1
|
Bolaño Losada C, Slaný O, Byrtusová D, Zimmermann B, Horn SJ, Kohler A, Shapaval V. Compatible traits of oleaginous Mucoromycota fungi for lignocellulose-based simultaneous saccharification and fermentation. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:24. [PMID: 39994750 PMCID: PMC11854021 DOI: 10.1186/s13068-025-02621-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/11/2025] [Indexed: 02/26/2025]
Abstract
BACKGROUND Mucoromycota fungi are promising for the production of second-generation biofuel from single-cell oils (SCOs) using lignocellulose biomass. Despite the lack of enzymatic capability for efficiently degrading lignocellulose in Mucoromycota fungi, simultaneous saccharification and fermentation (SSF) offers an attractive solution by combining enzymatic hydrolysis and fermentation in the same procedure. This study explored specific traits of various Mucoromycota species to evaluate their suitability for SSF, due to the frequent and significant gap between the microorganism and enzyme optimal conditions. RESULTS The suitability of nine oleaginous fungal strains from the Mucoromycota phylum for use in lignocellulose-based simultaneous saccharification and fermentation was evaluated. Several traits, such as thermal tolerance, biochemical composition changes in response to incubation temperature, cellobiose and cellulose response and induction of β-glucosidase and endoglucanase, were evaluated. Lichtheimia corymbifera was the most suitable species for SSF due to its ability to grow up to 45 °C, with a consequent decrease in lipid unsaturation, and good uptake of cellobiose with induction of β-glucosidase and endoglucanase expression. The Cunninghamella blackesleeana and Mucor circinelloides strains were also considered good candidates; despite the cultivation should not exceed 35 °C, their good uptake of cellobiose and the expression of extracellular β-glucosidase induced by cellobiose indicated that they could increase the enzymatic hydrolysis efficiency. C. blakesleeana outperformed all the other tested strains in terms of β-glucosidase activity expression. In addition, both endoglucanase and β-glucosidase activities of Rhizopus stolonifer and M. circinelloides were induced by cellobiose. Mortierella alpina and Mortierella hyalina were not considered suitable for simultaneous saccharification and fermentation due to their reduced tolerance to high temperatures and poor response to cellobiose utilization. CONCLUSIONS This study identified beneficial traits of Mucoromycota species for simultaneous saccharification and fermentation using lignocellulose, contributing to an optimal selection for producing lipid-derived second-generation biofuels.
Collapse
Affiliation(s)
- Cristian Bolaño Losada
- Faculty of Science and Technology, Norwegian University of Life Sciences (NMBU), 1433, Ås, Norway.
| | - Ondrej Slaný
- Faculty of Science and Technology, Norwegian University of Life Sciences (NMBU), 1433, Ås, Norway
| | - Dana Byrtusová
- Faculty of Science and Technology, Norwegian University of Life Sciences (NMBU), 1433, Ås, Norway
| | - Boris Zimmermann
- Faculty of Science and Technology, Norwegian University of Life Sciences (NMBU), 1433, Ås, Norway
| | - Svein Jarle Horn
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences (NMBU), 1433, Ås, Norway
| | - Achim Kohler
- Faculty of Science and Technology, Norwegian University of Life Sciences (NMBU), 1433, Ås, Norway
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences (NMBU), 1433, Ås, Norway
| |
Collapse
|
2
|
Şirin PA, Serdar S. Effects of nitrogen starvation on growth and biochemical composition of some microalgae species. Folia Microbiol (Praha) 2024; 69:889-902. [PMID: 38285280 DOI: 10.1007/s12223-024-01136-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/12/2024] [Indexed: 01/30/2024]
Abstract
Nitrogen is one of the most important nutrient sources for the growth of microalgae. We studied the effects of nitrogen starvation on the growth responses, biochemical composition, and fatty acid profile of Dunaliella tertiolecta, Phaeodactylum tricornutum, and Nannochloropsis oculata. The lack of nitrogen caused changes in carbohydrate, protein, lipid, and fatty acid composition in all examined microalgae. The carbohydrate content increased 59% in D. tertiolecta, while the lipid level increased 139% in P. tricornutum under nitrogen stress conditions compared to the control groups. Nitrogen starvation increased the oligosaccharide and polysaccharide contents of D. tertiolecta 4.1-fold and 3.6-fold, respectively. Furthermore, triacylglycerol (TAG) levels in N. oculata and P. tricornutum increased 2.3-fold and 7.4-fold, respectively. The dramatic increase in the amount of TAG is important for the use of these microalgae as raw materials in biodiesel. Nitrogen starvation increased the amounts of oligosaccharides and polysaccharides of D. tertiolecta, while increased eicosapentaenoic acid (EPA) in N. oculata and docosahexaenoic acid (DHA) content in P. tricornutum. The amount of polyunsaturated fatty acids (PUFAs), EPA, DHA, oligosaccharides, and polysaccharides in microalgal species can be increased without using the too costly nitrogen source in the culture conditions, which can reduce the most costly of living feeding.
Collapse
Affiliation(s)
- Pınar Akdoğan Şirin
- Fatsa Faculty of Marine Science, Department of Fisheries Technology Engineering, Ordu University, 52400, Fatsa, Ordu, Turkey.
| | - Serpil Serdar
- Faculty of Fisheries, Department of Aquaculture, Ege University, 35030, Bornova, Izmir, Turkey
| |
Collapse
|
3
|
Novoveská L, Nielsen SL, Eroldoğan OT, Haznedaroglu BZ, Rinkevich B, Fazi S, Robbens J, Vasquez M, Einarsson H. Overview and Challenges of Large-Scale Cultivation of Photosynthetic Microalgae and Cyanobacteria. Mar Drugs 2023; 21:445. [PMID: 37623726 PMCID: PMC10455696 DOI: 10.3390/md21080445] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Microalgae and cyanobacteria are diverse groups of organisms with great potential to benefit societies across the world. These organisms are currently used in food, feed, pharmaceutical and cosmetic industries. In addition, a variety of novel compounds are being isolated. Commercial production of photosynthetic microalgae and cyanobacteria requires cultivation on a large scale with high throughput. However, scaling up production from lab-based systems to large-scale systems is a complex and potentially costly endeavor. In this review, we summarise all aspects of large-scale cultivation, including aims of cultivation, species selection, types of cultivation (ponds, photobioreactors, and biofilms), water and nutrient sources, temperature, light and mixing, monitoring, contamination, harvesting strategies, and potential environmental risks. Importantly, we also present practical recommendations and discuss challenges of profitable large-scale systems associated with economical design, effective operation and maintenance, automation, and shortage of experienced phycologists.
Collapse
Affiliation(s)
| | | | - Orhan Tufan Eroldoğan
- Department of Aquaculture, Faculty of Fisheries, Cukurova University, 01330 Adana, Türkiye
| | | | | | - Stefano Fazi
- Water Research Institute, National Research Council of Italy (IRSA-CNR), 00015 Roma, Italy
| | - Johan Robbens
- Flanders Research Institute for Agriculture, Fisheries and Food, 9820 Merelbeke, Belgium
| | - Marlen Vasquez
- Department of Chemical Engineering, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Hjörleifur Einarsson
- Faculty of Natural Resource Sciences, University of Akureyri, 600 Akureyri, Iceland
| |
Collapse
|
4
|
Barbosa MJ, Janssen M, Südfeld C, D'Adamo S, Wijffels RH. Hypes, hopes, and the way forward for microalgal biotechnology. Trends Biotechnol 2023; 41:452-471. [PMID: 36707271 DOI: 10.1016/j.tibtech.2022.12.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/26/2023]
Abstract
The urge for food security and sustainability has advanced the field of microalgal biotechnology. Microalgae are microorganisms able to grow using (sun)light, fertilizers, sugars, CO2, and seawater. They have high potential as a feedstock for food, feed, energy, and chemicals. Microalgae grow faster and have higher areal productivity than plant crops, without competing for agricultural land and with 100% efficiency uptake of fertilizers. In comparison with bacterial, fungal, and yeast single-cell protein production, based on hydrogen or sugar, microalgae show higher land-use efficiency. New insights are provided regarding the potential of microalgae replacing soy protein, fish oil, and palm oil and being used as cell factories in modern industrial biotechnology to produce designer feed, recombinant proteins, biopharmaceuticals, and vaccines.
Collapse
Affiliation(s)
- Maria J Barbosa
- Bioprocess Engineering & AlgaePARC, Wageningen University and Research, PO Box 16, Wageningen, 6700, AA, The Netherlands.
| | - Marcel Janssen
- Bioprocess Engineering & AlgaePARC, Wageningen University and Research, PO Box 16, Wageningen, 6700, AA, The Netherlands
| | - Christian Südfeld
- Bioprocess Engineering & AlgaePARC, Wageningen University and Research, PO Box 16, Wageningen, 6700, AA, The Netherlands
| | - Sarah D'Adamo
- Bioprocess Engineering & AlgaePARC, Wageningen University and Research, PO Box 16, Wageningen, 6700, AA, The Netherlands
| | - Rene H Wijffels
- Bioprocess Engineering & AlgaePARC, Wageningen University and Research, PO Box 16, Wageningen, 6700, AA, The Netherlands; Biosciences and Aquaculture, Nord University, Bodø, N-8049,Norway
| |
Collapse
|
5
|
Satta A, Esquirol L, Ebert BE. Current Metabolic Engineering Strategies for Photosynthetic Bioproduction in Cyanobacteria. Microorganisms 2023; 11:455. [PMID: 36838420 PMCID: PMC9964548 DOI: 10.3390/microorganisms11020455] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Cyanobacteria are photosynthetic microorganisms capable of using solar energy to convert CO2 and H2O into O2 and energy-rich organic compounds, thus enabling sustainable production of a wide range of bio-products. More and more strains of cyanobacteria are identified that show great promise as cell platforms for the generation of bioproducts. However, strain development is still required to optimize their biosynthesis and increase titers for industrial applications. This review describes the most well-known, newest and most promising strains available to the community and gives an overview of current cyanobacterial biotechnology and the latest innovative strategies used for engineering cyanobacteria. We summarize advanced synthetic biology tools for modulating gene expression and their use in metabolic pathway engineering to increase the production of value-added compounds, such as terpenoids, fatty acids and sugars, to provide a go-to source for scientists starting research in cyanobacterial metabolic engineering.
Collapse
Affiliation(s)
- Alessandro Satta
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- Department of Biology, University of Padua, 35100 Padua, Italy
| | - Lygie Esquirol
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Natha, QLD 4111, Australia
| | - Birgitta E. Ebert
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
6
|
DISCOVR strain pipeline screening – Part I: Maximum specific growth rate as a function of temperature and salinity for 38 candidate microalgae for biofuels production. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.102996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Thurn AL, Stock A, Gerwald S, Weuster-Botz D. Simultaneous photoautotrophic production of DHA and EPA by Tisochrysis lutea and Microchloropsis salina in co-culture. BIORESOUR BIOPROCESS 2022; 9:130. [PMID: 38647795 PMCID: PMC10991112 DOI: 10.1186/s40643-022-00612-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
Marine microalgae have received much attention as a sustainable source of the two health beneficial omega-3-fatty acids docosahexaenoic acid (DHA, C22:6) and eicosapentaenoic acid (EPA, C20:5). However, photoautotrophic monocultures of microalgae can only produce either DHA or EPA enriched biomass. An alternative may be the photoautotrophic co-cultivation of Tisochrysis lutea as DHA-producer with Microchloropsis salina for simultaneous EPA production to obtain EPA- and DHA-rich microalgae biomass in a nutritionally balanced ratio. Photoautotrophic co-cultivation processes of T. lutea and M. salina were studied, applying scalable and fully controlled lab-scale gas-lift flat-plate photobioreactors with LED illumination for dynamic climate simulation of a repeated sunny summer day in Australia [day-night cycles of incident light (PAR) and temperature]. Monocultures of both marine microalgae were used as reference batch processes. Differences in the autofluorescence of both microalgae enabled the individual measurement, of cell distributions in co-culture, by flow cytometry. The co-cultivation of T. lutea and M. salina in artificial sea water with an inoculation ratio of 1:3 resulted in a balanced biomass production of both microalgae simultaneously with a DHA:EPA ratio of almost 1:1 (26 mgDHA gCDW-1, and 23 mgEPA gCDW-1, respectively) at harvest after depletion of the initially added fertilizer. Surprisingly, more microalgae biomass was produced within 8 days in co-cultivation with an increase in the cell dry weight (CDW) concentration by 31%, compared to the monocultures with the same amount of light and fertilizer. What is more, DHA-content of the microalgae biomass was enhanced by 33% in the co-culture, whereas EPA-content remained unchanged compared to the monocultures.
Collapse
Affiliation(s)
- Anna-Lena Thurn
- School of Engineering and Design, Chair of Biochemical Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany
| | - Anna Stock
- School of Engineering and Design, Chair of Biochemical Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany
| | - Sebastian Gerwald
- School of Engineering and Design, Chair of Biochemical Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany
| | - Dirk Weuster-Botz
- School of Engineering and Design, Chair of Biochemical Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany.
| |
Collapse
|
8
|
Isolation, identification, and chemical composition analysis of nine microalgal and cyanobacterial species isolated in lagoons of Western Greece. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Guimarães BO, Villarreal-Toribio B, García-Barrera T, Arias-Borrego A, Gremmen P, Wijffels RH, Barbosa MJ, D'Adamo S. Effect of sulphur on selenium accumulation and speciation in Nannochloropsis oceanica. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
10
|
Novel microalgae strains from selected lower Himalayan aquatic habitats as potential sources of green products. PLoS One 2022; 17:e0267788. [PMID: 35536837 PMCID: PMC9089879 DOI: 10.1371/journal.pone.0267788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/16/2022] [Indexed: 12/03/2022] Open
Abstract
Microalgal biomass provides a renewable source of biofuels and other green products. However, in order to realize economically viable microalgal biorefinery, strategic identification and utilization of suitable microalgal feedstock is fundamental. Here, a multi-step suboptimal screening strategy was used to target promising microalgae strains from selected freshwaters of the study area. The resulting strains were found to be affiliated to seven closely-related genera of the family Scenedesmaceae, as revealed by both morphologic and molecular characterization. Following initial screening under upper psychrophilic to optimum mesophilic (irregular temperature of 14.1 to 35.9°C) cultivation conditions, superior strains were chosen for further studies. Further cultivation of the selected strains under moderate to extreme mesophilic cultivation conditions (irregular temperature of 25.7 to 42.2°C), yielded up to 74.12 mgL-1day-1, 19.96 mgL-1day-1, 48.56%, 3.34 μg/mL and 1.20 μg/mL, for biomass productivity, lipid productivity, carbohydrate content, pigments content and carotenoids content respectively. These performances were deemed promising compared with some previous, optimum conditions-based reports. Interestingly, the fatty acids profile and the high carotenoids content of the studied strains revealed possible tolerance to the stress caused by the changing suboptimal cultivation conditions. Overall, strains AY1, CM6, LY2 and KL10 were exceptional and may present sustainable, promising feedstock for utilization in large-scale generation of green products, including biodiesel, bioethanol, pigments and dietary supplements. The findings of this study, which exposed promising, eurythermal strains, would expand the current knowledge on the search for promising microalgae strains capable of performing under the largely uncontrolled large-scale cultivation settings.
Collapse
|
11
|
Microbial pathways for advanced biofuel production. Biochem Soc Trans 2022; 50:987-1001. [PMID: 35411379 PMCID: PMC9162456 DOI: 10.1042/bst20210764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/14/2022] [Accepted: 03/25/2022] [Indexed: 01/16/2023]
Abstract
Decarbonisation of the transport sector is essential to mitigate anthropogenic climate change. Microbial metabolisms are already integral to the production of renewable, sustainable fuels and, building on that foundation, are being re-engineered to generate the advanced biofuels that will maintain mobility of people and goods during the energy transition. This review surveys the range of natural and engineered microbial systems for advanced biofuels production and summarises some of the techno-economic challenges associated with their implementation at industrial scales.
Collapse
|
12
|
Anto S, Premalatha M, Mathimani T. Tertiary amine as an efficient CO 2 switchable solvent for extracting lipids from hypersaline microalgae. CHEMOSPHERE 2022; 288:132442. [PMID: 34606898 DOI: 10.1016/j.chemosphere.2021.132442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/04/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Considering the momentous cost drivers in energy efficient algal biorefinery processes, a green alternative in extracting lipid from microalgae is anticipated. Switchable solvent system using tertiary amines namely DMBA (Dimethylbenzylamine), DMCHA (Dimethylcyclohexylamine), and DIPEA (Diisopropylethylamine) for lipid extraction from wet hypersaline microalgae was investigated in this study. Interestingly, present study showed that at 1:1 (v/v of fresh DMBA solvent: microalgal biomass), and for 1 h extraction time, the lipid yield was 41.9, 26.6, and 33.3% for Chlorella sp. NITT 05, Chlorella sp. NITT 02, and Picochlorum sp. NITT 04, respectively and for recovered DMBA solvent, at 1:1 (v/v) and for 1 h extraction time, the lipid yield was 40.8, 25.97, and 32%, respectively. Similarly, lipid extraction using DMCHA solvent for Chlorella sp. NITT 05, Chlorella sp. NITT 02, and Picochlorum sp. NITT 04 at 1:1 (v/v of solvent: microalgal biomass) and 1 h extraction time showed 34.28, 24.24 and 23.33% lipids, respectively for fresh solvent and 34.01, 24.24 and 23.18% for recovered solvent respectively; while DIPEA was not competent in lipid extraction from three tested microalgae. FAME profile revealed the presence of saturated fatty acids as 43.04%, 40.98%, 38.45% and monounsaturated fatty acids as 28.38%, 27.05%, 23.3% for Chlorella sp. NITT05, Picochlorum sp. NITT04, Chlorella sp. NITT02, respectively. This study attributes Chlorella sp. NITT05 and Picochlorum sp. NITT04 to be ideal algal species for biodiesel production.
Collapse
Affiliation(s)
- Susaimanickam Anto
- Department of Energy and Environment, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| | - M Premalatha
- Department of Energy and Environment, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| | - Thangavel Mathimani
- Department of Energy and Environment, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India.
| |
Collapse
|
13
|
Thomas S, Lengger SK, Bird KE, Allen R, Cunliffe M. Macromolecular composition and substrate range of three marine fungi across major cell types. FEMS MICROBES 2022; 3:xtab019. [PMID: 37332499 PMCID: PMC10117802 DOI: 10.1093/femsmc/xtab019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 11/25/2021] [Indexed: 08/12/2023] Open
Abstract
Marine fungi exist as three major cell types: unicellular yeasts, filamentous hyphae and zoosporic early-diverging forms, such as the Chytridiomycota (chytrids). To begin to understand the ecological and biogeochemical influence of these cell types within the wider context of other plankton groups, cell size and macromolecular composition must be assessed across all three cell types. Using a mass-balance approach to culture, we describe quantitative differences in substrate uptake and subsequent macromolecular distribution in three model marine fungi: the yeast Metschnikowia zobellii, the filamentous Epicoccum nigrum and chytrid Rhizophydium littoreum. We compared these model cell types with select oleaginous phytoplankton of specific biotechnological interest through metanalysis. We hypothesise that fungal cell types will maintain a significantly different macromolecular composition to one another and further represent an alternative grazing material to bacterioplankton and phytoplankton for higher trophic levels. Assessment of carbon substrate range and utilisation using phenotype arrays suggests that marine fungi have a wide substrate range. Fungi also process organic matter to an elevated-lipid macromolecular composition with reduced-protein content. Because of their size and increased lipid composition compared to other plankton groups, we propose that fungi represent a compositionally distinct, energy-rich grazing resource in marine ecosystems. We propose that marine fungi could act as vectors of organic matter transfer across trophic boundaries, and supplement our existing understanding of the microbial loop and carbon transfer in marine ecosystems.
Collapse
Affiliation(s)
- Seth Thomas
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Sabine K Lengger
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Kimberley E Bird
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Ro Allen
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Michael Cunliffe
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| |
Collapse
|
14
|
Aeroterrestrial and Extremophilic Microalgae as Promising Sources for Lipids and Lipid Nanoparticles in Dermal Cosmetics. COSMETICS 2022. [DOI: 10.3390/cosmetics9010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Microscopic prokaryotic and eukaryotic algae (microalgae), which can be effectively grown in mass cultures, are gaining increasing interest in cosmetics. Up to now, the main attention was on aquatic algae, while species from aeroterrestrial and extreme environments remained underestimated. In these habitats, algae accumulate high amounts of some chemical substances or develop specific compounds, which cause them to thrive in inimical conditions. Among such biologically active molecules is a large family of lipids, which are significant constituents in living organisms and valuable ingredients in cosmetic formulations. Therefore, natural sources of lipids are increasingly in demand in the modern cosmetic industry and its innovative technologies. Among novelties in skin care products is the use of lipid nanoparticles as carriers of dermatologically active ingredients, which enhance their penetration and release in the skin strata. This review is an attempt to comprehensively cover the available literature on the high-value lipids from microalgae, which inhabit aeroterrestrial and extreme habitats (AEM). Data on different compounds of 87 species, subspecies and varieties from 53 genera (represented by more than 141 strains) from five phyla are provided and, despite some gaps in the current knowledge, demonstrate the promising potential of AEM as sources of valuable lipids for novel skin care products.
Collapse
|
15
|
Cheregi O, Engelbrektsson J, Andersson MX, Strömberg N, Ekendahl S, Godhe A, Spetea C. Marine microalgae for outdoor biomass production-A laboratory study simulating seasonal light and temperature for the west coast of Sweden. PHYSIOLOGIA PLANTARUM 2021; 173:543-554. [PMID: 33826748 DOI: 10.1111/ppl.13412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
At Nordic latitudes, year-round outdoor cultivation of microalgae is debatable due to seasonal variations in productivity. Shall the same species/strains be used throughout the year, or shall seasonal-adapted ones be used? To elucidate this, a laboratory study was performed where two out of 167 marine microalgal strains were selected for intended cultivation at the west coast of Sweden. The two local strains belong to Nannochloropsis granulata (Ng) and Skeletonema marinoi (Sm142). They were cultivated in photobioreactors and compared in conditions simulating variations in light and temperature of a year divided into three growth seasons (spring, summer and winter). The strains grew similarly well in summer (and also in spring), but Ng produced more biomass (0.225 vs. 0.066 g DW L-1 day-1 ) which was more energy rich (25.0 vs. 16.6 MJ kg-1 DW). In winter, Sm142 grew faster and produced more biomass (0.017 vs. 0.007 g DW L-1 day-1 ), having similar energy to the other seasons. The higher energy of the Ng biomass is attributed to a higher lipid content (40 vs. 16% in summer). The biomass of both strains was richest in proteins (65%) in spring. In all seasons, Sm142 was more effective in removing phosphorus from the cultivation medium (6.58 vs. 4.14 mg L-1 day-1 in summer), whereas Ng was more effective in removing nitrogen only in summer (55.0 vs. 30.8 mg L-1 day-1 ). Our results suggest that, depending on the purpose, either the same or different local species can be cultivated, and are relevant when designing outdoor studies.
Collapse
Affiliation(s)
- Otilia Cheregi
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Johan Engelbrektsson
- Department of Chemistry, Biomaterials and Textiles, RISE Research Institutes of Sweden AB, Gothenburg, Sweden
| | - Mats X Andersson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Niklas Strömberg
- Department of Chemistry, Biomaterials and Textiles, RISE Research Institutes of Sweden AB, Gothenburg, Sweden
| | - Susanne Ekendahl
- Department of Chemistry, Biomaterials and Textiles, RISE Research Institutes of Sweden AB, Gothenburg, Sweden
| | - Anna Godhe
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Cornelia Spetea
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
16
|
Villanova V, Spetea C. Mixotrophy in diatoms: Molecular mechanism and industrial potential. PHYSIOLOGIA PLANTARUM 2021; 173:603-611. [PMID: 34076276 DOI: 10.1111/ppl.13471] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Diatoms are microalgae well known for their high variability and high primary productivity, being responsible for about 20% of the annual global carbon fixation. Moreover, they are interesting as potential feedstocks for the production of biofuels and high-value lipids and carotenoids. Diatoms exhibit trophic flexibility and, under certain conditions, they can grow mixotrophically by combing photosynthesis and respiration. So far, only a few species of diatoms have been tested for their mixotrophic metabolism; in some cases, they produced more biomass and with higher lipid content when grown under this condition. Phaeodactylum tricornutum is the most studied diatom species for its mixotrophic metabolism due to available genome sequence and molecular tools. However, studies in additional species are needed to better understand the conservation of this process in diatoms and its potential in industrial applications. Here, we describe the photosynthetic and respiratory pathways involved in mixotrophy and provide an overview of the trophic variability in diatoms. This review also highlights promising areas of industrial applications for diatoms when cultivated under mixotrophy.
Collapse
Affiliation(s)
- Valeria Villanova
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Cornelia Spetea
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
17
|
Fernandes T, Ferreira A, Cordeiro N. Comparative lipidomic analysis of Chlorella stigmatophora and Hemiselmis cf. andersenii in response to nitrogen-induced changes. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Slocombe SP, Huete-Ortega M, Kapoore RV, Okurowska K, Mair A, Day JG, Stanley MS, Vaidyanathan S. Enabling large-scale production of algal oil in continuous output mode. iScience 2021; 24:102743. [PMID: 34278255 PMCID: PMC8264157 DOI: 10.1016/j.isci.2021.102743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/07/2021] [Accepted: 06/14/2021] [Indexed: 11/08/2022] Open
Abstract
Large-scale algal oil production requires continuous outputs and a trade-off between growth and oil content. Two unrelated marine algae (Nannochloropsis oceanica [CCAP 849/10] and Chlorella vulgaris [CCAP 211/21A]) that showed high oil production under batch culture were studied under controlled semicontinuous cultivation conditions. Three essential attributes maximized oil productivity: (i) downregulation of cell size to maximize light absorption under N limitation; (ii) low nutrient-depletion thresholds to trigger oil induction; (iii) a means of carbohydrate suppression in favor of oil. N. oceanica responded better to input N/P variations and is more suited to continuous oil production. A low N/P ratio was effective in both suppressing carbohydrate and reducing cell size concomitant with oil production. In C. vulgaris, nutrient starvation thresholds for oil were higher and carbohydrate was preferentially induced, which impeded stress-level optimization for oil. These differences, which impact continuous oil production at scale, are driven by species adaptation to specific marine habitats. VIDEO ABSTRACT VIDEO ABSTRACT
Collapse
Affiliation(s)
- Stephen P. Slocombe
- The Scottish Association for Marine Science (SAMS), Scottish Marine Institute, Oban, Argyll PA37 1QA, UK
| | - Maria Huete-Ortega
- Advanced Biomanufacturing Centre, Department of Chemical and Biological Engineering, ChELSI Institute, The University of Sheffield, Sheffield S1 3JD, UK
| | - Rahul Vijay Kapoore
- Advanced Biomanufacturing Centre, Department of Chemical and Biological Engineering, ChELSI Institute, The University of Sheffield, Sheffield S1 3JD, UK
| | - Katarzyna Okurowska
- Advanced Biomanufacturing Centre, Department of Chemical and Biological Engineering, ChELSI Institute, The University of Sheffield, Sheffield S1 3JD, UK
| | - Alison Mair
- The Scottish Association for Marine Science (SAMS), Scottish Marine Institute, Oban, Argyll PA37 1QA, UK
| | - John G. Day
- The Scottish Association for Marine Science (SAMS), Scottish Marine Institute, Oban, Argyll PA37 1QA, UK
| | - Michele S. Stanley
- The Scottish Association for Marine Science (SAMS), Scottish Marine Institute, Oban, Argyll PA37 1QA, UK
| | - Seetharaman Vaidyanathan
- Advanced Biomanufacturing Centre, Department of Chemical and Biological Engineering, ChELSI Institute, The University of Sheffield, Sheffield S1 3JD, UK
| |
Collapse
|
19
|
Large-scale screening of natural genetic resource in the hydrocarbon-producing microalga Botrycoccus braunii identified novel fast-growing strains. Sci Rep 2021; 11:7368. [PMID: 33811231 PMCID: PMC8018972 DOI: 10.1038/s41598-021-86760-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/18/2021] [Indexed: 12/04/2022] Open
Abstract
Algal biofuel research aims to make a renewable, carbon–neutral biofuel by using oil-producing microalgae. The freshwater microalga Botryococcus braunii has received much attention due to its ability to accumulate large amounts of petroleum-like hydrocarbons but suffers from slow growth. We performed a large-scale screening of fast-growing strains with 180 strains isolated from 22 ponds located in a wide geographic range from the tropics to cool-temperate. A fast-growing strain, Showa, which recorded the highest productivities of algal hydrocarbons to date, was used as a benchmark. The initial screening was performed by monitoring optical densities in glass tubes and identified 9 wild strains with faster or equivalent growth rates to Showa. The biomass-based assessments showed that biomass and hydrocarbon productivities of these strains were 12–37% and 11–88% higher than that of Showa, respectively. One strain, OIT-678 established a new record of the fastest growth rate in the race B strains with a doubling time of 1.2 days. The OIT-678 had 36% higher biomass productivity, 34% higher hydrocarbon productivity, and 20% higher biomass density than Showa at the same cultivation conditions, suggesting the potential of the new strain to break the record for the highest productivities of hydrocarbons.
Collapse
|
20
|
Sinetova MA, Sidorov RA, Starikov AY, Voronkov AS, Medvedeva AS, Krivova ZV, Pakholkova MS, Bachin DV, Bedbenov VS, Gabrielyan DA, Zayadan BK, Bolatkhan K, Los DA. Assessment of the Biotechnological Potential of Cyanobacterial and Microalgal Strains from IPPAS Culture Collection. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820070030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Fernandes T, Cordeiro N. Hemiselmis andersenii and Chlorella stigmatophora As New Sources of High-value Compounds: A Lipidomic Approach. JOURNAL OF PHYCOLOGY 2020; 56:1493-1504. [PMID: 32683702 DOI: 10.1111/jpy.13042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
To unlock the potential of Chlorella stigmatophora (Trebouxiophyceae, Chlorophyta) and Hemiselmis andersenii (Cryptophyceae, Cryptophyta) as natural reactors for biotechnological exploitation, their lipophilic extracts were characterized using Fourier Transform Infrared spectroscopy with Attenuated Total Reflectance (FTIR-ATR) and Gas Chromatography-Mass Spectrometry (GC-MS) before and after alkaline hydrolysis. The GC-MS analysis enabled the identification of 62 metabolites-namely fatty acids (27), aliphatic alcohols (17), monoglycerides (7), sterols (4), and other compounds (7). After alkaline hydrolysis, monounsaturated fatty acids increased by as much as 87%, suggesting that the esterified compounds were mainly neutral lipids. Hemiselmis andersenii yielded the highest Σω3/Σω6 ratio (7.26), indicating that it is a good source of ω3 fatty acids, in comparison to C. stigmatophora (Σω3/Σω6 = 1.24). Both microalgae presented significant amounts of aliphatic alcohols (6.81-10.95 mg · g dw-1 ), which are recognized by their cholesterol-lowering properties. The multivariate analysis allowed visualization of the chemical divergence among H. andersenii lipophilic extracts before and after alkaline hydrolysis, as well as species-specific differences. Chlorella stigmatophora showed to be a valuable source of essential fatty acids for nutraceuticals, whereas H. andersenii, due to its high chemical diversity, seems to be suitable for different fields of application.
Collapse
Affiliation(s)
- Tomásia Fernandes
- Faculty of Sciences and Engineering, University of Madeira, Campus Universitário da Penteada, 9020-105, Funchal, Portugal
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208, Matosinhos, Portugal
| | - Nereida Cordeiro
- Faculty of Sciences and Engineering, University of Madeira, Campus Universitário da Penteada, 9020-105, Funchal, Portugal
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208, Matosinhos, Portugal
| |
Collapse
|
22
|
Roberts WR, Downey KM, Ruck EC, Traller JC, Alverson AJ. Improved Reference Genome for Cyclotella cryptica CCMP332, a Model for Cell Wall Morphogenesis, Salinity Adaptation, and Lipid Production in Diatoms (Bacillariophyta). G3 (BETHESDA, MD.) 2020; 10:2965-2974. [PMID: 32709619 PMCID: PMC7466962 DOI: 10.1534/g3.120.401408] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/22/2020] [Indexed: 01/13/2023]
Abstract
The diatom, Cyclotella cryptica, is a well-established model species for physiological studies and biotechnology applications of diatoms. To further facilitate its use as a model diatom, we report an improved reference genome assembly and annotation for C. cryptica strain CCMP332. We used a combination of long- and short-read sequencing to assemble a high-quality and contaminant-free genome. The genome is 171 Mb in size and consists of 662 scaffolds with a scaffold N50 of 494 kb. This represents a 176-fold decrease in scaffold number and 41-fold increase in scaffold N50 compared to the previous assembly. The genome contains 21,250 predicted genes, 75% of which were assigned putative functions. Repetitive DNA comprises 59% of the genome, and an improved classification of repetitive elements indicated that a historically steady accumulation of transposable elements has contributed to the relatively large size of the C. cryptica genome. The high-quality C. cryptica genome will serve as a valuable reference for ecological, genetic, and biotechnology studies of diatoms.
Collapse
Affiliation(s)
- Wade R Roberts
- University of Arkansas, Department of Biological Sciences, Fayetteville, AR 72701
| | - Kala M Downey
- University of Arkansas, Department of Biological Sciences, Fayetteville, AR 72701
| | - Elizabeth C Ruck
- University of Arkansas, Department of Biological Sciences, Fayetteville, AR 72701
| | | | - Andrew J Alverson
- University of Arkansas, Department of Biological Sciences, Fayetteville, AR 72701
| |
Collapse
|
23
|
Murakami H, Kakutani N, Kuroyanagi Y, Iwai M, Hori K, Shimojima M, Ohta H. MYB-like transcription factor NoPSR1 is crucial for membrane lipid remodeling under phosphate starvation in the oleaginous microalga Nannochloropsis oceanica. FEBS Lett 2020; 594:3384-3394. [PMID: 32770739 DOI: 10.1002/1873-3468.13902] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 11/07/2022]
Abstract
Membrane lipid remodeling under phosphate (Pi) limitation, a process that replaces structural membrane phospholipids with nonphosphorus lipids, is a widely observed adaptive response in plants and algae. Here, we identified the transcription factor phosphorus starvation response 1 (NoPSR1) as an indispensable player for regulating membrane lipid conversion during Pi starvation in the microalga Nannochloropsis oceanica. Knocking out NoPSR1 scarcely perturbed membrane lipid composition under Pi-sufficient conditions but significantly impaired dynamic alteration in membrane lipids during Pi starvation. In contrast, the absence of NoPSR1 led to no obvious change in cell proliferation or storage lipid accumulation under either nutrient-sufficient or Pi-deficient conditions. Our results demonstrate a key factor controlling the membrane lipid profile during the Pi starvation response in N. oceanica.
Collapse
Affiliation(s)
- Hiroki Murakami
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Natsue Kakutani
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Yunato Kuroyanagi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Masako Iwai
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Koichi Hori
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Mie Shimojima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Hiroyuki Ohta
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
24
|
Sethi D, Butler TO, Shuhaili F, Vaidyanathan S. Diatoms for Carbon Sequestration and Bio-Based Manufacturing. BIOLOGY 2020; 9:E217. [PMID: 32785088 PMCID: PMC7464044 DOI: 10.3390/biology9080217] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022]
Abstract
Carbon dioxide (CO2) is a major greenhouse gas responsible for climate change. Diatoms, a natural sink of atmospheric CO2, can be cultivated industrially in autotrophic and mixotrophic modes for the purpose of CO2 sequestration. In addition, the metabolic diversity exhibited by this group of photosynthetic organisms provides avenues to redirect the captured carbon into products of value. These include lipids, omega-3 fatty acids, pigments, antioxidants, exopolysaccharides, sulphated polysaccharides, and other valuable metabolites that can be produced in environmentally sustainable bio-manufacturing processes. To realize the potential of diatoms, expansion of our knowledge of carbon supply, CO2 uptake and fixation by these organisms, in conjunction with ways to enhance metabolic routing of the fixed carbon to products of value is required. In this review, current knowledge is explored, with an evaluation of the potential of diatoms for carbon capture and bio-based manufacturing.
Collapse
Affiliation(s)
- Deepak Sethi
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK; (F.S.); (S.V.)
| | - Thomas O. Butler
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK; (F.S.); (S.V.)
| | - Faqih Shuhaili
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK; (F.S.); (S.V.)
- School of Bioprocess Engineering, Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia
| | - Seetharaman Vaidyanathan
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK; (F.S.); (S.V.)
| |
Collapse
|
25
|
Slocombe SP, Zúñiga-Burgos T, Chu L, Wood NJ, Camargo-Valero MA, Baker A. Fixing the Broken Phosphorus Cycle: Wastewater Remediation by Microalgal Polyphosphates. FRONTIERS IN PLANT SCIENCE 2020; 11:982. [PMID: 32695134 PMCID: PMC7339613 DOI: 10.3389/fpls.2020.00982] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/16/2020] [Indexed: 05/06/2023]
Abstract
Phosphorus (P), in the form of phosphate derived from either inorganic (Pi) or organic (Po) forms is an essential macronutrient for all life. P undergoes a biogeochemical cycle within the environment, but anthropogenic redistribution through inefficient agricultural practice and inadequate nutrient recovery at wastewater treatment works have resulted in a sustained transfer of P from rock deposits to land and aquatic environments. Our present and near future supply of P is primarily mined from rock P reserves in a limited number of geographical regions. To help ensure that this resource is adequate for humanity's food security, an energy-efficient means of recovering P from waste and recycling it for agriculture is required. This will also help to address excess discharge to water bodies and the resulting eutrophication. Microalgae possess the advantage of polymeric inorganic polyphosphate (PolyP) storage which can potentially operate simultaneously with remediation of waste nitrogen and phosphorus streams and flue gases (CO2, SOx, and NOx). Having high productivity in photoautotrophic, mixotrophic or heterotrophic growth modes, they can be harnessed in wastewater remediation strategies for biofuel production either directly (biodiesel) or in conjunction with anaerobic digestion (biogas) or dark fermentation (biohydrogen). Regulation of algal P uptake, storage, and mobilization is intertwined with the cellular status of other macronutrients (e.g., nitrogen and sulphur) in addition to the manufacture of other storage products (e.g., carbohydrate and lipids) or macromolecules (e.g., cell wall). A greater understanding of controlling factors in this complex interaction is required to facilitate and improve P control, recovery, and reuse from waste streams. The best understood algal genetic model is Chlamydomonas reinhardtii in terms of utility and shared resources. It also displays mixotrophic growth and advantageously, species of this genus are often found growing in wastewater treatment plants. In this review, we focus primarily on the molecular and genetic aspects of PolyP production or turnover and place this knowledge in the context of wastewater remediation and highlight developments and challenges in this field.
Collapse
Affiliation(s)
- Stephen P. Slocombe
- Centre for Plant Sciences and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Tatiana Zúñiga-Burgos
- Centre for Plant Sciences and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- BioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds, United Kingdom
| | - Lili Chu
- Centre for Plant Sciences and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Nicola J. Wood
- Centre for Plant Sciences and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Centre for Doctoral Training in Bioenergy, School of Chemical and Process Engineering, University of Leeds, Leeds, United Kingdom
| | - Miller Alonso Camargo-Valero
- BioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds, United Kingdom
- Departamento de Ingeniería Química, Universidad Nacional de Colombia, Manizales, Colombia
| | - Alison Baker
- Centre for Plant Sciences and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
26
|
Shukla SP, Kvíderová J, Adamec L, Elster J. Ecophysiological Features of Polar Soil Unicellular Microalgae 1. JOURNAL OF PHYCOLOGY 2020; 56:481-495. [PMID: 31833070 DOI: 10.1111/jpy.12953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Due to their ecological, physiological, and molecular adaptations to low and varying temperatures, as well as varying seasonal irradiances, polar non-marine eukaryotic microalgae could be suitable for low-temperature biotechnology. Adaptations include the synthesis of compounds from different metabolic pathways that protect them against stress. Production of biological compounds and various biotechnological applications, for instance, water treatment technology, are of interest to humans. To select prospective strains for future low-temperature biotechnology in polar regions, temperature and irradiance of growth requirements (Q10 and Ea of 10 polar soil unicellular strains) were evaluated. In terms of temperature, three groups of strains were recognized: (i) cold-preferring where temperature optima ranged between 10.1 and 18.4°C, growth rate 0.252 and 0.344 · d-1 , (ii) cold- and warm-tolerating with optima above 10°C and growth rate 0.162-0.341 · d-1 , and (iii) warm-preferring temperatures above 20°C and growth rate 0.249-0.357 · d-1 . Their light requirements were low. Mean values Q10 for specific growth rate ranged from 0.7 to 3.1. The lowest Ea values were observed on cold-preferring and the highest in the warm-preferring strains. One strain from each temperature group was selected for PN and RD measurements. The PN :RD ratio of the warm-preferring strains was less affected by temperature similarly as Q10 and Ea. For future biotechnological applications, the strains with broad temperature tolerance (i.e., the group of cold- and warm-tolerating and warm-preferring strains) will be most useful.
Collapse
Affiliation(s)
- Satya P Shukla
- Central Institute of Fisheries and Education, Indian Council of Agricultural Research, Panch Marg, Off. Yari Road, Versova, Andheri (west), Mumbai, 400 061, India
- Institute of Botany, Czech Academy of Sciences, Dukelská 135, 379 82, Třeboň, Czech Republic
| | - Jana Kvíderová
- Institute of Botany, Czech Academy of Sciences, Dukelská 135, 379 82, Třeboň, Czech Republic
- Centre for Polar Ecology, Faculty of Science, University of South Bohemia, Na Zlaté Stoce 3, 370 05, České Budějovice, Czech Republic
| | - Lubomír Adamec
- Institute of Botany, Czech Academy of Sciences, Dukelská 135, 379 82, Třeboň, Czech Republic
| | - Josef Elster
- Institute of Botany, Czech Academy of Sciences, Dukelská 135, 379 82, Třeboň, Czech Republic
- Centre for Polar Ecology, Faculty of Science, University of South Bohemia, Na Zlaté Stoce 3, 370 05, České Budějovice, Czech Republic
| |
Collapse
|
27
|
Perez-Boerema A, Klaiman D, Caspy I, Netzer-El SY, Amunts A, Nelson N. Structure of a minimal photosystem I from the green alga Dunaliella salina. NATURE PLANTS 2020; 6:321-327. [PMID: 32123351 DOI: 10.1038/s41477-020-0611-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 01/30/2020] [Indexed: 05/19/2023]
Abstract
Solar energy harnessed by oxygenic photosynthesis supports most of the life forms on Earth. In eukaryotes, photosynthesis occurs in chloroplasts and is achieved by membrane-embedded macromolecular complexes that contain core and peripheral antennae with multiple pigments. The structure of photosystem I (PSI) comprises the core and light-harvesting (LHCI) complexes, which together form PSI-LHCI. Here we determined the structure of PSI-LHCI from the salt-tolerant green alga Dunaliella salina using X-ray crystallography and electron cryo-microscopy. Our results reveal a previously undescribed configuration of the PSI core. It is composed of only 7 subunits, compared with 14-16 subunits in plants and the alga Chlamydomonas reinhardtii, and forms the smallest known PSI. The LHCI is poorly conserved at the sequence level and binds to pigments that form new energy pathways, and the interactions between the individual Lhca1-4 proteins are weakened. Overall, the data indicate the PSI of D. salina represents a different type of the molecular organization that provides important information for reconstructing the plasticity and evolution of PSI.
Collapse
Affiliation(s)
- Annemarie Perez-Boerema
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Klaiman
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ido Caspy
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Sigal Y Netzer-El
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Alexey Amunts
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| | - Nathan Nelson
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
28
|
Penhaul Smith JK, Hughes AD, McEvoy L, Day JG. Tailoring of the biochemical profiles of microalgae by employing mixotrophic cultivation. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2019.100321] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Fernandes T, Martel A, Cordeiro N. Exploring Pavlova pinguis chemical diversity: a potentially novel source of high value compounds. Sci Rep 2020; 10:339. [PMID: 31941962 PMCID: PMC6962392 DOI: 10.1038/s41598-019-57188-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 12/19/2019] [Indexed: 11/09/2022] Open
Abstract
To uncover the potential of Pavlova pinguis J.C. Green as a natural source of value added compounds, its lipophilic extracts were studied before and after alkaline hydrolysis using gas chromatography-mass spectrometry (GC-MS). The GC-MS analysis of the lipophilic extracts showed a wide chemical diversity including 72 compounds distributed by fatty acids (29), sterols (14), fatty alcohols (13) and other lipophilic compounds (16). Fatty acids represented the main class of identified compounds presenting myristic, palmitic, palmitoleic and eicosapentaenoic acids as its main components. Through the ∑ω6/∑ω3 ratio (0.25) and sterol composition it was possible to observe that P. pinguis is a valuable source of ω3 fatty acids and stigmasterol (up to 43% of total sterols). After alkaline hydrolysis, fatty acids and fatty alcohols content increased by 32 and 14% respectively, in contrast to, monoglycerides which decreased by 84%. The long chain alcohols content enables the exploitation of this microalga as a source of these bioactive compounds. Smaller amounts of sugars and other compounds were also detected. The present study is a valuable reference to the metabolite characterization of P. pinguis and shows the potential of this microalga for nutraceutical and pharmaceutical industries.
Collapse
Affiliation(s)
- Tomásia Fernandes
- LB3, Faculty of Sciences and Engineering, University of Madeira, Campus Universitário da Penteada, 9020-105, Funchal, Portugal
| | - Antera Martel
- Banco Español de Algas (BEA), Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Nereida Cordeiro
- LB3, Faculty of Sciences and Engineering, University of Madeira, Campus Universitário da Penteada, 9020-105, Funchal, Portugal. .,CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208, Matosinhos, Portugal.
| |
Collapse
|
30
|
Archer L, Mc Gee D, Paskuliakova A, McCoy GR, Smyth T, Gillespie E, Touzet N. Fatty acid profiling of new Irish microalgal isolates producing the high-value metabolites EPA and DHA. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101671] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Fasciotti M, Souza GHMF, Astarita G, Costa ICR, Monteiro TVC, Teixeira CMLL, Eberlin MN, Sarpal AS. Investigating the Potential of Ion Mobility-Mass Spectrometry for Microalgae Biomass Characterization. Anal Chem 2019; 91:9266-9276. [DOI: 10.1021/acs.analchem.9b02172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Maíra Fasciotti
- National Institute of Metrology, Quality and Technology (INMETRO), Division of Chemical and Thermal Metrology, Laboratory of Organic Analysis, 25250-020, Duque de Caxias, Rio de Janeiro, Brazil
- ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas − UNICAMP, 13083-970 Campinas, São Paulo, Brazil
| | - Gustavo H. M. F. Souza
- MS Applications and Development Laboratory, Waters Corporation, 06455-000 Barueri, São Paulo, Brazil
| | - Giuseppe Astarita
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington DC 20007, United States
| | - Ingrid C. R. Costa
- National Institute of Metrology, Quality and Technology (INMETRO), Division of Chemical and Thermal Metrology, Laboratory of Organic Analysis, 25250-020, Duque de Caxias, Rio de Janeiro, Brazil
| | - Thays. V. C. Monteiro
- National Institute of Metrology, Quality and Technology (INMETRO), Division of Chemical and Thermal Metrology, Laboratory of Organic Analysis, 25250-020, Duque de Caxias, Rio de Janeiro, Brazil
| | - Claudia M. L. L. Teixeira
- Microalgal Biotechnology Laboratory, National Institute of Technology (INT), 20081-312 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos N. Eberlin
- Mackenzie Presbyterian University, School of Engineering, 01302-907 São Paulo, São Paulo, Brazil
| | - Amarijt S. Sarpal
- National Institute of Metrology, Quality and Technology (INMETRO), Division of Chemical and Thermal Metrology, Laboratory of Organic Analysis, 25250-020, Duque de Caxias, Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Nobusawa T, Yamakawa-Ayukawa K, Saito F, Nomura S, Takami A, Ohta H. A homolog of Arabidopsis SDP1 lipase in Nannochloropsis is involved in degradation of de novo-synthesized triacylglycerols in the endoplasmic reticulum. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1185-1193. [PMID: 31152796 DOI: 10.1016/j.bbalip.2019.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/26/2019] [Accepted: 05/25/2019] [Indexed: 01/22/2023]
Abstract
Organisms of the microalgal genus Nannochloropsis produce high levels of triacylglycerols (TAGs), an efficient raw material for biofuels. A complete understanding of the TAG-breakdown pathway is critical for improving the productivity of TAGs to meet future needs. Among a number of lipases annotated as TAG lipase in the genomes of every organism, Arabidopsis SUGAR-DEPENDENT 1 (AtSDP1) lipases are characterized as a type of crucial TAG lipase in plants, similar to ScTgl3-5 in Saccharomyces cerevisiae. Homologs of the AtSDP1 TAG lipases are universally found in the genomes of plants, fungi, and algae. Here we identified two homologs of AtSDP1 TAG lipases in the oleaginous microalga species Nannochloropsis oceanica, NoTGL1 and NoTGL2. We generated single- and double-knockout strains for these lipases by homologous recombination. Whereas overall TAG content in the NoTGL2 single-knockout mutant was identical to that of wild type, the NoTGL1 knockout showed a two-fold increase in TAG content per cell in early log phase under nutrient-sufficient conditions without affecting growth. Homologs of AtSDP1 in S. cerevisiae are localized to the surface of lipid droplets, and AtSDP1 is transported from peroxisomes to the surface of lipid droplets. In contrast, NoTGL1 localized to the endoplasmic reticulum in both Nannochloropsis and yeast. We suggest that homologs of AtSDP1 lipases in Nannochloropsis modulate de novo TAG biosynthesis in the endoplasmic reticulum, unlike the roles of these lipases in other organisms. These results provide important insights into the mechanisms of TAG metabolism catalyzed by homologs of AtSDP1 lipase, which are highly conserved across species.
Collapse
Affiliation(s)
- Takashi Nobusawa
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Kaoru Yamakawa-Ayukawa
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Fumihiko Saito
- Technical Research Center, Mazda Motor Corporation, 3-1, Shinchi, Fuchu-cho, Aki-gun, Hiroshima, 730-8670, Japan
| | - Seiji Nomura
- Technical Research Center, Mazda Motor Corporation, 3-1, Shinchi, Fuchu-cho, Aki-gun, Hiroshima, 730-8670, Japan
| | - Akihide Takami
- Technical Research Center, Mazda Motor Corporation, 3-1, Shinchi, Fuchu-cho, Aki-gun, Hiroshima, 730-8670, Japan
| | - Hiroyuki Ohta
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
33
|
Rezvani S, Kennedy C, Moheimani NR. Techno-economic study of multi-product resource scenarios for Pleurochrysis carterae grown in open ponds in Western Australia. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Cointet E, Wielgosz-Collin G, Méléder V, Gonçalves O. Lipids in benthic diatoms: A new suitable screening procedure. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
A comparative analysis of different extraction solvent systems on the extractability of eicosapentaenoic acid from the marine eustigmatophyte Nannochloropsis oceanica. ALGAL RES 2019. [DOI: 10.1016/j.algal.2018.101387] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Kapoore RV, Huete-Ortega M, Day JG, Okurowska K, Slocombe SP, Stanley MS, Vaidyanathan S. Effects of cryopreservation on viability and functional stability of an industrially relevant alga. Sci Rep 2019; 9:2093. [PMID: 30765863 PMCID: PMC6376116 DOI: 10.1038/s41598-019-38588-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 12/27/2018] [Indexed: 11/28/2022] Open
Abstract
As algal biotechnology develops, there is an increasing requirement to conserve cultures without the cost, time and genetic stability implications of conventional serial transfers, including issues regarding potential loss by failure to regrow, contamination on transfer, mix up and/or errors in the documentation on transfer. Furthermore, it is crucial to ensure both viability and functionality are retained by stored stock-cultures. Low temperature storage, ranging from the use of domestic freezers to storage under liquid nitrogen, is widely being used, but the implication to stability and function rarely investigated. We report for the first time, retention of functionality in the maintenance of master stock-cultures of an industrially relevant, lipid-producing alga, under a variety of cryopreservation regimes. Storage in domestic (-15 °C), or conventional -80 °C freezers was suboptimal, with a rapid reduction in viability observed for samples at -15 °C and a >50% loss of viability, within one month, for samples stored at -80 °C. No reduction in viability occurred at -196 °C. Post-thaw culture functional performance was also influenced by the cryopreservation approach employed. Only samples held at -196 °C responded to nitrogen limitation in terms of growth characteristics and biochemical profiles (lipid production and chlorophyll a) comparable to the untreated control, cultured prior to cryopreservation. These results have important implications in microbial biotechnology, especially for those responsible for the conservation of genetic resources.
Collapse
Affiliation(s)
- Rahul Vijay Kapoore
- Advanced Biomanufacturing Centre, Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, S1 3JD, UK
| | - María Huete-Ortega
- Advanced Biomanufacturing Centre, Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, S1 3JD, UK
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - John G Day
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, PA37 1QA, UK
| | - Katarzyna Okurowska
- Advanced Biomanufacturing Centre, Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, S1 3JD, UK
| | - Stephen P Slocombe
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, PA37 1QA, UK
| | - Michele S Stanley
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, PA37 1QA, UK
| | - Seetharaman Vaidyanathan
- Advanced Biomanufacturing Centre, Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, S1 3JD, UK.
| |
Collapse
|
37
|
Stoyneva-Gärtner M, Uzunov B, Gärtner G, Borisova C, Draganova P, Radkova M, Stoykova P, Atanassov I. Current bioeconomical interest in stramenopilic Eustigmatophyceae: a review. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1573154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Maya Stoyneva-Gärtner
- Department of Botany, Faculty of Biology, Sofia University “St Kliment Ohridski”, Sofia, Bulgaria
| | - Blagoy Uzunov
- Department of Botany, Faculty of Biology, Sofia University “St Kliment Ohridski”, Sofia, Bulgaria
| | - Georg Gärtner
- Institute of Botany, Faculty of Biology, University of Innsbruck, Innsbruck, Austria
| | - Cvetanka Borisova
- Department of Botany, Faculty of Biology, Sofia University “St Kliment Ohridski”, Sofia, Bulgaria
| | - Petya Draganova
- Department of Botany, Faculty of Biology, Sofia University “St Kliment Ohridski”, Sofia, Bulgaria
| | - Mariana Radkova
- Functional Genetics Legumes Group, AgroBioInstitute, Agricultural Academy, Sofia, Bulgaria
| | - Petya Stoykova
- Functional Genetics Legumes Group, AgroBioInstitute, Agricultural Academy, Sofia, Bulgaria
| | - Ivan Atanassov
- Molecular Genetics Group, AgroBioInstitute, Agricultural Academy, Sofia, Bulgaria
| |
Collapse
|
38
|
Yoshitake Y, Ohta H, Shimojima M. Autophagy-Mediated Regulation of Lipid Metabolism and Its Impact on the Growth in Algae and Seed Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:709. [PMID: 31214225 PMCID: PMC6558177 DOI: 10.3389/fpls.2019.00709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/13/2019] [Indexed: 05/08/2023]
Abstract
Under nutrient starvation conditions, algae and seed-plant cells accumulate carbon metabolites such as storage lipids, triacylglycerols (TAGs), and starches. Recent research has suggested the involvement of autophagy in the regulation of carbon metabolites under nutrient starvation. When algae are grown under carbon starvation conditions, such as growth in darkness or in the presence of a photosynthesis inhibitor, lipid droplets are surrounded by phagophores. Indeed, the amount of TAGs in an autophagy-deficient mutant has been found to be greater than that in wild type under nitrogen starvation, and cerulenin, which is one of the inhibitors of fatty acid synthesis, induces autophagy. In land plants, TAGs accumulate predominantly in seeds and etiolated seedlings. These TAGs are degraded in peroxisomes via β-oxidation during germination as a source of carbon for growth without photosynthesis. A global analysis of the role of autophagy in Arabidopsis seedlings under carbon starvation revealed that a lack of autophagy enhances the accumulation of TAGs and fatty acids. In Oryza sativa, autophagy-mediated degradation of TAGs and diacylglycerols has been suggested to be important for pollen development. In this review, we introduce and summarize research findings demonstrating that autophagy affects lipid metabolism and discuss the role of autophagy in membrane and storage-lipid homeostasis, each of which affects the growth and development of seed plants and algae.
Collapse
Affiliation(s)
- Yushi Yoshitake
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Hiroyuki Ohta
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- Open Innovation Platform with Enterprises, Research Institute and Academia (OPERA), Japan Science and Technology Agency, Chiyoda, Japan
| | - Mie Shimojima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- *Correspondence: Mie Shimojima,
| |
Collapse
|
39
|
Abstract
Microalgae have been used commercially since the 1950s and 1960s, particularly in the Far East for human health foods and in the United States for wastewater treatment. Initial attempts to produce bulk chemicals such as biofuels from microalgae were not successful, despite commercially favorable conditions during the 1970s oil crisis. However, research initiatives at this time, many using extremophilic microalgae and cyanobacteria (e.g., Dunaliella and Spirulina), did solve many problems and clearly identified biomass productivity and harvesting as the two main constraints stopping microalgae producing bulk chemicals, such as biofuels, on a large scale. In response to the growing unease around global warming, induced by anthropogenic CO2 emissions, microalgae were again suggested as a carbon neutral process to produce biofuels. This recent phase of microalgae biofuels research can be thought to have started around 2007, when a very highly cited review by Chisti was published. Since 2007, a large body of scientific publications have appeared on all aspects of microalgae biotechnology, but with a clear emphasis on neutral lipid (triacylglycerol) synthesis and the use of neutral lipids as precursors for biodiesel production. In this review, the key research on microalgal biotechnology that took place prior to 2007 will be summarized and then the research trends post 2007 will be examined emphasizing the research into producing biodiesel from microalgae.
Collapse
Affiliation(s)
- D James Gilmour
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
40
|
Soru S, Malavasi V, Caboni P, Concas A, Cao G. Behavior of the extremophile green alga Coccomyxa melkonianii SCCA 048 in terms of lipids production and morphology at different pH values. Extremophiles 2018; 23:79-89. [PMID: 30341564 DOI: 10.1007/s00792-018-1062-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/28/2018] [Indexed: 11/30/2022]
Abstract
The extremophile green alga Coccomyxa melkonianii SCCA 048 was investigated to evaluate its ability to grow in culture media with different pH. Specifically, Coccomyxa melkonianii was sampled in the Rio Irvi river (Sardinia, Italy) which is severely polluted by heavy metals as a result of abandoned mining activities. In this study, the strain was cultivated in growth media where the pH was kept fixed at the values of 4.0, 6.8 and 8.0, respectively. During the investigation, a significant phenotypic plasticity of this strain was observed. The strain grew well in the pH range 4.0-8.0, while the optimal value for its growth was 6.8. Furthermore, maximum lipid contents of about 24 and 22 %wt were achieved at the end of cultivation when using pH 4.0 and 8.0, respectively. Finally, the analysis of fatty acid methyl esters (FAMEs) highlights the presence of suitable amounts of compounds which can be profitably exploited in the food, nutraceutical, and cosmetic industry. This aspect, coupled with the possibility of cultivating Coccomyxa melkonianii under extreme pH conditions in economic open ponds, makes this strain an interesting candidate for several biotechnological applications.
Collapse
Affiliation(s)
- Santina Soru
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124, Cagliari, Italy
| | - Veronica Malavasi
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124, Cagliari, Italy.
| | - Pierluigi Caboni
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy
| | - Alessandro Concas
- Center for Advanced Studies, Research and Development in Sardinia (CRS4), Loc. Piscina Manna, Building 1, Pula, 09010, Cagliari, Italy
| | - Giacomo Cao
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124, Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123, Cagliari, Italy
| |
Collapse
|
41
|
Arnold U, Brück T, De Palmenaer A, Kuse K. Carbon Capture and Sustainable Utilization by Algal Polyacrylonitrile Fiber Production: Process Design, Techno-Economic Analysis, and Climate Related Aspects. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.7b04828] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Uwe Arnold
- AHP GmbH & Co. KG, Karl-Heinrich-Ulrichs-Str. 11, D-10787 Berlin, Germany
| | - Thomas Brück
- Werner Siemens Chair of Synthetic Biotechnology & Director TUM AlgaeTec Center, Department of Chemistry, Technical University of Munich (TUM), Lichtenberg Str. 4, 85748 Garching, Germany
| | - Andreas De Palmenaer
- Institute of Textile Technology, RWTH Aachen University, Otto-Blumenthal-Straße 1, 52074 Aachen, Germany
| | - Kolja Kuse
- TechnoCarbonTechnologies GbR, Oberföhringer Strasse 175 a, D-81925 München, Germany
| |
Collapse
|
42
|
Murakami H, Nobusawa T, Hori K, Shimojima M, Ohta H. Betaine Lipid Is Crucial for Adapting to Low Temperature and Phosphate Deficiency in Nannochloropsis. PLANT PHYSIOLOGY 2018; 177:181-193. [PMID: 29555786 PMCID: PMC5933114 DOI: 10.1104/pp.17.01573] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/21/2018] [Indexed: 05/12/2023]
Abstract
Diacylglyceryl-N,N,N-trimethylhomo-Ser (DGTS) is a nonphosphorous, polar glycerolipid that is regarded as analogous to the phosphatidylcholine in bacteria, fungi, algae, and basal land plants. In some species of algae, including the stramenopile microalga Nannochloropsis oceanica, DGTS contains an abundance of eicosapentaenoic acid (EPA), which is relatively scarce in phosphatidylcholine, implying that DGTS has a unique physiological role. In this study, we addressed the role of DGTS in N. oceanica We identified two DGTS biosynthetic enzymes that have distinct domain configurations compared to previously identified DGTS synthases. Mutants lacking DGTS showed growth retardation under phosphate starvation, demonstrating a pivotal role for DGTS in the adaptation to this condition. Under normal conditions, DGTS deficiency led to an increase in the relative amount of monogalactosyldiacylglycerol, a major plastid membrane lipid with high EPA content, whereas excessive production of DGTS induced by gene overexpression led to a decrease in monogalactosyldiacylglycerol. Meanwhile, lipid analysis of partial phospholipid-deficient mutants revealed a role for phosphatidylcholine and phosphatidylethanolamine in EPA biosynthesis. These results suggest that DGTS and monogalactosyldiacylglycerol may constitute the two major pools of EPA in extraplastidic and plastidic membranes, partially competing to acquire EPA or its precursors derived from phospholipids. The mutant lacking DGTS also displayed impaired growth and a lower proportion of EPA in extraplastidic compartments at low temperatures. Our results indicate that DGTS is involved in the adaptation to low temperatures through a mechanism that is distinct from the DGTS-dependent adaptation to phosphate starvation in N. oceanica.
Collapse
Affiliation(s)
- Hiroki Murakami
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Takashi Nobusawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Koichi Hori
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Mie Shimojima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Hiroyuki Ohta
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| |
Collapse
|
43
|
Huete-Ortega M, Okurowska K, Kapoore RV, Johnson MP, Gilmour DJ, Vaidyanathan S. Effect of ammonium and high light intensity on the accumulation of lipids in Nannochloropsis oceanica (CCAP 849/10) and Phaeodactylum tricornutum (CCAP 1055/1). BIOTECHNOLOGY FOR BIOFUELS 2018; 11:60. [PMID: 29541157 PMCID: PMC5844138 DOI: 10.1186/s13068-018-1061-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/23/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Microalgae accumulate lipids when exposed to stressful conditions such as nutrient limitation that can be used to generate biofuels. Nitrogen limitation or deprivation is a strategy widely employed to elicit this response. However, this strategy is associated with a reduction in the microalgal growth, leading to overall poor lipid productivities. Here, we investigated the combined effect of a reduced source of nitrogen (ammonium) and super-saturating light intensities on the growth and induction of lipid accumulation in two model but diverse microalgal species, Phaeodactylum tricornutum and Nannochloropsis oceanica. We hypothesized that the lower energy cost of assimilating ammonium would allow the organisms to use more reductant power for lipid biosynthesis without compromising growth and that this would be further stimulated by the effect of high light (1000 µmol m-2 s-1) stress. We studied the changes in growth and physiology of both species when grown in culture media that either contained nitrate or ammonium as the nitrogen source, and an additional medium that contained ammonium with tungsten in place of molybdenum and compared this with growth in media without nitrogen. We focused our investigation on the early stages of exposure to the treatments to correspond to events relevant to induction of lipid accumulation in these two species. RESULTS At super-saturating light intensities, lipid productivity in P. tricornutum increased twofold when grown in ammonium compared to nitrogen free medium that increased further when tungsten was present in the medium in place of molybdenum. Conversely, N. oceanica growth and physiology was not compromised by the high light intensities used, and the use of ammonium had a negative effect on the lipid productivity, which was even more marked when tungsten was present. CONCLUSIONS Whilst the use of ammonium and super-saturating light intensities in P. tricornutum was revealed to be a good strategy for increasing lipid biosynthesis, no changes in the lipid productivity of N. oceanica were observed, under these conditions. Both results provide relevant direction for the better design of processes to produce biofuels in microalgae by manipulating growth conditions without the need to subject them to genetic engineering manipulation.
Collapse
Affiliation(s)
- María Huete-Ortega
- Department of Chemical and Biological Engineering, Advanced Biomanufacturing Centre, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, UK
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, UK
| | - Katarzyna Okurowska
- Department of Chemical and Biological Engineering, Advanced Biomanufacturing Centre, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, UK
| | - Rahul Vijay Kapoore
- Department of Chemical and Biological Engineering, Advanced Biomanufacturing Centre, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, UK
| | - Matthew P. Johnson
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - D. James Gilmour
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - Seetharaman Vaidyanathan
- Department of Chemical and Biological Engineering, Advanced Biomanufacturing Centre, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, UK
| |
Collapse
|
44
|
Xiang X, Ozkan A, Chiriboga O, Chotyakul N, Kelly C. Techno-economic analysis of glucosamine and lipid production from marine diatom Cyclotella sp. BIORESOURCE TECHNOLOGY 2017; 244:1480-1488. [PMID: 28579172 DOI: 10.1016/j.biortech.2017.05.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/12/2017] [Accepted: 05/14/2017] [Indexed: 06/07/2023]
Abstract
A techno-economic analysis (TEA) was performed on glucosamine and lipid production from a marine diatom Cyclotella sp. in raceway open pond (RWP) and tubular photobioreactor (PBR) cultivation systems. Two PBR operating schemes were assessed: one to produce high lipid (HL) content, and another to produce high chitin (HC) content. In order to generate 1kg of glucosamine, 9700kg (RWP)/1050kg (PBR HL) freshwater, 40kg CO2, 0.70kg nitrogen, 0.18kg phosphorus, and 1.2kg silicon nutrients are required for algae cultivation with water and nutrient recovery. With a price of $1.5 for lipid as coproduct, the projected selling price of glucosamine were $35/kg, $106/kg and $82/kg for RWP, PBR HL, and PBR HC systems, respectively. Currently, these prices are not competitive with industrial shellfish-derived glucosamine, but can be reduced by technology improvements such as producing food grade lipid, increasing algal productivity or chitin content.
Collapse
Affiliation(s)
- Xuwen Xiang
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331, United States
| | - Altan Ozkan
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331, United States
| | - Omar Chiriboga
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331, United States
| | - Nattaporn Chotyakul
- Food Process Engineering Group, Department of Food Science and Technology, Oregon State University, Corvallis, OR 97331, United States
| | - Christine Kelly
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331, United States.
| |
Collapse
|
45
|
Day JG, Gong Y, Hu Q. Microzooplanktonic grazers – A potentially devastating threat to the commercial success of microalgal mass culture. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.08.024] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
46
|
Novikova IV, Smallwood CR, Gong Y, Hu D, Hendricks L, Evans JE, Bhattarai A, Hess WP, El-Khoury PZ. Multimodal hyperspectral optical microscopy. Chem Phys 2017. [DOI: 10.1016/j.chemphys.2017.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
47
|
Pick U, Avidan O. Triacylglycerol is produced from starch and polar lipids in the green alga Dunaliella tertiolecta. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4939-4950. [PMID: 28992231 PMCID: PMC5853294 DOI: 10.1093/jxb/erx280] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The halotolerant green alga Dunaliella tertiolecta accumulates starch and triacylglycerol (TAG) amounting to 70% and 10-15% of total cellular carbon, respectively, when exposed to nitrogen (N) deprivation. The purpose of this study was to clarify the inter-relationships between the biosynthesis of TAG, starch, and polar lipids (PLs) in this alga. Pulse labeling with [14C]bicarbonate was utilized to label starch and [14C]palmitic acid (PlA) to label lipids. Transfer of 14C into TAG was measured and used to calculate rates of synthesis. About two-thirds of the carbon in TAG originates from starch, and one-third is made de novo by direct CO2 assimilation. The level made from degradation of pre-formed PLs is estimated to be very small. Most of the de novo synthesis involves fatty acid transfer through PLs made during the first day of N deprivation. The results suggest that starch made by photosynthetic carbon assimilation at the early stages of N deprivation is utilized for synthesis of TAG. Trans-acylation from PLs is the second major contributor to TAG biosynthesis. The utilization of starch for TAG biosynthesis may have biotechnological applications to optimize TAG biosynthesis in algae.
Collapse
Affiliation(s)
- Uri Pick
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
- Correspondence:
| | - Omri Avidan
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| |
Collapse
|
48
|
Bioprospecting North Atlantic microalgae with fast growth and high polyunsaturated fatty acid (PUFA) content for microalgae-based technologies. ALGAL RES 2017; 26:392-401. [PMID: 28989862 PMCID: PMC5614095 DOI: 10.1016/j.algal.2017.07.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/13/2017] [Accepted: 07/27/2017] [Indexed: 01/07/2023]
Abstract
Microalgae are considered to be an important and sustainable alternative to fish oil as a source for the polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Due to their health benefits, there is an increasing interest in the commercial application of these fatty acids (FA) to health and dietary products, and to aquaculture feeds. However, FA from microalgae are still expensive to produce compared to fish or plant oils. With only a few microalgal strains being cultivated on a large scale for commercial PUFA production, prospecting for new, robust and fast-growing strains with increased PUFA content is essential in order to reduce production costs. Microalgae from northern high latitudes, exposed to cold temperatures, may be especially promising candidates as previous studies have shown increasing unsaturation of FA in response to decreasing growth temperatures in different microalgae, most likely to maintain membrane fluidity and function. We have designed a screening pipeline, targeting a focused search and selection for marine microalgal strains from extreme North Atlantic locations with high robustness and biomass production, and increased levels of EPA and DHA. The pipeline includes a rational sampling plan, isolation and cultivation of clonal strains, followed by a batch growth experiment designed to obtain information on robustness, growth characteristics, and the FA content of selected isolates during both nutrient replete exponential cultivation and nutrient limited stationary cultivation. A number of clonal cultures (N = 149) have been established, and twenty of these strains have been screened for growth and FA content and composition. Among those strains, three showed growth rates ≥ 0.7 d− 1 at temperatures of 15 °C or below, and high amounts of EPA (> 3% DW), suggesting their potential as candidates for large scale production. Fast growing microalgae with high EPA and DHA levels were prospected in North Atlantic waters. A number of 149 clonal stock cultures were established, mostly represented by diatoms. Three out of 20 strains showed fast growth together with high EPA content. Highest EPA content of 4.6% of dry weight was found in an Arctic diatom. Microalgae from northern high latitudes reveal potential for biotechnological applications.
Collapse
|
49
|
Transcriptional Regulation of Cellulose Biosynthesis during the Early Phase of Nitrogen Deprivation in Nannochloropsis salina. Sci Rep 2017; 7:5264. [PMID: 28706285 PMCID: PMC5509672 DOI: 10.1038/s41598-017-05684-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/01/2017] [Indexed: 12/20/2022] Open
Abstract
Microalgal photosynthesis provides energy and carbon-containing precursors for the biosynthesis of storage carbohydrates such as starch, chrysolaminarin, lipids, and cell wall components. Under mild nitrogen deficiency (N−), some Nannochloropsis species accumulate lipid by augmenting cytosolic fatty acid biosynthesis with a temporary increase in laminarin. Accordingly, biosynthesis of the cellulose-rich cell wall should change in response to N− stress because this biosynthetic pathway begins with utilisation of the hexose phosphate pool supplied from photosynthesis. However, few studies have characterised microalgal cell wall metabolism, including oleaginous Nannochloropsis sp. microalgae subjected to nitrogen deficiency. Here, we investigated N-induced changes in cellulose biosynthesis in N. salina. We observed that N− induced cell wall thickening, concurrently increased the transcript levels of genes coding for UDPG pyrophosphorylase and cellulose synthases, and increased cellulose content. Nannochloropsis salina cells with thickened cell wall were more susceptible to mechanical stress such as bead-beating and sonication, implicating cellulose metabolism as a potential target for cost-effective microalgal cell disruption.
Collapse
|
50
|
Xin X, Huang G, Liu X, An C, Yao Y, Weger H, Zhang P, Chen X. Molecular toxicity of triclosan and carbamazepine to green algae Chlorococcum sp.: A single cell view using synchrotron-based Fourier transform infrared spectromicroscopy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 226:12-20. [PMID: 28399502 DOI: 10.1016/j.envpol.2017.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/03/2017] [Accepted: 04/03/2017] [Indexed: 05/23/2023]
Abstract
Although pharmaceuticals and personal care products have been used and introduced into the environment in large quantities, little information on potential ecological risks is currently available considering their effects on living organisms. We verified the feasibility of using synchrotron-based Fourier Transform Infrared (SR-FTIR) spectromicroscopy to explore in vivo toxic effects on single living Chlorococcum sp. cells. The study provided important information to achieve a better understanding of the toxic mechanism of triclosan and carbamazepine on living algae Chlorococcum sp.. Triclosan and carbamazepine had distinctive toxic effects on unicellular living algae. Most strikingly, triclosan had more dramatic toxic effects on biochemical components than carbamazepine. Triclosan can affect algae primarily by inhibiting fatty acid synthesis and causing protein aggregation. The toxicity response was irreversible at higher concentration (100.000 μM), but attenuated at lower concentration (0.391 μM) as time extended. Carbamazepine can produce hydrophobic interactions to affect the phospholipid bilayer and work on specific proteins to disfunction the cell membrane. Carbamazepine-exposed cells developed a resistance while extending exposure time. This is the first demonstration from an ecological standpoint that SR-FTIR can provide an innovative approach to reveal the toxicity of emerging pollutants in aquatic environments.
Collapse
Affiliation(s)
- Xiaying Xin
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Guohe Huang
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan S4S 0A2, Canada.
| | - Xia Liu
- Canadian Light Source, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - Chunjiang An
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Yao Yao
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Harold Weger
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Peng Zhang
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Xiujuan Chen
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| |
Collapse
|