1
|
Dasgin H, Hay SM, Rees WD. Diet and deprivation in pregnancy: a rat model to investigate the effects of the maternal diet on the growth of the dam and its offspring. Br J Nutr 2024; 131:630-641. [PMID: 37795821 PMCID: PMC10803821 DOI: 10.1017/s0007114523002210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/23/2023] [Accepted: 10/02/2023] [Indexed: 10/06/2023]
Abstract
The offspring of women in the poorest socio-economic groups in Western societies have an increased risk of developing non-communicable disease in adult life. Deprivation is closely related to the consumption of a diet with an excess of energy (sugar and fat), salt and a shortage of key vitamins. To test the hypothesis that this diet adversely affects the development and long-term health of the offspring, we have formulated two rodent diets, one with a nutrient profile corresponding to the diet of pregnant women in the poorest socio-economic group (DEP) and a second that incorporated current UK recommendations for the diet in pregnancy (REC). Female rats were fed the experimental diets for the duration of gestation and lactation and the offspring compared with those from a reference group fed the AIN-93G diet. The growth trajectory of DEP and REC offspring was reduced compared with the AIN-93G. The REC offspring diet had a transient increase in adipose reserves at weaning, but by 30 weeks of age the body composition of all three groups was similar. The maternal diet had no effect on the homoeostatic model assessment index or the insulin tolerance of the offspring. Changes in hepatic gene expression in the adult REC offspring were consistent with an increased hepatic utilisation of fatty acids and a reduction in de novo lipogenesis. These results show that despite changes in growth and adiposity maternal metabolic adaptation minimises the adverse consequences of the imbalanced maternal diet on the metabolism of the offspring.
Collapse
Affiliation(s)
- Halil Dasgin
- The Rowett Institute of Nutrition and Health, The University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Susan M. Hay
- The Rowett Institute of Nutrition and Health, The University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - William D. Rees
- The Rowett Institute of Nutrition and Health, The University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
2
|
Ricci TA, Boonpattrawong N, Laher I, Devlin AM. Maternal nutrition and effects on offspring vascular function. Pflugers Arch 2023:10.1007/s00424-023-02807-x. [PMID: 37041303 DOI: 10.1007/s00424-023-02807-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/13/2023]
Abstract
Maternal nutrition during pregnancy may have profound effects on the developing fetus and impact risk for cardiovascular disease later in life. Here, we provide a narrative review on the impact of maternal diet during pregnancy on offspring vascular function. We review studies reporting effects of maternal micronutrient (folic acid, iron) intakes, high-fat diets, dietary energy restriction, and low protein intake on offspring endothelial function. We discuss the differences in study design and outcomes and potential underlying mechanisms contributing to the vascular phenotypes observed in the offspring. We further highlight key gaps in the literature and identify targets for future investigations.
Collapse
Affiliation(s)
- Taylor A Ricci
- Department of Pediatrics, The University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Nicha Boonpattrawong
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology, and Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Angela M Devlin
- Department of Pediatrics, The University of British Columbia, Vancouver, British Columbia, Canada.
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.
| |
Collapse
|
3
|
The Impact of Nutrient Intake and Metabolic Wastes during Pregnancy on Offspring Hypertension: Challenges and Future Opportunities. Metabolites 2023; 13:metabo13030418. [PMID: 36984857 PMCID: PMC10052993 DOI: 10.3390/metabo13030418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Hypertension can have its origin in early life. During pregnancy, many metabolic alterations occur in the mother that have a crucial role in fetal development. In response to maternal insults, fetal programming may occur after metabolic disturbance, resulting in programmed hypertension later in life. Maternal dietary nutrients act as metabolic substrates for various metabolic processes via nutrient-sensing signals. Different nutrient-sensing pathways that detect levels of sugars, amino acids, lipids and energy are integrated during pregnancy, while disturbed nutrient-sensing signals have a role in the developmental programming of hypertension. Metabolism-modulated metabolites and nutrient-sensing signals are promising targets for new drug discovery due to their pathogenic link to hypertension programming. Hence, in this review, we pay particular attention to the maternal nutritional insults and metabolic wastes affecting fetal programming. We then discuss the role of nutrient-sensing signals linking the disturbed metabolism to hypertension programming. This review also summarizes current evidence to give directions for future studies regarding how to prevent hypertension via reprogramming strategies, such as nutritional intervention, targeting nutrient-sensing signals, and reduction of metabolic wastes. Better prevention for hypertension may be possible with the help of novel early-life interventions that target altered metabolism.
Collapse
|
4
|
Yan Y, Zhang X, Ren H, An X, Fan W, Liang J, Huang Y. Anterior Circulation Acute Ischemic Stroke in the Plateau of China: Risk Factors and Clinical Characteristics. Front Neurol 2022; 13:859616. [PMID: 35493834 PMCID: PMC9043326 DOI: 10.3389/fneur.2022.859616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/15/2022] [Indexed: 11/30/2022] Open
Abstract
Background and Purpose Acute ischemic stroke has a high incidence in the plateau of China. It has unique characteristics compared to the plains, and the specific relationship with altitude has not yet been appreciated. This study aimed to investigate the specificity of the plateau's anterior circulation acute ischemic stroke in China. Methods To retrospectively collect clinical data of patients with first-episode acute ischemic stroke in the anterior circulation in Tianjin and Xining city. The differences in clinical presentation, laboratory, and imaging examinations were compared. Results Patients at high altitudes showed a significant trend toward lower age (61.0 ± 10.2 vs. 64.8 ± 8.1, P = 0.010) and had a history of dyslipidemia, higher levels of inflammatory markers, erythrocytosis, and alcohol abuse. The main manifestations were higher diastolic blood pressure (85.5 ± 14.0 mmHg vs. 76.8 ± 11.6 mmHg, P < 0.001), triglycerides [2.0 (1.8) mmol/L vs. 1.3 (0.9) mmol/L, P < 0.001], CRP [4.7 (4.4) mg/L vs. 2.1 (1.9) mg/L, P < 0.001], homocysteine levels [14.5 (11.7) μmol/L vs. 11.2 (5.2) μmol/L, P < 0.001]; larger infarct volume [3.5 (4.8) cm3 vs. 9.0 (6.9) cm3, P < 0.001] and worse prognosis. Patients at high altitudes had higher atherosclerotic indexes in cIMT and plaque than those in plains. Conclusions The natural habituation and genetic adaptation of people to the particular geo-climatic environment of the plateau have resulted in significant differences in disease characteristics. Patients with the anterior circulation acute ischemic stroke in the plateau show more unfavorable clinical manifestations and prognosis. This study provides a preliminary interpretation of the effects of altitude and suggests developing preventive and therapeutic protocol measures that are more appropriate for the plateau of China.
Collapse
Affiliation(s)
- Yujia Yan
- Department of Neurosurgery, Tianjin University Huanhu Hospital, Tianjin, China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Xiqiang Zhang
- Department of Neurosurgery, Third People Hospital of Xining City, Xining, China
| | - Hecheng Ren
- Department of Neurosurgery, Tianjin University Huanhu Hospital, Tianjin, China
| | - Xingwei An
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Tianjin Center for Brain Science, Tianjin, China
| | - Wanpeng Fan
- Department of Neurosurgery, Third People Hospital of Xining City, Xining, China
| | - Jingbo Liang
- Department of Neurosurgery, Third People Hospital of Xining City, Xining, China
| | - Ying Huang
- Department of Neurosurgery, Tianjin University Huanhu Hospital, Tianjin, China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- *Correspondence: Ying Huang
| |
Collapse
|
5
|
Ge Q, Hu X, Ma N, Sun M, Zhang L, Cai Z, Tan R, Lu H. Maternal high-salt diet during pregnancy impairs synaptic plasticity and memory in offspring. FASEB J 2021; 35:e21244. [PMID: 33715195 DOI: 10.1096/fj.202001890r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 11/11/2022]
Abstract
Excess salt intake harms the brain health and cognitive functions, but whether a maternal high-salt diet (HSD) affects the brain development and neural plasticity of offspring remains unclear. Here, using a range of behavioral tests, we reported that the offspring of maternal HSD subjects exhibited short- and long-term memory deficits, especially in spatial memory in adulthood. Moreover, impairments in synaptic transmission and plasticity in the hippocampus were observed in adult offspring by using in vivo electrophysiology. Consistently, the number of astrocytes but not neurons in the hippocampus of the offspring from the HSD group were significantly decreased, and ERK and AKT signaling pathways involved in neurodevelopment were highly activated only during juvenile. In addition, the expression of synaptic proteins decreased both in juvenile and adulthood, and this effect might be involved in synaptic dysfunction. Collectively, these data demonstrated that the maternal HSD might cause adult offspring synaptic dysfunction and memory loss. It is possibly due to the reduction of astrocytes in juvenile.
Collapse
Affiliation(s)
- Qian Ge
- Department of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P.R. China
| | - Xiaoxuan Hu
- Department of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P.R. China.,Department of Human Anatomy and Histo-embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P.R. China
| | - Ning Ma
- Department of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P.R. China.,Department of Human Anatomy and Histo-embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P.R. China
| | - Meiqi Sun
- Department of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P.R. China
| | - Liyun Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P.R. China.,Department of Human Anatomy and Histo-embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P.R. China
| | - Zhenlu Cai
- Department of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P.R. China
| | - Ruolan Tan
- Department of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P.R. China.,Department of Human Anatomy and Histo-embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P.R. China
| | - Haixia Lu
- Department of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P.R. China
| |
Collapse
|
6
|
Sousa Neto I, Fontes W, Prestes J, Marqueti R. Impact of paternal exercise on physiological systems in the offspring. Acta Physiol (Oxf) 2021; 231:e13620. [PMID: 33606364 DOI: 10.1111/apha.13620] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/04/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
A significant number of studies have demonstrated that paternal exercise modulates future generations via effects on the sperm epigenome. However, comprehensive information regarding the effects of exercise performed by the father on different tissues and their clinical relevance has not yet been explored in detail. This narrative review is focused on the effects of paternal exercise training on various physiological systems of offspring. A detailed mechanistic understanding of these effects could provide crucial clues for the exercise physiology field and aid the development of therapeutic approaches to mitigate disorders in future generations. Non-coding RNA and DNA methylation are major routes for transmitting epigenetic information from parents to offspring. Resistance and treadmill exercise are the most frequently used modalities of planned and structured exercise in controlled experiments. Paternal exercise orchestrated protective effects over changes in fetus development and placenta inflammatory status. Moreover paternal exercise promoted modifications in the ncRNA profiles, gene and protein expression in the hippocampus, left ventricle, skeletal muscle, tendon, liver and pancreas in the offspring, while the transgenerational effects are unknown. Paternal exercise demonstrates clinical benefits to the offspring and provides a warning on the harmful effects of a paternal unhealthy lifestyle. Exercise in fathers is presented as one of the most logical and cost-effective ways of restoring health in the offspring and, consequently, modifying the phenotype. It is important to consider that paternal programming might have unique significance in the developmental origins of offspring diseases.
Collapse
Affiliation(s)
- Ivo Sousa Neto
- Laboratory of Molecular Analysis Graduate Program of Sciences and Technology of Health Faculdade de Ceilândia ‐ Universidade de Brasília Brasília Distrito Federal Brazil
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry Department of Cell Biology Institute of Biology Universidade de Brasília Brasília Distrito Federal Brazil
| | - Jonato Prestes
- Graduate Program on Physical Education Universidade Católica de Brasília Brasília Distrito Federal Brazil
| | - Rita Marqueti
- Laboratory of Molecular Analysis Graduate Program of Sciences and Technology of Health Faculdade de Ceilândia ‐ Universidade de Brasília Brasília Distrito Federal Brazil
| |
Collapse
|
7
|
Chen F, Cao K, Zhang H, Yu H, Liu Y, Xue Q. Maternal high-fat diet increases vascular contractility in adult offspring in a sex-dependent manner. Hypertens Res 2020; 44:36-46. [PMID: 32719462 DOI: 10.1038/s41440-020-0519-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/25/2020] [Accepted: 07/02/2020] [Indexed: 12/25/2022]
Abstract
A maternal high-fat diet (HFD) is a risk factor for cardiovascular diseases in offspring. The aim of the study was to determine whether maternal HFD causes the epigenetic programming of vascular angiotensin II receptors (ATRs) and leads to heightened vascular contraction in adult male offspring in a sex-dependent manner. Pregnant rats were treated with HFD (60% kcal fat). Aortas were isolated from adult male and female offspring. Maternal HFD increased phenylephrine (PE)-and angiotensin II (Ang II)-induced contractions of the aorta in male but not female offspring. NG-nitro-L-arginine (ʟ-NNA; 100 μM) abrogated the maternal HFD-induced increase in PE-mediated contraction. HFD caused a decrease in endothelium-dependent relaxations induced by acetylcholine in male but not female offspring. However, it had no effect on sodium nitroprusside-induced endothelium-independent relaxations of aortas regardless of sex. The AT1 receptor (AT1R) antagonist losartan (10 μM), but not the AT2 receptor (AT2R) antagonist PD123319 (10 μM), blocked Ang II-induced contractions in both control and HFD offspring in both sexes. Maternal HFD increased AT1R but decreased AT2R, leading to an increased ratio of AT1R/AT2R in HFD male offspring, which was associated with selective decreases in DNA methylation at the AT1aR promoter and increases in DNA methylation at the AT2R promoter. The vascular ratio of AT1R/AT2R was not significantly different in HFD female offspring compared with the control group. Our results indicated that maternal HFD caused a differential regulation of vascular AT1R and AT2R gene expression through a DNA methylation mechanism, which may be involved in HFD-induced vascular dysfunction and the development of a hypertensive phenotype in adulthood in a sex-dependent manner.
Collapse
Affiliation(s)
- Fangyuan Chen
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Kaifang Cao
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Haichuan Zhang
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Haili Yu
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Yinghua Liu
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Qin Xue
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China. .,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, PR China.
| |
Collapse
|
8
|
Early-Life Programming and Reprogramming of Adult Kidney Disease and Hypertension: The Interplay between Maternal Nutrition and Oxidative Stress. Int J Mol Sci 2020; 21:ijms21103572. [PMID: 32443635 PMCID: PMC7278949 DOI: 10.3390/ijms21103572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023] Open
Abstract
Kidney disease and hypertension both have attained the status of a global pandemic. Altered renal programming resulting in kidney disease and hypertension can begin in utero. Maternal suboptimal nutrition and oxidative stress have important implications in renal programming, while specific antioxidant nutrient supplementations may serve as reprogramming strategies to prevent kidney disease and hypertension of developmental origins. This review aims to summarize current knowledge on the interplay of maternal nutrition and oxidative stress in response to early-life insults and its impact on developmental programming of kidney disease and hypertension, covering two aspects. Firstly, we present the evidence from animal models supporting the implication of oxidative stress on adult kidney disease and hypertension programmed by suboptimal maternal nutrition. In the second part, we document data on specific antioxidant nutrients as reprogramming strategies to protect adult offspring against kidney disease and hypertension from developmental origins. Research into the prevention of kidney disease and hypertension that begin early in life will have profound implications for future health.
Collapse
|
9
|
Zhang S, Liu D, Gesang DZ, Lv M. Characteristics of Cerebral Stroke in the Tibet Autonomous Region of China. Med Sci Monit 2020; 26:e919221. [PMID: 31917778 PMCID: PMC6977622 DOI: 10.12659/msm.919221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/03/2019] [Indexed: 11/09/2022] Open
Abstract
It is well known that cerebrovascular disease has become an important cause of adult death and disability. Strikingly, the Tibet Autonomous Region (TAR) ranks on the top in China for the incidence of stroke. To help explain this phenomenon, we have searched for and analyzed stroke-related literature for the TAR in the past 2 decades and have referenced reports from other regions at similar altitudes. This article focuses on epidemiology features, risk factors, and pathogenesis of stroke in the TAR in an effort to generate a better understanding of the characteristics of stroke in this region. The special plateau-related factors such as its high elevation, limited oxygen, the high incidence of hypertension, smoking, and the unique dietary habits of the region are correlated with the high incidence of stroke. In addition to these factors, the pathogenesis of stroke in this high-altitude area is also unique. However, there is no established explanation for the unique occurrence and high incidence of stroke in the TAR. Our study provides an important rationale not only for the clinic to prevent and treat this disease, but also for the government to develop appropriate health policies for the prevention of stroke in the TAR.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Neurosurgery, Beijing Aerospace General Hospital, Beijing, P.R. China
| | - Dong Liu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, P.R. China
| | - Dun Zhu Gesang
- Department of Neurosurgery, Second People’s Hospital of Tibet Autonomous Region, Lhasa, Tibet Autonomous Region, P.R. China
| | - Ming Lv
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, P.R. China
| |
Collapse
|
10
|
Morgan HL, Paganopoulou P, Akhtar S, Urquhart N, Philomin R, Dickinson Y, Watkins AJ. Paternal diet impairs F1 and F2 offspring vascular function through sperm and seminal plasma specific mechanisms in mice. J Physiol 2019; 598:699-715. [PMID: 31617219 DOI: 10.1113/jp278270] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS A low protein diet had minimal effects on paternal cardiovascular function or renin-angiotensin system activity. Paternal low protein diet modified F1 neonatal and adult offspring renin-angiotensin system activity and cardiovascular function in a sperm and/or seminal plasma specific manner. Paternal low protein diet modified F1 male offspring testicular expression of central epigenetic regulators. Significant changes in F2 neonatal offspring growth and tissue angiotensin-converting enzyme activity were programmed by paternal low protein diet in a sperm and/or seminal plasma specific manner. ABSTRACT Although the impact of maternal diet on adult offspring health is well characterized, the role that a father's diet has on his offspring's health remains poorly defined. We establish the significance of a sup-optimal paternal low protein diet for offspring vascular homeostasis and define the sperm and seminal plasma specific programming effects on cardiovascular health. Male C57BL6 mice were fed either a control normal protein diet (NPD; 18% protein) or an isocaloric low protein diet (LPD; 9% protein) for a minimum of 7 weeks. Using artificial insemination, in combination with vasectomized male mating, we generated offspring derived from either NPD or LPD sperm (devoid of seminal plasma) but in the presence of NPD or LPD seminal plasma (devoid of sperm). We observed that either LPD sperm or seminal fluid at conception impaired adult offspring vascular function in response to both vasoconstrictors and dilators. Underlying these changes in vascular function were significant changes in serum, lung and kidney angiotensin-converting enzyme (ACE) activity, established in F1 offspring from 3 weeks of age, maintained into adulthood and present also within juvenile F2 offspring. Furthermore, we observed differential expression of multiple central renin-angiotensin system regulators in adult offspring kidneys. Finally, paternal diet modified the expression profiles of central epigenetic regulators of DNA methylation, histone modifications and RNA methylation in adult F1 male testes. These novel data reveal the impact of sub-optimal paternal nutrition on offspring cardiovascular well-being, programming offspring cardiovascular function through both sperm and seminal plasma specific mechanisms over successive generations.
Collapse
Affiliation(s)
- Hannah L Morgan
- Division of Child Health, Obstetrics and Gynaecology, Faculty of Medicine, University of Nottingham, Nottingham, UK
| | - Panaigota Paganopoulou
- Division of Child Health, Obstetrics and Gynaecology, Faculty of Medicine, University of Nottingham, Nottingham, UK
| | - Sofia Akhtar
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Natalie Urquhart
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Ranmini Philomin
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Yasmin Dickinson
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Adam J Watkins
- Division of Child Health, Obstetrics and Gynaecology, Faculty of Medicine, University of Nottingham, Nottingham, UK.,School of Life and Health Sciences, Aston University, Birmingham, UK
| |
Collapse
|
11
|
Prenatal high-salt diet impaired vasodilatation with reprogrammed renin-angiotensin system in offspring rats. J Hypertens 2019; 36:2369-2379. [PMID: 30382958 DOI: 10.1097/hjh.0000000000001865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS High-salt diet is linked to hypertension, and prenatal high-salt diet increases the risk of cardiovascular diseases in the offspring. The present study investigated whether and how prenatal high-salt diet influenced nitric oxide-mediated vasodilatation in the offspring. METHODS AND RESULTS Pregnant rats were fed either normal-salt (1% sodium chloride) or high-salt (8% sodium chloride) diet during gestation. Experiments were conducted in 5-month-old male offspring. Sodium nitroprusside (SNP, nitric oxide donor)-induced hypotensive responses (in vivo) and vascular dilatation (in vitro) was significantly attenuated (Emax: 84 ± 2 vs. 51 ± 2, high-salt vs. control, P < 0.001) in the high-salt offspring, indicating reduced vascular relaxations. Pretreatment with Tempol (reactive oxygen species scavenger) alleviated this attenuation. The high-salt offspring showed an increased level of oxidative stress markers in both mesenteric arteries and plasma samples. The antioxidant activity, serum superoxide dismutase and catalase were significantly reduced, whereas malondialdehyde was increased in the high-salt offspring. O2 production, and protein expression of Nox2 and Nox4 in mesenteric arteries was significantly increased in the high-salt offspring whereas Nox1 showed no changes. The local renin-angiotensin system in mesenteric arteries was activated, associated with an increased NADPH oxidase. DNA methylation at the proximal promoter of angiotensin-converting enzyme gene in the lung was significantly increased in the high-salt offspring (P = 0.004). CONCLUSION The results suggest that prenatal high-salt diet impairs nitric oxide-mediated vasodilatation because of the increased oxidative stress-affected renin-angiotensin system in the high-salt offspring, providing new information for understanding, and early prevention of cardiovascular diseases in fetal origins.
Collapse
|
12
|
Feng X, Li X, Yang C, Ren Q, Zhang W, Li N, Zhang M, Zhang B, Zhang L, Zhou X, Xu Z. Maternal High-Sucrose Diet Accelerates Vascular Stiffness in Aged Offspring via Suppressing Ca v 1.2 and Contractile Phenotype of Vascular Smooth Muscle Cells. Mol Nutr Food Res 2019; 63:e1900022. [PMID: 31067604 DOI: 10.1002/mnfr.201900022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/26/2019] [Indexed: 12/21/2022]
Abstract
SCOPE The fetal programming in response to over-nutrition during pregnancy is involved in pathogenesis of cardiovascular diseases later in life. The authors' previous work reported that prenatal high-sucrose (HS) diet impaired functions of large-conductance Ca2+ -activated K+ channels (BK) in mesenteric arteries in the adolescent offspring rats. This study determines whether prenatal HS has a long-term impact on resistance vasculature in the aged offspring rats. METHODS AND RESULTS Pregnant rats are fed with a high-sucrose diet until delivery. Aged offspring from prenatal HS exhibit elevated fasting insulin level, insulin resistance index, and diastolic pressure. Both pressure-induced myogenic responses and phenylephrine-stimulated contraction of mesenteric arteries in HS are weakened. Electrophysiological tests and western blot indicate that BK and L-type calcium channels (Cav 1.2) are impaired in HS group. On the other hand, expression of matrix metalloproteinase 2 of mesenteric arteries is reduced in HS group while expression of tissue inhibitors of metalloproteinase is increased, indicating that extra cellular matrix (ECM) is remodeled. Furthermore, expression of α-smooth muscle actin is decreased, and insulin/insulin receptor/phosphoinositide3-kinase (PI3K) signaling pathway is downregulated. CONCLUSION The results suggest that prenatal HS induced stiffness of mesenteric arteries in aged offspring by inhibiting Cav 1.2 function and PI3K-associated contractile phenotype of VSMCs.
Collapse
Affiliation(s)
- Xueqin Feng
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| | - Xiang Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| | - Chunli Yang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| | - Qinggui Ren
- Department of Gastrointestinal Surgery, Tengzhou Central People's Hospital, Zaozhuang, 277500, China
| | - Wenna Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| | - Na Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| | - Meng Zhang
- Obstetrics and Gynecology, Tengzhou Central People's Hospital, Zaozhuang, 277500, China
| | - Bo Zhang
- Department of Gastrointestinal Surgery, Tengzhou Central People's Hospital, Zaozhuang, 277500, China
| | - Lubo Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China.,Center for Prenatal Biology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Xiuwen Zhou
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| | - Zhice Xu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| |
Collapse
|
13
|
Santos-Rocha J, Lima-Leal GA, Moreira HS, Ramos-Alves FE, de Sá FG, Duarte GP, Xavier FE. Maternal high-sodium intake affects the offspring' vascular renin-angiotensin system promoting endothelial dysfunction in rats. Vascul Pharmacol 2019; 115:33-45. [PMID: 30790705 DOI: 10.1016/j.vph.2019.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/17/2018] [Accepted: 02/17/2019] [Indexed: 01/13/2023]
Abstract
Perinatal sodium overload induces endothelial dysfunction in adult offspring, but the underlying mechanisms are not fully known. The involvement of tissue renin-angiotensin system on high sodium-programmed endothelial dysfunction was examined. Acetylcholine and angiotensin I and II responses were analyzed in aorta and mesenteric resistance arteries from 24-week-old male offspring of normal-salt (O-NS, 1.3% NaCl) and high-salt (O-HS, 8% NaCl) fed dams. COX-2 expression, O2- production and angiotensin converting enzyme (ACE) activity were determined. A separated O-HS was treated with losartan (15 mg kg-1/day) for eight weeks. Compared to O-NS, O-HS were normotensive. Acetylcholine-induced relaxation was impaired in O-HS arteries, which was improved by tempol, apocynin or indomethacin. The angiotensin I-induced contraction was greater in O-HS arteries, whereas the angiotensin II responses were unchanged. ACE activity, O2- production and COX-2 expression were increased in O-HS arteries. In this group, the increased O2- production was inhibited by apocynin or losartan. Chronic losartan decreased COX-2 expression and restored the endothelium-dependent vasodilation in O-HS. Our findings reiterate that perinatal sodium overload programs endothelial dysfunction in adult offspring through a blood pressure-independent mechanism. Our results also suggest that vascular angiotensin II is the main mediator of high sodium-programmed endothelial dysfunction, promoting COX-2 expression and oxidative stress.
Collapse
Affiliation(s)
- Juliana Santos-Rocha
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - Geórgia A Lima-Leal
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - Hicla S Moreira
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - Fernanda E Ramos-Alves
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - Francine G de Sá
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - Gloria P Duarte
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - Fabiano E Xavier
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife, Brazil.
| |
Collapse
|
14
|
Hsu CN, Tain YL. The Double-Edged Sword Effects of Maternal Nutrition in the Developmental Programming of Hypertension. Nutrients 2018; 10:nu10121917. [PMID: 30518129 PMCID: PMC6316180 DOI: 10.3390/nu10121917] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/22/2018] [Accepted: 11/30/2018] [Indexed: 02/06/2023] Open
Abstract
Hypertension is a growing global epidemic. Developmental programming resulting in hypertension can begin in early life. Maternal nutrition status has important implications as a double-edged sword in the developmental programming of hypertension. Imbalanced maternal nutrition causes offspring's hypertension, while specific nutritional interventions during pregnancy and lactation may serve as reprogramming strategies to reverse programming processes and prevent the development of hypertension. In this review, we first summarize the human and animal data supporting the link between maternal nutrition and developmental programming of hypertension. This review also presents common mechanisms underlying nutritional programming-induced hypertension. This will be followed by studies documenting nutritional interventions as reprogramming strategies to protect against hypertension from developmental origins. The identification of ideal nutritional interventions for the prevention of hypertension development that begins early in life will have a lifelong impact, with profound savings in the global burden of hypertension.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| |
Collapse
|
15
|
Dingess PM, Thakar A, Zhang Z, Flynn FW, Brown TE. High-Salt Exposure During Perinatal Development Enhances Stress Sensitivity. Dev Neurobiol 2018; 78:1131-1145. [PMID: 30136369 DOI: 10.1002/dneu.22635] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 07/09/2018] [Accepted: 07/25/2018] [Indexed: 12/23/2022]
Abstract
Excess consumption of dietary sodium during pregnancy has been shown to impair offspring cardiovascular function and enhance salt preference in adulthood, but little is known regarding the long-term impact of this nutritional surplus on offspring brain morphology and behavior. Using a combination of cellular and behavioral approaches, we examined the impact of maternal salt intake during the perinatal period on structural plasticity in the prefrontal cortex (PFC) and nucleus accumbens (NAc) in weanling and adult offspring as well as reward- and stress-driven behaviors in adult offspring. We found that weanling rats born to 4% NaCl-fed dams exhibited an increase and decrease in thin spine density in the infralimbic PFC (IL-PFC) and prelimbic PFC (PL-PFC), respectively, as well as an increase in mushroom spine density in the NAc shell, compared to 1% NaCl-fed controls. Structural changes in the IL-PFC and NAc shell persisted into adulthood, the latter of which is a phenotype that has been observed in rats exposed to early life stress. There was no effect of maternal salt intake on reward-driven behaviors, including sucrose preference, conditioned place preference (CPP) for cocaine, and forced swim stress (FSS)-induced reinstatement of cocaine-induced CPP. However, rats born to high-salt fed dams spent less time swimming in the FSS and displayed heightened plasma CORT levels in response to the FSS compared to controls, suggesting that early salt exposure increases stress sensitivity. Overall, our results suggest that perinatal salt exposure evokes lasting impacts on offspring physiology and behavior.
Collapse
Affiliation(s)
- Paige M Dingess
- Neuroscience Program, University of Wyoming, Laramie, Wyoming
| | - Amit Thakar
- Department of Zoology & Physiology, University of Wyoming, Laramie, Wyoming
| | - Zhaojie Zhang
- Department of Zoology & Physiology, University of Wyoming, Laramie, Wyoming
| | - Francis W Flynn
- Neuroscience Program, University of Wyoming, Laramie, Wyoming.,Department of Zoology & Physiology, University of Wyoming, Laramie, Wyoming
| | - Travis E Brown
- Neuroscience Program, University of Wyoming, Laramie, Wyoming.,School of Pharmacy, University of Wyoming, Laramie, Wyoming
| |
Collapse
|
16
|
Spontaneous Intracerebral Hemorrhage in a Plateau Area: A Study Based on the Tibetan Population. World Neurosurg 2018; 116:e769-e774. [DOI: 10.1016/j.wneu.2018.05.090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 12/14/2022]
|
17
|
Camm EJ, Botting KJ, Sferruzzi-Perri AN. Near to One's Heart: The Intimate Relationship Between the Placenta and Fetal Heart. Front Physiol 2018; 9:629. [PMID: 29997513 PMCID: PMC6029139 DOI: 10.3389/fphys.2018.00629] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/09/2018] [Indexed: 01/19/2023] Open
Abstract
The development of the fetal heart is exquisitely controlled by a multitude of factors, ranging from humoral to mechanical forces. The gatekeeper regulating many of these factors is the placenta, an external fetal organ. As such, resistance within the placental vascular bed has a direct influence on the fetal circulation and therefore, the developing heart. In addition, the placenta serves as the interface between the mother and fetus, controlling substrate exchange and release of hormones into both circulations. The intricate relationship between the placenta and fetal heart is appreciated in instances of clinical placental pathology. Abnormal umbilical cord insertion is associated with congenital heart defects. Likewise, twin-to-twin transfusion syndrome, where monochorionic twins have unequal sharing of their placenta due to inter-twin vascular anastomoses, can result in cardiac remodeling and dysfunction in both fetuses. Moreover, epidemiological studies have suggested a link between placental phenotypic traits and increased risk of cardiovascular disease in adult life. To date, the mechanistic basis of the relationships between the placenta, fetal heart development and later risk of cardiac dysfunction have not been fully elucidated. However, studies using environmental exposures and gene manipulations in experimental animals are providing insights into the pathways involved. Likewise, surgical instrumentation of the maternal and fetal circulations in large animal species has enabled the manipulation of specific humoral and mechanical factors to investigate their roles in fetal cardiac development. This review will focus on such studies and what is known to date about the link between the placenta and heart development.
Collapse
Affiliation(s)
- Emily J Camm
- Department of Physiology, Development and Neuroscience and Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Kimberley J Botting
- Department of Physiology, Development and Neuroscience and Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience and Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
18
|
De Jong KA, Barrand S, Wood-Bradley RJ, de Almeida DL, Czeczor JK, Lopaschuk GD, Armitage JA, McGee SL. Maternal high fat diet induces early cardiac hypertrophy and alters cardiac metabolism in Sprague Dawley rat offspring. Nutr Metab Cardiovasc Dis 2018; 28:600-609. [PMID: 29691147 DOI: 10.1016/j.numecd.2018.02.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/03/2018] [Accepted: 02/27/2018] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND AIM Maternal high fat diets (mHFD) have been associated with an increased offspring cardiovascular risk. Recently we found that the class IIa HDAC-MEF2 pathway regulates gene programs controlling fatty acid oxidation in striated muscle. This same pathway controls hypertrophic responses in the heart. We hypothesized that mHFD is associated with activation of signal controlling class II a HDAC activity and activation of genes involved in fatty acid oxidation and cardiac hypertrophy in offspring. METHODS AND RESULTS Female Sprague Dawley rats were fed either normal fat diet (12%) or high fat diet (43%) three weeks prior to mating, remaining on diets until study completion. Hearts of postnatal day 1 (PN1) and PN10 pups were collected. Bioenergetics and respiration analyses were performed in neonatal ventricular cardiomyocytes (NVCM). In offspring exposed to mHFD, body weight was increased at PN10 accompanied by increased body fat percentage and blood glucose. Heart weight and heart weight to body weight ratio were increased at PN1 and PN10, and were associated with elevated signalling through the AMPK-class IIa HDAC-MEF2 axis. The expression of the MEF2-regulated hypertrophic markers ANP and BNP were increased as were expression of genes involved in fatty acid oxidation. However this was only accompanied by an increased protein expression of fatty acid oxidation enzymes at PN10. NVCM isolated from these pups exhibited increased glycolysis and an impaired substrate flexibility. CONCLUSION Combined, these results suggest that mHFD induces signalling and transcriptional events indicative of reprogrammed cardiac metabolism and of cardiac hypertrophy in Sprague Dawley rat offspring.
Collapse
Affiliation(s)
- K A De Jong
- Metabolic Reprogramming Laboratory, Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia.
| | - S Barrand
- Faculty of Health, School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia.
| | - R J Wood-Bradley
- Faculty of Health, School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia.
| | - D L de Almeida
- Faculty of Health, School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia.
| | - J K Czeczor
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich-Heine University, c/o Auf'm Hennekamp 65, 40225, Düsseldorf, Germany; German Center of Diabetes Research, Ingolstädter Landstraße 1, 85764, München-Neuherberg, Germany.
| | - G D Lopaschuk
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, Canada.
| | - J A Armitage
- Faculty of Health, School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia.
| | - S L McGee
- Metabolic Reprogramming Laboratory, Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia.
| |
Collapse
|
19
|
Segovia SA, Vickers MH, Harrison CJ, Patel R, Gray C, Reynolds CM. Maternal High-Fat and High-Salt Diets Have Differential Programming Effects on Metabolism in Adult Male Rat Offspring. Front Nutr 2018; 5:1. [PMID: 29564328 PMCID: PMC5845870 DOI: 10.3389/fnut.2018.00001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 01/05/2018] [Indexed: 12/19/2022] Open
Abstract
Maternal high-fat or high-salt diets can independently program adverse cardiometabolic outcomes in offspring. However, there is a paucity of evidence examining their effects in combination on metabolic function in adult offspring. Female Sprague Dawley rats were randomly assigned to either: control (CD; 10% kcal from fat, 1% NaCl), high-salt (SD; 10% kcal from fat, 4% NaCl), high-fat (HF; 45% kcal from fat, 1% NaCl) or high-fat and salt (HFSD; 45% kcal from fat, 4% NaCl) diets 21 days prior to mating and throughout pregnancy and lactation. Male offspring were weaned onto a standard chow diet and were culled on postnatal day 130 for plasma and tissue collection. Adipocyte histology and adipose tissue, liver, and gut gene expression were examined in adult male offspring. HF offspring had significantly greater body weight, impaired insulin sensitivity and hyperleptinemia compared to CD offspring, but these increases were blunted in HFSD offspring. HF offspring had moderate adipocyte hypertrophy and increased expression of the pre-adipocyte marker Dlk1. There was a significant effect of maternal salt with increased hepatic expression of Dgat1 and Igfb2. Gut expression of inflammatory (Il1r1, Tnfα, Il6, and Il6r) and renin-angiotensin system (Agtr1a, Agtr1b) markers was significantly reduced in HFSD offspring compared to HF offspring. Therefore, salt mitigates some adverse offspring outcomes associated with a maternal HF diet, which may be mediated by altered adipose tissue morphology and gut inflammatory and renin-angiotensin regulation.
Collapse
Affiliation(s)
| | - Mark H Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | - Rachna Patel
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Clint Gray
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Clare M Reynolds
- Liggins Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
20
|
Abstract
Any effective strategy to tackle the global obesity and rising noncommunicable disease epidemic requires an in-depth understanding of the mechanisms that underlie these conditions that manifest as a consequence of complex gene-environment interactions. In this context, it is now well established that alterations in the early life environment, including suboptimal nutrition, can result in an increased risk for a range of metabolic, cardiovascular, and behavioral disorders in later life, a process preferentially termed developmental programming. To date, most of the mechanistic knowledge around the processes underpinning development programming has been derived from preclinical research performed mostly, but not exclusively, in laboratory mouse and rat strains. This review will cover the utility of small animal models in developmental programming, the limitations of such models, and potential future directions that are required to fully maximize information derived from preclinical models in order to effectively translate to clinical use.
Collapse
Affiliation(s)
- Clare M Reynolds
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Mark H Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
21
|
Mehta V. Addictive salt may not be solely responsible for causing hypertension: A sweet and fatty hypothesis. HIPERTENSION Y RIESGO VASCULAR 2017; 35:S1889-1837(17)30060-0. [PMID: 28927660 DOI: 10.1016/j.hipert.2017.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/11/2017] [Accepted: 08/07/2017] [Indexed: 10/18/2022]
Abstract
In literature, since many decades, it is often believed and condoned that excessive common salt (Nacl) ingestion can lead to hypertension. Hence, every health organisation, agencies and physicians have been advising salt restriction to hypertensive patients. However, there is no concrete evidence suggesting that salt restriction can reduce the risk of hypertension (HTN). The present article is based on the current literature search which was performed using MEDLINE, EMBASE, Google Scholar and PubMed. The meta-analysis, randomised control trials, clinical trials and review articles were chosen. The present review article suggests that consumption of high salt diet does not lead to hypertension and there are other factors which can lead to hypertension, sugar and fats being the main reasons. Salt can however lead to addiction and generally, these salty food items have a larger proportion of sugar and fats, which if over-consumed has a potential to cause obesity, hyperlipidaemia and subsequently, hypertension and other cardiovascular disorders. Hence, through the present review, I would like to suggest all the physicians to ask the hypertensive patients to cut down the intake of sugar and fat containing food items and keep a check on addiction of salty food items.
Collapse
Affiliation(s)
- V Mehta
- Mount Sinai Hospital, New York, US; MGM Medical College, Navi Mumbai, India.
| |
Collapse
|
22
|
Tellechea ML, Mensegue MF, Pirola CJ. The Association between High Fat Diet around Gestation and Metabolic Syndrome-related Phenotypes in Rats: A Systematic Review and Meta-Analysis. Sci Rep 2017; 7:5086. [PMID: 28698653 PMCID: PMC5506021 DOI: 10.1038/s41598-017-05344-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 05/16/2017] [Indexed: 12/12/2022] Open
Abstract
Numerous rodent studies have evaluated the effects of a maternal high-fat diet (HFD) on later in life susceptibility to Metabolic Syndrome (MetS) with varying results. Our aim was to quantitatively synthesize the available data on effects of maternal HFD around gestation on offspring's body mass, body fat, plasma leptin, glucose, insulin, lipids and systolic blood pressure (SBP). Literature was screened and summary estimates of the effect of maternal HFD on outcomes were calculated by using fixed- or random-effects models. 362 effect sizes from 68 studies together with relevant moderators were collected. We found that maternal HFD is statistically associated with higher body fat, body weight, leptin, glucose, insulin and triglycerides levels, together with increased SBP in offspring later in life. Our analysis also revealed non-significant overall effect on offspring's HDL-cholesterol. A main source of variation among studies emerged from rat strain and lard-based diet type. Strain and sex -specific effects on particular data subsets were detected. Recommendations are suggested for future research in the field of developmental programming of the MetS. Despite significant heterogeneity, our meta-analysis confirms that maternal HFD had long-term metabolic effects in offspring.
Collapse
Affiliation(s)
- Mariana L Tellechea
- University of Buenos Aires, Institute of Medical Research A Lanari, Buenos Aires, Argentina. .,National Scientific and Technical Research Council (CONICET) - University of Buenos Aires, Institute of Medical Research (IDIM), Department of Molecular Genetics and Biology of Complex Diseases, Buenos Aires, Argentina.
| | - Melisa F Mensegue
- University of Buenos Aires, Institute of Medical Research A Lanari, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET) - University of Buenos Aires, Institute of Medical Research (IDIM), Department of Molecular Genetics and Biology of Complex Diseases, Buenos Aires, Argentina
| | - Carlos J Pirola
- University of Buenos Aires, Institute of Medical Research A Lanari, Buenos Aires, Argentina. .,National Scientific and Technical Research Council (CONICET) - University of Buenos Aires, Institute of Medical Research (IDIM), Department of Molecular Genetics and Biology of Complex Diseases, Buenos Aires, Argentina.
| |
Collapse
|
23
|
Li X, Zhang M, Pan X, Xu Z, Sun M. “Three Hits” Hypothesis for Developmental Origins of Health and Diseases in View of Cardiovascular Abnormalities. Birth Defects Res 2017; 109:744-757. [PMID: 28509412 DOI: 10.1002/bdr2.1037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 03/24/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Xiang Li
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Mengshu Zhang
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Xinghua Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences
- Key Laboratory of Biochip Technology in Guangdong province; Southern Medical University; Guangzhou China
- Department of Genetics; Yale University School of Medicine; New Haven Connecticut
| | - Zhice Xu
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Miao Sun
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| |
Collapse
|
24
|
Feng X, Zhou X, Zhang W, Li X, He A, Liu B, Shi R, Wu L, Wu J, Zhu D, Li N, Sun M, Xu Z. Maternal high-sucrose diets altered vascular large-conductance Ca2+-activated K+ channels via reactive oxygen species in offspring rats†. Biol Reprod 2017; 96:1085-1095. [DOI: 10.1093/biolre/iox031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/13/2017] [Indexed: 12/22/2022] Open
|
25
|
Transition in the mechanism of flow-mediated dilation with aging and development of coronary artery disease. Basic Res Cardiol 2016; 112:5. [PMID: 27995364 DOI: 10.1007/s00395-016-0594-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/01/2016] [Indexed: 01/07/2023]
Abstract
In microvessels of patients with coronary artery disease (CAD), flow-mediated dilation (FMD) is largely dependent upon the endothelium-derived hyperpolarizing factor H2O2. The goal of this study is to examine the influence of age and presence or absence of disease on the mechanism of FMD. Human coronary or adipose arterioles (~150 µm diameter) were prepared for videomicroscopy. The effect of inhibiting COX [indomethacin (Indo) or NOS (L-NAME), eliminating H2O2 (polyethylene glycol-catalase (PEG-CAT)] or targeting a reduction in mitochondrial ROS with scavengers/inhibitors [Vitamin E (mtVitamin E); phenylboronic acid (mtPBA)] was determined in children aged 0-18 years; young adults 19-55 years; older adults >55 years without CAD, and similarly aged adults with CAD. Indo eliminated FMD in children and reduced FMD in younger adults. This response was mediated mainly by PGI2, as the prostacyclin-synthase-inhibitor trans-2-phenyl cyclopropylamine reduced FMD in children and young adults. L-NAME attenuated dilation in children and younger adults and eliminated FMD in older adults without CAD, but had no effect on vessels from those with CAD, where mitochondria-derived H2O2 was the primary mediator. The magnitude of dilation was reduced in older compared to younger adults independent of CAD. Exogenous treatment with a sub-dilator dose of NO blocked FMD in vessels from subjects with CAD, while prolonged inhibition of NOS in young adults resulted in a phenotype similar to that observed in disease. The mediator of coronary arteriolar FMD evolves throughout life from prostacyclin in youth, to NO in adulthood. With the onset of CAD, NO-inhibitable release of H2O2 emerges as the exclusive mediator of FMD. These findings have implications for use of pharmacological agents, such as nonsteroidal anti-inflammatory agents in children and the role of microvascular endothelium in cardiovascular health.
Collapse
|
26
|
A review of fundamental principles for animal models of DOHaD research: an Australian perspective. J Dev Orig Health Dis 2016; 7:449-472. [DOI: 10.1017/s2040174416000477] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Epidemiology formed the basis of ‘the Barker hypothesis’, the concept of ‘developmental programming’ and today’s discipline of the Developmental Origins of Health and Disease (DOHaD). Animal experimentation provided proof of the underlying concepts, and continues to generate knowledge of underlying mechanisms. Interventions in humans, based on DOHaD principles, will be informed by experiments in animals. As knowledge in this discipline has accumulated, from studies of humans and other animals, the complexity of interactions between genome, environment and epigenetics, has been revealed. The vast nature of programming stimuli and breadth of effects is becoming known. As a result of our accumulating knowledge we now appreciate the impact of many variables that contribute to programmed outcomes. To guide further animal research in this field, the Australia and New Zealand DOHaD society (ANZ DOHaD) Animals Models of DOHaD Research Working Group convened at the 2nd Annual ANZ DOHaD Congress in Melbourne, Australia in April 2015. This review summarizes the contributions of animal research to the understanding of DOHaD, and makes recommendations for the design and conduct of animal experiments to maximize relevance, reproducibility and translation of knowledge into improving health and well-being.
Collapse
|
27
|
|