1
|
Flemming HC, van Hullebusch ED, Little BJ, Neu TR, Nielsen PH, Seviour T, Stoodley P, Wingender J, Wuertz S. Microbial extracellular polymeric substances in the environment, technology and medicine. Nat Rev Microbiol 2025; 23:87-105. [PMID: 39333414 DOI: 10.1038/s41579-024-01098-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2024] [Indexed: 09/29/2024]
Abstract
Microbial biofilms exhibit a self-produced matrix of extracellular polymeric substances (EPS), including polysaccharides, proteins, extracellular DNA and lipids. EPS promote interactions of the biofilm with other cells and sorption of organics, metals and chemical pollutants, and they facilitate cell adhesion at interfaces and ensure matrix cohesion. EPS have roles in various natural environments, such as soils, sediments and marine habitats. In addition, EPS are relevant in technical environments, such as wastewater and drinking water treatment facilities, and water distribution systems, and they contribute to biofouling and microbially influenced corrosion. In medicine, EPS protect pathogens within the biofilm against the host immune system and antimicrobials, and emerging evidence suggests that EPS can represent potential virulence factors. By contrast, EPS yield a wide range of valuable products that include their role in self-repairing concrete. In this Review, we aim to explore EPS as a functional unit of biofilms in the environment, in technology and in medicine.
Collapse
Affiliation(s)
- Hans-Curt Flemming
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore.
- Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, China.
| | | | | | - Thomas R Neu
- Department of River Ecology, Helmholtz Centre for Environmental Research - UFZ, Magdeburg, Germany
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Thomas Seviour
- Aarhus University Centre for Water Technology, Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Paul Stoodley
- Department of Microbial Infection and Immunity and the Department of Orthopaedics, the Ohio State University, Columbus, OH, USA
- National Centre for Advanced Tribology at Southampton (nCATS), National Biofilm Innovation Centre (NBIC), Mechanical Engineering, University of Southampton, Southampton, UK
| | - Jost Wingender
- University of Duisburg-Essen, Faculty of Chemistry, Environmental Microbiology and Biotechnology, Essen, Germany
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
2
|
Yao M, Ren A, Yang X, Chen L, Wang X, van der Meer W, van Loosdrecht MCM, Liu G, Pabst M. Unveiling the influence of heating temperature on biofilm formation in shower hoses through multi-omics. WATER RESEARCH 2024; 268:122704. [PMID: 39481332 DOI: 10.1016/j.watres.2024.122704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
Shower systems provide unique environments that are conducive to biofilm formation and the proliferation of pathogens. The water heating temperature is a delicate decision that can impact microbial growth, balancing safety and energy consumption. This study investigated the impact of different heating temperatures (39 °C, 45 °C, 51 °C and 58 °C) on the shower hose biofilm (exposed to a final water temperature of 39 °C) using controlled full-scale shower setups. Whole metagenome sequencing and metaproteomics were employed to unveil the microbial composition and protein expression profiles. Overall, the genes and enzymes associated with disinfectant resistance and biofilm formation appeared largely unaffected. However, metagenomic analysis revealed a sharp decline in the number of total (86,371 to 34,550) and unique genes (32,279 to 137) with the increase in hot water temperature, indicating a significant reduction of overall microbial complexity. None of the unique proteins were detected in the proteomics experiments, suggesting smaller variation among biofilms on the proteome level compared to genomic data. Furthermore, out of 43 pathogens detected by metagenomics, only 5 could actually be detected by metaproteomics. Most interestingly, our study indicates that 45 °C heating temperature may represent an optimal balance. It minimizes active biomass (ATP) and reduces the presence of pathogens while saving heating energy. Our study offered new insights into the impact of heating temperature on shower hose biofilm formation and proposed optimal parameters that ensure biosafety while conserving energy.
Collapse
Affiliation(s)
- Mingchen Yao
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, China; Sanitary engineering, Department of Water management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, the Netherlands
| | - Anran Ren
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiangyu Yang
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, PR China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Lihua Chen
- Sanitary engineering, Department of Water management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, the Netherlands
| | - Xun Wang
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Walter van der Meer
- Membrane Science and Technology, Faculty of Science and Technology, Twente University, the Netherlands
| | | | - Gang Liu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, China; Sanitary engineering, Department of Water management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, the Netherlands.
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
3
|
Margot C, Rhoads W, Gabrielli M, Olive M, Hammes F. Dynamics of drinking water biofilm formation associated with Legionella spp. colonization. NPJ Biofilms Microbiomes 2024; 10:101. [PMID: 39368992 PMCID: PMC11455961 DOI: 10.1038/s41522-024-00573-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/17/2024] [Indexed: 10/07/2024] Open
Abstract
Understanding how Legionella spp. proliferate in multispecies biofilms is essential to develop strategies to control their presence in building plumbing. Here, we analyzed biofilm formation and Legionella spp. colonization on new plumbing material during 8 weeks. Biofilm formation was characterized by an initial increase in intact cell concentrations up to 9.5 × 105 cells/cm2, followed by a steady decrease. We identified Comamonas, Caulobacter, Schlegella, Blastomonas and Methyloversatilis as pioneer genera in the biofilm formation process. Importantly, L. pneumophila was the dominant Legionella spp. and rapidly colonized the biofilms, with culturable cell concentrations peaking at 3.1 × 104 MPN/cm2 after 4 weeks already. Moreover, several Legionella species co-occurred and had distinct dynamics of biofilm colonization. Vermamoeba vermiformis (V. vermiformis) was the dominant protist identified with 18S rRNA gene amplicon sequencing. Together our results highlight that biofilm formation upon introduction of new building plumbing material is a dynamic process where pathogenic Legionella species can be part of the earliest colonizers.
Collapse
Affiliation(s)
- Céline Margot
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
| | - William Rhoads
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Marco Gabrielli
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Margot Olive
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Frederik Hammes
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.
| |
Collapse
|
4
|
Blair M, Garner E, Ji P, Pruden A. What is the Difference between Conventional Drinking Water, Potable Reuse Water, and Nonpotable Reuse Water? A Microbiome Perspective. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58. [PMID: 39258328 PMCID: PMC11428167 DOI: 10.1021/acs.est.4c04679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024]
Abstract
As water reuse applications expand, there is a need for more comprehensive means to assess water quality. Microbiome analysis could provide the ability to supplement fecal indicators and pathogen profiling toward defining a "healthy" drinking water microbiota while also providing insight into the impact of treatment and distribution. Here, we utilized 16S rRNA gene amplicon sequencing to identify signature features in the composition of microbiota across a wide spectrum of water types (potable conventional, potable reuse, and nonpotable reuse). A clear distinction was found in the composition of microbiota as a function of intended water use (e.g., potable vs nonpotable) across a very broad range of U.S. water systems at both the point of compliance (Betadisper p > 0.01; ANOSIM p < 0.01, r-stat = 0.71) and point of use (Betadisper p > 0.01; ANOSIM p < 0.01, r-stat = 0.41). Core and discriminatory analysis further served in identifying distinct differences between potable and nonpotable water microbiomes. Taxa were identified at both the phylum (Desulfobacterota, Patescibacteria, and Myxococcota) and genus (Aeromonas and NS11.12_marine_group) levels that effectively discriminated between potable and nonpotable waters, with the most discriminatory taxa being core/abundant in nonpotable waters (with few exceptions, such as Ralstonia being abundant in potable conventional waters). The approach and findings open the door to the possibility of microbial community signature profiling as a water quality monitoring approach for assessing efficacy of treatments and suitability of water for intended use/reuse application.
Collapse
Affiliation(s)
- Matthew
F. Blair
- Via
Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Emily Garner
- Wadsworth
Department of Civil and Environmental Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Pan Ji
- Via
Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Amy Pruden
- Via
Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
5
|
Søborg DA, Højris B, Brinkmann K, Pedersen MR, Skovhus TL. Characterizing the development of biofilm in polyethylene pipes in the non-chlorinated Danish drinking-water distribution system. BIOFOULING 2024; 40:262-279. [PMID: 38695072 DOI: 10.1080/08927014.2024.2343839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/11/2024] [Indexed: 06/11/2024]
Abstract
In newly commissioned drinking-water polyethylene (PE) pipes, biofilm develops on the inner pipe surface. The microbial community composition from colonization to the establishment of mature biofilms is less known, including the effect on the distributed water quality. Biofilm development was followed through 1.5 years in PE-pipe side streams at two locations of a full-scale, non-chlorinated drinking-water distribution system (leaving a waterworks versus 5-6 km from a waterworks) along with inlet and outlet water quality. Mature biofilms were established after ∼8-9 months, dominated by Proteobacteria, Actinobacteria and Saccharibacteria (61-93% relative abundance), with a higher diversity (OTUs/Shannon Index/16S rRNA gene amplicon sequencing) in pipes in the far end of the distribution system. Comamonadaceae, and specifically Aquabacterium (>30% of reads), dominated young (∼1.5-month-old) biofilms. Young biofilms were linked to increased microbiological counts in drinking water (HPC/ATP/qPCR), while the establishment of mature biofilms led to a drop in HPC and benefited the water quality, highlighting the importance of optimizing commissioning procedures for rapidly achieving mature and stable biofilms.
Collapse
Affiliation(s)
- Ditte A Søborg
- Research Centre for Built Environment, Climate, Water Technology and Digitalization, VIA University College, Horsens, Denmark
| | - Bo Højris
- Water Application and Technology, GRUNDFOS Holding A/S, Bjerringbro, Denmark
| | | | | | - Torben L Skovhus
- Research Centre for Built Environment, Climate, Water Technology and Digitalization, VIA University College, Horsens, Denmark
| |
Collapse
|
6
|
Ramos P, Honda R, Hoek EMV, Mahendra S. Carbon/nitrogen ratios determine biofilm formation and characteristics in model microbial cultures. CHEMOSPHERE 2023; 313:137628. [PMID: 36565767 DOI: 10.1016/j.chemosphere.2022.137628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
The influence of growth medium water chemistry, specifically carbon/nitrogen (C/N) molar ratios, on the characteristics and development of biofilms of the model microorganism Pseudomonas aeruginosa was investigated. C/N = 9 had a unique effect on biofilm composition as well as quorum sensing (QS) pathways, with higher concentrations of carbohydrates and proteins in the biofilm and a significant upregulation of the QS gene lasI in planktonic cells. The effect of C/N ratio on total attached biomass was negligible. Principal component analysis revealed a different behavior of most outputs such as carbohydrates and QS chemicals at C/N = 9, and pointed to correlations between parameters of biofilm formation and steady state distribution of cells and extracellular components. C/N ratio was also shown to influence organic compound utilization by both planktonic and sessile organisms, with a maximum chemical oxygen demand (COD) removal of 83% achieved by biofilms at C/N = 21. Planktonic cells achieved higher COD removal rates, but greater overall rates after six days occurred in biofilms. The development of a dual-species biofilm of P. aeruginosa and Nitrobacter winogradskyi was also influenced by C/N, with increase in the relative abundance of the slower-growing N. winogradskyi above C/N = 9. These results indicate that altering operational parameters related to C/N would be relevant for mitigating or promoting biofilm formation and function depending on the desired industrial application or treatment configuration.
Collapse
Affiliation(s)
- Pia Ramos
- Department of Civil and Environmental Engineering, University of California Los Angeles, 5732 Boelter Hall, Los Angeles, CA, 90095, USA
| | - Ryo Honda
- Faculty of Geoscience and Civil Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Eric M V Hoek
- Department of Civil and Environmental Engineering, University of California Los Angeles, 5732 Boelter Hall, Los Angeles, CA, 90095, USA; UCLA California NanoSystems Institute, Los Angeles, CA, 90095, USA; UCLA Institute of the Environment & Sustainability, Los Angeles, CA, 90095, USA
| | - Shaily Mahendra
- Department of Civil and Environmental Engineering, University of California Los Angeles, 5732 Boelter Hall, Los Angeles, CA, 90095, USA; UCLA California NanoSystems Institute, Los Angeles, CA, 90095, USA; UCLA Institute of the Environment & Sustainability, Los Angeles, CA, 90095, USA.
| |
Collapse
|
7
|
Raza S, Kang KH, Shin J, Shin SG, Chun J, Cho HU, Shin J, Kim YM. Variations in antibiotic resistance genes and microbial community in sludges passing through biological nutrient removal and anaerobic digestion processes in municipal wastewater treatment plants. CHEMOSPHERE 2023; 313:137362. [PMID: 36427585 DOI: 10.1016/j.chemosphere.2022.137362] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Antimicrobial resistance (AMR) represents a relentless, silent pandemic. Contributing to this are wastewater treatment plants (WWTPs), a potential source of antibiotic resistance genes' (ARGs) transmission to the environment, threatening public health. The presence of ARGs in pathogenic bacteria and their release into the environment by WWTPs threatens the public health. The current study investigated changes in ARGs' abundance in biological nutrient removal (BNR) processes and anaerobic digestion (AD) reactors of two WWTPs. Also, microbial community structure, which is known to shape the distribution and abundance of ARGs, was also analyzed. The relative abundance of eight ARGs (tetX, tetA, tetM, TEM, sul1, sul2, ermB and qnrD) was quantified as ARGs' copies/16 S rRNA gene copies using quantitative polymerase chain reaction (qPCR). Microbial community composition was assessed by 16 S rRNA microbiome sequencing analysis. TetX was prevalent among the eight ARGs, followed by TEM and sul1. However, its abundance was decreased in the AD sludges compared to BNR sludges. Proteobacteria was the major bacterial phylum found in all the sludge samples, while Arcobacter, 12up and Acidovorax were the predominant genera. Acinetobacter and Flavobacterium were significantly more abundant in the BNR sludges, while 12up and Aeromonas were predominant in AD sludges. Principal component analysis (PCA) revealed a clear difference in dominant ARGs and bacteria between the sludges in the processes of BNR and AD of the two WWTPs. Clinically relevant bacterial genera, Klebsiella and Enterococcus, found in both the BNR and AD sludges, were significantly correlated with the tetX gene. Throughout this study, the relationship between microbial communities and specific ARGs was revealed, illustrating that the composition of the microbial community could play a vital role in the abundance of ARGs. These results will better inform future studies aimed at controlling the spread of ARGs and their potential hosts from WWTPs.
Collapse
Affiliation(s)
- Shahbaz Raza
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Kyeong Hwan Kang
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Juhee Shin
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National UniversityJinju, Gyeongnam, 52828, Republic of Korea
| | - Seung Gu Shin
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National UniversityJinju, Gyeongnam, 52828, Republic of Korea; Department of Energy System Engineering, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Jihyun Chun
- Department of Marine Environmental Engineering, Gyeongsang National University, Tongyeong, Gyeongnam, 53064, Republic of Korea
| | - Hyun Uk Cho
- Department of Marine Environmental Engineering, Gyeongsang National University, Tongyeong, Gyeongnam, 53064, Republic of Korea
| | - Jingyeong Shin
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea; Bio Resource Center, Institute for Advanced Engineering, Yongin, Gyeonggi-do, 17180, Republic of Korea.
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
8
|
Zuo P, Metz J, Yu P, Alvarez PJJ. Biofilm-responsive encapsulated-phage coating for autonomous biofouling mitigation in water storage systems. WATER RESEARCH 2022; 224:119070. [PMID: 36096027 DOI: 10.1016/j.watres.2022.119070] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Biofilms in water storage systems may harbor pathogens that threaten public health. Chemical disinfectants are marginally effective in eradicating biofilms due to limited penetration, and often generate harmful disinfection byproducts. To enhance biofouling mitigation in household water storage tanks, we encapsulated bacteriophages (phages) in chitosan crosslinked with tri-polyphosphate and 3-glycidoxypropyltrimethoxysilane. Phages served as self-propagating green biocides that exclusively infect bacteria. This pH-responsive encapsulation (244 ± 11 nm) enabled autonomous release of phages in response to acidic pH associated with biofilms (corroborated by confocal microscopy with pH-indicator dye SNARF-4F), but otherwise remained stable in pH-neutral tap water for one month. Encapsulated phages instantly bind to plasma-treated plastic and fiberglass surfaces, providing a facile coating method that protects surfaces highly vulnerable to biofouling. Biofilm formation assays were conducted in tap water amended with 200 mg/L glucose to accelerate growth and attachment of Pseudomonas aeruginosa, an opportunistic pathogen commonly associated with biofilms in drinking water distribution and storage systems. Biofilms formation on plastic surfaces coated with encapsulated phages decreased to only 6.7 ± 0.2% (on a biomass basis) relative to the uncoated controls. Likewise, biofilm surface area coverage (4.8 ± 0.2 log CFU/mm2) and live/dead fluorescence ratio (1.80) were also lower than the controls (6.6 ± 0.2 log CFU/mm2 and live/dead ratio of 11.05). Overall, this study offers proof-of-concept of a chemical-free, easily implementable approach to control problematic biofilm-dwelling bacteria and highlights benefits of this bottom-up biofouling control approach that obviates the challenge of poor biofilm penetration by biocides.
Collapse
Affiliation(s)
- Pengxiao Zuo
- Department of Civil and Environmental Engineering, Rice University, Houston, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, USA
| | - Jordin Metz
- Department of Chemistry, Rice University, Houston, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, USA
| | - Pingfeng Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, USA; Department of Chemistry, Rice University, Houston, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, USA.
| |
Collapse
|
9
|
Learbuch KLG, Smidt H, van der Wielen PWJJ. Water and biofilm in drinking water distribution systems in the Netherlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154940. [PMID: 35367266 DOI: 10.1016/j.scitotenv.2022.154940] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/26/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
To keep the high quality of drinking water in the future for non-chlorinated drinking water systems, knowledge about the variables that most strongly affect this quality is necessary in order to know where to focus on and possibly even change aspects of drinking water production and distribution. Therefore, the aim of this study was to investigate which variables (source of drinking water, growth potential and pipe material type) have the biggest influence on bacterial community composition and biomass concentration of drinking water and biofilm in distribution systems. Ten different distribution systems were sampled for water and biofilm, obtained from four different pipe materials, throughout the Netherlands. The distribution systems are supplied either with drinking water produced from groundwater or surface water, and differ in drinking water quality parameters such as the growth potential. We found a significant relationship for growth potential and ATP concentration in water, but for the ATP in the biofilm none of the parameters showed a significant effect. Furthermore, the source of the drinking water and the pipe material did not significantly affect the ATP concentration in water and biofilm. The bacterial composition of in both water and biofilm was significantly different between distribution systems delivering water with low and high growth potential and between drinking water produced from groundwater or surface water. In contrast, the different pipe materials did not significantly affect composition of biofilm-associated communities. We conclude from these results that the growth potential of the treated water best explains the variation in biomass and bacterial composition in water and biofilm of non-chlorinated drinking water distribution systems followed by the drinking water source, whereas pipe materials seem to be of lesser importance.
Collapse
Affiliation(s)
- K L G Learbuch
- KWR Water Research Institute, Groningenhaven 7, 3433PE Nieuwegein, the Netherlands
| | - H Smidt
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708WE Wageningen, the Netherlands
| | - P W J J van der Wielen
- KWR Water Research Institute, Groningenhaven 7, 3433PE Nieuwegein, the Netherlands; Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708WE Wageningen, the Netherlands.
| |
Collapse
|
10
|
Atnafu B, Desta A, Assefa F. Microbial Community Structure and Diversity in Drinking Water Supply, Distribution Systems as well as Household Point of Use Sites in Addis Ababa City, Ethiopia. MICROBIAL ECOLOGY 2022; 84:73-89. [PMID: 34410455 DOI: 10.1007/s00248-021-01819-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Understanding ecology of microbiomes in drinking water distribution systems is the most important notion in delivering safe drinking water. Drinking water distribution systems harbor various microbiota despite efforts made in improving water infrastructures in the water industry, especially, in developing countries. Intermittent water supply, long time of water storage, low water pressure, and contaminated source water are among many of the factors responsible for poor drinking water quality affecting health of people. The aim of this study was to explore microbial diversity and structure in water samples collected from source water, treated water, reservoirs, and household points of use locations (taps). High-throughput Illumina sequencing technology was employed by targeting the V4 region of the 16S rRNA gene and the V1-V3 region of the 18S rRNA gene to analyze the microbial community structure. Proteobacteria followed by Firmicutes, Bacteroidetes, and Actinobacteria were the core dominating taxa. Gammaproteobacteria was also dominant among other proteobacterial classes across all sampling points. Opportunistic bacterial genera such as Pseudomonas, Legionella, Klebsiella, Escherichia, and Actinobacteria, as well as eukaryotic microbes like Cryptosporidium, Hartmannella, Acanthamoeba, Aspergillus, and Candida were also abundant taxa found along the distribution systems. The shift in microbial community structure from source to point of use locations was influenced by basic factors such as residual chlorine, intermittent water supply, and long-time storage at the household. The complex microbiota detected in different sampling sites in this study brings drinking water quality problem which further causes significant health problems to both human and animal health. Treatment ineffectiveness, disinfection inefficiency, poor maintenance actions, leakage of sewage, and other domestic wastes are few among many other factors responsible for degraded drinking water quality in this study putting health at high risk. Findings of this research provide important and baseline information to understand the microbial profiles of drinking water along source water and distribution systems. Moreover, knowing the microbial profile will help to design proper water quality assurance approaches.
Collapse
Affiliation(s)
- Bayable Atnafu
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Adey Desta
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Fasil Assefa
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
11
|
Ma L, Jiang XT, Guan L, Li B, Zhang T. Nationwide biogeography and health implications of bacterial communities in household drinking water. WATER RESEARCH 2022; 215:118238. [PMID: 35278916 DOI: 10.1016/j.watres.2022.118238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 02/11/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Drinking water at the point of use harbors microorganisms that may pose potential risks to human health. However, the microbial diversity and health impacts of household drinking water are poorly understood, since culture-based methods only target on specific microorganisms and low biomass of drinking water hinders a high-throughput profiling. Here, we used an optimized workflow to efficiently collect microorganisms from low-biomass drinking water and performed deep sequencing of 16S rRNA genes to profile the bacterial diversity and biogeography of 110 household drinking water samples covering 38 cities of 29 provinces/regions in China, and further explored environmental drivers and potential health implications. Our analyses revealed a diverse drinking water community comprising a total of 22,771 operational taxonomic units (OTUs). The spatial turnover of drinking water communities is scale-dependent and appears to be driven largely by rainfall and water source river. The identified potential pathogenic species may have the possibility of causing health risks. Our novel insights enhance the current understanding of the diversity and biogeography of drinking water bacterial communities within a theoretical ecological framework and have further important implications for safe drinking water management and public health protection.
Collapse
Affiliation(s)
- Liping Ma
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China; Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Shanghai, China
| | - Xiao-Tao Jiang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Lei Guan
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Bing Li
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
12
|
Rahmatika I, Kurisu F, Furumai H, Kasuga I. Dynamics of the Microbial Community and Opportunistic Pathogens after Water Stagnation in the Premise Plumbing of a Building. Microbes Environ 2022; 37. [PMID: 35321996 PMCID: PMC8958293 DOI: 10.1264/jsme2.me21065] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In premise plumbing, microbial water quality may deteriorate under certain conditions, such as stagnation. Stagnation results in a loss of disinfectant residual, which may lead to the regrowth of microorganisms, including opportunistic pathogens. In the present study, microbial regrowth was investigated at eight faucets in a building over four seasons in one year. Water samples were obtained before and after 24 h of stagnation. In the first 100 mL after stagnation, total cell counts measured by flow cytometry increased 14- to 220-fold with a simultaneous decrease in free chlorine from 0.17–0.36 mg L–1 to <0.02 mg L–1. After stagnation, total cell counts were not significantly different among seasons; however, the composition of the microbial community varied seasonally. The relative abundance of Pseudomonas spp. was dominant in winter, whereas Sphingomonas spp. were dominant in most faucets after stagnation in other seasons. Opportunistic pathogens, such as Legionella pneumophila, Mycobacterium avium, Pseudomonas aeruginosa, and Acanthamoeba spp., were below the quantification limit for real-time quantitative PCR in all samples. However, sequences related to other opportunistic pathogens, including L. feeleii, L. maceachernii, L. micdadei, M. paragordonae, M. gordonae, and M. haemophilum, were detected. These results indicate that health risks may increase after stagnation due to the regrowth of opportunistic pathogens.
Collapse
Affiliation(s)
- Iftita Rahmatika
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo
| | - Futoshi Kurisu
- Research Center for Water Environment Technology, Graduate School of Engineering, The University of Tokyo
| | - Hiroaki Furumai
- Research Center for Water Environment Technology, Graduate School of Engineering, The University of Tokyo
| | - Ikuro Kasuga
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo
| |
Collapse
|
13
|
Can Aggregate-Associated Organisms Influence the Fouling in a SWRO Desalination Plant? Microorganisms 2022; 10:microorganisms10040682. [PMID: 35456734 PMCID: PMC9032733 DOI: 10.3390/microorganisms10040682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 12/10/2022] Open
Abstract
This pilot study investigates the formation of aggregates within a desalination plant, before and after pre-treatment, as well as their potential impact on fouling. The objective is to provide an understanding of the biofouling potential of the feed water within a seawater reverse osmosis (SWRO) desalination plant, due to the limited removal of fouling precursors. The 16S and 18S rRNA was extracted from the water samples, and the aggregates and sequenced. Pre-treatment systems, within the plant remove < 5 µm precursors and organisms; however, smaller size particles progress through the plant, allowing for the formation of aggregates. These become hot spots for microbes, due to their nutrient gradients, facilitating the formation of niche environments, supporting the proliferation of those organisms. Aggregate-associated organisms are consistent with those identified on fouled SWRO membranes. This study examines, for the first time, the factors supporting the formation of aggregates within a desalination system, as well as their microbial communities and biofouling potential.
Collapse
|
14
|
Zhang X, Lin T, Jiang F, Zhang X, Wang S, Zhang S. Impact of pipe material and chlorination on the biofilm structure and microbial communities. CHEMOSPHERE 2022; 289:133218. [PMID: 34890609 DOI: 10.1016/j.chemosphere.2021.133218] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 06/13/2023]
Abstract
Pipe material and residual chlorine are key factors for the drinking water distribution system, and understanding the biofilm ecosystem is vital for water quality safeguard. The aim of our study was to determine the influence of pipe materials (ductile iron, steel, polyethylene) and chlorination on the biofilm structure and microbial community, as shown by the physicochemical properties, extracellular polymeric substances (EPS) structural characteristics, bacterial community composition, and functional traits. EPS spatial properties were studied based on a semi-quantitative confocal laser scanning microscope (CLSM) description. Regarding the impact of chlorination, residule chlorine (1.0 ± 0.3 mg L-1 free chlorine) could inhibit the bacteria colonization, and initiate a potential response to external disinfectants revealed by the EPS spatial distribution changes and communities variation compared to unchlorinated system. Regarding the impact of pipe material, polyethylene (PE) biofilms displayed lower biomass, loose zoogloea structure, lower proteins and polysaccharides content, and poor microbial diversity in contrast to ductile iron and steel biofilms. Pipe material was the more possible driving factor of the biofilm community composition compared to the chlorination based on principal coordinates analysis (PCoA) and permutational multivariate analysis of variance (PERMANOVA). Actinobacteria was dominant in the PE biofilms (45.57%-83.32%), while Alphaproteobacteria (34.30%-73.22%) and Gammaproteobacteria (6.46%-36.82%) were the major classes in the steel and ductile iron biofilms. The genus Rhodococcus was predominant in the PE biofilms. Rhodococcus, Pseudomonas, and Sphingomonas seemed to have a better growth advantage in the chlorinated system and display a stronger disinfectant resistance. Functional sketch prediction indicated the potential impact of pipe material and chlorination on functional pathway abundnce, possible functional pathways associated with infectious disease included. This study provides insights into the impact of pipe material and chlorination on biofilm structure and microbial community and might help to develop monitoring or maintenance strategies to protect the biosafety of the drinking water.
Collapse
Affiliation(s)
- Xinyue Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Fuchun Jiang
- Suzhou Water Supply Company Limited, Suzhou, 215002, PR China
| | - Xue Zhang
- Suzhou Water Supply Company Limited, Suzhou, 215002, PR China
| | - Shiyu Wang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Shisheng Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
15
|
Lee D, Calendo G, Kopec K, Henry R, Coutts S, McCarthy D, Murphy HM. The Impact of Pipe Material on the Diversity of Microbial Communities in Drinking Water Distribution Systems. Front Microbiol 2021; 12:779016. [PMID: 34992587 PMCID: PMC8724538 DOI: 10.3389/fmicb.2021.779016] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/01/2021] [Indexed: 01/04/2023] Open
Abstract
As many cities around the world face the prospect of replacing aging drinking water distribution systems (DWDS), water utilities must make careful decisions on new pipe material (e.g., cement-lined or PVC) for these systems. These decisions are informed by cost, physical integrity, and impact on microbiological and physicochemical water quality. Indeed, pipe material can impact the development of biofilm in DWDS that can harbor pathogens and impact drinking water quality. Annular reactors (ARs) with cast iron and cement coupons fed with chloraminated water from a municipal DWDS were used to investigate the impact of pipe material on biofilm development and composition over 16 months. The ARs were plumbed as closely as possible to the water main in the basement of an academic building to simulate distribution system conditions. Biofilm communities on coupons were characterized using 16S rRNA sequencing. In the cast iron reactors, β-proteobacteria, Actinobacteria, and α-proteobacteria were similarly relatively abundant (24.1, 22.5, and 22.4%, respectively) while in the cement reactors, α-proteobacteria and Actinobacteria were more relatively abundant (36.3 and 35.2%, respectively) compared to β-proteobacteria (12.8%). Mean alpha diversity (estimated with Shannon H and Faith's Phylogenetic Difference indices) was greater in cast iron reactors (Shannon: 5.00 ± 0.41; Faith's PD: 15.40 ± 2.88) than in cement reactors (Shannon: 4.16 ± 0.78; Faith's PD: 13.00 ± 2.01). PCoA of Bray-Curtis dissimilarities indicated that communities in cast iron ARs, cement ARs, bulk distribution system water, and distribution system pipe biofilm were distinct. The mean relative abundance of Mycobacterium spp. was greater in the cement reactors (34.8 ± 18.6%) than in the cast iron reactors (21.7 ± 11.9%). In contrast, the mean relative abundance of Legionella spp. trended higher in biofilm from cast iron reactors (0.5 ± 0.7%) than biofilm in cement reactors (0.01 ± 0.01%). These results suggest that pipe material is associated with differences in the diversity, bacterial composition, and opportunistic pathogen prevalence in biofilm of DWDS.
Collapse
Affiliation(s)
- Debbie Lee
- Water, Health and Applied Microbiology Laboratory (WHAM Lab), Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA, United States
| | - Gennaro Calendo
- Water, Health and Applied Microbiology Laboratory (WHAM Lab), Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA, United States
| | - Kristin Kopec
- Water, Health and Applied Microbiology Laboratory (WHAM Lab), Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA, United States
| | - Rebekah Henry
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Department of Civil Engineering, Monash University, Clayton, VIC, Australia
| | - Scott Coutts
- Micromon, Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - David McCarthy
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Department of Civil Engineering, Monash University, Clayton, VIC, Australia
| | - Heather M. Murphy
- Water, Health and Applied Microbiology Laboratory (WHAM Lab), Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA, United States
- Water, Health and Applied Microbiology Laboratory (WHAM Lab), Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
16
|
Regina ALA, Medeiros JD, Teixeira FM, Côrrea RP, Santos FAM, Brantes CPR, Pereira IA, Stapelfeldt DMA, Diniz CG, da Silva VL. A watershed impacted by anthropogenic activities: Microbial community alterations and reservoir of antimicrobial resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148552. [PMID: 34328962 DOI: 10.1016/j.scitotenv.2021.148552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Water is the main resource for maintaining life. Anthropic activities influence the microbial epidemiological chain in watersheds, which can act as ways of disseminating microorganisms resistant to antimicrobial drugs, with impacts on human, animal, and environmental health. Here, we characterized aquatic microbial communities and their resistomes in samples collected along Rio das Ostras watershed during two seasons. Surface water samples were collected at eleven sites from the Jundiá, Iriry, and Rio das Ostras rivers in two seasons (dry and wet season). Microbial DNA was extracted, high-throughput sequenced and screened for antimicrobial resistance genetic (ARG) markers. The physicochemical characteristics and the microbiota data confirmed that Rio das Ostras watershed can be divided into three well defined portions: rural, urban, and marine. Rural areas were enriched by bacteria typically found in limnic environments and Patescibacteria phyla. The urban portion was characterized by sites with low pH and groups associated with iron oxidation. Some genera of clinical relevance were also identified, though in relatively low abundance. The marine site was enriched mainly by Cyanobacteria and bacteria that showed strong correlation with conductivity, salinity, and chloride. Twenty-six ARG markers were identified on the resistome, being found most frequently in the urban area, despite being present in rural sites. Among them were some related to classes of great clinical concern, such as genes coding for extended-spectrum beta-lactamase (blaCTX-M and blaTEM), resistance to carbapenems (blaKPC) and to methicillin by Staphylococcus aureus (mecA). These results broaden our understanding of the microbial community of a watershed impacted by anthropogenic actions. The large number of ARGs detected along the Rio das Ostras watershed contrasts with the small number of microorganisms of clinical relevance observed, suggesting that antimicrobial resistance has arisen from non-clinical environments and microbes. Our results corroborate that freshwater acts as a reservoir of antimicrobial resistance genes.
Collapse
Affiliation(s)
- Ana Luísa Almeida Regina
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora - UFJF, José Lourenço Kelmer, Martelos, CEP 36036-900 Juiz de Fora, MG, Brazil
| | - Julliane Dutra Medeiros
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora - UFJF, José Lourenço Kelmer, Martelos, CEP 36036-900 Juiz de Fora, MG, Brazil; Faculty of Biological and Agricultural Sciences, Mato Grosso State University - UNEMAT, Perimetral Rogério Silva - Norte 2, CEP 78580-000 Alta Floresta, MT, Brazil
| | - Francisco Martins Teixeira
- Laboratory of Microbiology and Parasitology, Federal University of Rio de Janeiro - UFRJ, Macaé Campus, Aloísio da Silva Gomes, Granja dos Cavaleiros, CEP 27930-560 Macaé, RJ, Brazil
| | - Raíssa Pereira Côrrea
- Laboratory of Microbiology and Parasitology, Federal University of Rio de Janeiro - UFRJ, Macaé Campus, Aloísio da Silva Gomes, Granja dos Cavaleiros, CEP 27930-560 Macaé, RJ, Brazil
| | - Fernanda Almeida Maciel Santos
- Laboratory of Microbiology and Parasitology, Federal University of Rio de Janeiro - UFRJ, Macaé Campus, Aloísio da Silva Gomes, Granja dos Cavaleiros, CEP 27930-560 Macaé, RJ, Brazil
| | - Caique Pinheiro Rosa Brantes
- Laboratory of Microbiology and Parasitology, Federal University of Rio de Janeiro - UFRJ, Macaé Campus, Aloísio da Silva Gomes, Granja dos Cavaleiros, CEP 27930-560 Macaé, RJ, Brazil
| | - Ingrid Annes Pereira
- Laboratory of Food Microbiology, Federal University of Rio de Janeiro - UFRJ, Macaé Campus, Aloísio da Silva Gomes, Granja dos Cavaleiros, CEP 27930-560, Macaé, RJ, Brazil
| | - Danielle Marques Araújo Stapelfeldt
- Laboratory of Chemistry, Federal University of Rio de Janeiro - UFRJ, Macaé Campus, Aloísio da Silva Gomes, Granja dos Cavaleiros, CEP 27930-560 Macaé, RJ, Brazil
| | - Cláudio Galuppo Diniz
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora - UFJF, José Lourenço Kelmer, Martelos, CEP 36036-900 Juiz de Fora, MG, Brazil
| | - Vânia Lúcia da Silva
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora - UFJF, José Lourenço Kelmer, Martelos, CEP 36036-900 Juiz de Fora, MG, Brazil.
| |
Collapse
|
17
|
Bacterial Community Structure and Dynamic Changes in Different Functional Areas of a Piggery Wastewater Treatment System. Microorganisms 2021; 9:microorganisms9102134. [PMID: 34683455 PMCID: PMC8540373 DOI: 10.3390/microorganisms9102134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 12/04/2022] Open
Abstract
Chemicals of emerging concern (CEC) in pig farm breeding wastewater, such as antibiotics, will soon pose a serious threat to public health. It is therefore essential to consider improving the treatment efficiency of piggery wastewater in terms of microorganisms. In order to optimize the overall piggery wastewater treatment system from the perspective of the bacterial community structure and its response to environmental factors, five samples were randomly taken from each area of a piggery’s wastewater treatment system using a random sampling method. The bacterial communities’ composition and their correlation with wastewater quality were then analyzed using Illumina MiSeq high-throughput sequencing. The results showed that the bacterial community composition of each treatment unit was similar. However, differences in abundance were significant, and the bacterial community structure gradually changed with the process. Proteobacteria showed more adaptability to an anaerobic environment than Firmicutes, and the abundance of Tissierella in anaerobic zones was low. The abundance of Clostridial (39.02%) and Bacteroides (20.6%) in the inlet was significantly higher than it was in the aerobic zone and the anoxic zone (p < 0.05). Rhodocyclaceae is a key functional microbial group in a wastewater treatment system, and it is a dominant microbial group in activated sludge. Redundancy analysis (RDA) showed that chemical oxygen demand (COD) had the greatest impact on bacterial community structure. Total phosphorus (TP), total nitrogen (TN), PH and COD contents were significantly negatively correlated with Sphingobacteriia, Betaproteobacteria and Gammaproteobacteria, and significantly positively correlated with Bacteroidia and Clostridia. These results offer basic data and theoretical support for optimizing livestock wastewater treatment systems using bacterial community structures.
Collapse
|
18
|
Chen L, Li J, Tang Y, Wang S, Lu X, Cheng Z, Zhang X, Wu P, Chang X, Xia Y. Typhoon-induced turbulence redistributed microplastics in coastal areas and reformed plastisphere community. WATER RESEARCH 2021; 204:117580. [PMID: 34469810 DOI: 10.1016/j.watres.2021.117580] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 05/20/2023]
Abstract
The increasing microplastic pollution together with the plastisphere-associated ecological threats in coastal areas have aroused global concern. Tropical cyclones have been increased in both frequency and intensity under global warming, causing intense impact on the microplastics distribution and the structure of coastal ecosystems. However, until most currently, the extent to which typhoon impacts the microplastics and plastisphere community remains poorly known. This study analyzed the effects of Typhoon Wipha (Code: 1907) on microplastics abundance and composition in surface water and sediment crossed coastal areas of Shenzhen. Here we found a significant typhoon-induced increase in microplastics abundance in surface water, whereas an opposite trend was observed in sediment. Despite the evident transportation of microplastics from sediment to surface water by agitation, a possible microplastics influx was introduced by typhoon as evidenced by the large attribution of unknown force in source tracking analysis. Furthermore, typhoon had adeptly uniformed the plastisphere community in the sediment along the 190 km costal line overnight. A significant increase of nitrogen fixer, Bradyrhizobiaceae, was observed ubiquitously after typhoon, which might alter the nitrogen cycling and increase eutrophic condition of the coastal ecological system. Together, this study expanded the knowledge about the impact of typhoon-induced influx of the microplastics on coastal biogeochemical cycling. Moreover, the microplastics and the plastisphere compositional pattern revealed here will underpin future studies on adsorption behavior, interfacial processes and ecotoxicity of the coastal microplastic pollution.
Collapse
Affiliation(s)
- Liming Chen
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiangpeng Li
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuanyuan Tang
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Siqing Wang
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiao Lu
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhanwen Cheng
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuyang Zhang
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Pengfei Wu
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xinyi Chang
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu Xia
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
19
|
Zhou W, Li W, Chen J, Zhou Y, Wei Z, Gong L. Microbial diversity in full-scale water supply systems through sequencing technology: a review. RSC Adv 2021; 11:25484-25496. [PMID: 35478887 PMCID: PMC9037190 DOI: 10.1039/d1ra03680g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/10/2021] [Indexed: 01/07/2023] Open
Abstract
The prevalence of microorganisms in full-scale water supply systems raises concerns about their pathogenicity and threats to public health. Clean tap water is essential for public health safety. The conditions of the water treatment process from the source water to tap water, including source water quality, water treatment processes, the drinking water distribution system (DWDS), and building water supply systems (BWSSs) in buildings, greatly influence the bacterial community in tap water. Given the importance of drinking water biosafety, the study of microbial diversity from source water to tap water is essential. With the development of molecular biology methods and bioinformatics in recent years, sequencing technology has been applied to study bacterial communities in full-scale water supply systems. In this paper, changes in the bacterial community and the influence of each treatment stage on microbial diversity in full-scale water supply systems are classified and analyzed. Microbial traceability analysis and control are discussed, and suggestions for future drinking water biosafety research and its prospects are proposed.
Collapse
Affiliation(s)
- Wei Zhou
- College of Environmental Science and Engineering, Tongji University Shanghai 200092 China
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University Shanghai 200092 China
| | - Weiying Li
- College of Environmental Science and Engineering, Tongji University Shanghai 200092 China
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University Shanghai 200092 China
| | - Jiping Chen
- College of Environmental Science and Engineering, Tongji University Shanghai 200092 China
| | - Yu Zhou
- College of Environmental Science and Engineering, Tongji University Shanghai 200092 China
| | - Zhongqing Wei
- Fuzhou Water Affairs Investment Development Co., Ltd. Fuzhou 350000 Fujian China
| | | |
Collapse
|
20
|
Learbuch KLG, Smidt H, van der Wielen PWJJ. Influence of pipe materials on the microbial community in unchlorinated drinking water and biofilm. WATER RESEARCH 2021; 194:116922. [PMID: 33640751 DOI: 10.1016/j.watres.2021.116922] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Biodegradable compounds can cause undesired microbial growth in drinking water systems and these compounds can originate from the water or pipe materials used in drinking water systems. The aim of our study was to determine the influence of different pipe materials on the microbial populations in water and biofilm under semi-stagnant conditions. The microbial communities in biofilm and water, which were in contact with seven different materials, were characterized by determining ATP concentrations, microbial composition gene copy numbers of some specific microbial groups. The ATP concentration in water and biofilm varied between the different materials with glass (negative control) < copper < PVCC < PE-Xc < PE-Xb < PE-100 < PVC-P. Gene copy numbers of Legionella spp., Mycobacterium spp., Pseudomonas spp., Aeromonas spp., fungi and Vermamoeba vermiformis were also higher for PVC-P and PE than for glass, copper and PVCC. The bacterial community composition in water and biofilm varied between materials as well. PERMANOVA and CAP analysis demonstrated that copper and PVC-P are different when compared to the other materials. Furthermore, bacterial community composition and ATP concentrations in water and biofilm were similar after eight and 16 weeks incubation, but differed from results obtained after one week. Finally, the ATP, the specific microbial groups and the bacterial community composition also differed between water and biofilm on each material. We conclude from our study that pipe material is an important factor that influences the biomass concentration, abundance of specific microorganisms and the bacterial community composition in distribution systems with unchlorinated drinking water.
Collapse
Affiliation(s)
- K L G Learbuch
- KWR Water Research Institute, Groningenhaven 7, 3433PE Nieuwegein, the Netherlands; Wetsus, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands.
| | - H Smidt
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4 6708WE Wageningen, the Netherlands
| | - P W J J van der Wielen
- KWR Water Research Institute, Groningenhaven 7, 3433PE Nieuwegein, the Netherlands; Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4 6708WE Wageningen, the Netherlands
| |
Collapse
|
21
|
Garner E, Davis BC, Milligan E, Blair MF, Keenum I, Maile-Moskowitz A, Pan J, Gnegy M, Liguori K, Gupta S, Prussin AJ, Marr LC, Heath LS, Vikesland PJ, Zhang L, Pruden A. Next generation sequencing approaches to evaluate water and wastewater quality. WATER RESEARCH 2021; 194:116907. [PMID: 33610927 DOI: 10.1016/j.watres.2021.116907] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/15/2021] [Accepted: 02/03/2021] [Indexed: 05/24/2023]
Abstract
The emergence of next generation sequencing (NGS) is revolutionizing the potential to address complex microbiological challenges in the water industry. NGS technologies can provide holistic insight into microbial communities and their functional capacities in water and wastewater systems, thus eliminating the need to develop a new assay for each target organism or gene. However, several barriers have hampered wide-scale adoption of NGS by the water industry, including cost, need for specialized expertise and equipment, challenges with data analysis and interpretation, lack of standardized methods, and the rapid pace of development of new technologies. In this critical review, we provide an overview of the current state of the science of NGS technologies as they apply to water, wastewater, and recycled water. In addition, a systematic literature review was conducted in which we identified over 600 peer-reviewed journal articles on this topic and summarized their contributions to six key areas relevant to the water and wastewater fields: taxonomic classification and pathogen detection, functional and catabolic gene characterization, antimicrobial resistance (AMR) profiling, bacterial toxicity characterization, Cyanobacteria and harmful algal bloom identification, and virus characterization. For each application, we have presented key trends, noteworthy advancements, and proposed future directions. Finally, key needs to advance NGS technologies for broader application in water and wastewater fields are assessed.
Collapse
Affiliation(s)
- Emily Garner
- Wadsworth Department of Civil and Environmental Engineering, West Virginia University, 1306 Evansdale Drive, Morgantown, WV 26505, United States.
| | - Benjamin C Davis
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Erin Milligan
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Matthew Forrest Blair
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Ishi Keenum
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Ayella Maile-Moskowitz
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Jin Pan
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Mariah Gnegy
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Krista Liguori
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Suraj Gupta
- The Interdisciplinary PhD Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA 24061, United States
| | - Aaron J Prussin
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Linsey C Marr
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Lenwood S Heath
- Department of Computer Science, Virginia Tech, 225 Stranger Street, Blacksburg, VA 24061, United States
| | - Peter J Vikesland
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Liqing Zhang
- Department of Computer Science, Virginia Tech, 225 Stranger Street, Blacksburg, VA 24061, United States
| | - Amy Pruden
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States.
| |
Collapse
|
22
|
Gu X, Zhai H, Cheng S. Fate of antibiotics and antibiotic resistance genes in home water purification systems. WATER RESEARCH 2021; 190:116762. [PMID: 33387948 DOI: 10.1016/j.watres.2020.116762] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/29/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Home water purification systems (HWPSs) are utilized worldwide to obtain clean drinking water. However, the reliability of HWPSs in providing safe water is unknown or not well-proven. In this study, the occurrences of antibiotics and antibiotic resistance genes (ARGs) in tap water, effluents, and filters of HWPSs were investigated in twenty-six houses and one laboratory. The levels of antibiotics and ARGs were between less than the limit of detection (LOD) and 7.9 ng/L and between less than LOD and 3.45 × 105 copies/L, respectively, in tap water. HWPSs with fresh filters had a high efficiency in removing antibiotics and ARGs, with removal rates of 91-92% and 0.46-2.43 log, respectively. However, after long-term operation (e.g., more than three months), some HWPSs had low removal rates of antibiotics and ARGs (3-79% and 0.03-0.15 log, respectively) and some HWPSs released antibiotics and ARGs into the effluents leading to higher levels of antibiotics and ARGs in the effluents than those in the influents. Biofilms were observed on many filters of the investigated HWPSs. ARGs were detected on the filters with relative abundances (the ratio of the abundance of ARGs to the abundance of 16S rRNA) of 2.56 × 10-8-2.89 × 10-2. High-throughput sequencing analysis showed that Proteobacteria, Acidobacteria, Chloroflexi, and Bacteroidetes were the dominant phyla, and Alphaproteobacteria and Gammaproteobacteria were the dominant classes. The abundances of Cyanobacteria, Patescibacteria, Bacteroidetes, and Proteobacteria were significantly positively correlated with the abundances of ARGs. Microbial growth and enrichment commonly observed in HWPSs can accelerate the exposure risk posed by antibiotics and ARGs to the consumers of water from these appliances.
Collapse
Affiliation(s)
- Xin Gu
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| | - Hongyan Zhai
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China.
| | - Shengzi Cheng
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| |
Collapse
|
23
|
Romanis CS, Pearson LA, Neilan BA. Cyanobacterial blooms in wastewater treatment facilities: Significance and emerging monitoring strategies. J Microbiol Methods 2020; 180:106123. [PMID: 33316292 DOI: 10.1016/j.mimet.2020.106123] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 12/30/2022]
Abstract
Municipal wastewater treatment facilities (WWTFs) are prone to the proliferation of cyanobacterial species which thrive in stable, nutrient-rich environments. Dense cyanobacterial blooms frequently disrupt treatment processes and the supply of recycled water due to their production of extracellular polymeric substances, which hinder microfiltration, and toxins, which pose a health risk to end-users. A variety of methods are employed by water utilities for the identification and monitoring of cyanobacteria and their toxins in WWTFs, including microscopy, flow cytometry, ELISA, chemoanalytical methods, and more recently, molecular methods. Here we review the literature on the occurrence and significance of cyanobacterial blooms in WWTFs and discuss the pros and cons of the various strategies for monitoring these potentially hazardous events. Particular focus is directed towards next-generation metagenomic sequencing technologies for the development of site-specific cyanobacterial bloom management strategies. Long-term multi-omic observations will enable the identification of indicator species and the development of site-specific bloom dynamics models for the mitigation and management of cyanobacterial blooms in WWTFs. While emerging metagenomic tools could potentially provide deep insight into the diversity and flux of problematic cyanobacterial species in these systems, they should be considered a complement to, rather than a replacement of, quantitative chemoanalytical approaches.
Collapse
Affiliation(s)
- Caitlin S Romanis
- School of Environmental and Life Sciences, University of Newcastle, Newcastle 2308, Australia
| | - Leanne A Pearson
- School of Environmental and Life Sciences, University of Newcastle, Newcastle 2308, Australia
| | - Brett A Neilan
- School of Environmental and Life Sciences, University of Newcastle, Newcastle 2308, Australia.
| |
Collapse
|
24
|
Li BB, Zhi LL, Peng ZY, Ma XX, Li J. Contrasting distribution of antibiotic resistance genes and microbial communities in suspended activated sludge versus attached biofilms in an integrated fixed film activated sludge (IFAS) system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140481. [PMID: 32629253 DOI: 10.1016/j.scitotenv.2020.140481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Suspended activated sludge (AS) and carrier-attached biofilms simultaneously exist in an integrated fixed film activated sludge (IFAS) system. However, the differentiation of antibiotic resistance genes (ARGs) and microbial communities in different types of biofilms is rarely reported. In this study, successions of ARGs and microbial communities of AS and two types of suspended carrier-attached biofilms over seasons were investigated in the IFAS system of one municipal wastewater treatment plant. Results showed that substantial differences were found in the distribution pattern of ARGs, bacterial communities, and predicted microbial function between AS and attached biofilms. The relative abundances of all detected ARGs in AS were significantly higher than those in attached biofilms. ARGs with higher relative abundances generally existed in K3 carrier (surface area ≥ 800 m2/m3) attached biofilms than those in K1 carrier (surface area ≥ 450 m2/m3) biofilms. The relative abundances of ARGs were negatively correlated with temperature and biochemical oxygen demand (BOD5) and positively correlated with ammonium nitrogen contents for AS but not for attached biofilms. No significant relationship was found between the extracellular polymeric substance (EPS) content and ARG abundance for all samples. Temperature, BOD5, and ammonium nitrogen contents were closely connected to microbial communities. The Bray-Curtis distance of bacterial communities between two adjacent sampling seasons for AS was larger than those of two attached biofilms. Network analysis indicated that the AS network had more positive links and intense connections than the attached biofilm networks, potentially facilitating the dissemination of ARGs. The differential distribution of ARGs among the three types of samples was significantly correlated with the microbial co-occurrence network topological properties. Bray-Curtis distance and network analysis suggest that microbial community is more robust in attached biofilms than in suspended AS. This work provides a more in-depth understanding of ARGs and microbial community distributions in wastewater biofilms.
Collapse
Affiliation(s)
- Bing-Bing Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Li-Ling Zhi
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhi-Ying Peng
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xin-Xin Ma
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Ji Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou 215009, China.
| |
Collapse
|
25
|
Wolf-Baca M, Piekarska K. Biodiversity of organisms inhabiting the water supply network of Wroclaw. Detection of pathogenic organisms constituting a threat for drinking water recipients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136732. [PMID: 32014762 DOI: 10.1016/j.scitotenv.2020.136732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/16/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
The objective of the article was to present the diversity of organisms inhabiting the water supply network with particular consideration of pathogenic organisms that can cause an epidemiological threat, with the application of high throughput sequencing (HTS). The study material was water sampled from 15 points in the water supply system. High species diversity of bacteria was evidenced, as well as the presence of microorganisms from genus Clostridium and family Enterobacteriaceae. No presence of bacteria Clostridium perfringens was recorded, which suggests proper performance of water treatment processes. Owing to advanced techniques of molecular biology, the article also presents species very similar to pathogenic bacteria the detection of which is not possible by means of standard water analysis (plate culture). Based on literature data and very high similarity of the genome of the bacteria to that of pathogenic bacteria, the species are considered to potentially show the same negative character towards the recipient, and cause a serious epidemiological threat. Therefore, the performed analyses show that classic methods of assessment of sanitary quality of water are not fully sufficient, and HTS analysis should be performed as an auxiliary tool to provide the complete image of the community in the existing network.
Collapse
Affiliation(s)
- Mirela Wolf-Baca
- Wroclaw University of Science and Technology, Faculty of Environmental Engineering, 27 Wybrzeze Wyspianskiego, 50-370 Wroclaw, Poland.
| | - Katarzyna Piekarska
- Wroclaw University of Science and Technology, Faculty of Environmental Engineering, 27 Wybrzeze Wyspianskiego, 50-370 Wroclaw, Poland.
| |
Collapse
|
26
|
Potgieter SC, Dai Z, Venter SN, Sigudu M, Pinto AJ. Microbial Nitrogen Metabolism in Chloraminated Drinking Water Reservoirs. mSphere 2020; 5:e00274-20. [PMID: 32350093 PMCID: PMC7193043 DOI: 10.1128/msphere.00274-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/09/2020] [Indexed: 01/04/2023] Open
Abstract
Ammonia availability due to chloramination can promote the growth of nitrifying organisms, which can deplete chloramine residuals and result in operational problems for drinking water utilities. In this study, we used a metagenomic approach to determine the identity and functional potential of microorganisms involved in nitrogen biotransformation within chloraminated drinking water reservoirs. Spatial changes in the nitrogen species included an increase in nitrate concentrations accompanied by a decrease in ammonium concentrations with increasing distance from the site of chloramination. This nitrifying activity was likely driven by canonical ammonia-oxidizing bacteria (i.e., Nitrosomonas) and nitrite-oxidizing bacteria (i.e., Nitrospira) as well as by complete-ammonia-oxidizing (i.e., comammox) Nitrospira-like bacteria. Functional annotation was used to evaluate genes associated with nitrogen metabolism, and the community gene catalogue contained mostly genes involved in nitrification, nitrate and nitrite reduction, and nitric oxide reduction. Furthermore, we assembled 47 high-quality metagenome-assembled genomes (MAGs) representing a highly diverse assemblage of bacteria. Of these, five MAGs showed high coverage across all samples, which included two Nitrosomonas, Nitrospira, Sphingomonas, and Rhizobiales-like MAGs. Systematic genome-level analyses of these MAGs in relation to nitrogen metabolism suggest that under ammonia-limited conditions, nitrate may be also reduced back to ammonia for assimilation. Alternatively, nitrate may be reduced to nitric oxide and may potentially play a role in regulating biofilm formation. Overall, this study provides insight into the microbial communities and their nitrogen metabolism and, together with the water chemistry data, improves our understanding of nitrogen biotransformation in chloraminated drinking water distribution systems.IMPORTANCE Chloramines are often used as a secondary disinfectant when free chlorine residuals are difficult to maintain. However, chloramination is often associated with the undesirable effect of nitrification, which results in operational problems for many drinking water utilities. The introduction of ammonia during chloramination provides a potential source of nitrogen either through the addition of excess ammonia or through chloramine decay. This promotes the growth of nitrifying microorganisms and provides a nitrogen source (i.e., nitrate) for the growth for other organisms. While the roles of canonical ammonia-oxidizing and nitrite-oxidizing bacteria in chloraminated drinking water systems have been extensively investigated, those studies have largely adopted a targeted gene-centered approach. Further, little is known about the potential long-term cooccurrence of complete-ammonia-oxidizing (i.e., comammox) bacteria and the potential metabolic synergies of nitrifying organisms with their heterotrophic counterparts that are capable of denitrification and nitrogen assimilation. This study leveraged data obtained for genome-resolved metagenomics over a time series to show that while nitrifying bacteria are dominant and likely to play a major role in nitrification, their cooccurrence with heterotrophic organisms suggests that nitric oxide production and nitrate reduction to ammonia may also occur in chloraminated drinking water systems.
Collapse
Affiliation(s)
- Sarah C Potgieter
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Zihan Dai
- Infrastructure and Environment Division, School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Stephanus N Venter
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | | | - Ameet J Pinto
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
27
|
Zhang M, Xu M, Xu S, Zhang L, Lin K, Zhang L, Bai M, Zhang C, Zhou H. Response of the Bacterial Community and Antibiotic Resistance in Overnight Stagnant Water from a Municipal Pipeline. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17061995. [PMID: 32197379 PMCID: PMC7143130 DOI: 10.3390/ijerph17061995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 01/15/2023]
Abstract
Although drinking water safety has raised considerable concern, to date, the hidden health risks in newly released overnight water from a municipal pipeline have seldom received attention. In this study, bacterial community composition and the response of antibiotic-resistant bacteria (ARB) to ciprofloxacin, azithromycin, tetracycline, penicillin, and cephalosporin in overnight stagnant water were analyzed. With increases in heterotrophic bacteria plate count (HPC) during water stagnation, the numbers of ARB and the ARB/HPC ratios for the five antibiotics in resident water were observed to increase, which illustrated that the prevalence of ARB rose in the pipe network water during stagnation time (ST). Furthermore, during water stagnation for 12 h, an increase in bacteria related to fermentation was also observed. When the ST rose to 48 h, the fermentation bacteria become non-significant, and this was related to the exchange of pipe network water during daytime stagnation within the 48-h period. The antibiotic resistance index (ARI) showed that tetracycline had the highest resistance level in fresh water, and then decreased during water stagnation. When ST increased to 12 h, all ARI values of the five antibiotics were low, which was associated with changes in parameters during water retention and reduced resistance during short-term stagnation. When the ST increased to 24 and 48 h, the resistance to most antibiotics (except for tetracycline) increased, which showed that increasing antibiotic resistance is caused by the formation of biofilms in the pipeline during water stagnation.
Collapse
Affiliation(s)
- Minglu Zhang
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (M.Z.); (M.X.); (S.X.); (L.Z.); (K.L.)
| | - Mengyao Xu
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (M.Z.); (M.X.); (S.X.); (L.Z.); (K.L.)
| | - Shaofeng Xu
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (M.Z.); (M.X.); (S.X.); (L.Z.); (K.L.)
| | - Lingyue Zhang
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (M.Z.); (M.X.); (S.X.); (L.Z.); (K.L.)
| | - Kaizong Lin
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (M.Z.); (M.X.); (S.X.); (L.Z.); (K.L.)
| | - Lei Zhang
- Center for Disease Control and Prevention of Chinese PLA, Beijing 100071, China; (L.Z.); (M.B.)
| | - Miao Bai
- Center for Disease Control and Prevention of Chinese PLA, Beijing 100071, China; (L.Z.); (M.B.)
| | - Can Zhang
- Center for Disease Control and Prevention of Chinese PLA, Beijing 100071, China; (L.Z.); (M.B.)
- Correspondence:
| | - He Zhou
- Beijing Boda Water Company, Beijing 100176, China;
| |
Collapse
|
28
|
Changes in Microbial Community Structures under Reclaimed Water Replenishment Conditions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17041174. [PMID: 32059594 PMCID: PMC7068412 DOI: 10.3390/ijerph17041174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/27/2020] [Accepted: 02/04/2020] [Indexed: 01/10/2023]
Abstract
Using reclaimed water as a resource for landscape water replenishment may alleviate the major problems of water resource shortages and water environment pollution. However, the safety of the reclaimed water and the risk of eutrophication caused by the reclaimed water replenishment are unclear to the public and to the research community. This study aimed to reveal the differences between natural water and reclaimed water and to discuss the rationality of reclaimed water replenishment from the perspective of microorganisms. The microbial community structures in natural water, reclaimed water and natural biofilms were analyzed, and the community succession was clarified along the ecological niches, water resources, fluidity and time using 16S rRNA gene amplicon sequencing. Primary biofilms without the original community were added to study the formation of microbial community structures under reclaimed water acclimation. The results showed that the difference caused by ecological niches was more than those caused by the fluidity of water and different water resources. No significant difference caused by the addition of reclaimed water was found in the microbial diversity and community structure. Based on the results of microbial analysis, reclaimed water replenishment is a feasible solution that can be used for supplying river water.
Collapse
|
29
|
Bastaraud A, Cecchi P, Handschumacher P, Altmann M, Jambou R. Urbanization and Waterborne Pathogen Emergence in Low-Income Countries: Where and How to Conduct Surveys? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17020480. [PMID: 31940838 PMCID: PMC7013806 DOI: 10.3390/ijerph17020480] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 11/29/2022]
Abstract
A major forthcoming sanitary issue concerns the apparition and spreading of drug-resistant microorganisms, potentially threatening millions of humans. In low-income countries, polluted urban runoff and open sewage channels are major sources of microbes. These microbes join natural microbial communities in aquatic ecosystems already impacted by various chemicals, including antibiotics. These composite microbial communities must adapt to survive in such hostile conditions, sometimes promoting the selection of antibiotic-resistant microbial strains by gene transfer. The low probability of exchanges between planktonic microorganisms within the water column may be significantly improved if their contact was facilitated by particular meeting places. This could be specifically the case within biofilms that develop on the surface of the myriads of floating macroplastics increasingly polluting urban tropical surface waters. Moreover, as uncultivable bacterial strains could be involved, analyses of the microbial communities in their whole have to be performed. This means that new-omic technologies must be routinely implemented in low- and middle-income countries to detect the appearance of resistance genes in microbial ecosystems, especially when considering the new ‘plastic context.’ We summarize the related current knowledge in this short review paper to anticipate new strategies for monitoring and surveying microbial communities.
Collapse
Affiliation(s)
- Alexandra Bastaraud
- Laboratoire d’Hygiène des Aliments et de l’Environnement, Institut Pasteur de Madagascar, BP 1274, Antananarivo 101, Madagascar;
| | - Philippe Cecchi
- MARBEC (IRD, IFREMER, UM2 and CNRS), University Montpellier, 34095 Montpellier, France;
- Centre de Recherche Océanologique (CRO), Abidjan BPV 18, Ivory Coast
| | - Pascal Handschumacher
- IRD UMR 912 SESSTIM, INSERM-IRD-Université de Marseille II, 13000 Marseille, France;
| | - Mathias Altmann
- ISPED Université Victor Segalen Bordeaux II, 146 rue Leo Saignat, 33076 Bordeaux cedex, France;
| | - Ronan Jambou
- Département de Parasitologie et des insectes vecteurs, Institut Pasteur Paris, 75015 Paris, France
- Correspondence: ; Tel.: +33-622-10-72-96
| |
Collapse
|
30
|
Zhang L, Shen Z, Fang W, Gao G. Composition of bacterial communities in municipal wastewater treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:1181-1191. [PMID: 31466158 DOI: 10.1016/j.scitotenv.2019.06.432] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/12/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
Efforts to understand the environmental and biological factors that influence the dynamics of microbial communities have received substantial attention in microbial ecology. In this study, Illumina MiSeq high-throughput sequencing technology was used to examine the microbial community structure of activated sludge in municipal wastewater treatment systems (Chuzhou city, China). Overall, Proteobacteria, Chloroflexi, Actinobacteria, Acidobacteria, Actinobacteria, Bacteroidetes, and Firmicutes were the most dominant phyla in the five activated sludge samples. However, the community structure of nitrifying bacteria was relatively simple, and diversity was low; only AOB (Nitrosomonas) and NOB (Nitrospira) were detected. The dominant bacteria in the anaerobic sludge, anoxic sludge and oxic sludge were the same, and each bacterial species was relatively uniform, with differences only in proportions. Redundancy analysis indicated that pH, TP and COD were strong environmental factors influencing the bacterial community distribution. PICRUSt was used to describe the metabolic and functional abilities of the activated sludge bacterial communities. The results emphasized the vast genetic diversity of these organisms, which are involved in various essential processes such as amino acid transport and metabolism, energy production and conversion, cell wall/membrane/envelope/biogenesis, signal transduction mechanisms, and carbohydrate transport and metabolism. Activated sludge of municipal wastewater treatment systems can be ranked in the following order based on the 16S rRNA gene copy numbers of the detected phylotypes: S1 > S2 > S4 > S5 > S3. This study provides basic data and a theoretical analysis of the optimal design and operation in wastewater treatment plants.
Collapse
Affiliation(s)
- Lei Zhang
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Zhen Shen
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China
| | - Wangkai Fang
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China
| | - Guang Gao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
31
|
Neu L, Proctor CR, Walser JC, Hammes F. Small-Scale Heterogeneity in Drinking Water Biofilms. Front Microbiol 2019; 10:2446. [PMID: 31736893 PMCID: PMC6828615 DOI: 10.3389/fmicb.2019.02446] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/11/2019] [Indexed: 12/22/2022] Open
Abstract
Biofilm heterogeneity has been characterized on various scales for both natural and engineered ecosystems. This heterogeneity has been attributed to spatial differences in environmental factors. Understanding their impact on localized biofilm heterogeneity in building plumbing systems is important for both management and representative sampling strategies. We assessed heterogeneity within the confined engineered ecosystem of a shower hose by high-resolution sampling (200 individual biofilm sections per hose) on varying scales (μm to m). We postulated that a biofilm grown on a single material under uniform conditions should be homogeneous in its structure, bacterial numbers, and community composition. A biofilm grown for 12 months under controlled laboratory conditions, showed homogeneity on large-scale. However, some small-scale heterogeneity was clearly observed. For example, biofilm thickness of cm-sections varied up to 4-fold, total cell concentrations (TCC) 3-fold, and relative abundance of dominant taxa up to 5-fold. A biofilm grown under real (i.e., uncontrolled) use conditions developed considerably more heterogeneity in all variables which was attributed to more discontinuity in environmental conditions. Interestingly, biofilm communities from both hoses showed comparably low diversity, with <400 taxa each, and only three taxa accounting for 57%, respectively, 73% of the community. This low diversity was attributed to a strong selective pressure, originating in migrating carbon from the flexible hoses as major carbon source. High-resolution sampling strategy enabled detailed analysis of spatial heterogeneity within an individual drinking water biofilm. This study gives insight into biofilm structure and community composition on cm-to m-scale and is useful for decision-making on sampling strategies in biofilm research and monitoring.
Collapse
Affiliation(s)
- Lisa Neu
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zurich, Switzerland
| | - Caitlin R. Proctor
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Schools of Civil, Environmental and Ecological, Materials, and Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | | | - Frederik Hammes
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| |
Collapse
|
32
|
Hemdan BA, El-Liethy MA, ElMahdy MEI, El-Taweel GE. Metagenomics analysis of bacterial structure communities within natural biofilm. Heliyon 2019; 5:e02271. [PMID: 31485510 PMCID: PMC6716113 DOI: 10.1016/j.heliyon.2019.e02271] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/11/2019] [Accepted: 08/06/2019] [Indexed: 12/21/2022] Open
Abstract
The bacterial profiles of natural household biofilm have not been widely investigated. The majorities of these bacterial lineages are not cultivable. Thus, this study aims (i) to enumerate some potential bacterial lineages using culture based method within biofilm samples and confirmed using Biolog GEN III and polymerase chain reaction (PCR). (ii) To investigate the bacterial profiles of communities in two biofilm samples using next generation sequencing (NGS). Forty biofilm samples were cultured and colonies of each selected prevailing potential lineages (E. coli, Salmonella entrica, Pseudomonas aeruginosa, Staphylococcus aureus and Listeria monocytogenes) were selected for confirmation. From obtained results, the counts of the tested bacterial lineages in kitchen biofilm samples were greater than those in bathroom samples. Precision of PCR was higher than Biolog GEN III to confirm the bacterial isolates. Using NGS analysis, the results revealed that a total of 110,554 operational taxonomic units (OTUs) were obtained for two biofilm samples, representing kitchen and bathroom biofilm samples. The numbers of phyla in the kitchen biofilm sample (35 OTUs) was higher than that in bathroom sample (18 OTUs). A total of 435 genera were observed in the bathroom biofilm sample compared to only 256 in the kitchen sample. Evidences have shown that the empirical gadgets for biofilm investigation are becoming convenient and affordable. Many distinct bacterial lineages observed in biofilm are one of the most significant issues that threaten human health and lead to disease outbreaks.
Collapse
Affiliation(s)
- Bahaa A Hemdan
- Environmental Microbiology Lab., Water Pollution Research Department, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Mohamed Azab El-Liethy
- Environmental Microbiology Lab., Water Pollution Research Department, National Research Centre, Dokki, 12622, Giza, Egypt
| | - M E I ElMahdy
- Environmental Virology Lab., Water Pollution Research Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Gamila E El-Taweel
- Environmental Microbiology Lab., Water Pollution Research Department, National Research Centre, Dokki, 12622, Giza, Egypt
| |
Collapse
|
33
|
Tsao HF, Scheikl U, Herbold C, Indra A, Walochnik J, Horn M. The cooling tower water microbiota: Seasonal dynamics and co-occurrence of bacterial and protist phylotypes. WATER RESEARCH 2019; 159:464-479. [PMID: 31128471 PMCID: PMC6554697 DOI: 10.1016/j.watres.2019.04.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 04/04/2019] [Accepted: 04/13/2019] [Indexed: 05/30/2023]
Abstract
Cooling towers for heating, ventilation and air conditioning are ubiquitous in the built environment. Often located on rooftops, their semi-open water basins provide a suitable environment for microbial growth. They are recognized as a potential source of bacterial pathogens and have been associated with disease outbreaks such as Legionnaires' disease. While measures to minimize public health risks are in place, the general microbial and protist community structure and dynamics in these systems remain largely elusive. In this study, we analysed the microbiome of the bulk water from the basins of three cooling towers by 16S and 18S rRNA gene amplicon sequencing over the course of one year. Bacterial diversity in all three towers was broadly comparable to other freshwater systems, yet less diverse than natural environments; the most abundant taxa are also frequently found in freshwater or drinking water. While each cooling tower had a pronounced site-specific microbial community, taxa shared among all locations mainly included groups generally associated with biofilm formation. We also detected several groups related to known opportunistic pathogens, such as Legionella, Mycobacterium, and Pseudomonas species, albeit at generally low abundance. Although cooling towers represent a rather stable environment, microbial community composition was highly dynamic and subject to seasonal change. Protists are important members of the cooling tower water microbiome and known reservoirs for bacterial pathogens. Co-occurrence analysis of bacteria and protist taxa successfully captured known interactions between amoeba-associated bacteria and their hosts, and predicted a large number of additional relationships involving ciliates and other protists. Together, this study provides an unbiased and comprehensive overview of microbial diversity of cooling tower water basins, establishing a framework for investigating and assessing public health risks associated with these man-made freshwater environments.
Collapse
Affiliation(s)
- Han-Fei Tsao
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Ute Scheikl
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Craig Herbold
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Alexander Indra
- Department of Mycobacteriology and Clinical Molecular Biology, AGES, Vienna, Austria
| | - Julia Walochnik
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Matthias Horn
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
34
|
Lv X, Wang D, Iqbal W, Yang B, Mao Y. Microbial reduction of bromate: current status and prospects. Biodegradation 2019; 30:365-374. [PMID: 31236769 DOI: 10.1007/s10532-019-09882-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/18/2019] [Indexed: 10/26/2022]
Abstract
Bromate is a disinfection byproduct (DBP) that forms during the ozonation of bromide-containing natural water, which may cause health risks to humans. In this review, we provide an overview of the mechanism of bromate formation, microbial communities and bioreactors that are responsible for bromate reduction. Bromate can be formed through two pathways of bromide oxidation by ozone or by ·OH, and it can be removed by biological approaches. Members belonging to phyla of Spirochaetes, Proteobacteria, Firmicutes, Actinobacteria, Clostridium, Deinococcus-Thermus and Bacteroidetes have been identified as capable of reducing bromate to bromide. Multiple configurations of biofilm bioreactors have been employed to cultivate microbial communities to perform bromate removal. The rapid development of multiomics has and will continue to accelerate the elucidation of the mechanisms involved in bromate and other DBP conversions, as well as the interaction patterns among different bacterial subdivisions in the bioremoval of DBPs.
Collapse
Affiliation(s)
- Xinyue Lv
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Dan Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Waheed Iqbal
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Bo Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Yanping Mao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| |
Collapse
|
35
|
Roveto PM, Schuler AJ. Performance and diversity responses of nitrifying biofilms developed on varied materials and topographies to stepwise increases of aeration. BIORESOURCE TECHNOLOGY 2019; 281:429-439. [PMID: 30851582 DOI: 10.1016/j.biortech.2019.02.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/02/2019] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
Nitrifying biofilms were grown on 3D-printed nylon with three different surface characteristics (flat, millimeter-scale indentations, and indentations with activated carbon (AC) coating) and were subjected to sequentially increasing aeration-based shear to determine the interplay between surface, performance, and microbial populations towards improved design of wastewater treatment media. Biofilms were evaluated for nitrification, biomass detachment, and microbial composition based on Illumina 16s rRNA sequencing. Indentations provided greater stability over flat with respect to population diversity after detachment events but did not improve ammonia removal. AC-surface biofilm had significantly higher removal than uncoated surfaces at low aeration (1.0 L/min, fine) and significantly lower at high aeration (5.0 L/min, coarse). Principal component analyses of microbial communities illustrated temporal shifts over two similar cycles of growth and shear-induced biomass loss, demonstrating that biofilms grew similar consortia across all surfaces, but tended to revert to earlier individual compositions after shear events.
Collapse
Affiliation(s)
- Philip M Roveto
- University of New Mexico, Department of Civil, Construction, and Environmental Engineering, United States.
| | - Andrew J Schuler
- University of New Mexico, Department of Civil, Construction, and Environmental Engineering, United States.
| |
Collapse
|
36
|
Zhu J, Liu R, Cao N, Yu J, Liu X, Yu Z. Mycobacterial metabolic characteristics in a water meter biofilm revealed by metagenomics and metatranscriptomics. WATER RESEARCH 2019; 153:315-323. [PMID: 30739073 DOI: 10.1016/j.watres.2019.01.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/27/2018] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
Mycobacteria represent one of the most persistent bacterial populations in drinking water distribution system (DWDS) biofilm communities; however, mycobacterial in situ metabolic profiles are largely unknown. In this study, the metabolic characteristics of mycobacteria in a household water meter biofilm were unveiled using a coupled metagenomic/metatranscriptomic approach. The water meter biofilm appeared to express nitrogenase genes (nifDKH) and a full complement of genes coding for several carbon-fixation pathways, especially the Calvin cycle, suggesting the CO2 sequestration and dinitrogen fixation potential of the biofilm. These findings indicate that it may be difficult to prevent the formation of DWDS biofilms simply by controlling the availability of organic carbon or nitrogen. The composite genome of mycobacteria (CG-M) was reconstructed based on the obtained omics data. CG-M shared similar genome phylogeny and virulence-factor profiles with Mycobacterium avium complex, suggesting that population CG-M might represent a member of mycobacteria with pathogenicity. According to the gene expression patterns, population CG-M showed the metabolic potential to assimilate CO2 via the Calvin cycle and/or anaplerotic reactions, and even to grow autotrophically with CO as the sole carbon and energy source. This suggests that organic carbon may not be a limiting factor for mycobacterial growth in DWDSs. Moreover, our results suggest that mycobacterial aromatic degradation is primarily achieved through the catechol meta-cleavage pathway, and biofilm mycobacteria could prefer phosphate as the phosphorus source.
Collapse
Affiliation(s)
- Junge Zhu
- University of Chinese Academy of Sciences, Beijing, China; Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ruyin Liu
- University of Chinese Academy of Sciences, Beijing, China.
| | - Nan Cao
- Beijing Waterworks Group, Beijing, China
| | - Jianwei Yu
- Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Xinchun Liu
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhisheng Yu
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
37
|
Wang B, Tan X, Du R, Zhao F, Zhang L, Han Y, Zhou Z. Bacterial composition of biofilms formed on dairy-processing equipment. Prep Biochem Biotechnol 2019; 49:477-484. [DOI: 10.1080/10826068.2019.1587623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Binbin Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Xiqian Tan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Renpeng Du
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Fangkun Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Lixia Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Ye Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Zhijiang Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| |
Collapse
|
38
|
Zhang G, Li B, Guo F, Liu J, Luan M, Liu Y, Guan Y. Taxonomic relatedness and environmental pressure synergistically drive the primary succession of biofilm microbial communities in reclaimed wastewater distribution systems. ENVIRONMENT INTERNATIONAL 2019; 124:25-37. [PMID: 30639905 DOI: 10.1016/j.envint.2018.12.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
Compared to drinking water, the higher bacterial abundance, diversity, and organic matter concentration in reclaimed wastewater suggest that it is more likely to form biofilms. Nevertheless, little is known regarding many important aspects of the biofilm ecology in reclaimed wastewater distribution systems (RWDS), such as the long-term microbial community succession and the underlying driving factors. In the present study, by sampling and analysing microbial compositions of pipe wall biofilms from six frequently used pipe materials under NaClOdisinfection (sodium hypochlorite-treated), NONdisinfection (without disinfection), and UVdisinfection (UV-treated) treatments over one year, it was found that the succession of microbial community structure followed a primary succession pattern. This primary succession pattern was reflected as increases in live cell number and α-diversity, along with metagenic succession in taxonomic composition. Proteobacteria, Nitrospirae, Bacteroidetes, Acidobacteria, Planctomycetes, Actinobacteria, and Verrucomicrobia comprised the dominant phyla in biofilm samples. Compared to biofilms in the NaClOdisinfection reactor, the bacterial communities of biofilms in NONdisinfection and UVdisinfection reactors were distributed more evenly among different bacterial phyla. Principal component analysis revealed a clear temporal pattern of microbial community structures in six kinds of pipe wall biofilms albeit a difference in microbial community structures among the three reactors. Adonis testing indicated that the microbial community composition variation caused by disinfection methods (R2 = 0.283, P < 0.01) was more pronounced than that from the time variable (R2 = 0.070, P < 0.01) and pipe material (R2 = 0.057, P < 0.01). Significantly positive correlation between average local abundance and occupancy was observed in biofilm communities of the three reactors, suggesting that the 'core-satellite' model could be applied to identify biofilm-preferential species under specific disinfection conditions in RWDS. The prevalence of family Sphingomonadaceae, known to show chlorine tolerance and powerful biofilm-forming ability in NaClOdisinfection reactors, evidenced the habitat filtering consequent to environment pressure. Correlation-based network analysis revealed that taxonomic relatedness such as similar niches, cooperation, taxa overdispersion, and competition all functioned toward driving the bacterial assembly succession in RWDS.
Collapse
Affiliation(s)
- Guijuan Zhang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, China
| | - Bing Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, China.
| | - Feng Guo
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Jie Liu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, China
| | - Mingqiang Luan
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, China
| | - Yang Liu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, China
| | - Yuntao Guan
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, China.
| |
Collapse
|
39
|
Khan ST, Malik A. Engineered nanomaterials for water decontamination and purification: From lab to products. JOURNAL OF HAZARDOUS MATERIALS 2019; 363:295-308. [PMID: 30312926 DOI: 10.1016/j.jhazmat.2018.09.091] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 09/21/2018] [Accepted: 09/30/2018] [Indexed: 06/08/2023]
Abstract
Clean water is vital for life; it is required not only for drinking but also for the preparation of food and proper hygiene. Unfortunately, more than fifty percent of the world population mainly in China and India face a severe scarcity of water. Around 1.8 billion people inevitably drink water from sources having fecal contamination resulting in the death of about a million children every year. Scientists are developing various economic technologies to decontaminate and purify water. Nanomaterials-based technology offers an economic and effective alternative for water purification and decontamination. As nanomaterials are available globally, have remarkable antimicrobial activity and the ability to effectively remove organic and inorganic pollutants from water. This review discusses the potential role of nanomaterials in the purification of drinking water. As nanomaterials exhibit remarkable antimicrobial and antiparasitic activities against waterborne pathogens and parasites of primary concern like Shigella dysenteriae, Vibrio cholera, and Entamoeba histolytica. Nanomaterials also demonstrate the ability to absorb toxic chemicals like mercury and dyes from polluted water. However, for successful commercialization of the technology, some inherent bottlenecks need to be addressed adequately. These include nanoparticles aggregation, their seepage into drinking water and adverse effects on human health and the environment. Nanocomposites are being developed to overcome these problems and to combine two or more desirable properties for water purification. Widespread and large-scale use of nanomaterials for water purification soon may become a reality. Products containing nanomaterials such as Karofi, Lifestraw, and Tupperware for water purification are already available in the market.
Collapse
Affiliation(s)
- Shams Tabrez Khan
- Department of Agricultural Microbiology, Faculty of Agriculture Sciences, Aligarh Muslim University, Aligarh, UP, India.
| | - Abdul Malik
- Department of Agricultural Microbiology, Faculty of Agriculture Sciences, Aligarh Muslim University, Aligarh, UP, India
| |
Collapse
|
40
|
Zhang G, Li B, Liu J, Luan M, Yue L, Jiang XT, Yu K, Guan Y. The bacterial community significantly promotes cast iron corrosion in reclaimed wastewater distribution systems. MICROBIOME 2018; 6:222. [PMID: 30545419 PMCID: PMC6292113 DOI: 10.1186/s40168-018-0610-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/28/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Currently, the effect of the bacterial community on cast iron corrosion process does not reach consensus. Moreover, some studies have produced contrasting results, suggesting that bacteria can either accelerate or inhibit corrosion. RESULTS The long-term effects of the bacterial community on cast iron corrosion in reclaimed wastewater distribution systems were investigated from both spatial (yellow layer vs. black layer) and temporal (1-year dynamic process) dimensions of the iron coupon-reclaimed wastewater microcosm using high-throughput sequencing and flow cytometry approaches. Cast iron coupons in the NONdisinfection and UVdisinfection reactors suffered more severe corrosion than did those in the NaClOdisinfection reactor. The bacterial community significantly promoted cast iron corrosion, which was quantified for the first time in the practical reclaimed wastewater and found to account for at least 30.5% ± 9.7% of the total weight loss. The partition of yellow and black layers of cast iron corrosion provided more accurate information on morphology and crystal structures for corrosion scales. The black layer was dense, and the particles looked fusiform, while the yellow layer was loose, and the particles were ellipse or spherical. Goethite was the predominant crystalline phase in black layers, while corrosion products mainly existed as an amorphous phase in yellow layers. The bacterial community compositions of black layers were distinctly separated from yellow layers regardless of disinfection methods. The NONdisinfection and UVdisinfection reactors had a more similar microbial composition and variation tendency for the same layer type than did the NaClOdisinfection reactor. Biofilm development can be divided into the initial start-up stage, mid-term development stage, and terminal stable stage. In total, 12 potential functional genera were selected to establish a cycle model for Fe, N, and S metabolism. Desulfovibrio was considered to accelerate the transfer of Fe0 to Fe2+ and speed up weight loss. CONCLUSION The long-term effect of disinfection processes on corrosion behaviors of cast iron in reclaimed wastewater distribution systems and the hidden mechanisms were deciphered for the first time. This study established a cycle model for Fe, N, and S metabolism that involved 12 functional genera and discovered the significant contribution of Desulfovibrio in promoting corrosion.
Collapse
Affiliation(s)
- Guijuan Zhang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, China
| | - Bing Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, China
| | - Jie Liu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, China
| | - Mingqiang Luan
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, China
| | - Long Yue
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, China
| | - Xiao-Tao Jiang
- Microbiome Research Centre, St George and Sutherland Clinical School, Department of Medicine, University of New South Wales, Sydney, Australia
| | - Ke Yu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Yuntao Guan
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, China
| |
Collapse
|
41
|
Dai D, Rhoads WJ, Edwards MA, Pruden A. Shotgun Metagenomics Reveals Taxonomic and Functional Shifts in Hot Water Microbiome Due to Temperature Setting and Stagnation. Front Microbiol 2018; 9:2695. [PMID: 30542327 PMCID: PMC6277882 DOI: 10.3389/fmicb.2018.02695] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 10/23/2018] [Indexed: 12/20/2022] Open
Abstract
Hot water premise plumbing has emerged as a critical nexus of energy, water, and public health. The composition of hot water microbiomes is of special interest given daily human exposure to resident flora, especially opportunistic pathogens (OPs), which rely on complex microbial ecological interactions for their proliferation. Here, we applied shotgun metagenomic sequencing to characterize taxonomic and functional shifts in microbiomes as a function of water heater temperature setting, stagnation in distal pipes, and associated shifts in water chemistry. A cross-section of samples from controlled, replicated, pilot-scale hot water plumbing rigs representing different temperature settings (39, 42, and 51°C), stagnation periods (8 h vs. 7 days), and time-points, were analyzed. Temperature setting exhibited an overarching impact on taxonomic and functional gene composition. Further, distinct taxa were selectively enriched by specific temperature settings (e.g., Legionella at 39°C vs. Deinococcus at 51°C), while relative abundances of genes encoding corresponding cellular functions were highly consistent with expectations based on the taxa driving these shifts. Stagnation in distal taps diminished taxonomic and functional differences induced by heating the cold influent water to hot water in recirculating line. In distal taps relative to recirculating hot water, reads annotated as being involved in metabolism and growth decreased, while annotations corresponding to stress response (e.g., virulence disease and defense, and specifically antibiotic resistance) increased. Reads corresponding to OPs were readily identified by metagenomic analysis, with L. pneumophila reads in particular correlating remarkably well with gene copy numbers measured by quantitative polymerase chain reaction. Positive correlations between L. pneumophila reads and those of known protozoan hosts were also identified. Elevated proportions of genes encoding metal resistance and hydrogen metabolism were noted, which was consistent with elevated corrosion-induced metal concentrations and hydrogen generation. This study provided new insights into real-world factors influencing taxonomic and functional compositions of hot water microbiomes. Here metagenomics is demonstrated as an effective tool for screening for potential presence, and even quantities, of pathogens, while also providing diagnostic capabilities for assessing functional responses of microbiomes to various operational conditions. These findings can aid in informing future monitoring and intentional control of hot water microbiomes.
Collapse
Affiliation(s)
| | | | | | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
42
|
Douterelo I, Fish KE, Boxall JB. Succession of bacterial and fungal communities within biofilms of a chlorinated drinking water distribution system. WATER RESEARCH 2018; 141:74-85. [PMID: 29778067 DOI: 10.1016/j.watres.2018.04.058] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/05/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
Understanding the temporal dynamics of multi-species biofilms in Drinking Water Distribution Systems (DWDS) is essential to ensure safe, high quality water reaches consumers after it passes through these high surface area reactors. This research studied the succession characteristics of fungal and bacterial communities under controlled environmental conditions fully representative of operational DWDS. Microbial communities were observed to increase in complexity after one month of biofilm development but they did not reach stability after three months. Changes in cell numbers were faster at the start of biofilm formation and tended to decrease over time, despite the continuing changes in bacterial community composition. Fungal diversity was markedly less than bacterial diversity and had a lag in responding to temporal dynamics. A core-mixed community of bacteria including Pseudomonas, Massillia and Sphingomonas and the fungi Acremonium and Neocosmopora were present constantly and consistently in the biofilms over time and conditions studied. Monitoring and managing biofilms and such ubiquitous core microbial communities are key control strategies to ensuring the delivery of safe drinking water via the current ageing DWDS infrastructure.
Collapse
Affiliation(s)
- I Douterelo
- Pennine Water Group, Department of Civil and Structural Engineering, Mappin Street, University of Sheffield, Sheffield, S1 3JD, UK.
| | - K E Fish
- Pennine Water Group, Department of Civil and Structural Engineering, Mappin Street, University of Sheffield, Sheffield, S1 3JD, UK
| | - J B Boxall
- Pennine Water Group, Department of Civil and Structural Engineering, Mappin Street, University of Sheffield, Sheffield, S1 3JD, UK
| |
Collapse
|
43
|
Xu H, Pei H, Jin Y, Ma C, Wang Y, Sun J, Li H. High-throughput sequencing reveals microbial communities in drinking water treatment sludge from six geographically distributed plants, including potentially toxic cyanobacteria and pathogens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:769-779. [PMID: 29653422 DOI: 10.1016/j.scitotenv.2018.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/01/2018] [Accepted: 04/01/2018] [Indexed: 05/20/2023]
Abstract
The microbial community structures of drinking water treatment sludge (DWTS) generated for raw water (RW) from different locations and with different source types - including river water, lake water and reservoir water -were investigated using high-throughput sequencing. Because the unit operations in the six DWTPs were similar, community composition in fresh sludge may be determined by microbial community in the corresponding RW. Although Proteobacteria, Cyanobacteria, Bacteroidetes, Firmicutes, Verrucomicrobia, and Planctomycetes were the dominant phyla among the six DWTS samples, no single phylum exhibited similar abundance across all the samples, owing to differences in total phosphorus, chemical oxygen demand, Al, Fe, and chloride in RW. Three genera of potentially toxic cyanobacteria (Planktothrix, Microcystis and Cylindrospermopsis), and four potential pathogens (Escherichia coli, Bacteroides ovatus, Prevotella copri and Rickettsia) were found in sludge samples. Because proliferation of potentially toxic cyanobacteria and Rickettsia in RW was mainly affected by nutrients, while growth of Escherichia coli, Bacteroides ovatus and Prevotella copri in RW may be influenced by Fe, control of nutrients and Fe in RW is essential to decrease toxic cyanobacteria and pathogens in DWTS.
Collapse
Affiliation(s)
- Hangzhou Xu
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Haiyan Pei
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China; Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China.
| | - Yan Jin
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Chunxia Ma
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Yuting Wang
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Jiongming Sun
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Hongmin Li
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
44
|
Cho K, Jeong D, Lee S, Bae H. Chlorination caused a shift in marine biofilm niches on microfiltration/ultrafiltration and reverse osmosis membranes and UV irradiation effectively inactivated a chlorine-resistant bacterium. Appl Microbiol Biotechnol 2018; 102:7183-7194. [DOI: 10.1007/s00253-018-9111-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 04/16/2018] [Accepted: 05/16/2018] [Indexed: 01/30/2023]
|
45
|
Neu L, Bänziger C, Proctor CR, Zhang Y, Liu WT, Hammes F. Ugly ducklings-the dark side of plastic materials in contact with potable water. NPJ Biofilms Microbiomes 2018; 4:7. [PMID: 29619241 PMCID: PMC5869678 DOI: 10.1038/s41522-018-0050-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 02/16/2018] [Accepted: 03/01/2018] [Indexed: 01/06/2023] Open
Abstract
Bath toys pose an interesting link between flexible plastic materials, potable water, external microbial and nutrient contamination, and potentially vulnerable end-users. Here, we characterized biofilm communities inside 19 bath toys used under real conditions. In addition, some determinants for biofilm formation were assessed, using six identical bath toys under controlled conditions with either clean water prior to bathing or dirty water after bathing. All examined bath toys revealed notable biofilms on their inner surface, with average total bacterial numbers of 5.5 × 106 cells/cm2 (clean water controls), 9.5 × 106 cells/cm2 (real bath toys), and 7.3 × 107 cells/cm2 (dirty water controls). Bacterial community compositions were diverse, showing many rare taxa in real bath toys and rather distinct communities in control bath toys, with a noticeable difference between clean and dirty water control biofilms. Fungi were identified in 58% of all real bath toys and in all dirty water control toys. Based on the comparison of clean water and dirty water control bath toys, we argue that bath toy biofilms are influenced by (1) the organic carbon leaching from the flexible plastic material, (2) the chemical and biological tap water quality, (3) additional nutrients from care products and human body fluids in the bath water, as well as, (4) additional bacteria from dirt and/or the end-users’ microbiome. The present study gives a detailed characterization of bath toy biofilms and a better understanding of determinants for biofilm formation and development in systems comprising plastic materials in contact with potable water. While bathing typically means good hygiene, bath toys can serve as incubators for microbial growth. Microbes colonize nearly every natural and human-made surface, sometimes living within complex communities called biofilms. A team led by Frederik Hammes at the Swiss Federal Institute of Aquatic Science and Technology found that tap water bacteria and fungi readily formed biofilms inside bath toys, suggesting that bathing provides food for microbes. These nutrients may come from bath toys’ polymeric material, from care products like soap and from human secretions like sweat. While 16S rRNA sequence analysis found that some of the microbes were related to disease-causing strains, future work is needed to assess the disease risk from these bath toy-associated biofilms. This work sheds light on how microbes are spread by our routine activities and that we are bathed in microbes, literally.
Collapse
Affiliation(s)
- Lisa Neu
- 1Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,2Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
| | - Carola Bänziger
- 1Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Caitlin R Proctor
- 1Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,2Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
| | - Ya Zhang
- 3Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana-Champaign, USA
| | - Wen-Tso Liu
- 3Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana-Champaign, USA
| | - Frederik Hammes
- 1Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| |
Collapse
|
46
|
Anupama R, Mukherjee A, Babu S. Gene-centric metegenome analysis reveals diversity of Pseudomonas aeruginosa biofilm gene orthologs in fresh water ecosystem. Genomics 2018; 110:89-97. [DOI: 10.1016/j.ygeno.2017.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/14/2017] [Accepted: 08/30/2017] [Indexed: 01/22/2023]
|
47
|
Pei H, Xu H, Wang J, Jin Y, Xiao H, Ma C, Sun J, Li H. 16S rRNA Gene Amplicon Sequencing Reveals Significant Changes in Microbial Compositions during Cyanobacteria-Laden Drinking Water Sludge Storage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:12774-12783. [PMID: 28994596 DOI: 10.1021/acs.est.7b03085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This is the first study to systematically investigate the microbial community structure in cyanobacteria-laden drinking water sludge generated by different types of coagulants (including AlCl3, FeCl3, and polymeric aluminum ferric chloride (PAFC)) using Illumina 16S rRNA gene MiSeq sequencing. Results show that Cyanobacteria, Proteobacteria, Firmicutes, Bacteroidetes, Verrucomicrobia, and Planctomycetes were the most dominant phyla in sludge, and because of the toxicity of high Al and Fe level in AlCl3 and FeCl3 sludges, respectively, the PAFC sludge exhibited greater microbial richness than that in AlCl3 and FeCl3 sludges. Due to lack of light and oxygen in sludge, relative abundance of the dominant genera Microcystis, Rhodobacter, Phenylobacterium, and Hydrogenophaga clearly decreased, especially after 4 days storage, and the amounts of extracellular microcystin and organic matter rose. As a result, the relative abundance of microcystin and organic degradation bacteria increased significantly, including pathogens such as Bacillus cereus, in particular after 4 days storage. Hence, sludge should be disposed of within 4 days to prevent massive growth of pathogens. In addition, because the increase of extracellular microcystins, organic matter, and pathogens in AlCl3 sludge was higher than that in FeCl3 and PAFC sludges, FeCl3 and PAFC may be ideal coagulants in drinking water treatment plants.
Collapse
Affiliation(s)
- Haiyan Pei
- School of Environmental Science and Engineering, Shandong University , Jinan, 250100, China
- Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan, 250061, China
| | - Hangzhou Xu
- School of Environmental Science and Engineering, Shandong University , Jinan, 250100, China
| | - Jingjing Wang
- School of Life Science, Shandong University , Jinan 250100, China
| | - Yan Jin
- School of Environmental Science and Engineering, Shandong University , Jinan, 250100, China
| | - Hongdi Xiao
- School of Physics, Shandong University , Jinan 250100, China
| | - Chunxia Ma
- School of Environmental Science and Engineering, Shandong University , Jinan, 250100, China
| | - Jiongming Sun
- School of Environmental Science and Engineering, Shandong University , Jinan, 250100, China
| | - Hongmin Li
- School of Environmental Science and Engineering, Shandong University , Jinan, 250100, China
| |
Collapse
|
48
|
Di Gregorio L, Tandoi V, Congestri R, Rossetti S, Di Pippo F. Unravelling the core microbiome of biofilms in cooling tower systems. BIOFOULING 2017; 33:793-806. [PMID: 28994320 DOI: 10.1080/08927014.2017.1367386] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
In this study, next generation sequencing and catalyzed reporter deposition fluorescence in situ hybridization, combined with confocal microscopy, were used to provide insights into the biodiversity and structure of biofilms collected from four full-scale European cooling systems. Water samples were also analyzed to evaluate the impact of suspended microbes on biofilm formation. A common core microbiome, containing members of the families Sphingomonadaceae, Comamonadaceae and Hyphomicrobiaceae, was found in all four biofilms, despite the water of each coming from different sources (river and groundwater). This suggests that selection of the pioneer community was influenced by abiotic factors (temperature, pH) and tolerances to biocides. Members of the Sphingomonadaceae were assumed to play a key role in initial biofilm formation. Subsequent biofilm development was driven primarily by light availability, since biofilms were dominated by phototrophs in the two studied 'open' systems. Their interactions with other microbial populations then shaped the structure of the mature biofilm communities analyzed.
Collapse
Affiliation(s)
- L Di Gregorio
- a Water Research Institute , CNR-IRSA, National Research Council , Rome , Italy
- b Department of Biology , University of Rome Tor Vergata , Rome , Italy
| | - V Tandoi
- a Water Research Institute , CNR-IRSA, National Research Council , Rome , Italy
| | - R Congestri
- b Department of Biology , University of Rome Tor Vergata , Rome , Italy
| | - S Rossetti
- a Water Research Institute , CNR-IRSA, National Research Council , Rome , Italy
| | - F Di Pippo
- a Water Research Institute , CNR-IRSA, National Research Council , Rome , Italy
- c Institute for Coastal Marine Environment , CNR-IAMC, National Research Council , Oristano , Italy
| |
Collapse
|
49
|
Li X, Duan J, Xiao H, Li Y, Liu H, Guan F, Zhai X. Analysis of Bacterial Community Composition of Corroded Steel Immersed in Sanya and Xiamen Seawaters in China via Method of Illumina MiSeq Sequencing. Front Microbiol 2017; 8:1737. [PMID: 28955315 PMCID: PMC5601074 DOI: 10.3389/fmicb.2017.01737] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/25/2017] [Indexed: 11/23/2022] Open
Abstract
Metal corrosion is of worldwide concern because it is the cause of major economic losses, and because it creates significant safety issues. The mechanism of the corrosion process, as influenced by bacteria, has been studied extensively. However, the bacterial communities that create the biofilms that form on metals are complicated, and have not been well studied. This is why we sought to analyze the composition of bacterial communities living on steel structures, together with the influence of ecological factors on these communities. The corrosion samples were collected from rust layers on steel plates that were immersed in seawater for two different periods at Sanya and Xiamen, China. We analyzed the bacterial communities on the samples by targeted 16S rRNA gene (V3–V4 region) sequencing using the Illumina MiSeq. Phylogenetic analysis revealed that the bacteria fell into 13 phylotypes (similarity level = 97%). Proteobacteria, Firmicutes and Bacteroidetes were the dominant phyla, accounting for 88.84% of the total. Deltaproteobacteria, Clostridia and Gammaproteobacteria were the dominant classes, and accounted for 70.90% of the total. Desulfovibrio spp., Desulfobacter spp. and Desulfotomaculum spp. were the dominant genera and accounted for 45.87% of the total. These genera are sulfate-reducing bacteria that are known to corrode steel. Bacterial diversity on the 6 months immersion samples was much higher than that of the samples that had been immersed for 8 years (P < 0.001, Student’s t-test). The average complexity of the biofilms from the 8-years immersion samples from Sanya was greater than those from Xiamen, but not significantly so (P > 0.05, Student’s t-test). Overall, the data showed that the rust layers on the steel plates carried many bacterial species. The bacterial community composition was influenced by the immersion time. The results of our study will be of benefit to the further studies of bacterial corrosion mechanisms and corrosion resistance.
Collapse
Affiliation(s)
- Xiaohong Li
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of SciencesQingdao, China.,College of Marine Life Sciences, Ocean University of ChinaQingdao, China
| | - Jizhou Duan
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of SciencesQingdao, China
| | - Hui Xiao
- College of Marine Life Sciences, Ocean University of ChinaQingdao, China
| | - Yongqian Li
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of SciencesQingdao, China.,College of Marine Life Sciences, Ocean University of ChinaQingdao, China
| | - Haixia Liu
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of SciencesQingdao, China
| | - Fang Guan
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of SciencesQingdao, China
| | - Xiaofan Zhai
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of SciencesQingdao, China
| |
Collapse
|
50
|
Zhang L, Wang S. Bacterial community diversity on in-shell walnut surfaces from six representative provinces in China. Sci Rep 2017; 7:10054. [PMID: 28855583 PMCID: PMC5577159 DOI: 10.1038/s41598-017-10138-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/04/2017] [Indexed: 11/09/2022] Open
Abstract
Walnuts (Juglans regia) have been associated with foodborne illness outbreaks in recent years. Thus, the purpose of this study was to investigate the distribution of bacteria on in-shell walnut surfaces from six representative provinces in China. The bacterial populations on walnut surfaces were investigated by high-throughput sequencing based on the bacterial 16 S rRNA hypervariable region V4. Twenty-eight samples were collected from fourteen regions in six provinces and harvested in different periods (the fresh in 2016 and the old in 2015). Proteobacteria was the most dominant phylum in all samples except for XJ1. In XJ1, and the most abundant phylum was Cyanobacteria, which also accounted for a large proportion of the abundance in YN1, YN11, XJ2 and SC11. In addition, Firmicutes and Actinobacteria were also the abundant phyla in the given samples. Some genera belonging to the opportunistic pathogens were detected, such as Pseudomonas, Acinetobacter, Burkholderia and Bacillus. The results revealed that the composition and abundance of bacterial consortiums on walnut surfaces varied among the geographical sites where they were harvested. Moreover, the storage time of samples also had impact on the abundance of bacteria. This study may provide a better understanding of the bacterial communities' diversity on in-shell walnut surfaces.
Collapse
Affiliation(s)
- Lihui Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China. .,Department of Biological Systems Engineering, Washington State University, Pullman, WA, 99164-6120, USA.
| |
Collapse
|