1
|
Gao H, Wang Y, Liang X, Wen J, Liu R, Meng Q, Martyniuk CJ. Long-term exposure to 2,4-di-tert-butylphenol impairs zebrafish fecundity and affects offspring development. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138108. [PMID: 40188547 DOI: 10.1016/j.jhazmat.2025.138108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/08/2025]
Abstract
As a widely used antioxidant, 2,4-di-tert-butylphenol (2,4-DTBP) has been frequently detected in the environment and biota. Although a few studies reported its hormone-like activity in vitro, the endocrine disrupting potential of 2,4-DTBP and its effect on reproduction are not yet elucidated. In this study, adult zebrafish were exposed to 5 and 50 nM 2,4-DTBP for 60 days. Reduction in cumulative egg production was observed after 45 days of exposure. Gonadal maturation was also delayed in both female and male zebrafish following 2,4-DTBP exposure. The impaired fecundity was attributed to an imbalance of 17β-estradiol/testosterone ratio (E2/T) and altered transcripts involved in the hypothalamic-pituitary-gonadal (HPG) axis. Upon exposure, aromatase (CYP19) and E2 levels were significantly decreased in females, but were increased in males. Additionally, molecular docking revealed potential binding of 2,4-DTBP to estrogen receptors and CYP19, highlighting molecular initiating events that may interfere with steroid hormone synthesis. We also showed that 2,4-DTBP can be transferred to offspring, affecting their development and compromising immunity. The expression of triiodothyronine (T3) and hatching-related genes (esr2α, esr2β, and zhe2) were altered, suggesting that parental exposure to 2,4-DTBP resulted in intergenerational toxicity in F1 larvae. Taken together, these findings provide novel insight into the reproductive toxicity of 2,4-DTBP, contributing to its ecological risk assessment.
Collapse
Affiliation(s)
- Huina Gao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Low Carbon Resource Utilization, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yuchen Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Low Carbon Resource Utilization, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xuefang Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Low Carbon Resource Utilization, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| | - Jinfeng Wen
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Low Carbon Resource Utilization, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Ruimin Liu
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Low Carbon Resource Utilization, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Qingjian Meng
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Low Carbon Resource Utilization, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
2
|
Wu B, Cheng Z, Li X, Liang M, Wang X, Pi D, Liu J, Li H, Zhao J, Wang J, Liang F, Wang X. The developmental toxicity of bisphenol F exposure on the zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 298:118282. [PMID: 40344781 DOI: 10.1016/j.ecoenv.2025.118282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 05/03/2025] [Accepted: 05/04/2025] [Indexed: 05/11/2025]
Abstract
As a major substitute for the bisphenol A (BPA), the use of the bisphenol F (BPF) has increased dramatically in recent years. Growing evidence suggest that BPF shares numerous toxicological properties with BPA, raising the concerns about its potential impact on the health of organisms. However, the developmental toxicity of BPF remains poorly understood. In this study, we conducted a 5-day BPF exposure experiment on zebrafish (Danio rerio) from blastula stage at concentrations of 2, 20, 200, and 2000 µg/L. Our results demonstrated a significant increase in hatching rates across all treatment groups at 2 days post-fertilization (dpf). The esr1 was significantly upregulated at 2000 µg/L by 5 dpf, while no significant change was observed in ar. The frequency of operculum loss significantly increased at exposure concentrations of 20, 200, and 2000 µg/L, and a notable increase in notochord loss was observed at 2000 µg/L. To explore the underlying mechanisms, transcriptomic analysis was performed to identify differentially expressed genes (DEGs). GO and KEGG pathway enrichment analysis revealed that the toxic effects of BPF were closely associated with osteoclast differentiation, the FoxO signaling pathway, and the MAPK signaling pathway. These pathways influenced critical biological processes, including response to stimuli, animal organ morphogenesis, detoxification, and biomineralization. This study provides evidence that BPF exposure at environmentally relevant concentrations (2 µg/L) is harmful to hatching, concentrations above 20 µg/L exhibit estrogenic-disrupting activity and exert toxicological effects on the development of the head skeleton in zebrafish. These effects are particularly linked to disruptions in osteoclast differentiation.
Collapse
Affiliation(s)
- Biyu Wu
- Institute of Modern Aquaculture Science and Engineering, Guangdong-Macao Joint Laboratory for Aquaculture Breeding Development and Innovation, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Zirui Cheng
- Institute of Modern Aquaculture Science and Engineering, Guangdong-Macao Joint Laboratory for Aquaculture Breeding Development and Innovation, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiang Li
- Institute of Modern Aquaculture Science and Engineering, Guangdong-Macao Joint Laboratory for Aquaculture Breeding Development and Innovation, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Minxing Liang
- Institute of Modern Aquaculture Science and Engineering, Guangdong-Macao Joint Laboratory for Aquaculture Breeding Development and Innovation, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xue Wang
- Institute of Modern Aquaculture Science and Engineering, Guangdong-Macao Joint Laboratory for Aquaculture Breeding Development and Innovation, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Duan Pi
- Institute of Modern Aquaculture Science and Engineering, Guangdong-Macao Joint Laboratory for Aquaculture Breeding Development and Innovation, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jiayi Liu
- Institute of Modern Aquaculture Science and Engineering, Guangdong-Macao Joint Laboratory for Aquaculture Breeding Development and Innovation, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Huiling Li
- Institute of Modern Aquaculture Science and Engineering, Guangdong-Macao Joint Laboratory for Aquaculture Breeding Development and Innovation, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jun Zhao
- Institute of Modern Aquaculture Science and Engineering, Guangdong-Macao Joint Laboratory for Aquaculture Breeding Development and Innovation, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Junjie Wang
- Institute of Modern Aquaculture Science and Engineering, Guangdong-Macao Joint Laboratory for Aquaculture Breeding Development and Innovation, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Fang Liang
- Institute of Modern Aquaculture Science and Engineering, Guangdong-Macao Joint Laboratory for Aquaculture Breeding Development and Innovation, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| | - Xuegeng Wang
- Institute of Modern Aquaculture Science and Engineering, Guangdong-Macao Joint Laboratory for Aquaculture Breeding Development and Innovation, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
3
|
Xu X, Ding K, Jin X, Jia J, Ding K, Li W, Wang J, Yang J, Russell BD, Wang T. Effects of acute bisphenol A exposure on feeding and reproduction in sea urchin (Heliocidaris crassispina). Comp Biochem Physiol C Toxicol Pharmacol 2025; 292:110163. [PMID: 39993585 DOI: 10.1016/j.cbpc.2025.110163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025]
Abstract
Bisphenol A (BPA), an endocrine-disrupting chemical that is used globally in the production of many plastics, is a pervasive environmental contaminant that poses a growing threat to various forms of life. However, data on its impact on invertebrates, particularly echinoderms, remain scarce, and there is no existing research on BPA's toxicity in adult sea urchins. This study investigates the impact of acute BPA exposure (100, 600, and 1500 μg/L for one week) in adult sea urchin Heliocidaris crassispina, focusing on feeding behaviors (including predation and anti-predation behaviors, digestive enzyme activity), reproductive physiology (including gonadal characteristics, sex hormone levels, and expression of reproduction-related genes), and transgenerational effects. Results show that BPA exposure significantly reduces feeding capacity, prolongs response times in behavioral assays, and decreases digestive enzyme activity, indicating impaired energy acquisition. Histological analysis reveals gonadal developmental delays. Biochemical analysis revealed significant alterations in sex hormone levels, with a severe imbalance in their ratios. Gene expression analysis indicates significant changes in reproductive-related genes (up-regulation of reproductive-related gene myp, down-regulation of sex hormone synthesis key gene cyp17), supporting endocrine disruption. Furthermore, BPA exposure leads to developmental delays in offspring, highlighting potential transgenerational risks. Notably, a non-monotonic dose response was observed across several physiological and molecular endpoints, consistent with those seen in other species. These findings provide new insights into BPA toxicity in marine invertebrates, emphasizing its threat to sea urchin populations and coastal ecosystem stability.
Collapse
Affiliation(s)
- Xiuwen Xu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Keying Ding
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Xiuqi Jin
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Jinyue Jia
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Kaiwen Ding
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Weiye Li
- Zhoushan Fisheries Research Institute of Zhejiang Province, Zhoushan, Zhejiang 316022, China
| | - Jixiu Wang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Jingwen Yang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Bayden D Russell
- Swire Institute of Marine Science and Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, China; Institute for Climate and Carbon Neutrality, The University of Hong Kong, Hong Kong, China.
| | - Tianming Wang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| |
Collapse
|
4
|
Zhang C, Lu J, Wu J, Xiong B. Neglected Biogeochemical Process for Ocean Health: Seagrass Detritus Simultaneously Enhances Phenolic Endocrine-Disrupting Chemical Capture and Organic Carbon Sequestration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40405652 DOI: 10.1021/acs.est.5c03543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
This study presents the first comprehensive investigation on an easily neglected biogeochemical process of phenolic endocrine-disrupting chemical (EDC) capture and carbon sequestration by seagrass detritus. The results showed that Zostera marina L. detritus captured nonylphenol (NP) and bisphenol A (BPA) with high efficiency (>90%) and enhanced organic carbon sequestration in marine ecosystems. Under various seawater-sediment scenarios (pure seawater, nonburial, and burial systems), phenolic EDC rerelease rates were low (<20%), while total organic carbon (TOC) stocks increased by 21.5%-28.8% in EDC-treated groups compared to controls. Kinetic analyses revealed that NP and BPA were rapidly captured onto heterogeneous active sites of the detritus surface, with capture efficiency influenced by the physicochemical properties of contaminants, environmental factors, and the specific characteristics of the detritus. Laser scanning confocal microscopy (LSCM) and density functional theory (DFT) were employed to investigate synergistic mechanisms between phenolic EDCs and carbon at cellular and molecular levels. The lipids mediated NP sequestration through hydrophobic interactions with lipid-rich sites (such as phospholipids), while polysaccharides facilitated BPA binding via electrostatic interactions, highlighting their crucial roles in capturing phenolic EDCs. These findings reinforced the importance of seagrass meadows in capturing emerging contaminants and storing carbon in marine ecosystems.
Collapse
Affiliation(s)
- Cui Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, Shandong, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jian Lu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, Shandong, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jun Wu
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, Heilongjiang, P. R. China
| | - Bitao Xiong
- School of Science, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, P. R. China
| |
Collapse
|
5
|
Cho H, Sung SE, Lim H, Chung S, Kim YJ, Lim HB, Kim Y. Toxicological assessment of cigarette filter-derived microplastics in Daphnia magna. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138368. [PMID: 40280057 DOI: 10.1016/j.jhazmat.2025.138368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/03/2025] [Accepted: 04/20/2025] [Indexed: 04/29/2025]
Abstract
Cigarette filters are the most common form of litter worldwide and pose significant ecological risks because they degrade into microfibers and microplastics in aquatic environments. While previous studies have focused on the acute toxicity of cigarette leachate, the long-term ecological consequences of microplastic release from cigarette filters remain largely unexplored. This study evaluated the toxicity of cigarette filter-derived microplastics, including non-smoked cellulose acetate filters (CAF), smoked cigarette filters (GSF), on Daphnia magna, as well as leachate from smoked filter (LSF) for comparison. Imaging analysis confirmed that D. magna ingested cigarette filter-derived microplastics, which acted as carriers, gradually releasing harmful substances within organisms, a phenomenon consistent with the Trojan horse effect. Acute toxicity tests revealed similar 48-hour EC50 values (∼50 mg/L) for both GSF and LSF; however, GSF induced more pronounced long-term toxic effects. Chronic exposure to GSF significantly impairs reproduction, delays the timing of the first brood, reduces offspring size, and disrupts ecdysteroid-regulated genes. These findings indicate that cigarette filters are a persistent source of chemical pollution, threatening aquatic ecosystems. Specifically, microplastics from discarded cigarette filters act as Trojan horses, continuously releasing toxic chemicals and transporting hydrophobic contaminants, amplifying their environmental impact.
Collapse
Affiliation(s)
- Hyunki Cho
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, Saarbrücken 66123, Germany; Department of Pharmacy, Saarland University, Saarbrücken 66123, Germany
| | - Si-Eun Sung
- Department of Biophysics, Saarland University, Saarbrücken 66123, Germany
| | - Hyunsoo Lim
- Department of Industrial Plant Science & Technology, Chungbuk National University, Cheongju 28644, South Korea
| | - Seonyong Chung
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, Saarbrücken 66123, Germany
| | - Young Jun Kim
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, Saarbrücken 66123, Germany; Division of Energy & Environment Technology, University of Science & Technology, Daejeon 34113, South Korea
| | - Heung-Bin Lim
- Department of Industrial Plant Science & Technology, Chungbuk National University, Cheongju 28644, South Korea.
| | - Youngsam Kim
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, Saarbrücken 66123, Germany; Division of Energy & Environment Technology, University of Science & Technology, Daejeon 34113, South Korea.
| |
Collapse
|
6
|
Osborne RK, Prosser RS. Bioaccumulation and maternal transfer of copper in the freshwater snail Planorbella pilsbryi. ECOTOXICOLOGY (LONDON, ENGLAND) 2025:10.1007/s10646-025-02861-4. [PMID: 40178763 DOI: 10.1007/s10646-025-02861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Accepted: 02/12/2025] [Indexed: 04/05/2025]
Abstract
Exposure of parents to a contaminant can lead to the transfer of a fraction of the contaminant accumulated in the parental tissues to the developing embryos. This study assessed the rate of uptake and rate of depuration of the metal copper in mature adults of the freshwater pulmonated gastropod Planorbella pilsbryi to calculate a kinetic bioconcentration factor. The kinetic bioconcentration factor of copper in P. pilsbryi was 4.36 ± 0.14. The resultant time to 95% depuration was 25.72 days. The study also assessed the maternal transfer of copper from mature adults to their egg masses. An elevated concentration of copper was measured in egg masses laid by mature adult snails exposed to 27.3 µg/L of copper for 7 days compared to the concentration measured in egg masses from unexposed adults. The concentration of copper in egg masses laid by adults in the second 7-day exposure were greater than the concentration in egg masses laid in the first 7-day exposure. The concentration of copper in egg masses laid after the adult snails were transferred to clean water returned to the baseline concentrations observed in adult snails that were not exposed to copper. This study provides evidence that snails transfer a fraction of copper taken up in their tissues to their egg masses following exposure, but the transfer ceases when exposure to the adults is discontinued. This information is critical to designing the appropriate study to accurately assess the potential transgenerational effects of contaminants on freshwater gastropods.
Collapse
Affiliation(s)
- R K Osborne
- University of Guelph, School of Environmental Science, Guelph, ON, Canada
| | - R S Prosser
- University of Guelph, School of Environmental Science, Guelph, ON, Canada.
| |
Collapse
|
7
|
Chakraborty S, Anand S, Numan M, Bhandari RK. Ancestral bisphenol A exposure led to non-alcoholic fatty liver disease and sex-specific alterations in proline and bile metabolism pathways in the liver. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:958-972. [PMID: 39953842 PMCID: PMC11933882 DOI: 10.1093/etojnl/vgae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 02/17/2025]
Abstract
Endocrine-disrupting chemicals can induce metabolic alterations, resulting in diseases such as obesity, diabetes, and fatty liver disease, which can be inherited by offspring inhabiting uncontaminated environments. Bisphenol A (BPA), a well-known endocrine disruptor, can induce endocrine disruption, leading to metabolic disorders in subsequent generations without further exposure to BPA via nongenetic transgenerational inheritance. Using medaka as an animal model, we reported that ancestral BPA exposure leads to transgenerational nonalcoholic fatty liver disease (NAFLD) in grandchildren four generations after the initial exposure. It is unclear if transgenerational NAFLD developed because ancestral BPA exposure differs from that developed due to direct and continuous BPA exposure because the transgenerational disease develops in the absence of the stressor. We induced transgenerational NAFLD in medaka with ancestral BPA exposure (10 µg/L) at the F0 generation and examined transcriptional and metabolomic alterations in the liver of the F4 generation fish that continued to develop NAFLD. To understand the etiology of NAFLD in unexposed generations, we performed nontargeted liquid chromatography-mass spectrometry-based metabolomic analysis in combination with bulk RNA sequencing and determined biomarkers, co-expressed gene networks, and sex-specific pathways triggered in the liver. An integrated analysis of metabolomic and transcriptional alterations revealed a positive association with the severity of the NAFLD disease phenotype. Females showed increased NAFLD severity and had metabolic disruption involving proline metabolism, tryptophan metabolism, and bile metabolism pathways. The present results provide the transcriptional and metabolomic underpinning of metabolic disruption caused by ancestral BPA exposure, providing avenues for further research to understand the development and progression of transgenerational NAFLD caused by ancestral bisphenol A exposure.
Collapse
Affiliation(s)
- Sourav Chakraborty
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Santosh Anand
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Muhammad Numan
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, United States
| | - Ramji Kumar Bhandari
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, United States
| |
Collapse
|
8
|
Chakraborty S, Anand S, Wang X, Bhandari RK. Stable Transmission of DNA Methylation Epimutations from Germlines to the Liver and Their Association with Fatty Liver Disease in Medaka. RESEARCH SQUARE 2025:rs.3.rs-6010210. [PMID: 39989969 PMCID: PMC11844629 DOI: 10.21203/rs.3.rs-6010210/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Background Environmental stressors can induce heritable traits in organisms across phyla, with distinct epigenetic alterations in gametes and phenotypic outcomes across several generations. However, the mechanisms underlying such intergenerational inheritance, mainly from the germline to the germline and from the germline to the soma, are enigmatic, given that postfertilization embryos and germline cells reprogram the epigenome in each generation to gain their cellular identity. Here, we report stable germline transmission of differential DNA methylation alterations (epimutations) and their associations with nonalcoholic fatty liver disease (NAFLD) in medaka exposed to a model estrogenic chemical but a ubiquitous environmental contaminant, bisphenol A (BPA). Results Ancestral BPA exposure in the F0 generation led to advanced NAFLD in the unexposed grandchildren generation (F2) of medaka. The F2 liver transcriptome and histopathology revealed a severe NAFLD phenotype in females. Whole-genome bisulfite sequencing of the sperm and liver revealed a gradual shift in promoter methylation from F0 sperm (hypomethylated) to F1 sperm (mix of hypo- and hypermethylated) and F2 liver (predominantly hypermethylated). Many differentially methylated promoters (DMPs) overlapped in F0 sperm, F1 sperm, and F2 liver, regardless of sex. In females, stable transmission of 1511 DMPs was found across three generations, which are associated with protein-coding genes, miRNAs, and others and linked to NAFLD and nonalcoholic steatohepatitis (NASH). Among them, 27 canonical genes maintained consistently hypermethylated promoters across three generations, with significant downregulation of their expression and enrichment in NAFLD-related pathways, mainly fat digestion, glycerolipid metabolism, and steroid biosynthesis. Conclusions The present results demonstrate stable inter- and transgenerational germline-to-germline and germline-to-soma transmission of environmentally induced DNA epimutations with F0 and F1 gametic epimutations, predicting the F2 liver phenotype-a clear transgenerational passage of the disease phenotype in medaka.
Collapse
|
9
|
Rodrigues JA, Chaves RS, Santos MM, Neuparth T, Gil AM. Direct and transgenerational effects of simvastatin on the metabolism of the amphipod Gammarus locusta. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107221. [PMID: 39799757 DOI: 10.1016/j.aquatox.2024.107221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/14/2024] [Accepted: 12/24/2024] [Indexed: 01/15/2025]
Abstract
In this study, untargeted Nuclear Magnetic Resonance (NMR) metabolomics was applied for the first time, to our knowledge, to assess the metabolic impact of direct and transgenerational exposure (F0 and F3 generations, respectively) of amphipods Gammarus locusta to simvastatin (SIM), a pharmaceutical widely prescribed for the treatment of hypercholesterolemia. Results revealed the important gender-dependent nature of each of these effects. Directly exposed males showed enhanced glucose catabolism and tricarboxylic acid (TCA) cycle activity, in tandem with adaptations in osmotic regulation and glyoxylate metabolism. Exposed females exhibited only a small osmoregulatory effect. It is suggested that the response of exposed males may reflect reported high levels of methyl farnesoate hormone (low levels in females) and alterations in apical factors, namely decreased growth. Conversely, transgenerational effects were identified only in females, with impact on energy metabolism (glycolysis and TCA cycle enhancement) and osmoregulatory response. This expresses the ability of female gametes to transmit the effects of direct SIM exposure. Such effects were putatively related to reported delayed maturation and transcriptomic deviations impacting on carbohydrate and lipid metabolisms, possibly specifically engaging phenylalanine/tyrosine and choline in dopamine and choline metabolisms. These findings reflect the importance of untargeted metabolomics in addressing not only direct exposure of contaminants, but also their transgenerational effects, potentially contributing towards improving hazard and risk assessment of biologically active compounds.
Collapse
Affiliation(s)
- João A Rodrigues
- Department of Chemistry and CICECO, Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Raquel S Chaves
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Group of Endocrine Disruptors and Emerging Contaminants, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Miguel M Santos
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Group of Endocrine Disruptors and Emerging Contaminants, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Portugal.
| | - Teresa Neuparth
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Group of Endocrine Disruptors and Emerging Contaminants, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Ana M Gil
- Department of Chemistry and CICECO, Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
10
|
Osborne RK, Gillis PL, Prosser RS. Parental exposure of the freshwater snail Planorbella pilsbryi to copper results in transgenerational effects in offspring. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:542-551. [PMID: 39798160 PMCID: PMC11816282 DOI: 10.1093/etojnl/vgae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 01/15/2025]
Abstract
Although not assessed in standard ecotoxicological tests, exposure to a toxicant that does not result in an observable adverse effect in the parents may lead to transgenerational effects. These are adverse effects observed in unexposed offspring as a result of their parents' exposure to a toxicant. The goal of this study was to investigate whether transgenerational effects are observed in freshwater snails exposed to a toxicant. Using copper (Cu) as a reference toxicant, this study investigated whether the magnitude of exposure to the parents of the freshwater snail Planorbella pilsbryi resulted in a change in sensitivity of juvenile snails to a subsequent aqueous exposure of Cu. This study also investigated whether transgenerational effects observed in juvenile snails born to exposed parents would change if the parents laid eggs after being given time to recover from their exposure to Cu. Juvenile snails born to parents that were exposed to Cu without being given time to recover had no change in their sensitivity to Cu exposure or in some cases they became less sensitive. This study also observed that when parents were given time to recover from the Cu exposure, juvenile snails tended to be more sensitive to a subsequent Cu exposure, that is, decrease in median lethal concentrations for juveniles with an increase adult exposure. This study demonstrates that exposure of parent snails to a toxicant does not necessarily result in a consistent and significant change in sensitivity of the offspring to the same toxicant.
Collapse
Affiliation(s)
- Rebecca K Osborne
- School of Environmental Science, University of Guelph, Guelph, ON, Canada
| | - Patricia L Gillis
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, ON, Canada
| | - Ryan S Prosser
- School of Environmental Science, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
11
|
Coe ST, Chakraborty S, Faheem M, Kupradit K, Bhandari RK. A second hit by PFOS exposure exacerbated developmental defects in medaka embryos with a history of ancestral BPA exposure. CHEMOSPHERE 2024; 362:142796. [PMID: 38972462 PMCID: PMC11309894 DOI: 10.1016/j.chemosphere.2024.142796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/09/2024]
Abstract
Bisphenol-A (BPA), a known endocrine-disrupting chemical (EDC) in plastics and resins, has been found to induce heritable health effects in fish and mammals, affecting directly exposed individuals and indirectly their progenies in subsequent generations. It is not clearly understood if subsequent generations of the BPA-exposed ancestors have increased sensitivity to the second hit by the chemicals of emerging concern. To understand this, the present study examined the effects of developmental exposure to perfluorooctanesulfonic acid (PFOS), which has been a global contaminant recently, in embryos whose ancestors were exposed to BPA. Two lineages of medaka (Oryzias latipes) were established: 1) the BPA lineage in which the F0 generation was exposed to 10 μg/L BPA during early development and 2) the control lineage with no BPA exposure in the F0 generation. These lineages were raised up to the F4 generation without further exposure. The embryos of the F4 generation were exposed to PFOS at 0, 0.002, 0.02, 0.2, 2, and 20 mg/L concentrations. Early developmental defects resulting in mortality, delayed hatching, teratogenic phenotypes, and altered gene expression were examined in both lineages. The expression level of genes encoding DNA methyltransferases and genes responsible for oxidative stress defense were determined. Following environmentally relevant PFOS exposure, organisms with a history of BPA exposure displayed significant changes in all categories of developmental defects mentioned above, including increased expression of genes related to oxidative stress, compared to individuals without BPA exposure. The present study provides initial evidence that a history of ancestral BPA exposure can alter sensitivity to developmental disorders following the second hit by PFOS exposure. The variable of ancestral BPA exposure could be considered in mechanistic, medical, and regulatory toxicology, and can also be applied to holistic environmental equity research.
Collapse
Affiliation(s)
- Seraiah T Coe
- Department of Biology, University of North Carolina at Greensboro, NC, 27412, USA
| | - Sourav Chakraborty
- Department of Biology, University of North Carolina at Greensboro, NC, 27412, USA; Division of Biological Sciences, University of Missouri Columbia, MO, 65211, USA
| | - Mehwish Faheem
- Division of Biological Sciences, University of Missouri Columbia, MO, 65211, USA
| | - Karabuning Kupradit
- Department of Biology, University of North Carolina at Greensboro, NC, 27412, USA
| | - Ramji K Bhandari
- Division of Biological Sciences, University of Missouri Columbia, MO, 65211, USA.
| |
Collapse
|
12
|
Chakraborty S, Anand S, Bhandari RK. Medaka liver developed Human NAFLD-NASH transcriptional signatures in response to ancestral bisphenol A exposure. RESEARCH SQUARE 2024:rs.3.rs-4585175. [PMID: 39070641 PMCID: PMC11275980 DOI: 10.21203/rs.3.rs-4585175/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The progression of fatty liver disease to non-alcoholic steatohepatitis (NASH) is a leading cause of death in humans. Lifestyles and environmental chemical exposures can increase the susceptibility of humans to NASH. In humans, the presence of bisphenol A (BPA) in urine is associated with fatty liver disease, but whether ancestral BPA exposure leads to the activation of human NAFLD-NASH-associated genes in the unexposed descendants is unclear. In this study, using medaka fish as an animal model for human NAFLD, we investigated the transcriptional signatures of human NAFLD-NASH and their associated roles in the pathogenesis of the liver of fish that were not directly exposed, but their ancestors were exposed to BPA during embryonic and perinatal development three generations prior. Comparison of bulk RNA-Seq data of the liver in BPA lineage male and female medaka with publicly available human NAFLD-NASH patient data revealed transgenerational alterations in the transcriptional signature of human NAFLD-NASH in medaka liver. Twenty percent of differentially expressed genes (DEGs) were upregulated in both human NAFLD patients and medaka. Specifically in females, among the total shared DEGs in the liver of BPA lineage fish and NAFLD patient groups, 27.69% were downregulated, and 20% were upregulated. Of all DEGs, 52.31% of DEGs were found in ancestral BPA-lineage females, suggesting that NAFLD in females shared the majority of human NAFLD gene networks. Pathway analysis revealed beta-oxidation, lipoprotein metabolism, and HDL/LDL-mediated transport processes linked to downregulated DEGs in BPA lineage males and females. In contrast, the expression of genes encoding lipogenesis-related proteins was significantly elevated in the liver of BPA lineage females only. BPA lineage females exhibiting activation of myc, atf4, xbp1, stat4, and cancerous pathways, as well as inactivation of igf1, suggest their possible association with an advanced NAFLD phenotype. The present results suggest that gene networks involved in the progression of human NAFLD and the transgenerational NAFLD in medaka are conserved and that medaka can be an excellent animal model to understand the development and progression of liver disease and environmental influences in the liver.
Collapse
|
13
|
Chen Z, Li X, Gao J, Liu Y, Zhang N, Guo Y, Wang Z, Dong Z. Reproductive toxic effects of chronic exposure to bisphenol A and its analogues in marine medaka (Oryzias melastigma). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106927. [PMID: 38643640 DOI: 10.1016/j.aquatox.2024.106927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/01/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
As awareness of BPA's health risks has increased, many countries and regions have implemented strict controls on its use. Consequently, bisphenol analogues like BPF and BPAF are being increasingly used as substitutes. However, these compounds are also becoming increasingly prevalent in the environment due to production, use and disposal processes. The oceans act as a repository for various pollutants, and recent studies have revealed the extensive presence of bisphenols (BPs, including BPA, BPF, BPAF, etc.) in the marine environment, posing numerous health hazards to marine wildlife. Nevertheless, the reproductive toxicity of these chemicals on marine fish is not comprehensively comprehended yet. Thus, the histological features of the gonads and the gene expression profiles of HPG (Hypothalamic-Pituitary-Gonadal) axis-related genes in marine medaka (Oryzias melastigma) were studied after exposure to single and combined BPs for 70 days. The effects of each exposure group on spawning, embryo fertilization, and hatching in marine medaka were also assessed. Furthermore, the impacts of each exposure group on the genes related to methylation in the F2 and F3 generations were consistently investigated. BPs exposure was found to cause follicular atresia, irregular oocytes, and empty follicles in the ovary; but no significant lesions in the testis were observed. The expression of several HPG axis genes, including cyp19b, 17βhsd, 3βhsd, and fshr, resulted in significant changes compared to the control group. The quantity of eggs laid and fertilization rate decreased in all groups treated with BPs, with the BPAF-treated group showing a notable reduction in the number of eggs laid. Additionally, the hatching rate showed a more significant decline in the BPF-treated group. The analysis of methylated genes in the offspring of bisphenol-treated groups revealed significant changes in the expression of genes including amh, dnmt1, dnmt3ab, mbd2, and mecp2, indicating a potential transgenerational impact of bisphenols on phenotype through epigenetic modifications. Overall, the potential detrimental impact of bisphenol on the reproduction of marine medaka emphasizes the need for caution in considering the use of BPAF and BPF as substitutes.
Collapse
Affiliation(s)
- Zuchun Chen
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Xueyou Li
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Jiahao Gao
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Yue Liu
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Ning Zhang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Yusong Guo
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Zhongduo Wang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Zhongdian Dong
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China.
| |
Collapse
|
14
|
Chakraborty S, Anand S, Bhandari RK. Sex-specific expression of the human NAFLD-NASH transcriptional signatures in the liver of medaka with a history of ancestral bisphenol A exposure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.19.594843. [PMID: 38826193 PMCID: PMC11142124 DOI: 10.1101/2024.05.19.594843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The progression of fatty liver disease to non-alcoholic steatohepatitis (NASH) is a leading cause of death in humans. Lifestyles and environmental chemical exposures can increase the susceptibility of humans to NASH. In humans, the presence of bisphenol A (BPA) in urine is associated with fatty liver disease, but whether ancestral BPA exposure leads to the activation of human NAFLD-NASH-associated genes in the unexposed descendants is unclear. In this study, using medaka fish as an animal model for human NAFLD, we investigated the transcriptional signatures of human NAFLD-NASH and their associated roles in the pathogenesis of the liver of fish who were not directly exposed but their ancestors were exposed to BPA during embryonic and perinatal development three generations prior. Comparison of bulk RNA-Seq data of the liver in BPA lineage male and female medaka with publicly available human NAFLD-NASH patient data revealed transgenerational alterations in the transcriptional signature of human NAFLD-NASH in medaka liver. Twenty percent of differentially expressed genes (DEGs) were upregulated in both human NAFLD patients and medaka. Specifically in females, among the total shared DEGs in the liver of BPA lineage fish and NAFLD patient groups, 27.69% DEGs were downregulated and 20% DEGs were upregulated. Off all DEGs, 52.31% DEGs were found in ancestral BPA-lineage females, suggesting that NAFLD in females shared majority of human NAFLD gene networks. Pathway analysis revealed beta-oxidation, lipoprotein metabolism, and HDL/LDL-mediated transport processes linked to downregulated DEGs in BPA lineage males and females. In contrast, the expression of genes encoding lipogenesis-related proteins was significantly elevated in the liver of BPA lineage females only. BPA lineage females exhibiting activation of myc, atf4, xbp1, stat4, and cancerous pathways, as well as inactivation of igf1, suggest their possible association with an advanced NAFLD phenotype. The present results suggest that gene networks involved in the progression of human NAFLD and the transgenerational NAFLD in medaka are conserved and that medaka can be an excellent animal model to understand the development and progression of liver disease and environmental influences in the liver.
Collapse
Affiliation(s)
- Sourav Chakraborty
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, U.S.A
| | - Santosh Anand
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, U.S.A
| | - Ramji Kumar Bhandari
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, U.S.A
| |
Collapse
|
15
|
Pannetier P, Gölz L, Pissarreira Mendes Fagundes MT, Knörr S, Behnstedt L, Coordes S, Matthiessen P, Morthorst JE, Vergauwen L, Knapen D, Holbech H, Braunbeck T, Baumann L. Development of the integrated fish endocrine disruptor test (iFEDT)-Part A: Merging of existing fish test guidelines. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:817-829. [PMID: 37483114 DOI: 10.1002/ieam.4819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/21/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
There has been increasing interest in endocrine-disrupting chemicals (EDCs) among scientists and public authorities over the last 30 years, notably because of their wide use and the increasing evidence of detrimental effects on humans and the environment. However, test systems for the detection of potential EDCs as well as testing strategies still require optimization. Thus, the aim of the present project was the development of an integrated test protocol that merges the existing OECD test guidelines (TGs) 229 (fish short-term reproduction assay) and 234 (fish sexual development test) and implements thyroid-related endpoints for fish. The integrated fish endocrine disruptor test (iFEDT) represents a comprehensive approach for fish testing, which covers reproduction, early development, and sexual differentiation, and will thus allow the identification of multiple endocrine-disruptive effects in fish. Using zebrafish (Danio rerio) as a model organism, two exposure tests were performed with well-studied EDCs: 6-propyl-2-thiouracil (PTU), an inhibitor of thyroid hormone synthesis, and 17α-ethinylestradiol (EE2), an estrogen receptor agonist. In part A of this article, the effects of PTU and EE2 on established endpoints of the two existing TGs are reported, whereas part B focuses on the novel thyroid-related endpoints. Results of part A document that, as expected, both PTU and EE2 had strong effects on various endocrine-related endpoints in zebrafish and their offspring. Merging of TGs 229 and 234 proved feasible, and all established biomarkers and endpoints were responsive as expected, including reproductive and morphometric changes (PTU and EE2), vitellogenin levels, sex ratio, gonad maturation, and histopathology (only for EE2) of different life stages. A validation of the iFEDT with other well-known EDCs will allow verification of the sensitivity and usability and confirm its capacity to improve the existing testing strategy for EDCs in fish. Integr Environ Assess Manag 2024;20:817-829. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Pauline Pannetier
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- Laboratoire de Ploufragan-Plouzané-Niort, Site de Plouzané, Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail, Plouzané, France
| | - Lisa Gölz
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | | | - Susanne Knörr
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Laura Behnstedt
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Sara Coordes
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | | | - Jane E Morthorst
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Lucia Vergauwen
- Department of Veterinary Sciences, Veterinary Physiology and Biochemistry, Zebrafishlab, University of Antwerp, Wilrijk, Belgium
| | - Dries Knapen
- Department of Veterinary Sciences, Veterinary Physiology and Biochemistry, Zebrafishlab, University of Antwerp, Wilrijk, Belgium
| | - Henrik Holbech
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Lisa Baumann
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- Amsterdam Institute for Life and Environment (A-LIFE), Section Environmental Health and Toxicology, Vrije Universiteit Amsterdam, HV Amsterdam, The Netherlands
| |
Collapse
|
16
|
Krishnakumar S, Malavika RN, Nair SV, Menon D, Paul-Prasanth B. Nano-graphene oxide particles induce inheritable anomalies through altered gene expressions involved in oocyte maturation. Nanotoxicology 2024; 18:160-180. [PMID: 38449436 DOI: 10.1080/17435390.2024.2325615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
The inheritable impact of exposure to graphene oxide nanoparticles (GO NPs) on vertebrate germline during critical windows of gamete development remain undetermined to date. Here, we analyzed the transgenerational effects of exposure to nano-graphene oxide particles (nGO) synthesized in house with lateral dimensions 300-600 nm and surface charge of -36.8 mV on different developmental stages of germ cells (GCs): (1) during GCs undergoing early development and differentiation, and (2) during GCs undergoing gametogenesis and maturation in adulthood. Biocompatibility analyses in Japanese medaka embryos showed lethality above 1 µg/ml and also an aberrant increase in germ cell count of both males and females at doses below the lethal dose. However, no lethality or anomalies were evident in adults up to 45 µg/ml. Long term exposure of embryos and adults for 21 days resulted in reduced fecundity. This effect was transmitted to subsequent generations, F1 and F2. Importantly, the inheritable effects of nGO in adults were pronounced at a high dose of 10 µg/ml, while 1 µg/ml showed no impact on the germline indicating lower doses used in this study to be safe. Further, expressions of selected genes that adversely affected oocyte maturation were enhanced in F1 and F2 individuals. Interestingly, the inheritance patterns differed corresponding to the stage at which the fish received the exposure.
Collapse
Affiliation(s)
- Sreelakshmi Krishnakumar
- School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi Campus, Kerala, India
| | - Raghunath Nair Malavika
- School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi Campus, Kerala, India
| | - Shantikumar V Nair
- School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi Campus, Kerala, India
| | - Deepthy Menon
- School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi Campus, Kerala, India
| | - Bindhu Paul-Prasanth
- School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi Campus, Kerala, India
| |
Collapse
|
17
|
Bodziach K, Staniszewska M, Nehring I, Ożarowska A, Zaniewicz G, Meissner W. Endocrine disrupting bisphenol A, 4-tert-octylphenol and 4-nonylphenol in gonads of long-tailed ducks Clangula hyemalis wintering in the southern Baltic. ENVIRONMENTAL RESEARCH 2024; 243:117772. [PMID: 38029823 DOI: 10.1016/j.envres.2023.117772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
This paper focuses on determining the concentrations of phenol derivatives in the gonads of seabirds and examining the potential factors (age, sex and region) affecting the degree of their bioaccumulation. The study involved assays of bisphenol A (BPA), 4-tert-octylphenol (4-t-OP) and 4-nonylphenol (4-NP) in the gonads of long-tailed ducks taken as bycatch from the Southern Baltic region in 2015-2016. Among phenol derivatives, 4-NP was found to reach the highest concentrations in the gonads of long-tailed ducks, and its concentrations were in the range of <0.1-717.5 ng g-1 dw. The concentrations of BPA and 4-t-OP were similar and amounted to <0.4-181.6 ng g-1 dw and <0.1-192.4 ng g-1 dw respectively. The concentration levels of phenol derivatives in the birds' gonads were similar to the levels which had been observed to have negative endocrine effects in other authors studies. This shows that the studied xenoestrogens can interfere with the reproduction and development of birds. Moreover, adult long-tailed ducks had higher concentrations of phenol derivatives compared to immature ones, possibly resulting from long-term bioaccumulation, as well as from diverse pollution in their respective habitats. Particularly in the case of 4-NP, the median concentrations in gonads of adult birds were 2-fold higher than in immature ones. In turn, among adult long-tailed ducks, phenol derivatives were characterized by higher concentrations in males than in females, with almost 3 times and approx. 3.5 times higher median concentrations of BPA and 4-t-OP, respectively. Lower concentrations of phenol derivatives in female gonads may result from the additional elimination of pollutants from their bodies through the transfer of pollutants from mother to egg. The results show the need for further research on phenol derivatives in the gonads of birds, focusing on their impact on the reproductive system and early development.
Collapse
Affiliation(s)
- Karina Bodziach
- Toxic Substances Transformation Unit, Department of Chemical Oceanography and Marine Geology, Faculty of Oceanography and Geography, University of Gdansk, Al. Marszałka Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Marta Staniszewska
- Toxic Substances Transformation Unit, Department of Chemical Oceanography and Marine Geology, Faculty of Oceanography and Geography, University of Gdansk, Al. Marszałka Piłsudskiego 46, 81-378, Gdynia, Poland.
| | - Iga Nehring
- Toxic Substances Transformation Unit, Department of Chemical Oceanography and Marine Geology, Faculty of Oceanography and Geography, University of Gdansk, Al. Marszałka Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Agnieszka Ożarowska
- Ornithology Unit, Department of Vertebrate Ecology & Zoology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Grzegorz Zaniewicz
- Ornithology Unit, Department of Vertebrate Ecology & Zoology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Włodzimierz Meissner
- Ornithology Unit, Department of Vertebrate Ecology & Zoology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| |
Collapse
|
18
|
Hutton SJ, Siddiqui S, Pedersen EI, Markgraf CY, Segarra A, Hladik ML, Connon RE, Brander SM. Multigenerational, Indirect Exposure to Pyrethroids Demonstrates Potential Compensatory Response and Reduced Toxicity at Higher Salinity in Estuarine Fish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2224-2235. [PMID: 38267018 PMCID: PMC10851936 DOI: 10.1021/acs.est.3c06234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024]
Abstract
Estuarine environments are critical to fish species and serve as nurseries for developing embryos and larvae. They also undergo daily fluctuations in salinity and act as filters for pollutants. Additionally, global climate change (GCC) is altering salinity regimes within estuarine systems through changes in precipitation and sea level rise. GCC is also likely to lead to an increased use of insecticides to prevent pests from damaging agricultural crops as their habitats and mating seasons change from increased temperatures. This underscores the importance of understanding how insecticide toxicity to fish changes under different salinity conditions. In this study, larval Inland Silversides (Menidia beryllina) were exposed to bifenthrin (1.1 ng/L), cyfluthrin (0.9 ng/L), or cyhalothrin (0.7 ng/L) at either 6 or 10 practical salinity units (PSU) for 96 h during hatching, with a subset assessed for end points relevant to neurotoxicity and endocrine disruption by testing behavior, gene expression of a select suite of genes, reproduction, and growth. At both salinities, directly exposed F0 larvae were hypoactive relative to the F0 controls; however, the indirectly exposed F1 larvae were hyperactive relative to the F1 control. This could be evidence of a compensatory response to environmentally relevant concentrations of pyrethroids in fish. Effects on development, gene expression, and growth were also observed. Overall, exposure to pyrethroids at 10 PSU resulted in fewer behavioral and endocrine disruptive effects relative to those observed in organisms at 6 PSU.
Collapse
Affiliation(s)
- Sara J. Hutton
- Department
of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Samreen Siddiqui
- Department
of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon
Marine Experiment Station, Oregon State
University, Newport, Oregon 97365, United States
| | - Emily I. Pedersen
- Department
of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon
Marine Experiment Station, Oregon State
University, Newport, Oregon 97365, United States
| | - Christopher Y. Markgraf
- Department
of Biochemistry and Biophysics, Oregon State
University, Corvallis, Oregon 97331, United States
| | - Amelie Segarra
- Department
of Anatomy, Physiology, and Cell Biology, University of California, Davis, California 95616, United States
| | - Michelle L. Hladik
- U.S.
Geological Survey, California Water Science
Center, Sacramento, California 95819, United States
| | - Richard E. Connon
- Department
of Anatomy, Physiology, and Cell Biology, University of California, Davis, California 95616, United States
| | - Susanne M. Brander
- Department
of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon
Marine Experiment Station, Oregon State
University, Newport, Oregon 97365, United States
| |
Collapse
|
19
|
Paull GC, Lee CJ, Tyler CR. Beyond compliance: harmonising research and husbandry practices to improve experimental reproducibility using fish models. Biol Rev Camb Philos Soc 2024; 99:253-264. [PMID: 37817305 DOI: 10.1111/brv.13020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/12/2023]
Abstract
Reproducibility in animal research is impacted by the environment, by husbandry practices in the laboratory and by the animals' provenance. These factors, however, are often not adequately considered by researchers. A disconnect between researchers and animal care staff can result in inappropriate housing and husbandry decisions for scientific studies with those animals. This is especially the case for the research in neuro-behaviour, epigenetics, and the impact of climate change, as heritable phenotypic, behavioural or physiological changes are known to result from the animals' environmental housing, husbandry, provenance and prior experience. This can lead to greater variation (even major differences) in data outcomes among studies, driving scientific uncertainties. Herein, we illustrate some of the endpoints measured in fish studies known to be intrinsically linked to the environment and husbandry conditions and assess the significance of housing and husbandry practice decisions for research adopting these endpoints for different fish species. We highlight the different priorities and challenges faced by researchers and animal care staff and how harmonising their activities and building greater understanding of how husbandry practices affect the fish will improve reproducibility in research outcomes. We furthermore illustrate how improving engagement between stakeholders, including regulatory bodies, can better underpin fish husbandry decisions and where researchers could help to drive best husbandry practices through their own research with fish models.
Collapse
Affiliation(s)
- Gregory C Paull
- Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Carole J Lee
- Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Charles R Tyler
- Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| |
Collapse
|
20
|
Devoy C, Raza Y, Jones PD, Doering JA, Wiseman S. Japanese medaka (Oryzias latipes) exposed via maternal transfer to the brominated flame retardant, 1,2,5,6-tetrabromocyclooctane (TBCO), experience decreased fecundity and impaired oocyte maturation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106761. [PMID: 37980850 DOI: 10.1016/j.aquatox.2023.106761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/20/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
Early life-stage exposure of fishes to endocrine disrupting chemicals can induce reproductive impairment at sexual maturity. Previously, we demonstrated decreased fecundity of Japanese medaka (Oryzias latipes) exposed via maternal transfer to the novel brominated flame retardant, 1,2,5,6-tetrabromocyclooctane (TBCO). However, that study failed to identify the causative mechanism. In other studies we have shown that decreased fecundity of adult fish exposed to dietary TBCO is likely due to impaired oocyte maturation. The goal of the present study was to determine if impaired oocyte maturation is responsible for decreased fecundity of Japanese medaka exposed as embryos to TBCO, via maternal transfer. Sexually mature fish (F0) were fed either a control diet or a low (74.7 μg/g) or high (663 μg/g) diet containing TBCO for 21 days. Eggs (F1) were collected during the final week of exposure and reared to sexual maturity at which point fecundity was assessed using a 21-day reproduction assay. Upon termination of the assay, an ex vivo oocyte maturation assay was used to determine whether maturation inducing hormone (MIH) stimulated oocyte maturation was impaired. Additionally, concentrations of 17β -estradiol (E2) in blood plasma and expression of genes involved in vitellogenesis and oocyte maturation were quantified. The F1 generation females reared from the low or high F0 treatments experienced a 26.0 % and 56.8 % decrease in cumulative fecundity, respectively. Ex vivo MIH stimulated oocyte maturation from the low and high TBCO treatments were decreased by 23.4 % and 20.0 % respectively. There was no significant effect on concentrations of E2. Transcript abundance of vtgI was significantly decreased in a concentration dependent manner. Transcript abundance of mPRα, pgrmc1, pgrmc2, and igf3 were decreased but effects were not statistically significant. Overall, results suggest that impaired oocyte maturation causes decreased fecundity of Japanese medaka exposed to maternally deposited TBCO.
Collapse
Affiliation(s)
- Chloe Devoy
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada
| | - Yamin Raza
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada
| | - Paul D Jones
- School of Environment and Sustainability, and The Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Jon A Doering
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Steve Wiseman
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada.
| |
Collapse
|
21
|
Dasmahapatra AK, Williams CB, Myla A, Tiwary SK, Tchounwou PB. A systematic review of the evaluation of endocrine-disrupting chemicals in the Japanese medaka ( Oryzias latipes) fish. FRONTIERS IN TOXICOLOGY 2023; 5:1272368. [PMID: 38090358 PMCID: PMC10711633 DOI: 10.3389/ftox.2023.1272368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/10/2023] [Indexed: 02/01/2024] Open
Abstract
Japanese medaka (Oryzias latipes) is an acceptable small laboratory fish model for the evaluation and assessment of endocrine-disrupting chemicals (EDCs) found in the environment. In this research, we used this fish as a potential tool for the identification of EDCs that have a significant impact on human health. We conducted an electronic search in PubMed (http://www.ncbi.nlm.nih.gov/pubmed) and Google Scholar (https://scholar.google.com/) using the search terms, Japanese medaka, Oryzias latipes, and endocrine disruptions, and sorted 205 articles consisting of 128 chemicals that showed potential effects on estrogen-androgen-thyroid-steroidogenesis (EATS) pathways of Japanese medaka. From these chemicals, 14 compounds, namely, 17β-estradiol (E2), ethinylestradiol (EE2), tamoxifen (TAM), 11-ketotestosterone (11-KT), 17β-trenbolone (TRB), flutamide (FLU), vinclozolin (VIN), triiodothyronine (T3), perfluorooctanoic acid (PFOA), tetrabromobisphenol A (TBBPA), terephthalic acid (TPA), trifloxystrobin (TRF), ketoconazole (KTC), and prochloraz (PCZ), were selected as references and used for the identification of apical endpoints within the EATS modalities. Among these endpoints, during classification, priorities are given to sex reversal (masculinization of females and feminization of males), gonad histology (testis-ova or ovotestis), secondary sex characteristics (anal fin papillae of males), plasma and liver vitellogenin (VTG) contents in males, swim bladder inflation during larval development, hepatic vitellogenin (vtg) and choriogenin (chg) genes in the liver of males, and several genes, including estrogen-androgen-thyroid receptors in the hypothalamus-pituitary-gonad/thyroid axis (HPG/T). After reviewing 205 articles, we identified 108 (52.68%), 46 (22.43%), 19 (9.26%), 22 (17.18%), and 26 (12.68%) papers that represented studies on estrogen endocrine disruptors (EEDs), androgen endocrine disruptors (AEDs), thyroid endocrine disruptors (TEDs), and/or steroidogenesis modulators (MOS), respectively. Most importantly, among 128 EDCs, 32 (25%), 22 (17.18%), 15 (11.8%), and 14 (10.93%) chemicals were classified as EEDs, AEDs, TEDs, and MOS, respectively. We also identified 43 (33.59%) chemicals as high-priority candidates for tier 2 tests, and 13 chemicals (10.15%) show enough potential to be considered EDCs without any further tier-based studies. Although our literature search was unable to identify the EATS targets of 45 chemicals (35%) studied in 60 (29.26%) of the 205 articles, our approach has sufficient potential to further move the laboratory-based research data on Japanese medaka for applications in regulatory risk assessments in humans.
Collapse
Affiliation(s)
- Asok K. Dasmahapatra
- RCMI Center for Environmental Health, Jackson State University, Jackson, MS, United States
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, United States
| | - Charmonix B. Williams
- RCMI Center for Environmental Health, Jackson State University, Jackson, MS, United States
| | - Anitha Myla
- RCMI Center for Environmental Health, Jackson State University, Jackson, MS, United States
| | - Sanjay K. Tiwary
- RCMI Center for Environmental Health, Jackson State University, Jackson, MS, United States
| | - Paul. B. Tchounwou
- RCMI Center for Environmental Health, Jackson State University, Jackson, MS, United States
- RCMI Center for Urban Health Disparities Research and Innovation, Morgan State University, Baltimore, MD, United States
| |
Collapse
|
22
|
Chakraborty S, Anand S, Coe S, Reh B, Bhandari RK. The PCOS-NAFLD Multidisease Phenotype Occurred in Medaka Fish Four Generations after the Removal of Bisphenol A Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12602-12619. [PMID: 37581432 PMCID: PMC10469501 DOI: 10.1021/acs.est.3c01922] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/16/2023]
Abstract
As a heterogeneous reproductive disorder, polycystic ovary syndrome (PCOS) can be caused by genetic, diet, and environmental factors. Bisphenol A (BPA) can induce PCOS and nonalcoholic fatty liver disease (NAFLD) due to direct exposure; however, whether these phenotypes persist in future unexposed generations is not currently understood. In a previous study, we observed that transgenerational NAFLD persisted in female medaka for five generations (F4) after exposure to an environmentally relevant concentration (10 μg/L) of BPA. Here, we demonstrate PCOS in the same F4 generation female medaka that developed NAFLD. The ovaries contained immature follicles, restricted follicular progression, and degenerated follicles, which are characteristics of PCOS. Untargeted metabolomic analysis revealed 17 biomarkers in the ovary of BPA lineage fish, whereas transcriptomic analysis revealed 292 genes abnormally expressed, which were similar to human patients with PCOS. Metabolomic-transcriptomic joint pathway analysis revealed activation of the cancerous pathway, arginine-proline metabolism, insulin signaling, AMPK, and HOTAIR regulatory pathways, as well as upstream regulators esr1 and tgf signaling in the ovary. The present results suggest that ancestral BPA exposure can lead to PCOS phenotypes in the subsequent unexposed generations and warrant further investigations into potential health risks in future generations caused by initial exposure to EDCs.
Collapse
Affiliation(s)
- Sourav Chakraborty
- Department of Biology, University of North Carolina at Greensboro, Greensboro 27412 North Carolina, United
States
| | - Santosh Anand
- Department of Biology, University of North Carolina at Greensboro, Greensboro 27412 North Carolina, United
States
| | - Seraiah Coe
- Department of Biology, University of North Carolina at Greensboro, Greensboro 27412 North Carolina, United
States
| | - Beh Reh
- Department of Biology, University of North Carolina at Greensboro, Greensboro 27412 North Carolina, United
States
| | - Ramji Kumar Bhandari
- Department of Biology, University of North Carolina at Greensboro, Greensboro 27412 North Carolina, United
States
| |
Collapse
|
23
|
Lamka GF, Auxier AN, Swank A, Esarey K, Mullinax HR, Seymour RD, Ward JL. Effects of developmental exposure to neurotoxic algal metabolites on predator-prey interactions in larval Pimephales promelas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163148. [PMID: 36996974 DOI: 10.1016/j.scitotenv.2023.163148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 05/17/2023]
Abstract
Harmful algal blooms are a growing environmental concern in aquatic systems. Although it is known that some of the secondary metabolites produced by cyanobacteria can alter predator-prey dynamics in aquatic communities by reducing foraging and/or predator evasion success, the mechanisms underpinning such responses are largely unknown. In this study, we examined the effects of a potent algal neurotoxin, β-N-methylamino-L-alanine (BMAA), on the development and behavior of larval Fathead Minnows, Pimephales promelas, during predator-prey interactions. We exposed eggs and larvae to environmentally relevant concentrations of BMAA for 21 days, then tested subjects in prey-capture and predator-evasion assays designed to isolate the effects of exposure at sequential points of the stimulus-response pathway. Exposure was associated with changes in the ability of larvae to detect and respond to environmental stimuli (i.e., a live prey item and a simulated vibrational predator), as well as changes in behavior and locomotor performance during the response. Our findings suggest that chronic exposure to neurodegenerative cyanotoxins could alter the outcomes of predator-prey interactions in natural systems by impairing an animal's ability to perceive, process, and respond to relevant biotic stimuli.
Collapse
Affiliation(s)
- Gina F Lamka
- Department of Biology, Ball State University, 1600 Ashland Ave, Muncie, IN 47306, USA.
| | - Autum N Auxier
- Department of Biology, Ball State University, 1600 Ashland Ave, Muncie, IN 47306, USA.
| | - Ally Swank
- Department of Biology, Ball State University, 1600 Ashland Ave, Muncie, IN 47306, USA.
| | - Katie Esarey
- Department of Biology, Ball State University, 1600 Ashland Ave, Muncie, IN 47306, USA
| | - Hannah R Mullinax
- Department of Biology, Ball State University, 1600 Ashland Ave, Muncie, IN 47306, USA.
| | - Ryan D Seymour
- Department of Biology, Ball State University, 1600 Ashland Ave, Muncie, IN 47306, USA.
| | - Jessica L Ward
- Department of Biology, Ball State University, 1600 Ashland Ave, Muncie, IN 47306, USA.
| |
Collapse
|
24
|
Vassall M, Chakraborty S, Feng Y, Faheem M, Wang X, Bhandari RK. Transcriptional Alterations Induced by Delta-9 Tetrahydrocannabinol in the Brain and Gonads of Adult Medaka. J Xenobiot 2023; 13:237-251. [PMID: 37367494 DOI: 10.3390/jox13020018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 06/28/2023] Open
Abstract
With the legalization of marijuana smoking in several states of the United States and many other countries for medicinal and recreational use, the possibility of its release into the environment cannot be overruled. Currently, the environmental levels of marijuana metabolites are not monitored on a regular basis, and their stability in the environment is not well understood. Laboratory studies have linked delta 9-tetrahydrocannabinol (Δ9-THC) exposure with behavioral abnormalities in some fish species; however, their effects on endocrine organs are less understood. To understand the effects of THC on the brain and gonads, we exposed adult medaka (Oryzias latipes, Hd-rR strain, both male and female) to 50 ug/L THC for 21 days spanning their complete spermatogenic and oogenic cycles. We examined transcriptional responses of the brain and gonads (testis and ovary) to Δ9-THC, particularly molecular pathways associated with behavioral and reproductive functions. The Δ9-THC effects were more profound in males than females. The Δ9-THC-induced differential expression pattern of genes in the brain of the male fish suggested pathways to neurodegenerative diseases and pathways to reproductive impairment in the testis. The present results provide insights into endocrine disruption in aquatic organisms due to environmental cannabinoid compounds.
Collapse
Affiliation(s)
- Marlee Vassall
- Department of Biology, University of North Carolina, Greensboro, NC 27412, USA
| | - Sourav Chakraborty
- Department of Biology, University of North Carolina, Greensboro, NC 27412, USA
| | - Yashi Feng
- Department of Biology, University of North Carolina, Greensboro, NC 27412, USA
| | - Mehwish Faheem
- Department of Biology, University of North Carolina, Greensboro, NC 27412, USA
| | - Xuegeng Wang
- Department of Biology, University of North Carolina, Greensboro, NC 27412, USA
- Institute of Modern Aquaculture Science and Engineering, College of Life Sciences, South China Normal University, Guangzhou 510631, China
| | | |
Collapse
|
25
|
Peterson DR, Seemann F, Wan MT, Ye RR, Chen L, Lai KP, Yu P, Kong RYC, Au DWT. Multigenerational impacts of EE2 on reproductive fitness and immune competence of marine medaka. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 260:106584. [PMID: 37267806 DOI: 10.1016/j.aquatox.2023.106584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 04/16/2023] [Accepted: 05/16/2023] [Indexed: 06/04/2023]
Abstract
Estrogenic endocrine disrupting chemicals (EEDC) have been suspected to impact offspring in a transgenerational manner via modifications of the germline epigenome in the directly exposed generations. A holistic assessment of the concentration/ exposure duration-response, threshold level, and critical exposure windows (parental gametogenesis and embryogenesis) for the transgenerational evaluation of reproduction and immune compromise concomitantly will inform the overall EEDC exposure risk. We conducted a multigenerational study using the environmental estrogen, 17α-ethinylestradiol (EE2), and the marine laboratory model fish Oryzias melastigma (adult, F0) and their offspring (F1-F4) to identify transgenerationally altered offspring generations and phenotype persistence. Three exposure scenarios were used: short parental exposure, long parental exposure, and a combined parental and embryonic exposure using two concentrations of EE2 (33ng/L, 113ng/L). The reproductive fitness of fish was evaluated by assessing fecundity, fertilization rate, hatching success, and sex ratio. Immune competence was assessed in adults via a host-resistance assay. EE2 exposure during both parental gametogenesis and embryogenesis was found to induce concentration/ exposure duration-dependent transgenerational reproductive effects in the unexposed F4 offspring. Furthermore, embryonic exposure to 113 ng/L EE2 induced feminization of the directly exposed F1 generation, followed by subsequent masculinization of the F2 and F3 generations. A sex difference was found in the transgenerationally impaired reproductive output with F4 females being sensitive to the lowest concentration of EE2 (33 ng/L) upon long-term ancestral parent exposure (21 days). Conversely, F4 males were affected by ancestral embryonic EE2 exposure. No definitive transgenerational impacts on immune competence were identified in male or female offspring. In combination, these results indicate that EEDCs can be transgenerational toxicants that may negatively impact the reproductive success and population sustainability of fish populations.
Collapse
Affiliation(s)
- Drew R Peterson
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Frauke Seemann
- Center for Coastal Studies, Department of Life Sciences, Texas A&M University - Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412-5800, USA.
| | - Miles T Wan
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Roy R Ye
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Lianguo Chen
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Keng P Lai
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR; Guilin Medical University, Guilin, 541004, PR China
| | - Peter Yu
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Richard Y C Kong
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Doris W T Au
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR
| |
Collapse
|
26
|
Sun Y, Zhou S, Zhu B, Li F, Fu K, Guo Y, Men J, Han J, Zhang W, Yang L, Zhou B. Multi- and Transgenerational Developmental Impairments Are Induced by Decabromodiphenyl Ethane (DBDPE) in Zebrafish Larvae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2887-2897. [PMID: 36779393 DOI: 10.1021/acs.est.3c00032] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A novel brominated flame retardant decabromodiphenyl ethane (DBDPE) has become a ubiquitous emerging pollutant; hence, the knowledge of its long-term toxic effects and underlying mechanism would be critical for further health risk assessment. In the present study, the multi- and transgenerational toxicity of DBDPE was investigated in zebrafish upon a life cycle exposure at environmentally relevant concentrations. The significantly increased malformation rate and declined survival rate specifically occurred in unexposed F2 larvae suggested transgenerational development toxicity by DBDPE. The changing profiles revealed by transcriptome and DNA methylome confirmed an increased susceptibility in F2 larvae and figured out potential disruptions of glycolipid metabolism, mitochondrial energy metabolism, and neurodevelopment. The changes of biochemical indicators such as ATP production confirmed a disturbance in the energy metabolism, whereas the alterations of neurotransmitter contents and light-dark stimulated behavior provided further evidence for multi- and transgenerational neurotoxicity in zebrafish. Our findings also highlighted the necessity for considering the long-term impacts when evaluating the health of wild animals as well as human beings by emerging pollutants.
Collapse
Affiliation(s)
- Yumiao Sun
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanqi Zhou
- Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Biran Zhu
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Fan Li
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaiyu Fu
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongyong Guo
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jun Men
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian Han
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Zhang
- Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lihua Yang
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bingsheng Zhou
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
27
|
Devoy C, Raza Y, Kleiner M, Jones PD, Doering JA, Wiseman S. The brominated flame retardant, 1,2,5,6-tetrabromocyclooctane (TBCO), causes multigenerational effects on reproductive capacity of Japanese medaka (Oryzias latipes). CHEMOSPHERE 2023; 313:137561. [PMID: 36565769 DOI: 10.1016/j.chemosphere.2022.137561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/13/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Exposure of fishes to endocrine disrupting chemicals (EDCs) during early development can induce multigenerational and transgenerational effects on reproduction. Both in vivo and in vitro studies have demonstrated that the brominated flame retardant, 1,2,5,6-tetrabromocyclooctane (TBCO), is an EDC. The present study investigated whether TBCO has mutigenerational and/or transgenerational effects on the reproductive performance of Japanese medaka (Oryzias latipes). Sexually mature fish (F0 generation) were fed either a control diet or a low (40.6 μg/g) or high (1034.4 μg/g) diet containing TBCO, and three generations of embryos were reared to determine reproductive performance using a standard 21-day reproduction assay. Concentrations of TBCO in eggs (F1 generation) from F0 fish given the low and high diets were 711.3 and 2535.5 ng/g wet weight, respectively. Cumulative fecundity of the F1 generation in the low and high treatment were reduced by 33.9% and 33.3%, respectively, compared to the control. In the F2 generation, cumulative fecundity of the low treatment returned to the level of the controls, but the high treatment was decreased by 29.8%. There was no decrease in cumulative fecundity in the F3 generation compared to the controls. Mechanistically, mRNA abundances of cholesterol side chain cleavage enzyme (cyp11a), aromatase (cyp19a), and luteinizing hormone receptor (lhr) were differentially expressed in gonads from F1 females, suggesting that TBCO might cause developmental reprogramming that disrupts steroidogenesis leading to decreased fecundity. However, concentrations of E2 in plasma and mRNA abundance of vitellogenin in liver were not significantly different compared to controls suggesting a mechanism other than disruption of steroidogenesis or vitellogenesis. Mechanistically, no effects were observed in the F2 or F3 generation. Overall, results suggest that TBCO has multigenerational effects on the reproductive performance of Japanese medaka. However, no transgenerational effects were observed as the F3 generation fully recovered. The mechanism by which multigenerational effects were induced is not known.
Collapse
Affiliation(s)
- Chloe Devoy
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Yamin Raza
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Makenna Kleiner
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Paul D Jones
- School of Environment and Sustainability, and the Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5C9, Canada
| | - Jon A Doering
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada; Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Steve Wiseman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada; Water Institute for Sustainable Environments (WISE), University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.
| |
Collapse
|
28
|
Chakraborty S, Dissanayake M, Godwin J, Wang X, Bhandari RK. Ancestral BPA exposure caused defects in the liver of medaka for four generations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159067. [PMID: 36174697 PMCID: PMC10593180 DOI: 10.1016/j.scitotenv.2022.159067] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/01/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Environmental chemicals can induce liver defects in experimental animals due to their direct and acute exposure. It is not clear whether environmental chemical exposures result in the transgenerational passage of liver defects in subsequent generations living in an uncontaminated environment. Bisphenol A (BPA), a plasticizer chemical, has been ubiquitous in the environment in the recent decade. Every organism is exposed to this chemical at some point during its lifetime. Literature suggests that direct BPA exposure can result in several metabolic diseases, including non-alcoholic fatty liver disease (NAFLD). Despite the phasing out of BPA from several consumer goods, it is unclear whether ancestral BPA exposure causes liver health problems in the unexposed future generations. Here, we demonstrate an advanced stage of NAFLD in the grandchildren (F2 generation) of medaka fish (Oryzias latipes) due to embryonic BPA exposure in the grandparental generation (F0), which persists for five generations (F4) even in the absence of BPA. The severity of transgenerational NAFLD phenotype included steatosis together with perisinusoidal fibrosis and apoptosis of hepatocytes. Adult females developed more severe histopathological conditions in the liver than males. Genes encoding enzymes involved in lipolytic pathways were significantly decreased. The present results suggest that ancestral BPA exposure can result in transgenerational metabolic diseases that can persist for five generations and that the NAFLD trait is sexually dimorphic. Given that ancestral BPA exposure can lead to altered metabolic health outcomes in the subsequent unexposed generations, the development of the methods and strategies to mitigate the transgenerational onset of metabolic diseases seem imperative to protect future generations.
Collapse
Affiliation(s)
- Sourav Chakraborty
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| | - Manthi Dissanayake
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| | - Julia Godwin
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| | - Xuegeng Wang
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA; Institute of Modern Aquaculture Science and Engineering, College of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Ramji Kumar Bhandari
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA.
| |
Collapse
|
29
|
Bodziach K, Staniszewska M, Nehring I, Ożarowska A, Zaniewicz G, Meissner W. Elimination of endocrine disrupting phenolic compounds via feathers and claws in seabirds moulting in the Baltic and Russian Arctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158641. [PMID: 36096226 DOI: 10.1016/j.scitotenv.2022.158641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
This paper investigates the effectiveness of phenol derivatives removal from bird organisms via claws and remiges, and performs a preliminary assessment of the usefulness of these epidermal products for environmental biomonitoring and estimating bird exposure levels. Concentrations of bisphenol A (BPA) and alkylphenols: 4-tert-octylphenol (4-t-OP) and 4-nonylphenol (4-NP) were determined in claws and remiges of long-tailed ducks Clangula hyemalis and razorbills Alca torda, obtained during a by-catch in the winter period (2014-2016) in the Southern Baltic region. For razorbills, the Baltic is a permanent habitat, while long-tailed ducks are migratory and stay in the Southern Baltic only during the non-breeding season. Their remiges are replaced in the Arctic seas of Siberia. The removal of phenol derivatives, depending on the compound and the epidermal product, ranges from 12 % to 34 %. Among these compounds, in both bird species, the highest degree of elimination was observed for 4-NP in remiges (<0.1-656.0 ng.g-1 dw) as well as claws (<0.1-338.6 ng.g-1 dw). On the other hand, the least removed compound in both the long-tailed duck and the razorbill was 4-t-OP. The removal of phenol derivatives from claws in both bird species was at the same level. However, 4-NP concentrations were found to be statistically significantly higher in razorbill remiges compared to those of the long-tailed duck (p < 0.05). Comparison of concentrations in the remiges of the long-tailed duck and the razorbill, moulted in two different environments with different levels of pollution and distances from sources, indicated that the Baltic Sea is approximately 3 times more polluted with 4-NP than the marine areas of the Russian Arctic. This demonstrates the potential for the use of 4-NP and remiges as indicators of environmental pollution with phenol derivatives.
Collapse
Affiliation(s)
- Karina Bodziach
- Department of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdansk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Marta Staniszewska
- Department of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdansk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Iga Nehring
- Department of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdansk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Agnieszka Ożarowska
- Ornithology Unit, Department of Vertebrate Ecology & Zoology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Grzegorz Zaniewicz
- Ornithology Unit, Department of Vertebrate Ecology & Zoology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Włodzimierz Meissner
- Ornithology Unit, Department of Vertebrate Ecology & Zoology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| |
Collapse
|
30
|
Pompermaier A, Tamagno WA, Alves C, Barcellos LJG. Persistent and transgenerational effects of pesticide residues in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2022; 262:109461. [PMID: 36087705 DOI: 10.1016/j.cbpc.2022.109461] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/13/2022] [Accepted: 09/05/2022] [Indexed: 11/03/2022]
Abstract
Highly toxic chemical compounds are present in rivers and lakes, endangering the survival of non-target species. To evaluate the effects of environmental contamination on non-target species, we used the zebrafish as an animal model. Environmental concentrations of the widely used pesticides, glyphosate (GBH) at 4.8 μg·L-1 and 2,4-dichlorophenoxyacetic acid (DBH) at 3.4 μg·L-1, were used. The animals were exposed during the entire period of organogenesis and evaluated in our previous study regarding initial developmental parameters. In the present study, we evaluate these fish when achieve the adult phase, using the novel tank test (NTT) and the aversivity test. In the second step, the animals were allowed to reproduce, and the initial parameters of development, behavioral parameters in the open field test (OFT) and in the aversivity test (AST), and biochemical biomarkers as acetylcholinesterase (AChE), catalase (CAT), and superoxide dismutase (SOD) in the F1 generation were studied. Fish exposed to GBH showed hypermobility, and their anti-predatory reaction was impaired during adulthood, indicating a persistent effect. We also showed that fish had impaired behavioral and survival changes in the F1 generation as well as effects on AChE activity and antioxidant enzymes, characterizing a transgenerational effect. The fish did not show persistent effects in adulthood due to DBH exposure; however, they were unable to reproduce. Our findings demonstrate the serious impact of pesticides on fish, where the effects of contamination can affect future generations and compromise the species' survival.
Collapse
Affiliation(s)
- Aline Pompermaier
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo, BR 285, São José, Passo Fundo, Rio Grande do Sul, Brazil
| | - Wagner Antonio Tamagno
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Carla Alves
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo, BR 285, São José, Passo Fundo, Rio Grande do Sul, Brazil
| | - Leonardo José Gil Barcellos
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo, BR 285, São José, Passo Fundo, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil.
| |
Collapse
|
31
|
Brander SM, White JW, DeCourten BM, Major K, Hutton SJ, Connon RE, Mehinto A. Accounting for transgenerational effects of toxicant exposure in population models alters the predicted long-term population status. ENVIRONMENTAL EPIGENETICS 2022; 8:dvac023. [PMID: 36518876 PMCID: PMC9730329 DOI: 10.1093/eep/dvac023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/12/2022] [Accepted: 11/01/2022] [Indexed: 06/04/2023]
Abstract
Acute environmental stressors such as short-term exposure to pollutants can have lasting effects on organisms, potentially impacting future generations. Parental exposure to toxicants can result in changes to the epigenome (e.g., DNA methylation) that are passed down to subsequent, unexposed generations. However, it is difficult to gauge the cumulative population-scale impacts of epigenetic effects from laboratory experiments alone. Here, we developed a size- and age-structured delay-coordinate population model to evaluate the long-term consequences of epigenetic modifications on population sustainability. The model emulated changes in growth, mortality, and fecundity in the F0, F1, and F2 generations observed in experiments in which larval Menidia beryllina were exposed to environmentally relevant concentrations of bifenthrin (Bif), ethinylestradiol (EE2), levonorgestrel (LV), or trenbolone (TB) in the parent generation (F0) and reared in clean water up to the F2 generation. Our analysis suggests potentially dramatic population-level effects of repeated, chronic exposures of early-life stage fish that are not captured by models not accounting for those effects. Simulated exposures led to substantial declines in population abundance (LV and Bif) or near-extinction (EE2 and TB) with the exact trajectory and timeline of population decline dependent on the combination of F0, F1, and F2 effects produced by each compound. Even acute one-time exposures of each compound led to declines and recovery over multiple years due to lagged epigenetic effects. These results demonstrate the potential for environmentally relevant concentrations of commonly used compounds to impact the population dynamics and sustainability of an ecologically relevant species and model organism.
Collapse
Affiliation(s)
- Susanne M Brander
- *Correspondence address. Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, 2030 SE Marine Science Drive, Newport, OR 97365, USA. Tel: +541-737-5413; E-mail:
| | - J Wilson White
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, OR 97365, USA
| | | | - Kaley Major
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Sara J Hutton
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Richard E Connon
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95656, USA
| | - Alvine Mehinto
- Toxicology Department, Southern California Coastal Water Research Project, Costa Mesa, CA 92626, USA
| |
Collapse
|
32
|
Reh B, Wang X, Feng Y, Bhandari RK. Potassium perchlorate effects on primordial germ cells of developing medaka larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 251:106283. [PMID: 36063761 DOI: 10.1016/j.aquatox.2022.106283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Perchlorate is a chemical compound commonly used in military artillery and equipment. It has been detected in drinking water, air, soil, and breast milk. Exposure of humans to perchlorate can occur in the theater of war and areas adjacent to military training grounds. A high concentration of perchlorate has been found to affect reproduction in vertebrates, including fish. However, whether environmental concentrations of perchlorate can affect primordial germ cells (PGCs), the founders of sperm and eggs, is not clearly understood. In the present study, we examined the effects of 0, 10, 100, and 1000 μg/L potassium perchlorate exposure on the embryonic development of medaka and their PGCs. Perchlorate exposure delayed hatching time, reduced heartbeat, inhibited migration of PGCs, and increased developmental deformities in the larvae. The 10 and 20 mg/L concentrations of perchlorate were lethal to embryos, whereas vitamin C co-treatment (1 mg/L) completely blocked perchlorate-induced mortality. RNA-seq analysis of isolated PGCs showed a non-linear pattern in expression profiles of differentially altered genes. Significantly upregulated genes were found in PGCs from the 10 and 1000 μg/L groups, whereas the 100 μg/L groups showed the highest number of significantly downregulated genes. Gene ontology analysis predicted differentially expressed genes to be involved in proteolysis, metabolic processes, peptides activity, hydrolase activity, and hormone activity. Among the cellular components, extracellular, intracellular, sarcoplasmic, and 6-phosphofructokinase and membrane-bounded processes were affected. Ingenuity Pathway Analysis of PGC transcriptomes revealed thyroid hormone signaling to be affected by all concentrations of perchlorate. The present results suggested that perchlorate affected the development of medaka larvae and vitamin C was able to ameliorate perchlorate-induced embryo mortality. Additionally, perchlorate altered the global transcriptional network in PGCs in a non-linear fashion suggesting its potential effects on developing germ cells and fertility.
Collapse
Affiliation(s)
- Beh Reh
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| | - Xuegeng Wang
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA; Institute of Modern Aquaculture Science and Engineering, College of Life Sciences, South China Normal University, Guangzhou 510631, China.
| | - Yashi Feng
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| | - Ramji K Bhandari
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA.
| |
Collapse
|
33
|
Chapelle V, Silvestre F. Population Epigenetics: The Extent of DNA Methylation Variation in Wild Animal Populations. EPIGENOMES 2022; 6:31. [PMID: 36278677 PMCID: PMC9589984 DOI: 10.3390/epigenomes6040031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Population epigenetics explores the extent of epigenetic variation and its dynamics in natural populations encountering changing environmental conditions. In contrast to population genetics, the basic concepts of this field are still in their early stages, especially in animal populations. Epigenetic variation may play a crucial role in phenotypic plasticity and local adaptation as it can be affected by the environment, it is likely to have higher spontaneous mutation rate than nucleotide sequences do, and it may be inherited via non-mendelian processes. In this review, we aim to bring together natural animal population epigenetic studies to generate new insights into ecological epigenetics and its evolutionary implications. We first provide an overview of the extent of DNA methylation variation and its autonomy from genetic variation in wild animal population. Second, we discuss DNA methylation dynamics which create observed epigenetic population structures by including basic population genetics processes. Then, we highlight the relevance of DNA methylation variation as an evolutionary mechanism in the extended evolutionary synthesis. Finally, we suggest new research directions by highlighting gaps in the knowledge of the population epigenetics field. As for our results, DNA methylation diversity was found to reveal parameters that can be used to characterize natural animal populations. Some concepts of population genetics dynamics can be applied to explain the observed epigenetic structure in natural animal populations. The set of recent advancements in ecological epigenetics, especially in transgenerational epigenetic inheritance in wild animal population, might reshape the way ecologists generate predictive models of the capacity of organisms to adapt to changing environments.
Collapse
Affiliation(s)
- Valentine Chapelle
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth, and Environment, University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium
| | | |
Collapse
|
34
|
Bordin ER, Munhoz RC, Panicio PP, de Freitas AM, Ramsdorf WA. Effects of environmentally relevant concentrations of atrazine and glyphosate herbicides, isolated and in mixture, on two generation of the freshwater microcrustacean Daphnia magna. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:884-896. [PMID: 35585359 DOI: 10.1007/s10646-022-02554-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The herbicides atrazine and glyphosate are used worldwide and their excessive usage results in the frequent presence of these pesticides in environmental compartments. We evaluated the effects of environmentally relevant concentrations of analytical standards and commercial formulations of atrazine (2 µg L-1) and glyphosate (65 µg L-1), isolated and in mixture (2 + 65 µg L-1) on the microcrustacean Daphnia magna. Through chronic exposure (21 days) of two generations, we observed effects on survival, reproductive capacity and responses of the antioxidant defense system (catalase) and biotransformation system (glutathione S-transferase). The survival of organisms was affected in the second generation (F1) with a mortality of 17% in the mixture of commercial formulations treatments. In the evaluation of the first generation (F0) we observed only effects on sexual maturation of organisms, while in the F1, changes were observed in all parameters evaluated. A statistical difference (p < 0.05) was also observed between the analytical standards and the commercial formulations for all parameters evaluated, indicating that other components present in the formulations can change the toxicity of products. We suggest that atrazine can modulate toxicity when mixed with glyphosate, as the standard analytical atrazine and mixture of analytical standards results were similar in most parameters. Given the difficulty in estimating effects of mixtures and considering that various stressors are found in the environment, our results support the need to carry out long-term studies and, above all, to verify what are the impacts across generations, so that the toxicity of products is not underestimated. Graphical abstract.
Collapse
Affiliation(s)
- Eduarda Roberta Bordin
- Laboratory of Ecotoxicology, Federal Technological University of Paraná, Curitiba, Brazil
| | - Renan César Munhoz
- Laboratory of Ecotoxicology, Federal Technological University of Paraná, Curitiba, Brazil
| | | | | | | |
Collapse
|
35
|
Zhang Y, Li T, Pan C, Khan IA, Chen Z, Yue Y, Yang M. Intergenerational toxic effects of parental exposure to bisphenol AF on offspring and epigenetic modulations in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153714. [PMID: 35143790 DOI: 10.1016/j.scitotenv.2022.153714] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Bisphenol AF (BPAF), an endocrine-disrupting chemical, has been detected in various environmental media because of its wide industrial applications. Meanwhile, substances that are known to be toxic to the reproductive system have been observed to interfere with the development of the offspring following parental exposure. This study was aimed at determining the gender-dependent intergenerational effects of BPAF on offspring development following either paternal or maternal exposure of adult zebrafish to an environmental concentration of BPAF. Four-month-old zebrafish (F0) were exposed to 10 μg/L of BPAF for 28 days, the developmental endpoints of F1 embryos were then tested without further treatment with BPAF. The results show that paternal BPAF exposure decreased the hatching rate, increased mortality, and shortened the body lengths of F1 larval offspring. In addition, it changed DNA and m6A RNA methylation gene expression levels in F0 testes and F1 larvae. Although maternal exposure increased mortality and enhanced antioxidant enzyme activities in F1 larvae, only DNA methylation gene expression was altered in F0 ovaries and F1 larvae. In addition, a short term BPAF exposure of zebrafish embryos from 4 h post-fertilization (hpf) until 120 hpf similarly impaired the early development of the larvae but only at a level relatively higher than 10 μg/L; and DNA and RNA methylation gene expression was regulated to some extent in BPAF exposure groups. Overall, our results indicate the gender-specific effects of BPAF on offspring development and epigenetic modulations, suggesting a relatively high susceptibility within the exposure window during gametogenesis and early embryonic developmental stages to environmental chemicals.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Tianjie Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chenyuan Pan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Imran Ahamed Khan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Zhong Chen
- Department of Cardiology, the Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201306, China.
| | - Yihong Yue
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ming Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
36
|
Baldwin AK, Corsi SR, Stefaniak OM, Loken LC, Villeneuve DL, Ankley GT, Blackwell BR, Lenaker PL, Nott MA, Mills MA. Risk-Based Prioritization of Organic Chemicals and Locations of Ecological Concern in Sediment From Great Lakes Tributaries. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1016-1041. [PMID: 35170813 PMCID: PMC9306483 DOI: 10.1002/etc.5286] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 05/24/2023]
Abstract
With improved analytical techniques, environmental monitoring studies are increasingly able to report the occurrence of tens or hundreds of chemicals per site, making it difficult to identify the most relevant chemicals from a biological standpoint. For the present study, organic chemical occurrence was examined, individually and as mixtures, in the context of potential biological effects. Sediment was collected at 71 Great Lakes (USA/Canada) tributary sites and analyzed for 87 chemicals. Multiple risk-based lines of evidence were used to prioritize chemicals and locations, including comparing sediment concentrations and estimated porewater concentrations with established whole-organism benchmarks (i.e., sediment and water quality criteria and screening values) and with high-throughput toxicity screening data from the US Environmental Protection Agency's ToxCast database, estimating additive effects of chemical mixtures on common ToxCast endpoints, and estimating toxic equivalencies for mixtures of alkylphenols and polycyclic aromatic hydrocarbons (PAHs). This multiple-lines-of-evidence approach enabled the screening of more chemicals, mitigated the uncertainties of individual approaches, and strengthened common conclusions. Collectively, at least one benchmark/screening value was exceeded for 54 of the 87 chemicals, with exceedances observed at all 71 of the monitoring sites. Chemicals with the greatest potential for biological effects, both individually and as mixture components, were bisphenol A, 4-nonylphenol, indole, carbazole, and several PAHs. Potential adverse outcomes based on ToxCast gene targets and putative adverse outcome pathways relevant to individual chemicals and chemical mixtures included tumors, skewed sex ratios, reproductive dysfunction, hepatic steatosis, and early mortality, among others. The results provide a screening-level prioritization of chemicals with the greatest potential for adverse biological effects and an indication of sites where they are most likely to occur. Environ Toxicol Chem 2022;41:1016-1041. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
|
37
|
Montjean D, Neyroud AS, Yefimova MG, Benkhalifa M, Cabry R, Ravel C. Impact of Endocrine Disruptors upon Non-Genetic Inheritance. Int J Mol Sci 2022; 23:3350. [PMID: 35328771 PMCID: PMC8950994 DOI: 10.3390/ijms23063350] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Similar to environmental factors, EDCs (endocrine-disrupting chemicals) can influence gene expression without modifying the DNA sequence. It is commonly accepted that the transgenerational inheritance of parentally acquired traits is conveyed by epigenetic alterations also known as "epimutations". DNA methylation, acetylation, histone modification, RNA-mediated effects and extracellular vesicle effects are the mechanisms that have been described so far to be responsible for these epimutations. They may lead to the transgenerational inheritance of diverse phenotypes in the progeny when they occur in the germ cells of an affected individual. While EDC-induced health effects have dramatically increased over the past decade, limited effects on sperm epigenetics have been described. However, there has been a gain of interest in this issue in recent years. The gametes (sperm and oocyte) represent targets for EDCs and thus a route for environmentally induced changes over several generations. This review aims at providing an overview of the epigenetic mechanisms that might be implicated in this transgenerational inheritance.
Collapse
Affiliation(s)
- Debbie Montjean
- Fertilys Fertility Center, 1950 Rue Maurice-Gauvin #103, Laval, QC H7S 1Z5, Canada;
| | - Anne-Sophie Neyroud
- CHU de Rennes, Département de Gynécologie Obstétrique et Reproduction Humaine-CECOS, Hôpital Sud, 16 Boulevard de Bulgarie, 35000 Rennes, France;
| | - Marina G. Yefimova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St-Petersburg, Russia;
| | - Moncef Benkhalifa
- Fertilys Fertility Center, 1950 Rue Maurice-Gauvin #103, Laval, QC H7S 1Z5, Canada;
- Médecine et Biologie de la Reproduction, CECOS de Picardie, CHU Amiens, 80054 Amiens, France;
- UFR de Médecine, Université de Picardie Jules Verne, 80054 Amiens, France
- Peritox, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, 80054 Amiens, France
| | - Rosalie Cabry
- Médecine et Biologie de la Reproduction, CECOS de Picardie, CHU Amiens, 80054 Amiens, France;
- UFR de Médecine, Université de Picardie Jules Verne, 80054 Amiens, France
- Peritox, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, 80054 Amiens, France
| | - Célia Ravel
- CHU de Rennes, Département de Gynécologie Obstétrique et Reproduction Humaine-CECOS, Hôpital Sud, 16 Boulevard de Bulgarie, 35000 Rennes, France;
- CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, University Rennes, 35000 Rennes, France
| |
Collapse
|
38
|
Roy B, Basak R, Rai U. Impact of xenoestrogens on sex differentiation and reproduction in teleosts. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Neuparth T, Alves N, Machado AM, Pinheiro M, Montes R, Rodil R, Barros S, Ruivo R, Castro LFC, Quintana JB, Santos MM. Neuroendocrine pathways at risk? Simvastatin induces inter and transgenerational disruption in the keystone amphipod Gammarus locusta. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 244:106095. [PMID: 35121565 DOI: 10.1016/j.aquatox.2022.106095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
The primary focus of environmental toxicological studies is to address the direct effects of chemicals on exposed organisms (parental generation - F0), mostly overlooking effects on subsequent non-exposed generations (F1 and F2 - intergenerational and F3 transgenerational, respectively). Here, we addressed the effects of simvastatin (SIM), one of the most widely prescribed human pharmaceuticals for the primary treatment of hypercholesterolemia, using the keystone crustacean Gammarus locusta. We demonstrate that SIM, at environmentally relevant concentrations, has significant inter and transgenerational (F1 and F3) effects in key signaling pathways involved in crustaceans' neuroendocrine regulation (Ecdysteroids, Catecholamines, NO/cGMP/PKG, GABAergic and Cholinergic signaling pathways), concomitantly with changes in apical endpoints, such as depressed reproduction and growth. These findings are an essential step to improve hazard and risk assessment of biological active compounds, such as SIM, and highlight the importance of studying the transgenerational effects of environmental chemicals in animals' neuroendocrine regulation.
Collapse
Affiliation(s)
- T Neuparth
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal.
| | - N Alves
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - A M Machado
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - M Pinheiro
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - R Montes
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, R. Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - R Rodil
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, R. Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - S Barros
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Quinta de Prados - Ed. Blocos Laboratoriais C1.10, 5000-801, Vila Real, Portugal
| | - R Ruivo
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - L Filipe C Castro
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - J B Quintana
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, R. Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - M M Santos
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal.
| |
Collapse
|
40
|
Robaire B, Delbes G, Head JA, Marlatt VL, Martyniuk CJ, Reynaud S, Trudeau VL, Mennigen JA. A cross-species comparative approach to assessing multi- and transgenerational effects of endocrine disrupting chemicals. ENVIRONMENTAL RESEARCH 2022; 204:112063. [PMID: 34562476 DOI: 10.1016/j.envres.2021.112063] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
A wide range of chemicals have been identified as endocrine disrupting chemicals (EDCs) in vertebrate species. Most studies of EDCs have focused on exposure of both male and female adults to these chemicals; however, there is clear evidence that EDCs have dramatic effects when mature or developing gametes are exposed, and consequently are associated with in multigenerational and transgenerational effects. Several publications have reviewed such actions of EDCs in subgroups of species, e.g., fish or rodents. In this review, we take a holistic approach synthesizing knowledge of the effects of EDCs across vertebrate species, including fish, anurans, birds, and mammals, and discuss the potential mechanism(s) mediating such multi- and transgenerational effects. We also propose a series of recommendations aimed at moving the field forward in a structured and coherent manner.
Collapse
Affiliation(s)
- Bernard Robaire
- Department of Pharmacology and Therapeutics and of Obstetrics and Gynecology, McGill University, Montreal, Canada.
| | - Geraldine Delbes
- Centre Armand Frappier Santé Biotechnologie, Institut National de La Recherche Scientifique (INRS), Laval, QC, Canada
| | - Jessica A Head
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| | - Vicki L Marlatt
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Christopher J Martyniuk
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Stéphane Reynaud
- Univ. Grenoble-Alpes, Université. Savoie Mont Blanc, CNRS, LECA, Grenoble, 38000, France
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
41
|
Nilsson EE, Ben Maamar M, Skinner MK. Role of epigenetic transgenerational inheritance in generational toxicology. ENVIRONMENTAL EPIGENETICS 2022; 8:dvac001. [PMID: 35186326 PMCID: PMC8848501 DOI: 10.1093/eep/dvac001] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/04/2021] [Accepted: 02/03/2022] [Indexed: 05/27/2023]
Abstract
Many environmental toxicants have been shown to be associated with the transgenerational inheritance of increased disease susceptibility. This review describes the generational toxicity of some of these chemicals and their role in the induction of epigenetic transgenerational inheritance of disease. Epigenetic factors include DNA methylation, histone modifications, retention of histones in sperm, changes to chromatin structure, and expression of non-coding RNAs. For toxicant-induced epigenetic transgenerational inheritance to occur, exposure to a toxicant must result in epigenetic changes to germ cells (sperm or eggs) since it is the germ cells that carry molecular information to subsequent generations. In addition, the epigenetic changes induced in transgenerational generation animals must cause alterations in gene expression in these animals' somatic cells. In some cases of generational toxicology, negligible changes are seen in the directly exposed generations, but increased disease rates are seen in transgenerational descendants. Governmental policies regulating toxicant exposure should take generational effects into account. A new approach that takes into consideration generational toxicity will be needed to protect our future populations.
Collapse
Affiliation(s)
- Eric E Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Millissia Ben Maamar
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Michael K Skinner
- **Correspondence address. Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA. Tel: +509-335-1524; E-mail:
| |
Collapse
|
42
|
Ramírez-Montero MDC, Gómez-Oliván LM, Gutiérrez-Noya VM, Orozco-Hernández JM, Islas-Flores H, Elizalde-Velázquez GA, SanJuan-Reyes N, Galar-Martínez M. Acute exposure to 17-α-ethinylestradiol disrupt the embryonic development and oxidative status of Danio rerio. Comp Biochem Physiol C Toxicol Pharmacol 2022; 251:109199. [PMID: 34607023 DOI: 10.1016/j.cbpc.2021.109199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/07/2021] [Accepted: 09/26/2021] [Indexed: 11/28/2022]
Abstract
17-Alpha-ethinylestradiol (EE2) is an estrogen derived from estradiol (E2). This compound and is one of the most widely used drugs both in humans and animals. Numerous studies have reported the ability of EE2 to alter sex determination and delay sexual maturity, but there are toxic effects that need to be explored. In this work, we analyzed the effect of EE2 on embryonic development and oxidative stress biomarkers in Danio rerio. For this effect, zebrafish embryos in the blastula period (2.5 h post fecundation) were exposed to different concentrations of EE2 (36-106 ng L-1) until 96 hpf. Survival, alterations to embryonic development, and teratogenic effects were evaluated using a stereomicroscope. Furthermore, oxidative stress biomarkers: superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) activities, lipid peroxidation (LPX), hydroperoxide content (HPX), and protein carbonyl content (POX) were evaluated at 72 and 96 hpf using spectrophotometric methods. LC50 and EC50 of malformations got values of 82 ng L-1 and 57.7 ng L-1, respectively. The main teratogenic effects found were: chorda malformation, body malformation, and developmental delay. These alterations occurred at 86, 96, and 106 ng L-1. Integrated biomarker index showed that the oxidative stress biomarkers that had the most influence on embryos were SOD, CAT, GPX, and LPX. Overall, our results allow us to conclude that low concentrations of EE2 may potentially alter the development and oxidative status in the early life stages of zebrafish. Therefore, this bio-active estrogen can be considered a hazardous substance for fish.
Collapse
Affiliation(s)
- María Del Carmen Ramírez-Montero
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico.
| | - Verónica Margarita Gutiérrez-Noya
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - José Manuel Orozco-Hernández
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Nely SanJuan-Reyes
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| |
Collapse
|
43
|
Bodziach K, Staniszewska M, Falkowska L, Nehring I, Ożarowska A, Zaniewicz G, Meissner W. Distribution paths of endocrine disrupting phenolic compounds in waterbirds (Mergus merganser, Alca torda, Clangula hyemalis) from the Southern Baltic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148556. [PMID: 34328961 DOI: 10.1016/j.scitotenv.2021.148556] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/28/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
This study determined the distribution of phenol derivatives in the organisms of waterbirds and the factors influencing their bioaccumulation and affinity to specific tissues. Concentrations of bisphenol A (BPA), 4-tert-octylphenol (4-t-OP) and 4-nonylphenol (4-NP) were determined in the brains, subcutaneous fat, kidneys, livers and pectoral muscles of goosanders Mergus merganser (GO), long-tailed ducks Clangula hyemalis (LO) and razorbills Alca torda (RA). The birds came from the winter by-catch (2014-2016) in the Southern Baltic. Different distribution routes of individual phenol derivatives in the birds were established, most likely due to their ability to bind to proteins and/or dissolve in lipids. BPA and 4-NP accumulated most in the muscles (BPA <2.0-223.0 ng.g-1 dw, 4-NP 26.0-476.4 ng.g-1 dw), livers (BPA <2.0-318.2 ng.g-1 dw, 4-NP 60.7-525.8 ng.g-1 dw), and kidneys (BPA <2.0-836.1 ng.g-1 dw, 4-NP 29.3-469.2 ng.g-1 dw), while 4-t-OP was stored mainly in the brains (2.6-341.1 ng.g-1 dw), subcutaneous fat (0.7-173.7 ng.g-1 dw) and livers (<0.5-698.8 ng.g-1 dw). The liver was the only organ where all compounds showed a positive correlation with each other and alkylphenols were also positively correlated with each other in tissues with high fat content (brains and subcutaneous fat), and negatively in muscles. Despite the different trophic levels of birds, the concentrations of phenol derivatives in the tissues between individual species in most cases did not differ significantly. However, between the species on a similar trophic level, the higher biomagnification coefficient was calculated for LO feeding on benthos, and the lower for RA feeding on pelagic fish (p < 0.05). The good condition of birds, resulting in large intestinal fat stores, promoted on the one hand the penetration of phenol derivatives from the intestine to the liver, and on the other hand their accumulation in subcutaneous fat, thereby protecting the brain.
Collapse
Affiliation(s)
- Karina Bodziach
- Department of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdansk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Marta Staniszewska
- Department of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdansk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Lucyna Falkowska
- Department of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdansk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Iga Nehring
- Department of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdansk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Agnieszka Ożarowska
- Department of Vertebrate Ecology & Zoology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Grzegorz Zaniewicz
- Department of Vertebrate Ecology & Zoology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Włodzimierz Meissner
- Department of Vertebrate Ecology & Zoology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| |
Collapse
|
44
|
Swank A, Wang L, Ward J, Schoenfuss H. Multigenerational effects of a complex urban contaminant mixture on the behavior of larval and adult fish in multiple fitness contexts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148095. [PMID: 34139491 DOI: 10.1016/j.scitotenv.2021.148095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/10/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Agricultural and urban storm water runoffs can introduce chemicals of emerging concern (CECs) into waterways. These chemicals can be continually released, persist, or even accumulate over time, with adverse effects on the physiology and behavior of aquatic species. Most studies aimed at evaluating the intergenerational effects of CECs have focused exclusively on single chemicals. By comparison, little is known about the effects of complex CEC mixtures on the behavior of organisms, or how these effects might manifest in subsequent generations. In this study, we exposed three generations of fathead minnows (Pimephales promelas) to environmentally relevant concentrations of a complex CEC mixture representative of urban-impacted waterways and assessed the growth and behavior of larval and adult fish in life-stage-relevant fitness contexts (foraging, boldness, courtship). We found that (i) multigenerational exposure to a complex mixture of CECs altered the behavior of both larvae and adults in different fitness contexts; (ii) concentration-dependent patterns of behavioral impairment were consistent across fitness contexts and life stages; and (iii) the effects of exposure were magnified in the F1 and F2 generations. These results highlight the need for long-term, multigenerational assessments of CECs in affected waterways to robustly inform conservation practices aimed at managing aquatic systems.
Collapse
Affiliation(s)
- Ally Swank
- Department of Biology, Ball State University, United States of America
| | - Lina Wang
- Aquatic Toxicology Laboratory, Department of Biological Sciences, St. Cloud State University, United States of America
| | - Jessica Ward
- Department of Biology, Ball State University, United States of America.
| | - Heiko Schoenfuss
- Aquatic Toxicology Laboratory, Department of Biological Sciences, St. Cloud State University, United States of America
| |
Collapse
|
45
|
Biemann R, Blüher M, Isermann B. Exposure to endocrine-disrupting compounds such as phthalates and bisphenol A is associated with an increased risk for obesity. Best Pract Res Clin Endocrinol Metab 2021; 35:101546. [PMID: 33966978 DOI: 10.1016/j.beem.2021.101546] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Increasing evidence from epidemiological, animal and in vitro studies suggests that the increased production of synthetic chemicals that interfere with the proper functioning of the hormonal system, so-called endocrine-disrupting compounds (EDCs), might be involved in the development and rapid spread of obesity, coined the obesity epidemic. Recent findings have demonstrated that EDCs may interfere with hormonal receptors that regulate adipogenesis and metabolic pathways. Furthermore, prenatal exposure to EDCs has been shown to influence the metabolism of the developing embryo through epigenetic mechanisms and to promote obesity in subsequent generations. In this Review, we discuss the potential impact of bisphenol A (BPA) and phthalate-based plasticizers on obesity and obesity-related metabolic disorders. Special emphasis is given to the obesogenic effects of prenatal exposure and strategies for identifying, regulating, and replacing EDCs.
Collapse
Affiliation(s)
- Ronald Biemann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Paul-List-Str. 13/15, 04103, Leipzig, Germany.
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Liebigstr. 21, 04103, Leipzig, Germany; Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Liebigstr. 21, 04103, Leipzig, Germany.
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Paul-List-Str. 13/15, 04103, Leipzig, Germany.
| |
Collapse
|
46
|
Alcaraz AJG, Mikulášek K, Potěšil D, Park B, Shekh K, Ewald J, Burbridge C, Zdráhal Z, Schneider D, Xia J, Crump D, Basu N, Hecker M. Assessing the Toxicity of 17α-Ethinylestradiol in Rainbow Trout Using a 4-Day Transcriptomics Benchmark Dose (BMD) Embryo Assay. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10608-10618. [PMID: 34292719 DOI: 10.1021/acs.est.1c02401] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
There is an urgent demand for more efficient and ethical approaches in ecological risk assessment. Using 17α-ethinylestradiol (EE2) as a model compound, this study established an embryo benchmark dose (BMD) assay for rainbow trout (RBT; Oncorhynchus mykiss) to derive transcriptomic points-of-departure (tPODs) as an alternative to live-animal tests. Embryos were exposed to graded concentrations of EE2 (measured: 0, 1.13, 1.57, 6.22, 16.3, 55.1, and 169 ng/L) from hatch to 4 and up to 60 days post-hatch (dph) to assess molecular and apical responses, respectively. Whole proteome analyses of alevins did not show clear estrogenic effects. In contrast, transcriptomics revealed responses that were in agreement with apical effects, including excessive accumulation of intravascular and hepatic proteinaceous fluid and significant increases in mortality at 55.1 and 169 ng/L EE2 at later time points. Transcriptomic BMD analysis estimated the median of the 20th lowest geneBMD to be 0.18 ng/L, the most sensitive tPOD. Other estimates (0.78, 3.64, and 1.63 ng/L for the 10th percentile geneBMD, first peak geneBMD distribution, and median geneBMD of the most sensitive over-represented pathway, respectively) were within the same order of magnitude as empirically derived apical PODs for EE2 in the literature. This 4-day alternative RBT embryonic assay was effective in deriving tPODs that are protective of chronic effects of EE2.
Collapse
Affiliation(s)
- Alper James G Alcaraz
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5B3
| | - Kamil Mikulášek
- Central European Institute of Technology, Masaryk University, Brno CZ-625 00, Czech Republic
| | - David Potěšil
- Central European Institute of Technology, Masaryk University, Brno CZ-625 00, Czech Republic
| | - Bradley Park
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5B3
| | - Kamran Shekh
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5B3
| | - Jessica Ewald
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada H9X 3V9
| | - Connor Burbridge
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 0W9
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, Brno CZ-625 00, Czech Republic
| | - David Schneider
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 0W9
- School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5C8
| | - Jianguo Xia
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada H9X 3V9
| | - Doug Crump
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, Canada K1A 0H3
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada H9X 3V9
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5B3
- School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5C8
| |
Collapse
|
47
|
Felipe MC, Bernegossi AC, Cardoso-Silva BN, Dell'Acqua MM, Corbi JJ. Chironomus sancticaroli generation test applied to chemical contaminants and freshwater sediment samples. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39282-39295. [PMID: 33754272 DOI: 10.1007/s11356-021-13250-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
The use of ecotoxicological bioassays has been increasing due to the importance of understanding the effects of substances on biota and to help environmental agencies determine water and sediment qualities. The use of Chironomus sp. in laboratory bioassays is extensive, but there is still a lack of studies regarding the application of extended ecotoxicological tests, which evaluate different population generation responses and show a detailed impact on their development. The present study investigated the response of Chironomus sancticaroli, a Brazilian endemic insect, to 17α-ethinylestradiol hormone, caffeine anhydrous, LAS (linear alkylbenzene sulfonate), and environmental samples (sediments) in relation to wing length, fecundity, and larval length over three generations. Statistically, differences for all contaminants between P (parental), F1, and F2 generations (p ≤ 0.05) were observed, indicating that in the environment, the organism may be negatively affected when exposed to contaminants in successive generations. Different ecological responses were also noted in comparison to classic acute (96h) and chronic (10 days) ecotoxicological tests using Chironomus sancticaroli. Our results highlight that the generation test can present more detailed results regarding the effects of stressors on the organism's life cycle than do the classic bioassays.
Collapse
Affiliation(s)
- Mayara Caroline Felipe
- Aquatic Ecology Laboratory, Department of Hydraulic and Sanitation (SHS), São Carlos School of Engineering (EESC), University of Sao Paulo-USP, C.P. 359, São Carlos, SP, CEP 13566-590, Brazil.
| | - Aline Christine Bernegossi
- Aquatic Ecology Laboratory, Department of Hydraulic and Sanitation (SHS), São Carlos School of Engineering (EESC), University of Sao Paulo-USP, C.P. 359, São Carlos, SP, CEP 13566-590, Brazil
| | - Bruna Nayara Cardoso-Silva
- Aquatic Ecology Laboratory, Department of Hydraulic and Sanitation (SHS), São Carlos School of Engineering (EESC), University of Sao Paulo-USP, C.P. 359, São Carlos, SP, CEP 13566-590, Brazil
| | - Marcelo Marques Dell'Acqua
- Aquatic Ecology Laboratory, Department of Hydraulic and Sanitation (SHS), São Carlos School of Engineering (EESC), University of Sao Paulo-USP, C.P. 359, São Carlos, SP, CEP 13566-590, Brazil
| | - Juliano José Corbi
- Aquatic Ecology Laboratory, Department of Hydraulic and Sanitation (SHS), São Carlos School of Engineering (EESC), University of Sao Paulo-USP, C.P. 359, São Carlos, SP, CEP 13566-590, Brazil
| |
Collapse
|
48
|
Rahman MS, Pang WK, Ryu DY, Park YJ, Pang MG. Multigenerational and transgenerational impact of paternal bisphenol A exposure on male fertility in a mouse model. Hum Reprod 2021; 35:1740-1752. [PMID: 32644108 DOI: 10.1093/humrep/deaa139] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/27/2020] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION How does paternal exposure to bisphenol A (BPA) affect the fertility of male offspring in mice in future generations? SUMMARY ANSWER Paternal exposure to BPA adversely affects spermatogenesis, several important sperm functions and DNA methylation patterns in spermatozoa, which have both multigenerational (in F0 and F1) and partial transgenerational (mainly noticed in F2, but F3) impacts on the fertility of the offspring. WHAT IS KNOWN ALREADY BPA, a synthetic endocrine disruptor, is used extensively to manufacture polycarbonate plastics and epoxy resins. Growing evidence suggests that exposure to BPA during the developmental stages results in atypical reproductive phenotypes that could persist for generations to come. STUDY DESIGN, SIZE, DURATION CD-1 male mice (F0) were treated with BPA (5 or 50 mg/kg body weight per day (bw/day)) or ethinylestradiol (EE) (0.4 μg/kg bw/day) for 6 weeks. Control mice were treated with vehicle (corn oil) only. The treated male mice were bred with untreated female mice to produce first filial generation (F1 offspring). The F2 and F3 offspring were produced similarly, without further exposure to BPA. PARTICIPANTS/MATERIALS, SETTING, METHODS Histological changes in the testis along with functional, biochemical and epigenetic (DNA methylation) properties of spermatozoa were investigated. Subsequently, each parameter of the F0-F3 generations was compared between BPA-treated mice and control mice. MAIN RESULTS AND THE ROLE OF CHANCE Paternal BPA exposure disrupted spermatogenesis by decreasing the size and number of testicular seminiferous epithelial cells, which eventually led to a decline in the total sperm count of F0-F2 offspring (P < 0.05). We further showed that a high BPA dose decreased sperm motility in F0-F2 males by mediating the overproduction of reactive oxygen species (F0-F1) and decreasing intracellular ATP (F0-F2) in spermatozoa (P < 0.05). These changes in spermatozoa were associated with altered global DNA methylation patterns in the spermatozoa of F0-F3 males (P < 0.05). Furthermore, we noticed that BPA compromised sperm fertility in mice from the F0-F2 (in the both dose groups) and F3 generations (in the high-dose group only). The overall reproductive toxicity of BPA was equivalent to or higher (high dose) than that of the tested dose of EE. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Further research is required to determine the variables (e.g. lowest BPA dose) that are capable of producing changes in sperm function and fertility in future generations. WIDER IMPLICATIONS OF THE FINDINGS These results may shed light on how occupational exposure to BPA can affect offspring fertility in humans. STUDY FUNDING/COMPETING INTEREST(S) This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. NRF-2018R1A6A1A03025159). M.S.R. was supported by Korea Research Fellowship Program through the NRF funded by the Ministry of Science and ICT (Grant No. 2017H1D3A1A02013844). There are no competing interests.
Collapse
Affiliation(s)
- Md Saidur Rahman
- Department of Animal Science & Technology, BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Won-Ki Pang
- Department of Animal Science & Technology, BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Do-Yeal Ryu
- Department of Animal Science & Technology, BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Yoo-Jin Park
- Department of Animal Science & Technology, BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology, BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| |
Collapse
|
49
|
De Serrano AR, Hughes KA, Rodd FH. Paternal exposure to a common pharmaceutical (Ritalin) has transgenerational effects on the behaviour of Trinidadian guppies. Sci Rep 2021; 11:3985. [PMID: 33597600 PMCID: PMC7889922 DOI: 10.1038/s41598-021-83448-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/02/2021] [Indexed: 01/04/2023] Open
Abstract
Evidence is emerging that paternal effects, the nongenetic influence of fathers on their offspring, can be transgenerational, spanning several generations. Methylphenidate hydrochloride (MPH; e.g. Ritalin) is a dopaminergic drug that is highly prescribed to adolescent males for the treatment of Attention-deficit/hyperactivity disorder. It has been suggested that MPH could cause transgenerational effects because MPH can affect the male germline in rodents and because paternal effects have been observed in individuals taking similar drugs (e.g. cocaine). Despite these concerns, the transgenerational effects of paternal MPH exposure are unknown. Therefore, we exposed male and female Trinidadian guppies (Poecilia reticulata) to a low, chronic dose of MPH and observed that MPH affected the anxiety/exploratory behaviour of males, but not females. Because of this male-specific effect, we investigated the transgenerational effects of MPH through the paternal line. We observed behavioural effects of paternal MPH exposure on offspring and great-grandoffspring that were not directly administered the drug, making this the first study to demonstrate that paternal MPH exposure can affect descendants. These effects were not due to differential mortality or fecundity between control and MPH lines. These results highlight the transgenerational potential of MPH.
Collapse
Affiliation(s)
- Alex R De Serrano
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada.
| | - Kimberly A Hughes
- Department of Biological Science, Florida State University, 319 Stadium Dr, Tallahassee, FL, 32304, USA
| | - F Helen Rodd
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
50
|
Tallec K, Paul-Pont I, Petton B, Alunno-Bruscia M, Bourdon C, Bernardini I, Boulais M, Lambert C, Quéré C, Bideau A, Le Goïc N, Cassone AL, Le Grand F, Fabioux C, Soudant P, Huvet A. Amino-nanopolystyrene exposures of oyster ( Crassostrea gigas) embryos induced no apparent intergenerational effects. Nanotoxicology 2021; 15:477-493. [PMID: 33555961 DOI: 10.1080/17435390.2021.1879963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Early life stages (ELS) of numerous marine invertebrates mustcope with man-made contaminants, including plastic debris, during their pelagic phase. Among the diversity of plastic particles, nano-sized debris, known as nanoplastics, can induce effects with severe outcomes in ELS of various biological models, including the Pacific oyster Crassostrea gigas. Here, we investigated the effects of a sub-lethal dose (0.1 µg mL-1) of 50 nm polystyrene nanobeads (nano-PS) with amine functions on oyster embryos (24 h exposure) and we assessed consequences on larval and adult performances over two generations of oysters. Only a few effects were observed. Lipid analyses revealed that first-generation (G1) embryos exposed to nano-PS displayed a relative increase in cardiolipin content (+9.7%), suggesting a potential modification of mitochondrial functioning. G1-larvae issued from exposed embryos showed decreases in larval growth (-9%) and lipid storage (-20%). No effect was observed at the G1 adult stage in terms of growth, ecophysiological parameters (clearance and respiration rates, absorption efficiency), or reproductive outputs (gonadic development, gamete quality). Second generation (G2) larvae issued from control G1 displayed a significant growth reduction after G2 embryonic exposure to nano-PS (-24%) compared to control (as observed at the first generation), while no intergenerational effect was detected on G2 larvae issued from G1 exposed embryos. Overall, the present experimental study suggests a low incidence of a short embryonic exposure to nano-PS on oyster phenotypes along the entire life cycle until the next larval generation.
Collapse
Affiliation(s)
- K Tallec
- University of Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - I Paul-Pont
- University of Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - B Petton
- University of Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - M Alunno-Bruscia
- University of Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - C Bourdon
- University of Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - I Bernardini
- Dipartimento di Biomedicina Comparata e Alimentazione, Università degli Studi di Padova, Padova, Italy.,Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - M Boulais
- University of Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - C Lambert
- University of Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - C Quéré
- University of Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - A Bideau
- University of Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - N Le Goïc
- University of Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - A-L Cassone
- University of Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - F Le Grand
- University of Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - C Fabioux
- University of Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - P Soudant
- University of Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - A Huvet
- University of Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| |
Collapse
|