1
|
Wilson EJ, Barts N, Coffin JL, Johnson JB, Rodríguez Peña CM, Kelley JL, Tobler M, Greenway R. Gene expression signatures between Limia perugiae (Poeciliidae) populations from freshwater and hypersaline habitats, with comparisons to other teleosts. PLoS One 2024; 19:e0315014. [PMID: 39637050 PMCID: PMC11620662 DOI: 10.1371/journal.pone.0315014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 11/20/2024] [Indexed: 12/07/2024] Open
Abstract
Salinity gradients act as strong environmental barriers that limit the distribution of aquatic organisms. Changes in gene expression associated with transitions between freshwater and saltwater environments can provide insights into organismal responses to variation in salinity. We used RNA-sequencing (RNA-seq) to investigate genome-wide variation in gene expression between a hypersaline population and a freshwater population of the livebearing fish species Limia perugiae (Poeciliidae). Our analyses of gill gene expression revealed potential molecular mechanisms underlying salinity tolerance in this species, including the enrichment of genes involved in ion transport, maintenance of chemical homeostasis, and cell signaling in the hypersaline population. We also found differences in gene expression patterns associated with cell-cycle and protein-folding processes between the hypersaline and freshwater L. perugiae. Bidirectional freshwater-saltwater transitions have occurred repeatedly during the diversification of fishes, allowing for broad-scale examination of repeatable patterns in evolution. Therefore, we compared transcriptomic variation in L. perugiae with other teleosts that have made freshwater-saltwater transitions to test for convergence in gene expression. Among the four distantly related population pairs from high- and low-salinity environments that we included in our analysis, we found only ten shared differentially expressed genes, indicating little evidence for convergence. However, we found that differentially expressed genes shared among three or more lineages were functionally enriched for ion transport and immune functioning. Overall, our results-in conjunction with other recent studies-suggest that different genes are involved in salinity transitions across disparate lineages of teleost fishes.
Collapse
Affiliation(s)
- Elizabeth J. Wilson
- Division of Biology, Kansas State University, Manhattan, KS, United States of America
| | - Nick Barts
- Department of Biology, University of Central Missouri, Warrensburg, MO, United States of America
| | - John L. Coffin
- Division of Biology, Kansas State University, Manhattan, KS, United States of America
| | - James B. Johnson
- Divison of Marine Fisheries, North Carolina Department of Environmental Quality, Morehead City, NC, United States of America
| | - Carlos M. Rodríguez Peña
- Instituto de Investigaciones Botánicas y Zoológicas, Universidad Autónoma de Santo Domingo, Santo Domingo, Dominican Republic
| | - Joanna L. Kelley
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, United States of America
| | - Michael Tobler
- Department of Biology, University of Missouri—St. Louis, St. Louis, MO, United States of America
- Whitney R. Harris World Ecology Center, University of Missouri—St. Louis, St. Louis, MO, United States of America
- WildCare Institute, Saint Louis Zoo, St. Louis, MO, United States of America
| | - Ryan Greenway
- Division of Biology, Kansas State University, Manhattan, KS, United States of America
| |
Collapse
|
2
|
Zhao Y, Zhou J, Dong Y, Xu D, Qi D. Transcriptome Analysis Reveals the Molecular Mechanisms Underlying Growth Superiority in a Novel Gymnocypris Hybrid, Gymnocypris przewalskii ♀ × Gymnocypris eckloni ♂. Genes (Basel) 2024; 15:182. [PMID: 38397172 PMCID: PMC10888472 DOI: 10.3390/genes15020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/20/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Artificial hybrid breeding can optimize parental traits to cultivate excellent hybrids with enhanced economic value. In this study, we investigated the growth performance and transcriptomes of Gymnocypris przewalskii (♀) and Gymnocypris eckloni (♂) and their F1 hybrid fishes. Hatched individuals of G. przewalskii (GP) and G. eckloni (GE) of the same size and their F1 hybrids (GH) were separately cultured for eight months in three cement tanks (n = 3). The growth indexes were measured, which showed that the growth rate of the groups was GE > GH > GP, while the survival rate was GH > GE > GP. The RNA-Seq data analysis of the muscles from the three Gymnocypris fish strains revealed that gene transcription has a significant impact on F1 hybrid fish and its parents. The differentially expressed genes (DEGs) in GH show less differences with GP, but more with GE. qRT-PCR was used to confirm the expression profiles of the chosen DEGs, and the results showed positive correlations with the RNA-seq data. KEGG enrichment results indicated that the DEGs were related to a variety of molecular functions, such as glycolysis/gluconeogenesis, arachidonic acid formation, citrate cycle, and the MAPK, PI3K-Akt, or mTOR signal pathways. Subsequent analysis indicated that there may be a significant correlation between the differential expression of IGF2 and a difference in the growth of GE and GP.
Collapse
Affiliation(s)
| | - Junming Zhou
- Key Laboratory of Plateau Wetland Ecology and Environmental Protection, Xichang University, Xichang 615013, China; (Y.Z.); (Y.D.); (D.X.); (D.Q.)
| | | | | | | |
Collapse
|
3
|
Tian F, Zhou B, Li X, Zhang Y, Qi D, Qi H, Jiang H, Zhao K, Liu S. Population genomics analysis to identify ion and water transporter genes involved in the adaptation of Tibetan naked carps to brackish water. Int J Biol Macromol 2023; 247:125605. [PMID: 37392922 DOI: 10.1016/j.ijbiomac.2023.125605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/31/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023]
Abstract
Understanding how evolutionary processes shape the genetic variations and influence the response of species to environmental alterations is critical for biodiversity conservation and molecular breeding. Gymnocypris przewalskii przewalskii is the only known cyprinid fish that dwells in the brackish water of Lake Qinghai on the Qinghai-Tibetan Plateau. To reveal the genetic basis of its adaptation to high salinity and alkalinity, whole-genome sequencing was performed in G. p. przewalskii and its freshwater relatives Gymnocypris eckloni and Gymnocypris przewalskii ganzihonensis. Compared with freshwater species, lower genetic diversity and higher linkage disequilibrium were observed in G. p. przewalskii. Selective sweep analysis identified 424 core-selective genes enriched in transport activities. Transfection analysis showed that genetic changes in the positively selected gene aquaporin 3 (AQP3) improved cell viability after salt treatment, suggesting its involvement in brackish water adaptation. Our analysis indicates that ion and water transporter genes experienced intensive selection, which might have contributed to the maintenance of high osmolality and ion content in G. p. przewalskii. The current study identified key molecules involved in the adaptation of fish to brackish water, providing valuable genomic resources for the molecular breeding of salt-tolerant fish.
Collapse
Affiliation(s)
- Fei Tian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Bingzheng Zhou
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohuan Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| | - Yu Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Delin Qi
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| | - Hongfang Qi
- Qinghai Provincial Key Laboratory of Breeding and Protection of Gymnocypris przewalskii, The rescue center of Qinghai Lake Naked Carp, Xining, Qinghai, China
| | - Huamin Jiang
- Qinghai Provincial Key Laboratory of Breeding and Protection of Gymnocypris przewalskii, The rescue center of Qinghai Lake Naked Carp, Xining, Qinghai, China
| | - Kai Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Sijia Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China.
| |
Collapse
|
4
|
Zhou B, Qi D, Liu S, Qi H, Wang Y, Zhao K, Tian F. Physiological, morphological and transcriptomic responses of Tibetan naked carps (Gymnocypris przewalskii) to salinity variations. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100982. [PMID: 35279439 DOI: 10.1016/j.cbd.2022.100982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022]
Abstract
Gymnocypris przewalskii is a native cyprinid fish that dwells in the Lake Qinghai with salinity of 12-13‰. It migrates annually to the freshwater rivers for spawning, experiencing the significant changes in salinity. In the present study, we performed the physiological, morphological and transcriptomic analyses to understand the osmoregulation in G. przewalskii. The physiological assay showed that the osmotic pressure of G. przewalskii was almost isosmotic to the brackish lake water. The low salinity reduced its ionic concentrations and osmotic pressure. The plasticity of gill microstructure was linked to the salinity variations, including the presence of mucus and intact tight junctions in brackish water and the development of the mitochondria-rich cells and the loosened tight junctions in freshwater. RNA-seq analysis identified 1926 differentially expressed genes, including 710 and 1216 down- and up-regulated genes in freshwater, which were enriched in ion transport, cell-cell adhesion, and mucus secretion. Genes in ion uptake were activated in low salinity, and mucus pathways and tight junction showed the higher transcription in brackish water. The isosmoticity between the body fluid and the environment suggested G. przewalskii was in the metabolic-saving condition in the brackish water. The decreased salinity disrupted this balance, which activated the ion uptake in freshwater to maintain osmotic homeostasis. The gill remodeling was involved in this process through the development of the mitochondria-rich cells to enhance ion uptake. The current finding provided insights into the potential mechanisms of G. przewalskii to cope with salinity alteration.
Collapse
Affiliation(s)
- Bingzheng Zhou
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Delin Qi
- State Key Laboratory of Plateau Ecology and Agriculture, College of Eco-Environmental Engineering, Qinghai University, Xining 810008, China
| | - Sijia Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Hongfang Qi
- Qinghai Provincial Key Laboratory of Gymnocypris przewalskii breeding and reproduction, Xining 810008, China
| | - Yang Wang
- Qinghai Provincial Key Laboratory of Gymnocypris przewalskii breeding and reproduction, Xining 810008, China
| | - Kai Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Fei Tian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China.
| |
Collapse
|
5
|
Cascarano MC, Stavrakidis-Zachou O, Mladineo I, Thompson KD, Papandroulakis N, Katharios P. Mediterranean Aquaculture in a Changing Climate: Temperature Effects on Pathogens and Diseases of Three Farmed Fish Species. Pathogens 2021; 10:1205. [PMID: 34578236 PMCID: PMC8466566 DOI: 10.3390/pathogens10091205] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023] Open
Abstract
Climate change is expected to have a drastic effect on aquaculture worldwide. As we move forward with the agenda to increase and diversify aquaculture production, rising temperatures will have a progressively relevant impact on fish farming, linked to a multitude of issues associated with fish welfare. Temperature affects the physiology of both fish and pathogens, and has the potential to lead to significant increases in disease outbreaks within aquaculture systems, resulting in severe financial impacts. Significant shifts in future temperature regimes are projected for the Mediterranean Sea. We therefore aim to review and discuss the existing knowledge relating to disease outbreaks in the context of climate change in Mediterranean finfish aquaculture. The objective is to describe the effects of temperature on the physiology of both fish and pathogens, and moreover to list and discuss the principal diseases of the three main fish species farmed in the Mediterranean, namely gilthead seabream (Sparus aurata), European seabass (Dicentrarchus labrax), and meagre (Argyrosomus regius). We will attempt to link the pathology of each disease to a specific temperature range, while discussing potential future disease threats associated with the available climate change trends for the Mediterranean Sea.
Collapse
Affiliation(s)
- Maria Chiara Cascarano
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion, Greece; (M.C.C.); (O.S.-Z.); (N.P.)
- Department of Biology, University of Crete, 71003 Heraklion, Greece
| | - Orestis Stavrakidis-Zachou
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion, Greece; (M.C.C.); (O.S.-Z.); (N.P.)
- Department of Biology, University of Crete, 71003 Heraklion, Greece
| | - Ivona Mladineo
- Biology Center of Czech Academy of Sciences, Laboratory of Functional Helminthology, Institute of Parasitology, 370 05 Ceske Budejovice, Czech Republic;
| | - Kim D. Thompson
- Vaccines and Diagnostics, Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK;
| | - Nikos Papandroulakis
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion, Greece; (M.C.C.); (O.S.-Z.); (N.P.)
| | - Pantelis Katharios
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion, Greece; (M.C.C.); (O.S.-Z.); (N.P.)
| |
Collapse
|
6
|
Ge Y, Meng X, Heino J, García‐Girón J, Liu Y, Li Z, Xie Z. Stochasticity overrides deterministic processes in structuring macroinvertebrate communities in a plateau aquatic system. Ecosphere 2021. [DOI: 10.1002/ecs2.3675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Yihao Ge
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology Chinese Academy of Sciences Wuhan China
- University of Chinese Academy of Sciences Beijing China
| | - Xingliang Meng
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology Chinese Academy of Sciences Wuhan China
| | - Jani Heino
- Freshwater Centre Finnish Environment Institute Paavo Havaksen Tie 3P.O. Box 413 Oulu FI‐90014 Finland
| | - Jorge García‐Girón
- Group for Limnology and Environmental Biotechnology Area of Ecology Universidad de León Campus de Vegazana León Spain
| | - Yang Liu
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology Chinese Academy of Sciences Wuhan China
- University of Chinese Academy of Sciences Beijing China
| | - Zhengfei Li
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology Chinese Academy of Sciences Wuhan China
| | - Zhicai Xie
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology Chinese Academy of Sciences Wuhan China
| |
Collapse
|
7
|
Li X, Wu J, Xiao X, Rong Y, Yang H, Li J, Zhou Q, Zhou W, Shi J, Qi H, Du H. Characterization and complexity of transcriptome in Gymnocypris przewalskii using single-molecule long-read sequencing and RNA-seq. DNA Res 2021; 28:6275749. [PMID: 33989386 PMCID: PMC8320875 DOI: 10.1093/dnares/dsab005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/11/2021] [Indexed: 11/30/2022] Open
Abstract
The Tibetan Schizothoracinae fish Gymnocypris przewalskii has the ability to adapt to the extreme plateau environment, making it an ideal biological material for evolutionary biology research. However, the lack of well-annotated reference genomes has limited the study of the molecular genetics of G. przewalskii. To characterize its transcriptome features, we first used long-read sequencing technology in combination with RNA-seq for transcriptomic analysis. A total of 159,053 full-length (FL) transcripts were captured by Iso-Seq, having a mean length of 3,445 bp with N50 value of 4,348. Of all FL transcripts, 145,169 were well-annotated in the public database and 134,537 contained complete open reading frames. There were 4,149 pairs of alternative splicing events, of which three randomly selected were defined by RT–PCR and sequencing, and 13,293 long non-coding RNAs detected, based on all-vs.-all BLAST. A total of 118,185 perfect simple sequence repeats were identified from FL transcripts. The FL transcriptome might provide basis for further research of G. przewalskii.
Collapse
Affiliation(s)
- Xindan Li
- Key Laboratory of freshwater biodiversity conservation, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China.,College of Marine Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jinming Wu
- Key Laboratory of freshwater biodiversity conservation, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Xinping Xiao
- Key Laboratory of freshwater biodiversity conservation, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Yifeng Rong
- Key Laboratory of freshwater biodiversity conservation, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China.,College of Marine Science, Shanghai Ocean University, Shanghai 201306, China
| | - Haile Yang
- Key Laboratory of freshwater biodiversity conservation, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Junyi Li
- Key Laboratory of freshwater biodiversity conservation, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Qiong Zhou
- Key Laboratory of freshwater biodiversity conservation, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Weiguo Zhou
- The Rescue and Rehabilitation Center of Naked Carps in Lake Qinghai, Xining, Qinghai 810016, China
| | - Jianquan Shi
- The Rescue and Rehabilitation Center of Naked Carps in Lake Qinghai, Xining, Qinghai 810016, China
| | - Hongfang Qi
- The Rescue and Rehabilitation Center of Naked Carps in Lake Qinghai, Xining, Qinghai 810016, China
| | - Hao Du
- Key Laboratory of freshwater biodiversity conservation, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China.,College of Marine Science, Shanghai Ocean University, Shanghai 201306, China.,The Rescue and Rehabilitation Center of Naked Carps in Lake Qinghai, Xining, Qinghai 810016, China
| |
Collapse
|
8
|
Gan W, Chung-Davidson YW, Chen Z, Song S, Cui W, He W, Zhang Q, Li W, Li M, Ren J. Global tissue transcriptomic analysis to improve genome annotation and unravel skin pigmentation in goldfish. Sci Rep 2021; 11:1815. [PMID: 33469041 PMCID: PMC7815744 DOI: 10.1038/s41598-020-80168-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Goldfish is an ornamental fish with diverse phenotypes. However, the limited genomic resources of goldfish hamper our understanding of the genetic basis for its phenotypic diversity. To provide enriched genomic resources and infer possible mechanisms underlying skin pigmentation, we performed a large-scale transcriptomic sequencing on 13 adult goldfish tissues, larvae at one- and three-days post hatch, and skin tissues with four different color pigmentation. A total of 25.52 Gb and 149.80 Gb clean data were obtained using the PacBio and Illumina platforms, respectively. Onto the goldfish reference genome, we mapped 137,674 non-redundant transcripts, of which 5.54% was known isoforms and 78.53% was novel isoforms of the reference genes, and the remaining 21,926 isoforms are novel isoforms of additional new genes. Both skin-specific and color-specific transcriptomic analyses showed that several significantly enriched genes were known to be involved in melanogenesis, tyrosine metabolism, PPAR signaling pathway, folate biosynthesis metabolism and so on. Thirteen differentially expressed genes across different color skins were associated with melanogenesis and pteridine synthesis including mitf, ednrb, mc1r, tyr, mlph and gch1, and xanthophore differentiation such as pax7, slc2a11 and slc2a15. These transcriptomic data revealed pathways involved in goldfish pigmentation and improved the gene annotation of the reference genome.
Collapse
Affiliation(s)
- Wu Gan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yu-Wen Chung-Davidson
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA
| | - Zelin Chen
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Shiying Song
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Wenyao Cui
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Wei He
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Qinghua Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA
| | - Mingyou Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| | - Jianfeng Ren
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
9
|
Luo H, Liu H, Zhang J, Hu B, Zhou C, Xiang M, Yang Y, Zhou M, Jing T, Li Z, Zhou X, Lv G, He W, Zeng B, Xiao S, Li Q, Ye H. Full-length transcript sequencing accelerates the transcriptome research of Gymnocypris namensis, an iconic fish of the Tibetan Plateau. Sci Rep 2020; 10:9668. [PMID: 32541658 PMCID: PMC7296019 DOI: 10.1038/s41598-020-66582-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 05/25/2020] [Indexed: 12/11/2022] Open
Abstract
Gymnocypris namensis, the only commercial fish in Namtso Lake of Tibet in China, is rated as nearly threatened species in the Red List of China's Vertebrates. As one of the highest-altitude schizothorax fish in China, G. namensis has strong adaptability to the plateau harsh environment. Although being an indigenous economic fish with high value in research, the biological characterization, genetic diversity, and plateau adaptability of G. namensis are still unclear. Here, we used Pacific Biosciences single molecular real time long read sequencing technology to generate full-length transcripts of G. namensis. Sequences clustering analysis and error correction with Illumina-produced short reads to obtain 319,044 polished isoforms. After removing redundant reads, 125,396 non-redundant isoforms were obtained. Among all transcripts, 103,286 were annotated to public databases. Natural selection has acted on 42 genes for G. namensis, which were enriched on the functions of mismatch repair and Glutathione metabolism. Total 89,736 open reading frames, 95,947 microsatellites, and 21,360 long non-coding RNAs were identified across all transcripts. This is the first study of transcriptome in G. namensis by using PacBio Iso-seq. The acquisition of full-length transcript isoforms might accelerate the transcriptome research of G. namensis and provide basis for further research.
Collapse
Affiliation(s)
- Hui Luo
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
- Key Laboratory of Aquatic Science of Chongqing, 400175, Chongqing, China
| | - Haiping Liu
- Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000, China
| | - Jie Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
| | - Bingjie Hu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
| | - Chaowei Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
- Key Laboratory of Aquatic Science of Chongqing, 400175, Chongqing, China
| | - Mengbin Xiang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
| | - Yuejing Yang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
- Key Laboratory of Aquatic Science of Chongqing, 400175, Chongqing, China
| | - Mingrui Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
- Key Laboratory of Aquatic Science of Chongqing, 400175, Chongqing, China
| | - Tingsen Jing
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
- Key Laboratory of Aquatic Science of Chongqing, 400175, Chongqing, China
| | - Zhe Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
| | - Xinghua Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
- Key Laboratory of Aquatic Science of Chongqing, 400175, Chongqing, China
| | - Guangjun Lv
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
- Key Laboratory of Aquatic Science of Chongqing, 400175, Chongqing, China
| | - Wenping He
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
- Key Laboratory of Aquatic Science of Chongqing, 400175, Chongqing, China
| | - Benhe Zeng
- Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000, China
| | - Shijun Xiao
- Department of Computer Science, Wuhan University of Technology, Wuhan, 430070, China.
| | - Qinglu Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China.
| | - Hua Ye
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China.
- Key Laboratory of Aquatic Science of Chongqing, 400175, Chongqing, China.
| |
Collapse
|
10
|
Genomic signature of accelerated evolution in a saline-alkaline lake-dwelling Schizothoracine fish. Int J Biol Macromol 2020; 149:341-347. [DOI: 10.1016/j.ijbiomac.2020.01.207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/21/2019] [Accepted: 01/15/2020] [Indexed: 12/18/2022]
|
11
|
Tong C, Li M. Transcriptomic signature of rapidly evolving immune genes in a highland fish. FISH & SHELLFISH IMMUNOLOGY 2020; 97:587-592. [PMID: 31891809 DOI: 10.1016/j.fsi.2019.12.082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/21/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Recent genome-wide studies have begun to elucidate the genomic basis of hypoxia, long-term cold and high saline and alkaline adaptation in highland fish, and a number of key genes contributed to its highland adaptation were identified. An increasing number of studies indicated that immune genes of Tibetan endemic fish species underwent positive selection towards functional shift, while the insight into immune gene repertoire of Tibetan highland fishes from genome-wide studies has largely lagged behind. In this study, we performed one of the first comparative genomics study in particular focusing on the signatures of immune genes in a highland fish, Gymnocypris przewalskii based on immune-relevant tissue transcriptome assemblies. We identified seven putative rapidly evolving immune genes with elevated molecular evolutionary rate (dN/dS) relative to lowland fish species. Using tissue-transcriptome data, we found most of rapidly evolving immune genes were broadly expressed in head-kidney, spleen, gills and skin tissues, which significantly enriched for complement activation and inflammatory response processes. In addition, we found a set of complement activation related genes underwent accelerated evolution and showed consistently repressed expression patterns in response to parasite Ichthyophthirius multifiliis infection. Moreover, we detected a number of immune genes involved in adaptive immune system exhibited distinct signature of upregulated expression patterns after parasite infection. Taken together, this study provided putative transcriptomic signatures of rapidly evolving immune genes, and will gain the insight into Schizothoracine fish adaptation to high-altitude extreme aquatic environments including diversified pathogen challenge.
Collapse
Affiliation(s)
- Chao Tong
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Miao Li
- Center for Advanced Retinal and Ocular Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Zhao Q, Zhang R, Xiao Y, Niu Y, Shao F, Li Y, Peng Z. Comparative Transcriptome Profiling of the Loaches Triplophysa bleekeri and Triplophysa rosa Reveals Potential Mechanisms of Eye Degeneration. Front Genet 2020; 10:1334. [PMID: 32010191 PMCID: PMC6977438 DOI: 10.3389/fgene.2019.01334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 12/06/2019] [Indexed: 12/30/2022] Open
Abstract
Eye degeneration is one of the most obvious characteristics of organisms restricted to subterranean habitats. In cavefish, eye degeneration has evolved independently numerous times and each process is associated with different genetic mechanisms. To gain a better understanding of these mechanisms, we compared the eyes of adult individuals of the cave loach Triplophysa rosa and surface loach Triplophysa bleekeri. Compared with the normal eyes of the surface loach, those of the cave loach were found to possess a small abnormal lens and a defective retina containing photoreceptor cells that lack outer segments. Sequencing of the transcriptomes of both species to identify differentially expressed genes (DEGs) and genes under positive selection revealed 4,802 DEGs and 50 genes under positive selection (dN/dS > 1, FDR < 0.1). For cave loaches, we identified one Gene Ontology category related to vision that was significantly enriched in downregulated genes. Specifically, we found that many of the downregulated genes, including pitx3, lim2, crx, gnat2, rx1, rho, prph2, and β|γ-crystallin are associated with lens/retinal development and maintenance. However, compared with those in the surface loach, the lower dS rates but higher dN rates of the protein-coding sequences in T. rosa indicate that changes in amino acid sequences might be involved in the adaptation and visual degeneration of cave loaches. We also found that genes associated with light perception and light-stimulated vision have evolved at higher rates (some genes dN/dS > 1 but FDR > 0.1). Collectively, the findings of this study indicate that the degradation of cavefish vision is probably associated with both gene expression and amino acid changes and provide new insights into the mechanisms underlying the degeneration of cavefish eyes.
Collapse
Affiliation(s)
- Qingyuan Zhao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing, China
| | - Renyi Zhang
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Yingqi Xiao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing, China
| | - Yabing Niu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing, China
| | - Feng Shao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing, China
| | - Yanping Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing, China
| | - Zuogang Peng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing, China
| |
Collapse
|
13
|
Feng X, Jia Y, Zhu R, Chen K, Chen Y. Characterization and analysis of the transcriptome in Gymnocypris selincuoensis on the Qinghai-Tibetan Plateau using single-molecule long-read sequencing and RNA-seq. DNA Res 2020; 26:353-363. [PMID: 31274170 PMCID: PMC6704404 DOI: 10.1093/dnares/dsz014] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 06/11/2019] [Indexed: 12/26/2022] Open
Abstract
The lakes on the Qinghai-Tibet Plateau (QTP) are the largest and highest lake group in the world. Gymnocypris selincuoensis is the only cyprinid fish living in lake Selincuo, the largest lake on QTP. However, its genetic resource is still blank, limiting studies on molecular and genetic analysis. In this study, the transcriptome of G. selincuoensis was first generated by using PacBio Iso-Seq and Illumina RNA-seq. A full-length (FL) transcriptome with 75,435 transcripts was obtained by Iso-Seq with N50 length of 3,870 bp. Among all transcripts, 75,016 were annotated to public databases, 64,710 contain complete open reading frames and 2,811 were long non-coding RNAs. Based on all- vs.-all BLAST, 2,069 alternative splicing events were detected, and 80% of them were validated by reverse transcription polymerase chain reaction (RT-PCR). Tissue gene expression atlas showed that the number of detected expressed transcripts ranged from 37,397 in brain to 19,914 in muscle, with 10,488 transcripts detected in all seven tissues. Comparative genomic analysis with other cyprinid fishes identified 77 orthologous genes with potential positive selection (Ka/Ks > 0.3). A total of 56,696 perfect simple sequence repeats were identified from FL transcripts. Our results provide valuable genetic resources for further studies on adaptive evolution, gene expression and population genetics in G. selincuoensis and other congeneric fishes.
Collapse
Affiliation(s)
- Xiu Feng
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yintao Jia
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Ren Zhu
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Kang Chen
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yifeng Chen
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
14
|
Jeffries KM, Connon RE, Verhille CE, Dabruzzi TF, Britton MT, Durbin‐Johnson BP, Fangue NA. Divergent transcriptomic signatures in response to salinity exposure in two populations of an estuarine fish. Evol Appl 2019; 12:1212-1226. [PMID: 31293632 PMCID: PMC6597873 DOI: 10.1111/eva.12799] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In estuary and coastal systems, human demand for freshwater, climate change-driven precipitation variability, and extreme weather impact salinity levels, reducing connectivity between mesohaline coastal fish populations and potentially contributing to genomic divergence. We examined gill transcriptome responses to salinity in wild-caught juveniles from two populations of Sacramento splittail (Pogonichthys macrolepidotus), a species of conservation concern that is endemic to the San Francisco Estuary, USA, and the lower reaches of its tributaries. Recent extreme droughts have led to salinities above the tolerance limits for this species, creating a migration barrier between these populations, which potentially contributed to population divergence. We identified transcripts involved in a conserved response to salinity; however, the more salinity-tolerant San Pablo population had greater transcriptome plasticity (3.6-fold more transcripts responded than the Central Valley population) and a response consistent with gill remodeling after 168 hr of exposure to elevated salinity. The reorganization of the gill in response to changing osmotic gradients is a process critical for acclimation and would facilitate enhanced salinity tolerance. We detected an upregulation of receptors that control the Wnt (wingless-type) cell signaling pathway that may be required for an adaptive response to increases in salinity, patterns not observed in the relatively salinity-sensitive Central Valley population. We detected 62 single nucleotide polymorphisms (SNPs) in coding regions of 26 transcripts that differed between the populations. Eight transcripts that contained SNPs were associated with immune responses, highlighting the importance of diversity in immune gene sequences as a defining characteristic of genomic divergence between these populations. Our data demonstrate that these populations have divergent transcriptomic responses to salinity, which is consistent with observed physiological differences in salinity tolerance.
Collapse
Affiliation(s)
- Ken M. Jeffries
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
- Anatomy, Physiology & Cell Biology, School of Veterinary MedicineUniversity of CaliforniaDavisCalifornia
- Wildlife, Fish & Conservation BiologyUniversity of CaliforniaDavisCalifornia
| | - Richard E. Connon
- Anatomy, Physiology & Cell Biology, School of Veterinary MedicineUniversity of CaliforniaDavisCalifornia
| | - Christine E. Verhille
- Wildlife, Fish & Conservation BiologyUniversity of CaliforniaDavisCalifornia
- Present address:
Department of EcologyMontana State UniversityBozemanMontana
| | - Theresa F. Dabruzzi
- Wildlife, Fish & Conservation BiologyUniversity of CaliforniaDavisCalifornia
- Present address:
Biology DepartmentSaint Anselm CollegeManchesterNew Hampshire
| | - Monica T. Britton
- Bioinformatics Core Facility, Genome CenterUniversity of CaliforniaDavisCalifornia
| | | | - Nann A. Fangue
- Wildlife, Fish & Conservation BiologyUniversity of CaliforniaDavisCalifornia
| |
Collapse
|
15
|
Yi Y, Lv Y, You X, Chen J, Bian C, Huang Y, Xu J, Deng L, Shi Q. High throughput screening of small immune peptides and antimicrobial peptides from the Fish-T1K database. Genomics 2019; 111:215-221. [DOI: 10.1016/j.ygeno.2018.11.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 01/19/2023]
|
16
|
Adaptive Evolution of the Eda Gene and Scales Loss in Schizothoracine Fishes in Response to Uplift of the Tibetan Plateau. Int J Mol Sci 2018; 19:ijms19102953. [PMID: 30262767 PMCID: PMC6213870 DOI: 10.3390/ijms19102953] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 12/16/2022] Open
Abstract
Schizothoracine is the predominant wild fish subfamily of the Tibetan plateau (TP). Their scales, pharyngeal teeth and barbels have gradually regressed with increasing altitude. Schizothoracine have been divided into three groups: primitive, specialized and highly specialized. Ectodysplasin-A (Eda) has been considered as a major gene that contributes to the development of skin appendages. The present study cloned the Eda genes of 51 Schizothoracine fish species which represent the three groups and five Barbinae species. Phylogenetic analyses indicated that Eda may have acted as the genetic trigger for scale loss in the Schizothoracine. Furthermore, 14 single nucleotide polymorphisms (SNPs) and two deletions (18 bp and 6 bp in size), were also detected in the Eda coding sequence of the highly specialized group compared to the primitive group. The same SNPs and two indels result in four non-synonymous and two G-X-Y and 1 XY motif indels, which possibly contribute to significant structure changes in the Eda gene. The domain including (G-X-Y)n motif in the Eda gene is relatively conserved amongst teleosts. Based on the above results, we hypothesize that the evolution of Eda gene might be associated with the scale loss in Schizothoracine fishes in response to the phased uplift of the TP.
Collapse
|
17
|
Gibbons TC, McBryan TL, Schulte PM. Interactive effects of salinity and temperature acclimation on gill morphology and gene expression in threespine stickleback. Comp Biochem Physiol A Mol Integr Physiol 2018; 221:55-62. [DOI: 10.1016/j.cbpa.2018.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 03/16/2018] [Accepted: 03/21/2018] [Indexed: 02/08/2023]
|
18
|
Ye H, Zhang Z, Zhou C, Zhu C, Yang Y, Xiang M, Zhou X, Zhou J, Luo H. De novo assembly of Schizothorax waltoni transcriptome to identify immune-related genes and microsatellite markers. RSC Adv 2018; 8:13945-13953. [PMID: 35539357 PMCID: PMC9079874 DOI: 10.1039/c8ra00619a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 04/09/2018] [Indexed: 11/30/2022] Open
Abstract
Schizothorax waltoni (S. waltoni) is one kind of the subfamily Schizothoracinae and an indigenous economic tetraploid fish to Tibet in China. It is rated as a vulnerable species in the Red List of China's Vertebrates, owing to overexploitation and biological invasion. S. waltoni plays an important role in ecology and local fishery economy, but little information is known about genetic diversity, local adaptation, immune system and so on. Functional gene identification and molecular marker development are the first and essential step for the following biological function and genetics studies. For this purpose, the transcriptome from pooled tissues of three adult S. waltoni was sequenced and analyzed. Using paired-end reads from the Illumina Hiseq4000 platform, 83 103 transcripts with an N50 length of 2337 bp were assembled, which could be further clustered into 66 975 unigenes with an N50 length of 2087 bp. The majority of the unigenes (58 934, 87.99%) were successfully annotated by 7 public databases, and 15 KEGG pathways of immune-related genes were identified for the following functional research. Furthermore, 19 497 putative simple sequence repeats (SSRs) of 1-6 bp unit length were detected from 14 690 unigenes (21.93%) with an average distribution density of 1 : 3.28 kb. We identified 3590 unigenes (5.36%) containing more than one SSR, providing abundant potential polymorphic markers in functional genes. This is the first reported high-throughput transcriptome analysis of S. waltoni, and it would provide valuable genetic resources for the functional genes involved in multiple biological processes, including the immune system, genetic conservation, and molecular marker-assisted breeding of S. waltoni.
Collapse
Affiliation(s)
- Hua Ye
- College of Animal Science, Southwest University Chongqing 402460 China
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing 400175 China
| | - Zhengshi Zhang
- College of Animal Science, Southwest University Chongqing 402460 China
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing 400175 China
| | - Chaowei Zhou
- College of Animal Science, Southwest University Chongqing 402460 China
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing 400175 China
| | - Chengke Zhu
- College of Animal Science, Southwest University Chongqing 402460 China
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing 400175 China
| | - Yuejing Yang
- College of Animal Science, Southwest University Chongqing 402460 China
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing 400175 China
| | - Mengbin Xiang
- College of Animal Science, Southwest University Chongqing 402460 China
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing 400175 China
| | - Xinghua Zhou
- College of Animal Science, Southwest University Chongqing 402460 China
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing 400175 China
| | - Jian Zhou
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences Chengdu 611731 China
| | - Hui Luo
- College of Animal Science, Southwest University Chongqing 402460 China
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing 400175 China
| |
Collapse
|
19
|
Connon RE, Jeffries KM, Komoroske LM, Todgham AE, Fangue NA. The utility of transcriptomics in fish conservation. ACTA ACUST UNITED AC 2018; 221:221/2/jeb148833. [PMID: 29378879 DOI: 10.1242/jeb.148833] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There is growing recognition of the need to understand the mechanisms underlying organismal resilience (i.e. tolerance, acclimatization) to environmental change to support the conservation management of sensitive and economically important species. Here, we discuss how functional genomics can be used in conservation biology to provide a cellular-level understanding of organismal responses to environmental conditions. In particular, the integration of transcriptomics with physiological and ecological research is increasingly playing an important role in identifying functional physiological thresholds predictive of compensatory responses and detrimental outcomes, transforming the way we can study issues in conservation biology. Notably, with technological advances in RNA sequencing, transcriptome-wide approaches can now be applied to species where no prior genomic sequence information is available to develop species-specific tools and investigate sublethal impacts that can contribute to population declines over generations and undermine prospects for long-term conservation success. Here, we examine the use of transcriptomics as a means of determining organismal responses to environmental stressors and use key study examples of conservation concern in fishes to highlight the added value of transcriptome-wide data to the identification of functional response pathways. Finally, we discuss the gaps between the core science and policy frameworks and how thresholds identified through transcriptomic evaluations provide evidence that can be more readily used by resource managers.
Collapse
Affiliation(s)
- Richard E Connon
- Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Ken M Jeffries
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, Canada R3T 2N2
| | - Lisa M Komoroske
- Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA 92037, USA.,Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Anne E Todgham
- Department of Animal Science, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Nann A Fangue
- Wildlife, Fish & Conservation Biology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
20
|
Tong C, Tian F, Zhao K. Genomic signature of highland adaptation in fish: a case study in Tibetan Schizothoracinae species. BMC Genomics 2017; 18:948. [PMID: 29207953 PMCID: PMC5718033 DOI: 10.1186/s12864-017-4352-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 11/28/2017] [Indexed: 12/13/2022] Open
Abstract
Background Genome-wide studies on highland adaptation mechanism in terrestrial animal have been widely reported with few available for aquatic animals. Tibetan Schizothoracinae species are ideal model systems to study speciation and adaptation of fish. The Schizothoracine fish, Gymnocypris przewalskii ganzihonensis had underwent the ecological niche shift from salt water to freshwater, and also experienced a recent split from Gymnocypris przewalskii przewalskii. In addition, G. p. ganzihonensis inhabited harsh aquatic environment including low temperature and hypoxia as well as other Schizothoracinae species, its genetic mechanism of highland adaptation have yet to be determined. Results Our study used comparative genomic analysis based on the transcriptomic data of G. p. ganzihonensis and other four fish genome datasets to investigate the genetic basis of highland adaptation in Schizothoracine fish. We found that Schizothoracine fish lineage on the terminal branch had an elevated dN/dS ratio than its ancestral branch. A total of 202 gene ontology (GO) categories involved into transport, energy metabolism and immune response had accelerated evolutionary rates than zebrafish. Interestingly, we also identified 162 genes showing signature of positive selection (PSG) involved into energy metabolism, transport and immune response in G. p. ganzihonesis. While, we failed to find any PSG related to hypoxia response as previous studies. Conclusions Comparative genomic analysis based on G. p. ganzihonensis transcriptome data revealed significant genomic signature of accelerated evolution ongoing within Tibetan Schizothoracinae species lineage. Molecular evolution analysis suggested that genes involved in energy metabolism, transport and immune response functions in Schizothoracine fish underwent positive selection, especially in innate immunity including toll-like receptor signaling pathway genes. Taken together, our result as a case study in Schizothoracinae species provides novel insights in understanding the aquatic animal adaptation to extreme environment on the Tibetan Plateau, and also provides valuable genomic resource for further functional verification studies. Electronic supplementary material The online version of this article (10.1186/s12864-017-4352-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chao Tong
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Key Laboratory of Animal Ecological Genomics, Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104-6018, USA.
| | - Fei Tian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Key Laboratory of Animal Ecological Genomics, Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China
| | - Kai Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Key Laboratory of Animal Ecological Genomics, Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China.
| |
Collapse
|
21
|
Zhang QL, Zhang L, Yang XZ, Wang XT, Li XP, Wang J, Chen JY, Yuan ML. Comparative transcriptomic analysis of Tibetan Gynaephora to explore the genetic basis of insect adaptation to divergent altitude environments. Sci Rep 2017; 7:16972. [PMID: 29208990 PMCID: PMC5717227 DOI: 10.1038/s41598-017-17051-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 11/21/2017] [Indexed: 01/01/2023] Open
Abstract
Adaptation of insects to different altitudes remain largely unknown, especially those endemic to the Tibetan Plateau (TP). Here, we generated the transcriptomes of Gynaephora menyuanensis and G. alpherakii, inhabiting different high altitudes on the TP, and used these and the previously available transcriptomic and genomic sequences from low-altitude insects to explore potential genetic basis for divergent high-altitude adaptation in Gynaephora. An analysis of 5,869 orthologous genes among Gynaephora and other three low-altitude insects uncovered that fast-evolving genes and positively selected genes (PSGs) in the two Gynaephora species were enriched in energy metabolism and hypoxia response categories (e.g. mitochondrion, oxidation-reduction process, and response to oxidative stress). Particularly, mTOR signaling pathway involving hypoxia was enriched by PSGs, indicating this well-known pathway in mammal hypoxia adaptation may be an important signaling system in Gynaephora. Furthermore, some PSGs were associated with response to hypoxia (e.g. cytochrome proteins), cold (e.g. dehydrogenase) and DNA repair (e.g. DNA repair proteins). Interestingly, several insect-specific genes that were associated with exoskeleton and cuticle development (e.g. chitinase and ecdysteroids) had experienced positive selection, suggesting the specific adaptive mechanisms in insects. This study is favourable for understanding the adaptive evolution of Gynaephora and even TP insects to divergent altitudes.
Collapse
Affiliation(s)
- Qi-Lin Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730020, China.,Evo-devo Institute, School of Life Science, Nanjing University, Nanjing 210023, China; Nanjing Institute of Geology and Paleontology, Nanjing, 210008, China
| | - Li Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730020, China.,Key Laboratory of Grassland Livestock Industry Innovation, Ministry of, Agriculture, China
| | - Xing-Zhuo Yang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730020, China.,Key Laboratory of Grassland Livestock Industry Innovation, Ministry of, Agriculture, China
| | - Xiao-Tong Wang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Xiao-Peng Li
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Juan Wang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Jun-Yuan Chen
- Evo-devo Institute, School of Life Science, Nanjing University, Nanjing 210023, China; Nanjing Institute of Geology and Paleontology, Nanjing, 210008, China.
| | - Ming-Long Yuan
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730020, China. .,Key Laboratory of Grassland Livestock Industry Innovation, Ministry of, Agriculture, China.
| |
Collapse
|
22
|
Integrated mRNA and microRNA transcriptome analyses reveal regulation of thermal acclimation in Gymnocypris przewalskii: A case study in Tibetan Schizothoracine fish. PLoS One 2017; 12:e0186433. [PMID: 29045433 PMCID: PMC5646821 DOI: 10.1371/journal.pone.0186433] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/29/2017] [Indexed: 11/19/2022] Open
Abstract
Environmental acclimation is important episode in wildlife occupation of the high-altitude Tibetan Plateau (TP). Transcriptome-wide studies on thermal acclimation mechanism in fish species are rarely revealed in Tibetan Plateau fish at high altitude. Thus, we used mRNA and miRNA transcriptome sequencing to investigate regulation of thermal acclimation in larval Tibetan naked carp, Gymnocypris przewalskii. We first remodeled the regulation network of mRNA and miRNA in thermal acclimation, and then identified differential expression of miRNAs and target mRNAs enriched in metabolic and digestive pathways. Interestingly, we identified two candidate genes contributed to normal skeletal development. The altered expression of these gene groups could potentially be associated with the developmental issues of deformity and induced larval death. Our results have three important implications: first, these findings provide strong evidences to support our hypothesis that G. przewalskii possess ability to build heat-tolerance against the controversial issue. Second, this study shows that transcriptional and post-transcriptional regulations are extensively involved in thermal acclimation. Third, the integrated mRNA and microRNA transcriptome analyses provide a large number of valuable genetic resources for future studies on environmental stress response in G. przewalskii and as a case study in Tibetan Schizothoracine fish.
Collapse
|
23
|
Petit J, David L, Dirks R, Wiegertjes GF. Genomic and transcriptomic approaches to study immunology in cyprinids: What is next? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 75:48-62. [PMID: 28257855 DOI: 10.1016/j.dci.2017.02.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 02/24/2017] [Accepted: 02/26/2017] [Indexed: 06/06/2023]
Abstract
Accelerated by the introduction of Next-Generation Sequencing (NGS), a number of genomes of cyprinid fish species have been drafted, leading to a highly valuable collective resource of comparative genome information on cyprinids (Cyprinidae). In addition, NGS-based transcriptome analyses of different developmental stages, organs, or cell types, increasingly contribute to the understanding of complex physiological processes, including immune responses. Cyprinids are a highly interesting family because they comprise one of the most-diversified families of teleosts and because of their variation in ploidy level, with diploid, triploid, tetraploid, hexaploid and sometimes even octoploid species. The wealth of data obtained from NGS technologies provides both challenges and opportunities for immunological research, which will be discussed here. Correct interpretation of ploidy effects on immune responses requires knowledge of the degree of functional divergence between duplicated genes, which can differ even between closely-related cyprinid fish species. We summarize NGS-based progress in analysing immune responses and discuss the importance of respecting the presence of (multiple) duplicated gene sequences when performing transcriptome analyses for detailed understanding of complex physiological processes. Progressively, advances in NGS technology are providing workable methods to further elucidate the implications of gene duplication events and functional divergence of duplicates genes and proteins involved in immune responses in cyprinids. We conclude with discussing how future applications of NGS technologies and analysis methods could enhance immunological research and understanding.
Collapse
Affiliation(s)
- Jules Petit
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, PO Box 338, 6700 AH, Wageningen, The Netherlands
| | - Lior David
- Department of Animal Sciences, R. H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Ron Dirks
- ZF-screens B.V., J.H, Oortweg 19, 2333 CH, Leiden, The Netherlands
| | - Geert F Wiegertjes
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, PO Box 338, 6700 AH, Wageningen, The Netherlands.
| |
Collapse
|
24
|
Oomen RA, Hutchings JA. Transcriptomic responses to environmental change in fishes: Insights from RNA sequencing. Facets (Ott) 2017. [DOI: 10.1139/facets-2017-0015] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The need to better understand how plasticity and evolution affect organismal responses to environmental variability is paramount in the face of global climate change. The potential for using RNA sequencing (RNA-seq) to study complex responses by non-model organisms to the environment is evident in a rapidly growing body of literature. This is particularly true of fishes for which research has been motivated by their ecological importance, socioeconomic value, and increased use as model species for medical and genetic research. Here, we review studies that have used RNA-seq to study transcriptomic responses to continuous abiotic variables to which fishes have likely evolved a response and that are predicted to be affected by climate change (e.g., salinity, temperature, dissolved oxygen concentration, and pH). Field and laboratory experiments demonstrate the potential for individuals to respond plastically to short- and long-term environmental stress and reveal molecular mechanisms underlying developmental and transgenerational plasticity, as well as adaptation to different environmental regimes. We discuss experimental, analytical, and conceptual issues that have arisen from this work and suggest avenues for future study.
Collapse
Affiliation(s)
- Rebekah A. Oomen
- Department of Biology, Dalhousie University, Halifax, NS B3H 4J1, Canada
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0371 Oslo, Norway
- Institute of Marine Research, Flødevigen Research Station, 4817 His, Norway
| | - Jeffrey A. Hutchings
- Department of Biology, Dalhousie University, Halifax, NS B3H 4J1, Canada
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0371 Oslo, Norway
- Institute of Marine Research, Flødevigen Research Station, 4817 His, Norway
- Department of Natural Sciences, University of Agder, 4604 Kristiansand, Norway
| |
Collapse
|
25
|
Chi W, Ma X, Niu J, Zou M. Genome-wide identification of genes probably relevant to the adaptation of schizothoracins (Teleostei: Cypriniformes) to the uplift of the Qinghai-Tibet Plateau. BMC Genomics 2017; 18:310. [PMID: 28427344 PMCID: PMC5397779 DOI: 10.1186/s12864-017-3703-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 04/12/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Molecular adaptation to the severe environments present during the uplift of the Qinghai-Tibet Plateau has attracted the attention of researchers. The divergence of the three specialization groups of schizothoracins (Primitive, Specialized and Highly Specialized) may correspond to the three phases of plateau uplift. Based on the transcripts of representative species of the three specialized groups and an outgroup, genes in schizothoracins that may have played important roles during the adaptation to new environments were investigated. RESULTS The contigs of Gymnodiptychus dybowskii and Schizothorax pseudaksaiensis were compared with those of Gymnocypris przewalskii ganzihonensis and the outgroup Sinocyclocheilus angustiporus, and 5,894 ortholog groups with an alignment length longer than 90 nt after deleting gaps were retained. Evolutionary analyses indicated that the average evolutionary rate of the branch leading to the Specialized group was faster than that of the branch leading to the Highly Specialized group. Moreover, the numbers of gene categories in which more than half of the genes evolved faster than the average values of the genome were 117 and 15 along the branches leading to the Specialized and Highly Specialized groups, respectively. A total of 40, 36, and 55 genes were likely subject to positive selection along the branches leading to the Primitive, Specialized and Highly Specialized groups, respectively, and many of these genes are likely relevant to adaptation to the cold temperatures, low oxygen concentrations, and strong ultraviolet radiation that result from elevation. CONCLUSIONS By selecting representative species of the three groups of schizothoracins and applying next-generation sequencing technology, several candidate genes corresponding to adaptation to the three phases of plateau uplift were identified. Some of the genes identified in this report that were likely subject to positive selection are good candidates for subsequent evolutionary and functional analyses of adaptation to high altitude.
Collapse
Affiliation(s)
- Wei Chi
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, China
| | - Xufa Ma
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, China
| | - Jiangong Niu
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Fisheries Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Ming Zou
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, China
| |
Collapse
|
26
|
Tong C, Tian F, Zhang C, Zhao K. The microRNA repertoire of Tibetan naked carp Gymnocypris przewalskii: A case study in Schizothoracinae fish on the Tibetan Plateau. PLoS One 2017; 12:e0174534. [PMID: 28358922 PMCID: PMC5373569 DOI: 10.1371/journal.pone.0174534] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/11/2017] [Indexed: 12/12/2022] Open
Abstract
Tibetan naked carp Gymnocypris przewalskii is an ideal model system to study highland adaptation of fish, because it evolved specific genetic and phenotypic characteristics to adapt to chronic cold and alkaline environments in Lake Qinghai. MicroRNAs (miRNAs) are small noncoding RNAs that regulating gene expression post-transcriptionally in a wide range of biological processes. In this study, we focus on the role of miRNAs in adaptation of G. przewalskii to extreme conditions in Lake Qinghai. We generate the first miRNAome of G. przewalskii in Schizothoracinae fish. Using several genomic resources, we inferred 341 conserved miRNAs belonged to 152 miRNA families and 43 novel miRNAs in G. przewalskii, and also identified 15 teleost-specific miRNAs. Using a large scale of conserved miRNAs, we constructed a high-confidence phylogenetic tree between teleost and mammals than mitochondria and nuclear genes. In addition, we found that several miRNA family (e.g. miR-10 and let-7) members highly expressed in G. przewalskii, which may function in multiple biological processes. Finally, we predicted a total of 34,258 miRNA targets genes. Conserved miRNAs target genes participating in signal transduction, cell differentiation and biosynthetic process, and showed signature of functional constraint. While novel miRNAs in a species displayed species-specific targets and involved in ion binding, transport and oxidoreductase activity, may affect the expression patterns of targets with signature of gene family expansion or positive selection under extreme environment. Taken together, this study demonstrated that miRNAs may involve into roles of adaptation of G. przewalskii to highland aquatic environment, and also provide insights into miRNA regulatory network in Schizothoracinae fish as a case study.
Collapse
Affiliation(s)
- Chao Tong
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Tian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Cunfang Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Kai Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| |
Collapse
|
27
|
Gibbons TC, Metzger DCH, Healy TM, Schulte PM. Gene expression plasticity in response to salinity acclimation in threespine stickleback ecotypes from different salinity habitats. Mol Ecol 2017; 26:2711-2725. [DOI: 10.1111/mec.14065] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Taylor C. Gibbons
- Biodiversity Research Centre and Department of Zoology; University of British Columbia; 6270 University Blvd Vancouver BC V6T 1Z4 Canada
| | - David C. H. Metzger
- Biodiversity Research Centre and Department of Zoology; University of British Columbia; 6270 University Blvd Vancouver BC V6T 1Z4 Canada
| | - Timothy M. Healy
- Biodiversity Research Centre and Department of Zoology; University of British Columbia; 6270 University Blvd Vancouver BC V6T 1Z4 Canada
| | - Patricia M. Schulte
- Biodiversity Research Centre and Department of Zoology; University of British Columbia; 6270 University Blvd Vancouver BC V6T 1Z4 Canada
| |
Collapse
|
28
|
Tong C, Fei T, Zhang C, Zhao K. Comprehensive transcriptomic analysis of Tibetan Schizothoracinae fish Gymnocypris przewalskii reveals how it adapts to a high altitude aquatic life. BMC Evol Biol 2017; 17:74. [PMID: 28274203 PMCID: PMC5343388 DOI: 10.1186/s12862-017-0925-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/23/2017] [Indexed: 11/13/2022] Open
Abstract
Background Understanding the genetic basis of adaptation to high altitude life is of paramount importance for preserving and managing genetic diversity in highland animals. This objective has been addressed mainly in terrestrial fauna but rarely in aquatic animals. Tibetan Schizothoracinae fish is the ideal model system in evolutionary biology, carrying key insights into evolutionary genetics of speciation and adaptation at high altitude. Gymnocypris przewalskii is the newly formed Schizothoracinae fish species in the Tibetan Plateau, inhabits chronic cold, extreme saline and alkaline aquatic environment in Lake Qinghai, thus evolving the unique genomic signatures to adapt extremely severe environments. Results To characterize its genomic features, we assembled de novo transcriptome of G. przewalskii from Lake Qinghai. Intriguingly, by comparative genomic analyses of G. przewalskii and 8 other fish species, we identified potential expansions in gene families related to energy metabolism, transport and developmental functions, possibly underlying the adaptation to these environmental stresses. Through comprehensive molecular evolution analyses, we found that sets of genes controlling mitochondrion, ion homoeostasis, acid-base balance and innate immunity show significant signals of positive selection. Compared to previous studies on highland fishes, we failed to identify any positively selected genes related to hypoxia response. Conclusions Our findings provide comprehensive insights into the genetic basis of teleost fish that underlie their adaptation to extreme high altitude aquatic life on the Tibetan Plateau. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0925-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chao Tong
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China.,Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China.,Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tian Fei
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China.,Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China.,Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China
| | - Cunfang Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China.,Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China.,Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China
| | - Kai Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China. .,Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China. .,Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China.
| |
Collapse
|
29
|
Li Y, Ludwig A, Peng Z. Geographical differentiation of the Euchiloglanis fish complex (Teleostei: Siluriformes) in the Hengduan Mountain Region, China: Phylogeographic evidence of altered drainage patterns. Ecol Evol 2017; 7:928-940. [PMID: 28168029 PMCID: PMC5288251 DOI: 10.1002/ece3.2715] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/15/2016] [Accepted: 12/17/2016] [Indexed: 01/24/2023] Open
Abstract
The uplift of the Tibetan Plateau caused significant ecogeographical changes that had a major impact on the exchange and isolation of regional fauna and flora. Furthermore, Pleistocene glacial oscillations were linked to temporal large‐scale landmass and drainage system reconfigurations near the Hengduan Mountain Region and might have facilitated speciation and promoted biodiversity in southwestern China. However, strong biotic evidence supporting this role is lacking. Here, we use the Euchiloglanis fish species complex as a model to demonstrate the compound effects of the Tibetan Plateau uplift and Pleistocene glacial oscillations on species formation in this region. The genetic structure and geographical differentiation of the Euchiloglanis complex in four river systems within the Hengduan Mountain Region were deduced using the cytochrome b (cyt b) gene and 10 microsatellite loci from 360 to 192 individuals, respectively. The results indicated that the populations were divided into four independently evolving lineages, in which the populations from the Qingyi River and Jinsha River formed two sub‐lineages. Phylogenetic relationships were structured by geographical isolation, especially near drainage systems. Divergence time estimation analyses showed that the Euchiloglanis complex diverged from its sister clade Pareuchiloglanis sinensis at around 1.3 Million years ago (Ma). Within the Euchiloglanis complex, the divergence time between the Dadu–Yalong and Jinsha–Qingyi River populations occurred at 1.0 Ma. This divergence time was in concordance with recent geological events, including the Kun‐Huang Movement (1.2–0.6 Ma) and the lag time (<2.0 Ma) of river incision in the Hengduan Mountain Region. Population expansion signals were detected from mismatched distribution analyses, and the expansion times were concurrent with Pleistocene glacier fluctuations. Therefore, current phylogeographic patterns of the Euchiloglanis fish complex in the Hengduan Mountain Region were influenced by the uplift event of the Tibetan Plateau and were subsequently altered by paleo‐river transitions during the late Pleistocene glacial oscillations.
Collapse
Affiliation(s)
- Yanping Li
- The Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education) Southwest University School of Life Sciences Chongqing China
| | - Arne Ludwig
- Department of Evolutionary Genetics Institute for Zoo and Wildlife Research Berlin Germany
| | - Zuogang Peng
- The Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education) Southwest University School of Life Sciences Chongqing China
| |
Collapse
|
30
|
van de Pol I, Flik G, Gorissen M. Comparative Physiology of Energy Metabolism: Fishing for Endocrine Signals in the Early Vertebrate Pool. Front Endocrinol (Lausanne) 2017; 8:36. [PMID: 28303116 PMCID: PMC5332387 DOI: 10.3389/fendo.2017.00036] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/10/2017] [Indexed: 01/23/2023] Open
Abstract
Energy is the common currency of life. To guarantee a homeostatic supply of energy, multiple neuro-endocrine systems have evolved in vertebrates; systems that regulate food intake, metabolism, and distribution of energy. Even subtle (lasting) dysregulation of the delicate balance of energy intake and expenditure may result in severe pathologies. Feeding-related pathologies have fueled research on mammals, including of course the human species. The mechanisms regulating food intake and body mass are well-characterized in these vertebrates. The majority of animal life is ectothermic, only birds and mammals are endotherms. What can we learn from a (comparative) study on energy homeostasis in teleostean fishes, ectotherms, with a very different energy budget and expenditure? We present several adaptation strategies in fish. In recent years, the components that regulate food intake in fishes have been identified. Although there is homology of the major genetic machinery with mammals (i.e., there is a vertebrate blueprint), in many cases this does not imply analogy. Although both mammals and fish must gain their energy from food, the expenditure of the energy obtained is different. Mammals need to spend vast amounts of energy to maintain body temperature; fishes seem to utilize a broader metabolic range to their advantage. In this review, we briefly discuss ecto- and endothermy and their consequences for energy balance. Next, we argue that the evolution of endothermy and its (dis-)advantages may explain very different strategies in endocrine regulation of energy homeostasis among vertebrates. We follow a comparative and evolutionary line of thought: we discuss similarities and differences between fish and mammals. Moreover, given the extraordinary radiation of teleostean fishes (with an estimated number of 33,400 contemporary species, or over 50% of vertebrate life forms), we also compare strategies in energy homeostasis between teleostean species. We present recent developments in the field of (neuro)endocrine regulation of energy balance in teleosts, with a focus on leptin.
Collapse
Affiliation(s)
- Iris van de Pol
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Gert Flik
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
- *Correspondence: Gert Flik,
| | - Marnix Gorissen
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
31
|
Luo H, Xiao S, Ye H, Zhang Z, Lv C, Zheng S, Wang Z, Wang X. Identification of Immune-Related Genes and Development of SSR/SNP Markers from the Spleen Transcriptome of Schizothorax prenanti. PLoS One 2016; 11:e0152572. [PMID: 27019203 PMCID: PMC4809619 DOI: 10.1371/journal.pone.0152572] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 03/16/2016] [Indexed: 12/21/2022] Open
Abstract
Schizothorax prenanti (S. prenanti) is mainly distributed in the upstream regions of the Yangtze River and its tributaries in China. This species is indigenous and commercially important. However, in recent years, wild populations and aquacultures have faced the serious challenges of germplasm variation loss and an increased susceptibility to a range of pathogens. Currently, the genetics and immune mechanisms of S. prenanti are unknown, partly due to a lack of genome and transcriptome information. Here, we sought to identify genes related to immune functions and to identify molecular markers to study the function of these genes and for trait mapping. To this end, the transcriptome from spleen tissues of S. prenanti was analyzed and sequenced. Using paired-end reads from the Illumina Hiseq2500 platform, 48,517 transcripts were isolated from the spleen transcriptome. These transcripts could be clustered into 37,785 unigenes with an N50 length of 2,539 bp. The majority of the unigenes (35,653, 94.4%) were successfully annotated using non-redundant nucleotide sequence analysis (nt), and the non-redundant protein (nr), Swiss-Prot, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. KEGG pathway assignment identified more than 500 immune-related genes. Furthermore, 7,545 putative simple sequence repeats (SSRs), 857,535 single nucleotide polymorphisms (SNPs), and 53,481 insertion/deletion (InDels) were detected from the transcriptome. This is the first reported high-throughput transcriptome analysis of S. prenanti, and it provides valuable genetic resources for the investigation of immune mechanisms, conservation of germplasm, and molecular marker-assisted breeding of S. prenanti.
Collapse
Affiliation(s)
- Hui Luo
- College of Animal Science & Technology, Hunan Agricultural University, Changsha, Hunan, China
- Fisheries Breeding and Healthy Cultivation Research Centre, Southwest University, Chongqing, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, P.R. China, Fisheries College, Jimei University, Xiamen, Fujian, China
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, Hunan, China
| | - Shijun Xiao
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, P.R. China, Fisheries College, Jimei University, Xiamen, Fujian, China
| | - Hua Ye
- Fisheries Breeding and Healthy Cultivation Research Centre, Southwest University, Chongqing, China
| | - Zhengshi Zhang
- Fisheries Breeding and Healthy Cultivation Research Centre, Southwest University, Chongqing, China
| | - Changhuan Lv
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, P.R. China, Fisheries College, Jimei University, Xiamen, Fujian, China
| | - Shuming Zheng
- Fisheries Breeding and Healthy Cultivation Research Centre, Southwest University, Chongqing, China
| | - Zhiyong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, P.R. China, Fisheries College, Jimei University, Xiamen, Fujian, China
| | - Xiaoqing Wang
- College of Animal Science & Technology, Hunan Agricultural University, Changsha, Hunan, China
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, Hunan, China
| |
Collapse
|
32
|
Tong C, Tian F, Tang Y, Feng C, Guan L, Zhang C, Zhao K. Positive Darwinian selection within interferon regulatory factor genes of Gymnocypris przewalskii (Cyprinidae) on the Tibetan Plateau. FISH & SHELLFISH IMMUNOLOGY 2016; 50:34-42. [PMID: 26774494 DOI: 10.1016/j.fsi.2016.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/06/2016] [Accepted: 01/11/2016] [Indexed: 06/05/2023]
Abstract
Tibetan Plateau (TP) had experienced phased uplift, resulting in inhospitable environment of low temperature, hypoxia and high ultraviolet radiation for Tibetan wildlife. Many organisms can well adapt to TP, it is of ecological and evolutionary interest to untangle how organisms adapt to extreme environment on TP through evolution. Previous studies mainly focused on hypoxia and metabolism related genes, but we know little about the evolutionary history of immune genes in Tibetan wildlife. In this study, we first identified 10 interferon regulatory factor (IRF) genes from Tibetan naked carp Gymnocypris przewalskii. Within this gene family, IRF3, IRF5, IRF7 and IRF8 contained positive selection sites. Evidences indicated that positive selection may lead to IRF genes functional alternations, presumably driving genes towards adaptation to the environmental changes. Taken together, our results suggested 4 candidate genes as interesting targets for further experimental confirmation of their functional variations and contributions to high altitude adaptation in Tibet fish.
Collapse
Affiliation(s)
- Chao Tong
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China; Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Tian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China; Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China
| | - Yongtao Tang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China; Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenguang Feng
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China; Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lihong Guan
- Department of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Cunfang Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China; Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China
| | - Kai Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China; Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China.
| |
Collapse
|
33
|
Tong C, Lin Y, Zhang C, Shi J, Qi H, Zhao K. Transcriptome-wide identification, molecular evolution and expression analysis of Toll-like receptor family in a Tibet fish, Gymnocypris przewalskii. FISH & SHELLFISH IMMUNOLOGY 2015; 46:334-345. [PMID: 26102458 DOI: 10.1016/j.fsi.2015.06.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 06/04/2023]
Abstract
Toll-like receptors (TLR) are key components of innate immunity that play significant roles in immune defense against pathogens invasion. Recent frequent outbreaks of the "white spot disease" caused by parasitic infection in farmed Tibetan fishes had resulted in great economic losses. However, to our knowledge, the roles of TLRs in mediating immune response to parasitic infection in Tibetan fishes remain to be determined. Here, we performed data-mining on a widely-farmed Tibetan fish (Gymnocypris przewalskii or Gp) transcriptome to determine the genetic variation and expression pattern of TLRs. We totally obtained 14 GpTLRs and identified 5 with a complete coding sequence. Phylogenetic analysis verified their identities and supported the classification of TLRs into six families as in other vertebrates. The TLR family motifs, such as leucine rich repeat (LRR) and Toll/interleukin (IL)-1 receptor (TIR) domain, are conserved in GpTLR1-5. Selective pressure test demonstrated that all known GpTLRs are under purifying selection, except GpTLR4 underwent positive selection. Further, site model analysis suggested that 11 positively selected sites are found in LRR domain of GpTLR4. Three positively selected sites are located on outside surface of TLR4 3D structure, indicating that function of GpTLR4 may be affected. Tissue specific expression analysis showed all GpTLRs are present in gill, head-kidney and spleen but the relative abundance varied among tissues. In response to parasite Ichthyophthirius multifiliis infection, 5 GpTLR (GpTLR1, -2, -4, -9 and -20) expressions were induced. Intriguingly, GpTLR4 was significantly up-regulated in gills, while GpTLR19 and GpTLR21 unexpectedly showed no any change. In summary, these results revealed the first genomic resources of TLR family and several parasitic infection responsive TLRs in Tibetan fish. These findings provide key information for future studies aiming to understand the molecular mechanisms underlying the immune response to pathogen invasion in Tibetan fishes.
Collapse
Affiliation(s)
- Chao Tong
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China; Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaqiu Lin
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, 610041, China
| | - Cunfang Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China; Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China
| | - Jianquan Shi
- The Rescues Center of Qinghai-Lake Naked Carp, Xining, 810016, China
| | - Hongfang Qi
- The Rescues Center of Qinghai-Lake Naked Carp, Xining, 810016, China
| | - Kai Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China; Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China.
| |
Collapse
|