rep 2017; 7:12568. [PMID: 28974715 PMCID: PMC5626713 DOI: 10.1038/s41598-017-13002-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/13/2017] [Indexed: 02/08/2023] Open
Abstract
MYC-mediated cell competition is a cell-cell interaction mechanism known to play an evolutionary role during development from Drosophila to mammals. Cells expressing low levels of MYC, called losers, are committed to die by nearby cells with high MYC activity, called winners, that overproliferate to compensate for cell loss, so that the fittest cells be selected for organ formation. Given MYC's consolidated role in oncogenesis, cell competition is supposed to be relevant to cancer, but its significance in human malignant contexts is largely uncharacterised. Here we show stereotypical patterns of MYC-mediated cell competition in human cancers: MYC-upregulating cells and apoptotic cells were indeed repeatedly found at the tumour-stroma interface and within the tumour parenchyma. Cell death amount in the stromal compartment and MYC protein level in the tumour were highly correlated regardless of tumour type and stage. Moreover, we show that MYC modulation in heterotypic co-cultures of human cancer cells is sufficient as to subvert their competitive state, regardless of genetic heterogeneity. Altogether, our findings suggest that the innate role of MYC-mediated cell competition in development is conserved in human cancer, with malignant cells using MYC activity to colonise the organ at the expense of less performant neighbours.
Collapse
Affiliation(s)
- Simone Di Giacomo
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, Bologna, 40126, Italy.
| | - Manuela Sollazzo
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, Bologna, 40126, Italy
| | - Dario de Biase
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, Bologna, 40126, Italy
| | - Moira Ragazzi
- Pathology Unit, IRCCS Arcispedale Santa Maria Nuova, Via Amendola 2, 42122, Reggio Emilia, Italy
| | - Paola Bellosta
- Center for Integrate Biology (CIBIO), University of Trento, Via Sommarive 9, Povo, (TN), 38123, Italy
| | - Annalisa Pession
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, Bologna, 40126, Italy
| | - Daniela Grifoni
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, Bologna, 40126, Italy.
| |
Collapse
|
35
|
|