1
|
Sugo N, Atsumi Y, Yamamoto N. Transcription and epigenetic factor dynamics in neuronal activity-dependent gene regulation. Trends Genet 2025; 41:425-436. [PMID: 39875312 DOI: 10.1016/j.tig.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/30/2025]
Abstract
Neuronal activity, including sensory-evoked and spontaneous firing, regulates the expression of a subset of genes known as activity-dependent genes. A key issue in this process is the activation and accumulation of transcription factors (TFs), which bind to cis-elements at specific enhancers and promoters, ultimately driving RNA synthesis through transcription machinery. Epigenetic factors such as histone modifiers also play a crucial role in facilitating the specific binding of TFs. Recent evidence from epigenome analyses and imaging studies have revealed intriguing mechanisms: the default chromatin structure at activity-dependent genes is formed independently of neuronal activity, while neuronal activity modulates spatiotemporal dynamics of TFs and their interactions with epigenetic factors (EFs). In this article we review new insights into activity-dependent gene regulation that affects brain development and plasticity.
Collapse
Affiliation(s)
- Noriyuki Sugo
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Yuri Atsumi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Nobuhiko Yamamoto
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan; Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518132, China.
| |
Collapse
|
2
|
Choi I, Baek I. Single-molecule imaging for investigating the transcriptional control. Mol Cells 2025; 48:100179. [PMID: 39814141 PMCID: PMC11847471 DOI: 10.1016/j.mocell.2025.100179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/28/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Abstract
Transcription is an essential biological process involving numerous factors, including transcription factors (TFs), which play a central role in this process by binding to their cognate DNA motifs. Although cells must tightly regulate the kinetics of factor association and dissociation during transcription, factor dynamics during transcription remain poorly characterized, primarily because of the reliance on ensemble experiments that average out molecular heterogeneity. Recent advances in single-molecule fluorescence imaging techniques have enabled the exploration of TF dynamics at unprecedented resolution. Findings on the temporal dynamics of individual TFs have challenged classical models and provided new insights into transcriptional regulation. Single-molecule imaging has also elucidated the assembly kinetics of transcription complexes. In this review, we describe the single-molecule fluorescence imaging methods widely used to determine factor dynamics during transcription. We highlight new findings on TF binding to chromatin, TF target search, and the assembly order of transcription complexes. Additionally, we discuss the remaining challenges in achieving a comprehensive understanding of the temporal regulation of transcription.
Collapse
Affiliation(s)
- Insung Choi
- Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Inwha Baek
- Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; Institute of Regulatory Innovation through Science (IRIS), Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
3
|
Atsumi Y, Yamamoto N, Sugo N. Protocol for single-molecule imaging of transcription and epigenetic factors in human neural stem cell-derived neurons. STAR Protoc 2024; 5:103432. [PMID: 39487983 PMCID: PMC11565389 DOI: 10.1016/j.xpro.2024.103432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/12/2024] [Accepted: 10/10/2024] [Indexed: 11/04/2024] Open
Abstract
Single-molecule imaging (SMI) is a powerful approach to quantify the spatiotemporal dynamics of transcription in living cells. Here, we describe a protocol of SMI for transcription and epigenetic factors in human cortical neurons derived from embryonic stem cells or induced pluripotent stem cells. Specifically, we detail the procedures for neural stem cell culture, gene transfer, microscopy, and data analysis. This protocol can be applied to the study of transcription dynamics in response to various cellular stimuli. For complete details on the use and execution of this protocol, please refer to Atsumi et al.1.
Collapse
Affiliation(s)
- Yuri Atsumi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Nobuhiko Yamamoto
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan; Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518132, China.
| | - Noriyuki Sugo
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
4
|
Atsumi Y, Iwata R, Kimura H, Vanderhaeghen P, Yamamoto N, Sugo N. Repetitive CREB-DNA interactions at gene loci predetermined by CBP induce activity-dependent gene expression in human cortical neurons. Cell Rep 2024; 43:113576. [PMID: 38128530 DOI: 10.1016/j.celrep.2023.113576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Neuronal activity-dependent transcription plays a key role in plasticity and pathology in the brain. An intriguing question is how neuronal activity controls gene expression via interactions of transcription factors with DNA and chromatin modifiers in the nucleus. By utilizing single-molecule imaging in human embryonic stem cell (ESC)-derived cortical neurons, we demonstrate that neuronal activity increases repetitive emergence of cAMP response element-binding protein (CREB) at histone acetylation sites in the nucleus, where RNA polymerase II (RNAPII) accumulation and FOS expression occur rapidly. Neuronal activity also enhances co-localization of CREB and CREB-binding protein (CBP). Increased binding of a constitutively active CREB to CBP efficiently induces CREB repetitive emergence. On the other hand, the formation of histone acetylation sites is dependent on CBP histone modification via acetyltransferase (HAT) activity but is not affected by neuronal activity. Taken together, our results suggest that neuronal activity promotes repetitive CREB-CRE and CREB-CBP interactions at predetermined histone acetylation sites, leading to rapid gene expression.
Collapse
Affiliation(s)
- Yuri Atsumi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryohei Iwata
- VIB-KU Leuven, Center for Brain & Disease Research and KU Leuven, Department of Neurosciences & Leuven Brain Institute, 3000 Leuven, Belgium
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Pierre Vanderhaeghen
- VIB-KU Leuven, Center for Brain & Disease Research and KU Leuven, Department of Neurosciences & Leuven Brain Institute, 3000 Leuven, Belgium
| | - Nobuhiko Yamamoto
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan; Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518132, China.
| | - Noriyuki Sugo
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
5
|
Dahal L, Walther N, Tjian R, Darzacq X, Graham TG. Single-molecule tracking (SMT): a window into live-cell transcription biochemistry. Biochem Soc Trans 2023; 51:557-569. [PMID: 36876879 PMCID: PMC10212543 DOI: 10.1042/bst20221242] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 03/07/2023]
Abstract
How molecules interact governs how they move. Single-molecule tracking (SMT) thus provides a unique window into the dynamic interactions of biomolecules within live cells. Using transcription regulation as a case study, we describe how SMT works, what it can tell us about molecular biology, and how it has changed our perspective on the inner workings of the nucleus. We also describe what SMT cannot yet tell us and how new technical advances seek to overcome its limitations. This ongoing progress will be imperative to address outstanding questions about how dynamic molecular machines function in live cells.
Collapse
Affiliation(s)
- Liza Dahal
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, U.S.A
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, U.S.A
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, Berkeley, Berkeley, U.S.A
| | - Nike Walther
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, U.S.A
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, Berkeley, Berkeley, U.S.A
| | - Robert Tjian
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, U.S.A
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, U.S.A
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, Berkeley, Berkeley, U.S.A
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, U.S.A
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, Berkeley, Berkeley, U.S.A
| | - Thomas G.W. Graham
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, U.S.A
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, U.S.A
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, Berkeley, Berkeley, U.S.A
| |
Collapse
|
6
|
Bentley EP, Scholl D, Wright PE, Deniz AA. Coupling of binding and differential subdomain folding of the intrinsically disordered transcription factor CREB. FEBS Lett 2023; 597:917-932. [PMID: 36480418 PMCID: PMC10089947 DOI: 10.1002/1873-3468.14554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/07/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
The cyclic AMP response element binding protein (CREB) contains a basic leucine zipper motif (bZIP) that forms a coiled coil structure upon dimerization and specific DNA binding. Although this state is well characterized, key features of CREB bZIP binding and folding are not well understood. We used single-molecule Förster resonance energy transfer (smFRET) to probe conformations of CREB bZIP subdomains. We found differential folding of the basic region and leucine zipper in response to different binding partners; a strong and previously unreported DNA-independent dimerization affinity; folding upon binding to nonspecific DNA; and evidence of long-range interdomain interactions in full-length CREB that modulate DNA binding. These studies provide new insights into DNA binding and dimerization and have implications for CREB function.
Collapse
Affiliation(s)
- Emily P. Bentley
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Daniel Scholl
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Peter E. Wright
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Ashok A. Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| |
Collapse
|
7
|
de Jonge WJ, Patel HP, Meeussen JVW, Lenstra TL. Following the tracks: how transcription factor binding dynamics control transcription. Biophys J 2022; 121:1583-1592. [PMID: 35337845 PMCID: PMC9117886 DOI: 10.1016/j.bpj.2022.03.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/28/2022] [Accepted: 03/21/2022] [Indexed: 11/29/2022] Open
Abstract
Transcription, the process of copying genetic information from DNA to messenger RNA, is regulated by sequence-specific DNA binding proteins known as transcription factors (TFs). Recent advances in single-molecule tracking (SMT) technologies have enabled visualization of individual TF molecules as they diffuse and interact with the DNA in the context of living cells. These SMT studies have uncovered multiple populations of DNA binding events characterized by their distinctive DNA residence times. In this perspective, we review recent insights into how these residence times relate to specific and non-specific DNA binding, as well as the contribution of TF domains on the DNA binding dynamics. We discuss different models that aim to link transient DNA binding by TFs to bursts of transcription and present an outlook for how future advances in microscopy development may broaden our understanding of the dynamics of the molecular steps that underlie transcription activation.
Collapse
Affiliation(s)
- Wim J de Jonge
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, the Netherlands
| | - Heta P Patel
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, the Netherlands
| | - Joseph V W Meeussen
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, the Netherlands
| | - Tineke L Lenstra
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, the Netherlands.
| |
Collapse
|
8
|
Abstract
To predict transcription, one needs a mechanistic understanding of how the numerous required transcription factors (TFs) explore the nuclear space to find their target genes, assemble, cooperate, and compete with one another. Advances in fluorescence microscopy have made it possible to visualize real-time TF dynamics in living cells, leading to two intriguing observations: first, most TFs contact chromatin only transiently; and second, TFs can assemble into clusters through their intrinsically disordered regions. These findings suggest that highly dynamic events and spatially structured nuclear microenvironments might play key roles in transcription regulation that are not yet fully understood. The emerging model is that while some promoters directly convert TF-binding events into on/off cycles of transcription, many others apply complex regulatory layers that ultimately lead to diverse phenotypic outputs. Cracking this kinetic code is an ongoing and challenging task that is made possible by combining innovative imaging approaches with biophysical models.
Collapse
Affiliation(s)
- Feiyue Lu
- Institute for Systems Genetics and Cell Biology Department, NYU School of Medicine, New York, New York 10016, USA
| | - Timothée Lionnet
- Institute for Systems Genetics and Cell Biology Department, NYU School of Medicine, New York, New York 10016, USA
| |
Collapse
|
9
|
Garcia DA, Fettweis G, Presman DM, Paakinaho V, Jarzynski C, Upadhyaya A, Hager GL. Power-law behavior of transcription factor dynamics at the single-molecule level implies a continuum affinity model. Nucleic Acids Res 2021; 49:6605-6620. [PMID: 33592625 DOI: 10.1093/nar/gkab072] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/13/2021] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Single-molecule tracking (SMT) allows the study of transcription factor (TF) dynamics in the nucleus, giving important information regarding the diffusion and binding behavior of these proteins in the nuclear environment. Dwell time distributions obtained by SMT for most TFs appear to follow bi-exponential behavior. This has been ascribed to two discrete populations of TFs-one non-specifically bound to chromatin and another specifically bound to target sites, as implied by decades of biochemical studies. However, emerging studies suggest alternate models for dwell-time distributions, indicating the existence of more than two populations of TFs (multi-exponential distribution), or even the absence of discrete states altogether (power-law distribution). Here, we present an analytical pipeline to evaluate which model best explains SMT data. We find that a broad spectrum of TFs (including glucocorticoid receptor, oestrogen receptor, FOXA1, CTCF) follow a power-law distribution of dwell-times, blurring the temporal line between non-specific and specific binding, suggesting that productive binding may involve longer binding events than previously believed. From these observations, we propose a continuum of affinities model to explain TF dynamics, that is consistent with complex interactions of TFs with multiple nuclear domains as well as binding and searching on the chromatin template.
Collapse
Affiliation(s)
- David A Garcia
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20893, USA.,Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - Gregory Fettweis
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20893, USA
| | - Diego M Presman
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20893, USA.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina
| | - Ville Paakinaho
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20893, USA.,Institute of Biomedicine, University of Eastern Finland, Kuopio, PO Box 1627, FI-70211 Kuopio, Finland
| | - Christopher Jarzynski
- Department of Physics, University of Maryland, College Park, MD 20742, USA.,Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.,Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Arpita Upadhyaya
- Department of Physics, University of Maryland, College Park, MD 20742, USA.,Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20893, USA
| |
Collapse
|
10
|
Popp AP, Hettich J, Gebhardt J. Altering transcription factor binding reveals comprehensive transcriptional kinetics of a basic gene. Nucleic Acids Res 2021; 49:6249-6266. [PMID: 34060631 PMCID: PMC8216454 DOI: 10.1093/nar/gkab443] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022] Open
Abstract
Transcription is a vital process activated by transcription factor (TF) binding. The active gene releases a burst of transcripts before turning inactive again. While the basic course of transcription is well understood, it is unclear how binding of a TF affects the frequency, duration and size of a transcriptional burst. We systematically varied the residence time and concentration of a synthetic TF and characterized the transcription of a synthetic reporter gene by combining single molecule imaging, single molecule RNA-FISH, live transcript visualisation and analysis with a novel algorithm, Burst Inference from mRNA Distributions (BIRD). For this well-defined system, we found that TF binding solely affected burst frequency and variations in TF residence time had a stronger influence than variations in concentration. This enabled us to device a model of gene transcription, in which TF binding triggers multiple successive steps before the gene transits to the active state and actual mRNA synthesis is decoupled from TF presence. We quantified all transition times of the TF and the gene, including the TF search time and the delay between TF binding and the onset of transcription. Our quantitative measurements and analysis revealed detailed kinetic insight, which may serve as basis for a bottom-up understanding of gene regulation.
Collapse
Affiliation(s)
- Achim P Popp
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Johannes Hettich
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - J Christof M Gebhardt
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
11
|
Abstract
Pioneer transcription factors have the intrinsic biochemical ability to scan partial DNA sequence motifs that are exposed on the surface of a nucleosome and thus access silent genes that are inaccessible to other transcription factors. Pioneer factors subsequently enable other transcription factors, nucleosome remodeling complexes, and histone modifiers to engage chromatin, thereby initiating the formation of an activating or repressive regulatory sequence. Thus, pioneer factors endow the competence for fate changes in embryonic development, are essential for cellular reprogramming, and rewire gene networks in cancer cells. Recent studies with reconstituted nucleosomes in vitro and chromatin binding in vivo reveal that pioneer factors can directly perturb nucleosome structure and chromatin accessibility in different ways. This review focuses on our current understanding of the mechanisms by which pioneer factors initiate gene network changes and will ultimately contribute to our ability to control cell fates at will.
Collapse
Affiliation(s)
- Kenneth S Zaret
- Institute for Regenerative Medicine, Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-5157, USA;
| |
Collapse
|
12
|
Louphrasitthiphol P, Siddaway R, Loffreda A, Pogenberg V, Friedrichsen H, Schepsky A, Zeng Z, Lu M, Strub T, Freter R, Lisle R, Suer E, Thomas B, Schuster-Böckler B, Filippakopoulos P, Middleton M, Lu X, Patton EE, Davidson I, Lambert JP, Wilmanns M, Steingrímsson E, Mazza D, Goding CR. Tuning Transcription Factor Availability through Acetylation-Mediated Genomic Redistribution. Mol Cell 2020; 79:472-487.e10. [PMID: 32531202 PMCID: PMC7427332 DOI: 10.1016/j.molcel.2020.05.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 04/01/2020] [Accepted: 05/19/2020] [Indexed: 11/06/2022]
Abstract
It is widely assumed that decreasing transcription factor DNA-binding affinity reduces transcription initiation by diminishing occupancy of sequence-specific regulatory elements. However, in vivo transcription factors find their binding sites while confronted with a large excess of low-affinity degenerate motifs. Here, using the melanoma lineage survival oncogene MITF as a model, we show that low-affinity binding sites act as a competitive reservoir in vivo from which transcription factors are released by mitogen-activated protein kinase (MAPK)-stimulated acetylation to promote increased occupancy of their regulatory elements. Consequently, a low-DNA-binding-affinity acetylation-mimetic MITF mutation supports melanocyte development and drives tumorigenesis, whereas a high-affinity non-acetylatable mutant does not. The results reveal a paradoxical acetylation-mediated molecular clutch that tunes transcription factor availability via genome-wide redistribution and couples BRAF to tumorigenesis. Our results further suggest that p300/CREB-binding protein-mediated transcription factor acetylation may represent a common mechanism to control transcription factor availability. Reducing transcription factor DNA-binding affinity increases activity in vivo Acetylation is triggered by MAPK signaling Acetylation leads to genome-wide transcription factor redistribution Acetylation of MITF drives tumorigenesis and melanocyte development
Collapse
Affiliation(s)
- Pakavarin Louphrasitthiphol
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK; Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Robert Siddaway
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Alessia Loffreda
- Experimental Imaging Center, Cancer Imaging Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy; Fondazione CEN, European Center for Nanomedicine, 20133 Milan, Italy
| | - Vivian Pogenberg
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 25a, 22607 Hamburg, Germany & University Hamburg Medical Centre Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Hans Friedrichsen
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Alexander Schepsky
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK; Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Iceland, Sturlugata 8, 101 Reykjavik, Iceland
| | - Zhiqiang Zeng
- MRC Institute of Genetics and Molecular Medicine, MRC Human Genetics Unit and Edinburgh Cancer Research UK Centre, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Min Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Thomas Strub
- Institut de Génetique et Biologie Moléculaire et Cellulaire (IGBMC), Equipe labéllisée Ligue contre le Cancer, 1 rue Laurent Fries, 67404 Illkirch Cedex, France
| | - Rasmus Freter
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Richard Lisle
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Eda Suer
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Benjamin Thomas
- Central Proteomics Facility, Sir William Dunn Pathology School, Oxford University, Oxford OX1 3RE, UK
| | - Benjamin Schuster-Böckler
- Ludwig Institute for Cancer Research, Big Data Institute, University of Oxford, Headington, Oxford OX3 7LF, UK
| | - Panagis Filippakopoulos
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Mark Middleton
- Oxford NIHR Biomedical Research Centre, Department of Oncology, Churchill Hospital, Oxford OX3 7LE, UK
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - E Elizabeth Patton
- MRC Institute of Genetics and Molecular Medicine, MRC Human Genetics Unit and Edinburgh Cancer Research UK Centre, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Irwin Davidson
- Institut de Génetique et Biologie Moléculaire et Cellulaire (IGBMC), Equipe labéllisée Ligue contre le Cancer, 1 rue Laurent Fries, 67404 Illkirch Cedex, France
| | - Jean-Philippe Lambert
- Department of Molecular Medicine and Cancer Research Centre, Université Laval, Quebec, QC, Canada; CHU de Québec Research Center, CHUL, 2705 Boulevard Laurier, Quebec G1V 4G2, QC, Canada
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 25a, 22607 Hamburg, Germany & University Hamburg Medical Centre Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Eiríkur Steingrímsson
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Iceland, Sturlugata 8, 101 Reykjavik, Iceland
| | - Davide Mazza
- Experimental Imaging Center, Cancer Imaging Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy; Fondazione CEN, European Center for Nanomedicine, 20133 Milan, Italy.
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK.
| |
Collapse
|
13
|
Yang J, Liu S, Wang H, Liu Y, Liu Y. miR-134-5p inhibition reduces infarct-induced cardiomyocyte apoptosis via Creb1 upregulation. J Stroke Cerebrovasc Dis 2020; 29:104850. [PMID: 32689640 DOI: 10.1016/j.jstrokecerebrovasdis.2020.104850] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Following the recent discovery that microRNA-134-5p (miR-134-5p) is elevated in the early stages of acute myocardial infarction (AMI), we examined the specific role of miR-134-5p in cardiomyocytes during AMI. METHODS To study miR-134-5p's role in the context of AMI, we used a combination of in vitro experiments in H2O2-treated or hypoxic cardiomyocyte cell cultures as well as in vivo experiments in a murine model of AMI. RESULTS H2O2- and hypoxia-induced cardiomyocyte injury upregulated miR-134-5p expression. miR-134-5p overexpression increased cardiomyocyte apoptosis, whereas miR-134-5p inhibition reduced cardiomyocyte apoptosis. We discovered that the transcription factor cAMP-responsive element binding protein 1 (Creb1) is a functional target of miR-134-5p responsible for regulating cardiomyocyte apoptosis. In vivo AMI resulted in the upregulation and downregulation of miR-134-5p and Creb1 in the infarct area, respectively. Circulating miR-134-5p levels were also increased at days 1 and 2 post-AMI. Modulation of myocardial miR-124-5p expression by intramyocardial injection of antagomiR-134-5p or agomiR-134-5p significantly affected cardiomyocyte apoptosis, infarct size, and cardiac function in vivo. CONCLUSIONS miR-134-5p/Creb1 axis dysregulation plays a role in hypoxia- or oxidative stress-induced cardiomyocyte apoptosis as well as AMI. Circulating miR-134-5p may show promise as a biomarker for AMI or post-AMI cardiac dysfunction. Manipulating the miR-134-5p/Creb1 axis through either inhibition of miR-134-5p or overexpression of Creb1 may show promise as a novel therapeutic strategy to attenuate cardiac dysfunction following AMI.
Collapse
Affiliation(s)
- Jibin Yang
- Department of Emergency Medicine, the First Affiliated Hospital of Nanchang University, No. 17, Yong Wai Zheng Street, Nanchang, China.
| | - Shiwen Liu
- Department of Emergency Medicine, the First Affiliated Hospital of Nanchang University, No. 17, Yong Wai Zheng Street, Nanchang, China.
| | - Hao Wang
- Department of Emergency Medicine, the First Affiliated Hospital of Nanchang University, No. 17, Yong Wai Zheng Street, Nanchang, China.
| | - Ying Liu
- Department of Emergency Medicine, the First Affiliated Hospital of Nanchang University, No. 17, Yong Wai Zheng Street, Nanchang, China.
| | - Yong Liu
- Department of Emergency Medicine, the First Affiliated Hospital of Nanchang University, No. 17, Yong Wai Zheng Street, Nanchang, China.
| |
Collapse
|
14
|
Azpeitia E, Wagner A. Short Residence Times of DNA-Bound Transcription Factors Can Reduce Gene Expression Noise and Increase the Transmission of Information in a Gene Regulation System. Front Mol Biosci 2020; 7:67. [PMID: 32411721 PMCID: PMC7198700 DOI: 10.3389/fmolb.2020.00067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/25/2020] [Indexed: 12/14/2022] Open
Abstract
Gene expression noise is not just ubiquitous but also variable, and we still do not understand some of the most elementary factors that affect it. Among them is the residence time of a transcription factor (TF) on DNA, the mean time that a DNA-bound TF remains bound. Here, we use a stochastic model of transcriptional regulation to study how residence time affects the gene expression noise that arises when a TF induces gene expression. We find that the effect of residence time on gene expression noise depends on the TF’s concentration and its affinity to DNA, which determine the level of induction of the gene. At high levels of induction, residence time has no effect on gene expression noise. However, as the level of induction decreases, short residence times reduce gene expression noise. The reason is that fast on-off TF binding dynamics prevent long periods where proteins are predominantly synthesized or degraded, which can cause excessive fluctuations in gene expression. As a consequence, short residence times can help a gene regulation system acquire information about the cellular environment it operates in. Our predictions are consistent with the observation that experimentally measured residence times are usually modest and lie between seconds to minutes.
Collapse
Affiliation(s)
- Eugenio Azpeitia
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zurich, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Centro de Ciencias Matemáticas, UNAM, Morelia, Mexico
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zurich, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Santa Fe Institute, Santa Fe, NM, United States
| |
Collapse
|
15
|
Kamagata K, Itoh Y, Subekti DRG. How p53 Molecules Solve the Target DNA Search Problem: A Review. Int J Mol Sci 2020; 21:E1031. [PMID: 32033163 PMCID: PMC7037437 DOI: 10.3390/ijms21031031] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/11/2020] [Accepted: 01/31/2020] [Indexed: 12/14/2022] Open
Abstract
Interactions between DNA and DNA-binding proteins play an important role in many essential cellular processes. A key function of the DNA-binding protein p53 is to search for and bind to target sites incorporated in genomic DNA, which triggers transcriptional regulation. How do p53 molecules achieve "rapid" and "accurate" target search in living cells? The search dynamics of p53 were expected to include 3D diffusion in solution, 1D diffusion along DNA, and intersegmental transfer between two different DNA strands. Single-molecule fluorescence microscopy enabled the tracking of p53 molecules on DNA and the characterization of these dynamics quantitatively. Recent intensive single-molecule studies of p53 succeeded in revealing each of these search dynamics. Here, we review these studies and discuss the target search mechanisms of p53.
Collapse
Affiliation(s)
- Kiyoto Kamagata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan; (Y.I.); (D.R.G.S.)
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Yuji Itoh
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan; (Y.I.); (D.R.G.S.)
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Dwiky Rendra Graha Subekti
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan; (Y.I.); (D.R.G.S.)
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
16
|
Inferring quantity and qualities of superimposed reaction rates from single molecule survival time distributions. Sci Rep 2020; 10:1758. [PMID: 32019978 PMCID: PMC7000831 DOI: 10.1038/s41598-020-58634-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/19/2020] [Indexed: 01/18/2023] Open
Abstract
Actions of molecular species, for example binding of transcription factors to chromatin, may comprise several superimposed reaction pathways. The number and the rate constants of such superimposed reactions can in principle be resolved by inverse Laplace transformation of the corresponding distribution of reaction lifetimes. However, current approaches to solve this transformation are challenged by photobleaching-prone fluorescence measurements of lifetime distributions. Here, we present a genuine rate identification method (GRID), which infers the quantity, rates and amplitudes of dissociation processes from fluorescence lifetime distributions using a dense grid of possible decay rates. In contrast to common multi-exponential analysis of lifetime distributions, GRID is able to distinguish between broad and narrow clusters of decay rates. We validate GRID by simulations and apply it to CDX2-chromatin interactions measured by live cell single molecule fluorescence microscopy. GRID reveals well-separated narrow decay rate clusters of CDX2, in part overlooked by multi-exponential analysis. We discuss the amplitudes of the decay rate spectrum in terms of frequency of observed events and occupation probability of reaction states. We further demonstrate that a narrow decay rate cluster is compatible with a common model of TF sliding on DNA.
Collapse
|
17
|
Stavreva DA, Garcia DA, Fettweis G, Gudla PR, Zaki GF, Soni V, McGowan A, Williams G, Huynh A, Palangat M, Schiltz RL, Johnson TA, Presman DM, Ferguson ML, Pegoraro G, Upadhyaya A, Hager GL. Transcriptional Bursting and Co-bursting Regulation by Steroid Hormone Release Pattern and Transcription Factor Mobility. Mol Cell 2019; 75:1161-1177.e11. [PMID: 31421980 PMCID: PMC6754282 DOI: 10.1016/j.molcel.2019.06.042] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/07/2019] [Accepted: 06/26/2019] [Indexed: 10/26/2022]
Abstract
Genes are transcribed in a discontinuous pattern referred to as RNA bursting, but the mechanisms regulating this process are unclear. Although many physiological signals, including glucocorticoid hormones, are pulsatile, the effects of transient stimulation on bursting are unknown. Here we characterize RNA synthesis from single-copy glucocorticoid receptor (GR)-regulated transcription sites (TSs) under pulsed (ultradian) and constant hormone stimulation. In contrast to constant stimulation, pulsed stimulation induces restricted bursting centered around the hormonal pulse. Moreover, we demonstrate that transcription factor (TF) nuclear mobility determines burst duration, whereas its bound fraction determines burst frequency. Using 3D tracking of TSs, we directly correlate TF binding and RNA synthesis at a specific promoter. Finally, we uncover a striking co-bursting pattern between TSs located at proximal and distal positions in the nucleus. Together, our data reveal a dynamic interplay between TF mobility and RNA bursting that is responsive to stimuli strength, type, modality, and duration.
Collapse
Affiliation(s)
- Diana A Stavreva
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA.
| | - David A Garcia
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA; Department of Physics and Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Gregory Fettweis
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - Prabhakar R Gudla
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - George F Zaki
- High Performance Computing Group, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Vikas Soni
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - Andrew McGowan
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - Geneva Williams
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - Anh Huynh
- Department of Physics and Graduate Program in Biomolecular Science, Boise State University, Boise, ID 83725, USA
| | - Murali Palangat
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - R Louis Schiltz
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - Thomas A Johnson
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - Diego M Presman
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - Matthew L Ferguson
- Department of Physics and Graduate Program in Biomolecular Science, Boise State University, Boise, ID 83725, USA
| | - Gianluca Pegoraro
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - Arpita Upadhyaya
- Department of Physics and Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA.
| |
Collapse
|
18
|
Signaling within the pineal gland: A parallelism with the central nervous system. Semin Cell Dev Biol 2018; 95:151-159. [PMID: 30502386 DOI: 10.1016/j.semcdb.2018.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/15/2018] [Accepted: 11/27/2018] [Indexed: 12/22/2022]
Abstract
The pineal gland (PG) derives from the neural tube, like the rest of the central nervous system (CNS). The PG is specialized in synthesizing and secreting melatonin in a circadian fashion. The nocturnal elevation of melatonin is a highly conserved feature among species which proves its importance in nature. Here, we review a limited set of intrinsic and extrinsic regulatory elements that have been shown or proposed to influence the PG's melatonin production, as well as pineal ontogeny and homeostasis. Intrinsic regulators include the transcription factors CREB, Pax6 and NeuroD1. In addition, microglia within the PG participate as extrinsic regulators of these functions. We further discuss how these same elements work in other parts of the CNS, and note similarities and differences to their roles in the PG. Since the PG is a relatively well-defined and highly specialized organ within the CNS, we suggest that applying this comparative approach to additional PG regulators may be a useful tool for understanding complex areas of the brain, as well as the influence of the PG in both health and disease, including circadian functions and disorders.
Collapse
|
19
|
Swinstead EE, Paakinaho V, Hager GL. Chromatin reprogramming in breast cancer. Endocr Relat Cancer 2018; 25:R385-R404. [PMID: 29692347 PMCID: PMC6029727 DOI: 10.1530/erc-18-0033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/24/2018] [Indexed: 02/06/2023]
Abstract
Reprogramming of the chromatin landscape is a critical component to the transcriptional response in breast cancer. Effects of sex hormones such as estrogens and progesterone have been well described to have a critical impact on breast cancer proliferation. However, the complex network of the chromatin landscape, enhancer regions and mode of function of steroid receptors (SRs) and other transcription factors (TFs), is an intricate web of signaling and functional processes that is still largely misunderstood at the mechanistic level. In this review, we describe what is currently known about the dynamic interplay between TFs with chromatin and the reprogramming of enhancer elements. Emphasis has been placed on characterizing the different modes of action of TFs in regulating enhancer activity, specifically, how different SRs target enhancer regions to reprogram chromatin in breast cancer cells. In addition, we discuss current techniques employed to study enhancer function at a genome-wide level. Further, we have noted recent advances in live cell imaging technology. These single-cell approaches enable the coupling of population-based assays with real-time studies to address many unsolved questions about SRs and chromatin dynamics in breast cancer.
Collapse
Affiliation(s)
- Erin E Swinstead
- Laboratory of Receptor Biology and Gene ExpressionNational Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Ville Paakinaho
- Laboratory of Receptor Biology and Gene ExpressionNational Cancer Institute, NIH, Bethesda, Maryland, USA
- Institute of BiomedicineUniversity of Eastern Finland, Kuopio, Finland
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene ExpressionNational Cancer Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
20
|
Hettich J, Gebhardt JCM. Transcription factor target site search and gene regulation in a background of unspecific binding sites. J Theor Biol 2018; 454:91-101. [PMID: 29870697 PMCID: PMC6103292 DOI: 10.1016/j.jtbi.2018.05.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 11/02/2022]
Abstract
Response time and transcription level are vital parameters of gene regulation. They depend on how fast transcription factors (TFs) find and how efficient they occupy their specific target sites. It is well known that target site search is accelerated by TF binding to and sliding along unspecific DNA and that unspecific associations alter the occupation frequency of a gene. However, whether target site search time and occupation frequency can be optimized simultaneously is mostly unclear. We developed a transparent and intuitively accessible state-based formalism to calculate search times to target sites on and occupation frequencies of promoters of arbitrary state structure. Our formalism is based on dissociation rate constants experimentally accessible in live cell experiments. To demonstrate our approach, we consider promoters activated by a single TF, by two coactivators or in the presence of a competitive inhibitor. We find that target site search time and promoter occupancy differentially vary with the unspecific dissociation rate constant. Both parameters can be harmonized by adjusting the specific dissociation rate constant of the TF. However, while measured DNA residence times of various eukaryotic TFs correspond to a fast search time, the occupation frequencies of target sites are generally low. Cells might tolerate low target site occupancies as they enable timely gene regulation in response to a changing environment.
Collapse
Affiliation(s)
- J Hettich
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - J C M Gebhardt
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany.
| |
Collapse
|
21
|
Mazina MY, Kovalenko EV, Derevyanko PK, Nikolenko JV, Krasnov AN, Vorobyeva NE. One signal stimulates different transcriptional activation mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:178-189. [PMID: 29410380 DOI: 10.1016/j.bbagrm.2018.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/10/2017] [Accepted: 01/15/2018] [Indexed: 12/30/2022]
Abstract
Transcriptional activation is often represented as a "one-step process" that involves the simultaneous recruitment of co-activator proteins, leading to a change in gene status. Using Drosophila developmental ecdysone-dependent genes as a model, we demonstrated that activation of transcription is instead a continuous process that consists of a number of steps at which different phases of transcription (initiation or elongation) are stimulated. Thorough evaluation of the behaviour of multiple transcriptional complexes during the early activation process has shown that the pathways by which activation proceeds for different genes may vary considerably, even in response to the same induction signal. RNA polymerase II recruitment is an important step that is involved in one of the pathways. RNA polymerase II recruitment is accompanied by the recruitment of a significant number of transcriptional coactivators as well as slight changes in the chromatin structure. The second pathway involves the stimulation of transcriptional elongation as its key step. The level of coactivator binding to the promoter shows almost no increase, whereas chromatin modification levels change significantly.
Collapse
Affiliation(s)
- Marina Yu Mazina
- Group of Transcriptional Complexes Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Elena V Kovalenko
- Group of Transcriptional Complexes Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Polina K Derevyanko
- Group of Transcriptional Complexes Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Julia V Nikolenko
- Group of Studying an Association of Transcription and mRNA Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Aleksey N Krasnov
- Group of Studying an Association of Transcription and mRNA Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Nadezhda E Vorobyeva
- Group of Transcriptional Complexes Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia.
| |
Collapse
|
22
|
Goldstein I, Hager GL. Dynamic enhancer function in the chromatin context. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2018; 10:10.1002/wsbm.1390. [PMID: 28544514 PMCID: PMC6638546 DOI: 10.1002/wsbm.1390] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 12/28/2022]
Abstract
Enhancers serve as critical regulatory elements in higher eukaryotic cells. The characterization of enhancer function has evolved primarily from genome-wide methodologies, including chromatin immunoprecipitation (ChIP-seq), DNase-I hypersensitivity (DNase-seq), digital genomic footprinting (DGF), and the chromosome conformation capture techniques (3C, 4C, and Hi-C). These population-based assays average signals across millions of cells and lead to enhancer models characterized by static and sequential binding. More recently, fluorescent microscopy techniques, including fluorescence recovery after photobleaching, fluorescence correlation spectroscopy, and single molecule tracking (SMT), reveal a highly dynamic binding behavior for these factors in live cells. Furthermore, a refined analysis of genomic footprinting suggests that many transcription factors leave minimal or no footprints in chromatin, even when present and active in a given cell type. In this study, we review the implications of these new approaches for an accurate understanding of enhancer function in real time. In vivo SMT, in particular, has recently evolved as a promising methodology to probe enhancer function in live cells. Integration of findings from the many approaches now employed in the study of enhancer function suggest a highly dynamic view for the action of enhancer activating factors, viewed on a time scale of milliseconds to seconds, rather than minutes to hours. WIREs Syst Biol Med 2018, 10:e1390. doi: 10.1002/wsbm.1390 This article is categorized under: Analytical and Computational Methods > Computational Methods Laboratory Methods and Technologies > Genetic/Genomic Methods Laboratory Methods and Technologies > Imaging.
Collapse
Affiliation(s)
- Ido Goldstein
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gordon L. Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
23
|
Clauß K, Popp AP, Schulze L, Hettich J, Reisser M, Escoter Torres L, Uhlenhaut NH, Gebhardt JCM. DNA residence time is a regulatory factor of transcription repression. Nucleic Acids Res 2017; 45:11121-11130. [PMID: 28977492 PMCID: PMC5737411 DOI: 10.1093/nar/gkx728] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 08/08/2017] [Indexed: 12/21/2022] Open
Abstract
Transcription comprises a highly regulated sequence of intrinsically stochastic processes, resulting in bursts of transcription intermitted by quiescence. In transcription activation or repression, a transcription factor binds dynamically to DNA, with a residence time unique to each factor. Whether the DNA residence time is important in the transcription process is unclear. Here, we designed a series of transcription repressors differing in their DNA residence time by utilizing the modular DNA binding domain of transcription activator-like effectors (TALEs) and varying the number of nucleotide-recognizing repeat domains. We characterized the DNA residence times of our repressors in living cells using single molecule tracking. The residence times depended non-linearly on the number of repeat domains and differed by more than a factor of six. The factors provoked a residence time-dependent decrease in transcript level of the glucocorticoid receptor-activated gene SGK1. Down regulation of transcription was due to a lower burst frequency in the presence of long binding repressors and is in accordance with a model of competitive inhibition of endogenous activator binding. Our single molecule experiments reveal transcription factor DNA residence time as a regulatory factor controlling transcription repression and establish TALE-DNA binding domains as tools for the temporal dissection of transcription regulation.
Collapse
Affiliation(s)
- Karen Clauß
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Achim P Popp
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Lena Schulze
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Johannes Hettich
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Matthias Reisser
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Laura Escoter Torres
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), IDO, Parkring 13, 85748 Garching, Munich, Germany
| | - N Henriette Uhlenhaut
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), IDO, Parkring 13, 85748 Garching, Munich, Germany
| | - J Christof M Gebhardt
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
24
|
Loffreda A, Jacchetti E, Antunes S, Rainone P, Daniele T, Morisaki T, Bianchi ME, Tacchetti C, Mazza D. Live-cell p53 single-molecule binding is modulated by C-terminal acetylation and correlates with transcriptional activity. Nat Commun 2017; 8:313. [PMID: 28827596 PMCID: PMC5567047 DOI: 10.1038/s41467-017-00398-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 06/23/2017] [Indexed: 02/07/2023] Open
Abstract
Live-cell microscopy has highlighted that transcription factors bind transiently to chromatin but it is not clear if the duration of these binding interactions can be modulated in response to an activation stimulus, and if such modulation can be controlled by post-translational modifications of the transcription factor. We address this question for the tumor suppressor p53 by combining live-cell single-molecule microscopy and single cell in situ measurements of transcription and we show that p53-binding kinetics are modulated following genotoxic stress. The modulation of p53 residence times on chromatin requires C-terminal acetylation—a classical mark for transcriptionally active p53—and correlates with the induction of transcription of target genes such as CDKN1a. We propose a model in which the modification state of the transcription factor determines the coupling between transcription factor abundance and transcriptional activity by tuning the transcription factor residence time on target sites. Both transcription binding kinetics and post-translational modifications of transcription factors are thought to play a role in the modulation of transcription. Here the authors use single-molecule tracking to directly demonstrate that p53 acetylation modulates promoter residence time and transcriptional activity.
Collapse
Affiliation(s)
- Alessia Loffreda
- Istituto Scientifico Ospedale San Raffaele, Centro di Imaging Sperimentale, Milano, 20132, Italy.,Fondazione CEN, European Center for Nanomedicine, Milano, 20133, Italy
| | - Emanuela Jacchetti
- Istituto Scientifico Ospedale San Raffaele, Centro di Imaging Sperimentale, Milano, 20132, Italy.,Dipartimento di Chimica, Materiali e Ingegneria Chimica "G.Natta". Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
| | - Sofia Antunes
- Istituto Scientifico Ospedale San Raffaele, Centro di Imaging Sperimentale, Milano, 20132, Italy
| | - Paolo Rainone
- Istituto Scientifico Ospedale San Raffaele, Centro di Imaging Sperimentale, Milano, 20132, Italy.,Institute of Molecular Bioimaging and Physiology, National Researches Council, Segrate, 20090, (MI), Italy
| | - Tiziana Daniele
- Istituto Scientifico Ospedale San Raffaele, Centro di Imaging Sperimentale, Milano, 20132, Italy
| | - Tatsuya Morisaki
- Fluorescence Imaging Group, National Cancer Institute, NIH, Bethesda, Maryland, 20892, USA.,Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Marco E Bianchi
- Istituto Scientifico Ospedale San Raffaele, Chromatin Dynamics Unit, Milano, 20132, Italy.,Università Vita-Salute San Raffaele, Milano, 20132, Italy
| | - Carlo Tacchetti
- Istituto Scientifico Ospedale San Raffaele, Centro di Imaging Sperimentale, Milano, 20132, Italy. .,Università Vita-Salute San Raffaele, Milano, 20132, Italy.
| | - Davide Mazza
- Istituto Scientifico Ospedale San Raffaele, Centro di Imaging Sperimentale, Milano, 20132, Italy. .,Fondazione CEN, European Center for Nanomedicine, Milano, 20133, Italy.
| |
Collapse
|
25
|
Activity-Dependent Dynamics of the Transcription Factor of cAMP-Response Element Binding Protein in Cortical Neurons Revealed by Single-Molecule Imaging. J Neurosci 2017; 37:1-10. [PMID: 28053025 DOI: 10.1523/jneurosci.0943-16.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 01/03/2023] Open
Abstract
Transcriptional regulation is crucial for neuronal activity-dependent processes that govern neuronal circuit formation and synaptic plasticity. An intriguing question is how neuronal activity influences the spatiotemporal interactions between transcription factors and their target sites. Here, using a single-molecule imaging technique, we investigated the activity dependence of DNA binding and dissociation events of cAMP-response element binding protein (CREB), a principal factor in activity-dependent transcription, in mouse cortical neurons. To visualize CREB at the single-molecule level, fluorescent-tagged CREB in living dissociated cortical neurons was observed by highly inclined and laminated optical sheet microscopy. We found that a significant fraction of CREB spots resided in the restricted locations in the nucleus for several seconds (dissociation rate constant: 0.42 s-1). In contrast, two mutant CREBs, which cannot bind to the cAMP-response element, scarcely exhibited long-term residence. To test the possibility that CREB dynamics depends on neuronal activity, pharmacological treatments and an optogenetic method involving channelrhodopsin-2 were applied to cultured cortical neurons. Increased neuronal activity did not appear to influence the residence time of CREB spots, but markedly increased the number of restricted locations (hot spots) where CREB spots frequently resided with long residence times (>1 s). These results suggest that neuronal activity promotes CREB-dependent transcription by increasing the frequency of CREB binding to highly localized genome locations. SIGNIFICANCE STATEMENT The transcription factor, cAMP response element-binding protein (CREB) is known to regulate gene expression in neuronal activity-dependent processes. However, its spatiotemporal interactions with the genome remain unknown. Single-molecule imaging in cortical neurons revealed that fluorescent-tagged CREB spots frequently reside at fixed nuclear locations in the time range of several seconds. Neuronal activity had little effect on the CREB residence time, but increased the rapid and frequent reappearance of long-residence CREB spots at the same nuclear locations. Thus, activity-dependent transcription is attributable to frequent binding of CREB to specific genome loci.
Collapse
|
26
|
Presman DM, Ball DA, Paakinaho V, Grimm JB, Lavis LD, Karpova TS, Hager GL. Quantifying transcription factor binding dynamics at the single-molecule level in live cells. Methods 2017; 123:76-88. [PMID: 28315485 PMCID: PMC5522764 DOI: 10.1016/j.ymeth.2017.03.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/30/2017] [Accepted: 03/10/2017] [Indexed: 11/25/2022] Open
Abstract
Progressive, technological achievements in the quantitative fluorescence microscopy field are allowing researches from many different areas to start unraveling the dynamic intricacies of biological processes inside living cells. From super-resolution microscopy techniques to tracking of individual proteins, fluorescence microscopy is changing our perspective on how the cell works. Fortunately, a growing number of research groups are exploring single-molecule studies in living cells. However, no clear consensus exists on several key aspects of the technique such as image acquisition conditions, or analysis of the obtained data. Here, we describe a detailed approach to perform single-molecule tracking (SMT) of transcription factors in living cells to obtain key binding characteristics, namely their residence time and bound fractions. We discuss different types of fluorophores, labeling density, microscope, cameras, data acquisition, and data analysis. Using the glucocorticoid receptor as a model transcription factor, we compared alternate tags (GFP, mEOS, HaloTag, SNAP-tag, CLIP-tag) for potential multicolor applications. We also examine different methods to extract the dissociation rates and compare them with simulated data. Finally, we discuss several challenges that this exciting technique still faces.
Collapse
Affiliation(s)
- Diego M Presman
- Laboratory of Receptor Biology and Gene Expression, Building 41, 41 Library Drive, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David A Ball
- Laboratory of Receptor Biology and Gene Expression, Building 41, 41 Library Drive, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ville Paakinaho
- Laboratory of Receptor Biology and Gene Expression, Building 41, 41 Library Drive, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jonathan B Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Tatiana S Karpova
- Laboratory of Receptor Biology and Gene Expression, Building 41, 41 Library Drive, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, Building 41, 41 Library Drive, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
27
|
Quantifying transcription factor–DNA binding in single cells in vivo with photoactivatable fluorescence correlation spectroscopy. Nat Protoc 2017; 12:1458-1471. [DOI: 10.1038/nprot.2017.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Paakinaho V, Presman DM, Ball DA, Johnson TA, Schiltz RL, Levitt P, Mazza D, Morisaki T, Karpova TS, Hager GL. Single-molecule analysis of steroid receptor and cofactor action in living cells. Nat Commun 2017. [PMID: 28635963 PMCID: PMC5482060 DOI: 10.1038/ncomms15896] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Population-based assays have been employed extensively to investigate the interactions of transcription factors (TFs) with chromatin and are often interpreted in terms of static and sequential binding. However, fluorescence microscopy techniques reveal a more dynamic binding behaviour of TFs in live cells. Here we analyse the strengths and limitations of in vivo single-molecule tracking and performed a comprehensive analysis on the intranuclear dwell times of four steroid receptors and a number of known cofactors. While the absolute residence times estimates can depend on imaging acquisition parameters due to sampling bias, our results indicate that only a small proportion of factors are specifically bound to chromatin at any given time. Interestingly, the glucocorticoid receptor and its cofactors affect each other’s dwell times in an asymmetric manner. Overall, our data indicate transient rather than stable TF-cofactors chromatin interactions at response elements at the single-molecule level. Transcription factors (TFs) are thought to regulate gene expression by stably binding to target DNA elements. Here, the authors use single-molecule tracking to analyse the dynamic behaviour of steroid receptors TFs and show that most specific interactions with chromatin are transient and dynamic.
Collapse
Affiliation(s)
- Ville Paakinaho
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Building 41, 41 Library Drive, Bethesda, Maryland 20892, USA
| | - Diego M Presman
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Building 41, 41 Library Drive, Bethesda, Maryland 20892, USA
| | - David A Ball
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Building 41, 41 Library Drive, Bethesda, Maryland 20892, USA
| | - Thomas A Johnson
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Building 41, 41 Library Drive, Bethesda, Maryland 20892, USA
| | - R Louis Schiltz
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Building 41, 41 Library Drive, Bethesda, Maryland 20892, USA
| | - Peter Levitt
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Building 41, 41 Library Drive, Bethesda, Maryland 20892, USA
| | - Davide Mazza
- Istituto Scientifico Ospedale San Raffaele, Centro di Imaging Sperimentale e Università Vita-Salute San Raffaele, 20132 Milano, Italy
| | - Tatsuya Morisaki
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Building 41, 41 Library Drive, Bethesda, Maryland 20892, USA
| | - Tatiana S Karpova
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Building 41, 41 Library Drive, Bethesda, Maryland 20892, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Building 41, 41 Library Drive, Bethesda, Maryland 20892, USA
| |
Collapse
|
29
|
Agarwal H, Reisser M, Wortmann C, Gebhardt JCM. Direct Observation of Cell-Cycle-Dependent Interactions between CTCF and Chromatin. Biophys J 2017; 112:2051-2055. [PMID: 28487148 PMCID: PMC5444008 DOI: 10.1016/j.bpj.2017.04.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/30/2017] [Accepted: 04/14/2017] [Indexed: 10/31/2022] Open
Abstract
The three-dimensional arrangement of chromatin encodes regulatory traits important for nuclear processes such as transcription and replication. Chromatin topology is in part mediated by the architectural protein CCCTC-binding factor (CTCF) that binds to the boundaries of topologically associating domains. Whereas sites of CTCF interactions are well characterized, little is known on how long CTCF binds to chromatin and how binding evolves during the cell cycle. We monitored CTCF-chromatin interactions by live cell single molecule tracking in different phases of the cell cycle. In G1-, S-, and G2-phases, a majority of CTCF molecules was bound transiently (∼0.2 s) to chromatin, whereas minor fractions were bound dynamically (∼4 s) or stably (>15 min). During mitosis, CTCF was mostly excluded from chromatin. Our data suggest that CTCF scans DNA in search for two different subsets of specific target sites and provide information on the timescales over which topologically associating domains might be restructured. During S-phase, dynamic and stable interactions decreased considerably compared to G1-phase, but were resumed in G2-phase, indicating that specific interactions need to be dissolved for replication to proceed.
Collapse
|
30
|
Kamagata K, Murata A, Itoh Y, Takahashi S. Characterization of facilitated diffusion of tumor suppressor p53 along DNA using single-molecule fluorescence imaging. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2017. [DOI: 10.1016/j.jphotochemrev.2017.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
31
|
Zhao ZW, White MD, Bissiere S, Levi V, Plachta N. Quantitative imaging of mammalian transcriptional dynamics: from single cells to whole embryos. BMC Biol 2016; 14:115. [PMID: 28010727 PMCID: PMC5180410 DOI: 10.1186/s12915-016-0331-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Probing dynamic processes occurring within the cell nucleus at the quantitative level has long been a challenge in mammalian biology. Advances in bio-imaging techniques over the past decade have enabled us to directly visualize nuclear processes in situ with unprecedented spatial and temporal resolution and single-molecule sensitivity. Here, using transcription as our primary focus, we survey recent imaging studies that specifically emphasize the quantitative understanding of nuclear dynamics in both time and space. These analyses not only inform on previously hidden physical parameters and mechanistic details, but also reveal a hierarchical organizational landscape for coordinating a wide range of transcriptional processes shared by mammalian systems of varying complexity, from single cells to whole embryos.
Collapse
Affiliation(s)
- Ziqing W Zhao
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Melanie D White
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Stephanie Bissiere
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Valeria Levi
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Conicet, Buenos Aires, C1428EHA, Argentina
| | - Nicolas Plachta
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore.
| |
Collapse
|
32
|
Swinstead EE, Paakinaho V, Presman DM, Hager GL. Pioneer factors and ATP-dependent chromatin remodeling factors interact dynamically: A new perspective: Multiple transcription factors can effect chromatin pioneer functions through dynamic interactions with ATP-dependent chromatin remodeling factors. Bioessays 2016; 38:1150-1157. [PMID: 27633730 DOI: 10.1002/bies.201600137] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transcription factor (TF) signaling regulates gene transcription and requires a complex network of proteins. This network includes co-activators, co-repressors, multiple TFs, histone-modifying complexes, and the basal transcription machinery. It has been widely appreciated that pioneer factors, such as FoxA1 and GATA1, play an important role in opening closed chromatin regions, thereby allowing binding of a secondary factor. In this review we will focus on a newly proposed model wherein multiple TFs, such as steroid receptors (SRs), can function in a pioneering role. This model, termed dynamic assisted loading, integrates data from widely divergent methodologies, including genome wide ChIP-Seq, digital genomic footprinting, DHS-Seq, live cell protein dynamics, and biochemical studies of ATP-dependent remodeling complexes, to present a real time view of TF chromatin interactions. Under this view, many TFs can act as initiating factors for chromatin landscape programming. Furthermore, enhancer and promoter states are more accurately described as energy-dependent, non-equilibrium steady states.
Collapse
Affiliation(s)
- Erin E Swinstead
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, MD, USA
| | - Ville Paakinaho
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, MD, USA
| | - Diego M Presman
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, MD, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|