1
|
Meng X, Dang HQ, Kapler GM. Developmentally Programmed Switches in DNA Replication: Gene Amplification and Genome-Wide Endoreplication in Tetrahymena. Microorganisms 2023; 11:microorganisms11020491. [PMID: 36838456 PMCID: PMC9967165 DOI: 10.3390/microorganisms11020491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/29/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
Locus-specific gene amplification and genome-wide endoreplication generate the elevated copy number of ribosomal DNA (rDNA, 9000 C) and non-rDNA (90 C) chromosomes in the developing macronucleus of Tetrahymena thermophila. Subsequently, all macronuclear chromosomes replicate once per cell cycle during vegetative growth. Here, we describe an unanticipated, programmed switch in the regulation of replication initiation in the rDNA minichromosome. Early in development, the 21 kb rDNA minichromosome is preferentially amplified from 2 C to ~800 C from well-defined origins, concurrent with genome-wide endoreplication (2 C to 8-16 C) in starved mating Tetrahymena (endoreplication (ER) Phase 1). Upon refeeding, rDNA and non-rDNA chromosomes achieve their final copy number through resumption of just the endoreplication program (ER Phase 2). Unconventional rDNA replication intermediates are generated primarily during ER phase 2, consistent with delocalized replication initiation and possible formation of persistent RNA-DNA hybrids. Origin usage and replication fork elongation are affected in non-rDNA chromosomes as well. Despite the developmentally programmed 10-fold reduction in the ubiquitous eukaryotic initiator, the Origin Recognition Complex (ORC), active initiation sites are more closely spaced in ER phases 1 and 2 compared to vegetative growing cells. We propose that initiation site selection is relaxed in endoreplicating macronuclear chromosomes and may be less dependent on ORC.
Collapse
Affiliation(s)
- Xiangzhou Meng
- Department of Cell Biology and Genetics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hung Quang Dang
- Department of Cell Biology and Genetics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- Alstem Bioscience, Richmond, CA 94806, USA
| | - Geoffrey M. Kapler
- Department of Cell Biology and Genetics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- Correspondence: ; Tel.: +1-979-574-3901
| |
Collapse
|
2
|
The Conjusome-A Transient Organelle Linking Genome Rearrangements in the Parental and Developing Macronuclei. Microorganisms 2023; 11:microorganisms11020418. [PMID: 36838383 PMCID: PMC9962563 DOI: 10.3390/microorganisms11020418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
The conjusome plays an important role in the conjugation events that occur in Tetrahymena thermophila. The conjusome appears in the anterior of conjugant pairs during the early stages of new macronuclei (anlagen) development. It lacks a membrane, and is composed of a network of fibrous, electron dense material, containing background cytoplasm and ribosomes. Several proteins localize to this organelle, including Pdd1p, a chromodomain protein that participates in the formation of chromatin-containing structures in developing macronuclear anlagen, and is associated with the elimination of specific germ-line sequences from developing macronuclei. Conjugants lacking the PDD1 allele in the parental macronucleus do not show Pdd1p antibody staining in conjusomes. Investigations were performed using mutant cell lines, uniparental cytogamy and drug treatment, and show that the conjusome appears to be dependent on parental macronuclei condensation, and is a transitory organelle that traffics nuclear determinants from the parental macronucleus to the developing anlagen. These data, taken together with Pdd1p knockout experiments, suggest the conjusome is involved in the epigenetic phenomena that occur during conjugation and sexual reorganization. This is likely a conserved organelle. Conjusome-like structures were also observed in another Ciliate, Stylonichia. In general, conjusomes have features that resemble germ line P-granules.
Collapse
|
3
|
Bo T, Kang Y, Liu Y, Xu J, Wang W. Atg5 Regulates Selective Autophagy of the Parental Macronucleus during Tetrahymena Sexual Reproduction. Cells 2021; 10:3071. [PMID: 34831293 PMCID: PMC8623110 DOI: 10.3390/cells10113071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022] Open
Abstract
Nuclear autophagy is an important selective autophagy process. The selective autophagy of sexual development micronuclei (MICs) and the programmed nuclear degradation of parental macronucleus (paMAC) occur during sexual reproduction in Tetrahymena thermophila. The molecular regulatory mechanism of nuclear selective autophagy is unclear. In this study, the autophagy-related protein Atg5 was identified from T. thermophila. Atg5 was localized in the cytoplasm in the early sexual-development stage and was localized in the paMAC in the late sexual-development stage. During this stage, the degradation of meiotic products of MIC was delayed in atg5i mutants. Furthermore, paMAC was abnormally enlarged and delayed or failed to degrade. The expression level and lipidation of Atg8.2 significantly decreased in the mutants. All these results indicated that Atg5 was involved in the regulation of the selective autophagy of paMAC by regulating Atg8.2 in Tetrahymena.
Collapse
Affiliation(s)
- Tao Bo
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (T.B.); (Y.K.); (Y.L.); (J.X.)
| | - Yu Kang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (T.B.); (Y.K.); (Y.L.); (J.X.)
| | - Ya Liu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (T.B.); (Y.K.); (Y.L.); (J.X.)
| | - Jing Xu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (T.B.); (Y.K.); (Y.L.); (J.X.)
- College of Life Sciences, Shanxi University, Taiyuan 030006, China
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (T.B.); (Y.K.); (Y.L.); (J.X.)
| |
Collapse
|
4
|
Saettone A, Nabeel-Shah S, Garg J, Lambert JP, Pearlman RE, Fillingham J. Functional Proteomics of Nuclear Proteins in Tetrahymena thermophila: A Review. Genes (Basel) 2019; 10:E333. [PMID: 31052454 PMCID: PMC6562869 DOI: 10.3390/genes10050333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022] Open
Abstract
Identification and characterization of protein complexes and interactomes has been essential to the understanding of fundamental nuclear processes including transcription, replication, recombination, and maintenance of genome stability. Despite significant progress in elucidation of nuclear proteomes and interactomes of organisms such as yeast and mammalian systems, progress in other models has lagged. Protists, including the alveolate ciliate protozoa with Tetrahymena thermophila as one of the most studied members of this group, have a unique nuclear biology, and nuclear dimorphism, with structurally and functionally distinct nuclei in a common cytoplasm. These features have been important in providing important insights about numerous fundamental nuclear processes. Here, we review the proteomic approaches that were historically used as well as those currently employed to take advantage of the unique biology of the ciliates, focusing on Tetrahymena, to address important questions and better understand nuclear processes including chromatin biology of eukaryotes.
Collapse
Affiliation(s)
- Alejandro Saettone
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
| | - Syed Nabeel-Shah
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| | - Jyoti Garg
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
| | - Jean-Philippe Lambert
- Department of Molecular Medicine and Cancer Research Centre, Université Laval, Quebec, QC, G1V 0A6, Canada.
- CHU de Québec Research Center, CHUL, 2705 Boulevard Laurier, Quebec, QC, G1V 4G2, Canada
| | - Ronald E Pearlman
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
| | - Jeffrey Fillingham
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
| |
Collapse
|
5
|
Qiao J, Xu J, Bo T, Wang W. Micronucleus-specific histone H1 is required for micronuclear chromosome integrity in Tetrahymena thermophila. PLoS One 2017; 12:e0187475. [PMID: 29095884 PMCID: PMC5667856 DOI: 10.1371/journal.pone.0187475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 10/19/2017] [Indexed: 02/02/2023] Open
Abstract
Histone H1 molecules play a key role in establishing and maintaining higher order chromatin structures. They can bind to linker DNA entering and exiting the nucleosome and regulate transcriptional activity. Tetrahymena thermophila has two histone H1, namely, macronuclear histone H1 and micronuclear histone H1 (Mlh1). Mlh1 is specifically localized at micronuclei during growth and starvation stages. Moreover, Mlh1 is localized around micronuclei and forms a specific structure during the conjugation stage. It co-localizes partially with spindle apparatus during micronuclear meiosis. Analysis of MLH1 knock-out revealed that Mlh1 was required for the micronuclear integrity and development during conjugation stage. Overexpression of Mlh1 led to abnormal conjugation progression. RT-PCR analysis indicated that the expression level of HMGB3 increased in ΔMLH1 strains, while the expression level of MLH1 increased in ΔHMGB3 cells during conjugation. These results indicate that micronuclear integrity and sexual development require normal expression level of Mlh1 and that HmgB3 and Mlh1 may functionally compensate each other in regulating micronuclear structure in T. thermophila.
Collapse
Affiliation(s)
- Juxia Qiao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, Shanxi, China
| | - Jing Xu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, Shanxi, China
- College of Life Science, Shanxi University, Taiyuan, Shanxi, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong, China
| | - Tao Bo
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, Shanxi, China
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, Shanxi, China
- * E-mail:
| |
Collapse
|
6
|
Wiley EA, Horrell S, Yoshino A, Schornak CC, Bagnani C, Chalker DL. Diversification of HP1-like Chromo Domain Proteins in Tetrahymena thermophila. J Eukaryot Microbiol 2017; 65:104-116. [PMID: 28692189 PMCID: PMC5762428 DOI: 10.1111/jeu.12443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/23/2017] [Accepted: 06/27/2017] [Indexed: 12/18/2022]
Abstract
Proteins that possess a chromo domain are well-known for their roles in heterochromatin assembly and maintenance. The Heterochromatin Protein 1 (HP1) family, with a chromo domain and carboxy-terminal chromo shadow domain, targets heterochromatin through interaction with histone H3 methylated on lysine 9 (H3K9me2/3). The structural and functional diversity of these proteins observed in both fission yeast and metazoans correlate with chromatin specialization. To expand these studies, we examined chromo domain proteins in the ciliate Tetrahymena thermophila, which has functionally diverse and developmentally regulated heterochromatin domains. We identified thirteen proteins similar to HP1. Together they possess only a fraction of the possible chromo domain subtypes and most lack a recognizable chromo shadow domain. Using fluorescence microscopy to track chromatin localization of tagged proteins through the life cycle, we show evidence that in T. thermophila this family has diversified with biological roles in RNAi-directed DNA elimination, germline genome structure, and somatic heterochromatin. Those proteins with H3K27me3 binding sequence characteristics localize to chromatin in mature nuclei, whereas those with H3K9me2/3 binding characteristics localize to developing nuclei undergoing DNA elimination. Findings point to an expanded and diversified family of chromo domain proteins that parallels heterochromatin diversity in ciliates.
Collapse
Affiliation(s)
- Emily A Wiley
- W.M. Keck Science Center of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California, 91711
| | - Scott Horrell
- Department of Biology, Washington University, St. Louis, Missouri, 63130
| | - Alyssa Yoshino
- W.M. Keck Science Center of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California, 91711
| | - Cara C Schornak
- Department of Biology, Washington University, St. Louis, Missouri, 63130
| | - Claire Bagnani
- W.M. Keck Science Center of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California, 91711
| | - Douglas L Chalker
- Department of Biology, Washington University, St. Louis, Missouri, 63130
| |
Collapse
|
7
|
Phosphorylation-Dependent Targeting of Tetrahymena HP1 to Condensed Chromatin. mSphere 2016; 1:mSphere00142-16. [PMID: 27579368 PMCID: PMC4999919 DOI: 10.1128/msphere.00142-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 07/25/2016] [Indexed: 01/16/2023] Open
Abstract
Compacting the genome to various degrees influences processes that use DNA as a template, such as gene transcription and replication. This project was aimed at learning more about the cellular mechanisms that control genome compaction. Posttranslational modifications of proteins involved in genome condensation are emerging as potentially important points of regulation. To help elucidate protein modifications and how they affect the function of condensation proteins, we investigated the phosphorylation of the chromatin protein called Hhp1 in the ciliated protozoan Tetrahymena thermophila. This is one of the first functional investigations of these modifications of a nonhistone chromatin condensation protein that acts on the ciliate genome, and discoveries will aid in identifying common, evolutionarily conserved strategies that control the dynamic compaction of genomes. The evolutionarily conserved proteins related to heterochromatin protein 1 (HP1), originally described in Drosophila, are well known for their roles in heterochromatin assembly and gene silencing. Targeting of HP1 proteins to specific chromatin locales is mediated, at least in part, by the HP1 chromodomain, which binds to histone H3 methylated at lysine 9 that marks condensed regions of the genome. Mechanisms that regulate HP1 targeting are emerging from studies with yeast and metazoans and point to roles for posttranslational modifications. Here, we report that modifications of an HP1 homolog (Hhp1) in the ciliate model Tetrahymena thermophila correlated with the physiological state and with nuclear differentiation events involving the restructuring of chromatin. Results support the model in which Hhp1 chromodomain binds lysine 27-methylated histone H3, and we show that colocalization with this histone mark depends on phosphorylation at a single Cdc2/Cdk1 kinase site in the “hinge region” adjacent to the chromodomain. These findings help elucidate important functional roles of reversible posttranslational modifications of proteins in the HP1 family, in this case, regulating the targeting of a ciliate HP1 to chromatin regions marked with methylated H3 lysine 27. IMPORTANCE Compacting the genome to various degrees influences processes that use DNA as a template, such as gene transcription and replication. This project was aimed at learning more about the cellular mechanisms that control genome compaction. Posttranslational modifications of proteins involved in genome condensation are emerging as potentially important points of regulation. To help elucidate protein modifications and how they affect the function of condensation proteins, we investigated the phosphorylation of the chromatin protein called Hhp1 in the ciliated protozoan Tetrahymena thermophila. This is one of the first functional investigations of these modifications of a nonhistone chromatin condensation protein that acts on the ciliate genome, and discoveries will aid in identifying common, evolutionarily conserved strategies that control the dynamic compaction of genomes.
Collapse
|
8
|
Kataoka K, Mochizuki K. Phosphorylation of an HP1-like Protein Regulates Heterochromatin Body Assembly for DNA Elimination. Dev Cell 2015; 35:775-88. [PMID: 26688337 PMCID: PMC4695338 DOI: 10.1016/j.devcel.2015.11.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 08/29/2015] [Accepted: 11/17/2015] [Indexed: 01/06/2023]
Abstract
Heterochromatic loci are often assembled into higher-order heterochromatin bodies in diverse eukaryotes. However, the formation and biological roles of heterochromatin bodies are poorly understood. In the ciliated protozoan Tetrahymena, de novo heterochromatin body formation is accompanied by programmed DNA elimination. Here, we show that the heterochromatin body component Jub1p promotes heterochromatin body formation and dephosphorylation of the Heterochromatin Protein 1-like protein Pdd1p. Through the mutagenesis of the phosphorylated residues of Pdd1p, we demonstrate that Pdd1p dephosphorylation promotes the electrostatic interaction between Pdd1p and RNA in vitro and heterochromatin body formation in vivo. We therefore propose that heterochromatin body is assembled by the Pdd1p-RNA interaction. Pdd1p dephosphorylation and Jub1p are required for heterochromatin body formation and DNA elimination but not for local heterochromatin assembly, indicating that heterochromatin body plays an essential role in DNA elimination.
Collapse
Affiliation(s)
- Kensuke Kataoka
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Kazufumi Mochizuki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|