1
|
Chinnappan R, Makhzoum T, Arai M, Hajja A, Abul Rub F, Alodhaibi I, Alfuwais M, Elahi MA, Alshehri EA, Ramachandran L, Mani NK, Abrahim S, Mir MS, Al-Kattan K, Mir TA, Yaqinuddin A. Recent Advances in Biosensor Technology for Early-Stage Detection of Hepatocellular Carcinoma-Specific Biomarkers: An Overview. Diagnostics (Basel) 2024; 14:1519. [PMID: 39061656 PMCID: PMC11276200 DOI: 10.3390/diagnostics14141519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatocellular carcinoma is currently the most common malignancy of the liver. It typically occurs due to a series of oncogenic mutations that lead to aberrant cell replication. Most commonly, hepatocellular carcinoma (HCC) occurs as a result of pre-occurring liver diseases, such as hepatitis and cirrhosis. Given its aggressive nature and poor prognosis, the early screening and diagnosis of HCC are crucial. However, due to its plethora of underlying risk factors and pathophysiologies, patient presentation often varies in the early stages, with many patients presenting with few, if any, specific symptoms in the early stages. Conventionally, screening and diagnosis are performed through radiological examination, with diagnosis confirmed by biopsy. Imaging modalities tend to be limited by their requirement of large, expensive equipment; time-consuming operation; and a lack of accurate diagnosis, whereas a biopsy's invasive nature makes it unappealing for repetitive use. Recently, biosensors have gained attention for their potential to detect numerous conditions rapidly, cheaply, accurately, and without complex equipment and training. Through their sensing platforms, they aim to detect various biomarkers, such as nucleic acids, proteins, and even whole cells extracted by a liquid biopsy. Numerous biosensors have been developed that may detect HCC in its early stages. We discuss the recent updates in biosensing technology, highlighting its competitive potential compared to conventional methodology and its prospects as a tool for screening and diagnosis.
Collapse
Affiliation(s)
- Raja Chinnappan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.M.); (M.A.); (A.H.); (F.A.R.); (I.A.); (M.A.); (M.A.E.); (K.A.-K.); (T.A.M.)
- Tissue/Organ Bioengineering & BioMEMS Laboratory, Organ Transplant Centre of Excellence (TR&I-Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia;
| | - Tariq Makhzoum
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.M.); (M.A.); (A.H.); (F.A.R.); (I.A.); (M.A.); (M.A.E.); (K.A.-K.); (T.A.M.)
| | - Momo Arai
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.M.); (M.A.); (A.H.); (F.A.R.); (I.A.); (M.A.); (M.A.E.); (K.A.-K.); (T.A.M.)
| | - Amro Hajja
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.M.); (M.A.); (A.H.); (F.A.R.); (I.A.); (M.A.); (M.A.E.); (K.A.-K.); (T.A.M.)
| | - Farah Abul Rub
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.M.); (M.A.); (A.H.); (F.A.R.); (I.A.); (M.A.); (M.A.E.); (K.A.-K.); (T.A.M.)
| | - Ibrahim Alodhaibi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.M.); (M.A.); (A.H.); (F.A.R.); (I.A.); (M.A.); (M.A.E.); (K.A.-K.); (T.A.M.)
| | - Mohammed Alfuwais
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.M.); (M.A.); (A.H.); (F.A.R.); (I.A.); (M.A.); (M.A.E.); (K.A.-K.); (T.A.M.)
| | - Muhammad Affan Elahi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.M.); (M.A.); (A.H.); (F.A.R.); (I.A.); (M.A.); (M.A.E.); (K.A.-K.); (T.A.M.)
| | - Eman Abdullah Alshehri
- Tissue/Organ Bioengineering & BioMEMS Laboratory, Organ Transplant Centre of Excellence (TR&I-Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia;
| | - Lohit Ramachandran
- Microfluidics, Sensors & Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (L.R.); (N.K.M.)
| | - Naresh Kumar Mani
- Microfluidics, Sensors & Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (L.R.); (N.K.M.)
| | - Shugufta Abrahim
- Graduate School of Science and Engineering for Education, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan;
| | - Mohammad Shabab Mir
- School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh 147301, Punjab, India;
| | - Khaled Al-Kattan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.M.); (M.A.); (A.H.); (F.A.R.); (I.A.); (M.A.); (M.A.E.); (K.A.-K.); (T.A.M.)
- Lung Health Centre Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Tanveer Ahmad Mir
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.M.); (M.A.); (A.H.); (F.A.R.); (I.A.); (M.A.); (M.A.E.); (K.A.-K.); (T.A.M.)
- Tissue/Organ Bioengineering & BioMEMS Laboratory, Organ Transplant Centre of Excellence (TR&I-Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia;
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.M.); (M.A.); (A.H.); (F.A.R.); (I.A.); (M.A.); (M.A.E.); (K.A.-K.); (T.A.M.)
| |
Collapse
|
2
|
Xu C, Tan Y, Zhang LY, Luo XJ, Wu JF, Ma L, Deng F. The Application of Aptamer and Research Progress in Liver Disease. Mol Biotechnol 2024; 66:1000-1018. [PMID: 38305844 PMCID: PMC11087326 DOI: 10.1007/s12033-023-01030-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/15/2023] [Indexed: 02/03/2024]
Abstract
Aptamers, as a kind of small-molecule nucleic acid, have attracted much attention since their discovery. Compared with biological reagents such as antibodies, aptamers have the advantages of small molecular weight, low immunogenicity, low cost, and easy modification. At present, aptamers are mainly used in disease biomarker discovery, disease diagnosis, treatment, and targeted drug delivery vectors. In the process of screening and optimizing aptamers, it is found that there are still many problems need to be solved such as the design of the library, optimization of screening conditions, the truncation of screened aptamer, and the stability and toxicity of the aptamer. In recent years, the incidence of liver-related diseases is increasing year by year and the treatment measures are relatively lacking, which has attracted the people's attention in the application of aptamers in liver diseases. This article mainly summarizes the research status of aptamers in disease diagnosis and treatment, especially focusing on the application of aptamers in liver diseases, showing the crucial significance of aptamers in the diagnosis and treatment of liver diseases, and the use of Discovery Studio software to find the binding target and sequence of aptamers, and explore their possible interaction sites.
Collapse
Affiliation(s)
- Cheng Xu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, Hubei, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China
| | - Yong Tan
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Li-Ye Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, Hubei, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China
| | - Xiao-Jie Luo
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, Hubei, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China
| | - Jiang-Feng Wu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, Hubei, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China
| | - Lan Ma
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China.
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, Hubei, China.
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China.
| | - Fei Deng
- Department of Oncology, The Second People's Hospital of China Three Gorges University, Yichang, 443000, China.
| |
Collapse
|
3
|
Dong JM, Wang RQ, Yuan NN, Guo JH, Yu XY, Peng AH, Cai JY, Xue L, Zhou ZL, Sun YH, Chen YY. Recent advances in optical aptasensors for biomarkers in early diagnosis and prognosis monitoring of hepatocellular carcinoma. Front Cell Dev Biol 2023; 11:1160544. [PMID: 37143897 PMCID: PMC10152369 DOI: 10.3389/fcell.2023.1160544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/06/2023] [Indexed: 05/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for approximately 90% of all primary liver cancers and is one of the main malignant tumor types globally. It is essential to develop rapid, ultrasensitive, and accurate strategies for the diagnosis and surveillance of HCC. In recent years, aptasensors have attracted particular attention owing to their high sensitivity, excellent selectivity, and low production costs. Optical analysis, as a potential analytical tool, offers the advantages of a wide range of targets, rapid response, and simple instrumentation. In this review, recent progress in several types of optical aptasensors for biomarkers in early diagnosis and prognosis monitoring of HCC is summarized. Furthermore, we evaluate the strengths and limitations of these sensors and discuss the challenges and future perspectives for their use in HCC diagnosis and surveillance.
Collapse
Affiliation(s)
- Jia-Mei Dong
- Department of Pharmacy, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
| | - Rui-Qi Wang
- Department of Pharmacy, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
| | - Ning-Ning Yuan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jia-Hao Guo
- Department of Pharmacy, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xin-Yang Yu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
| | - Ang-Hui Peng
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
| | - Jia-Yi Cai
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Lei Xue
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
| | - Zhi-Ling Zhou
- Department of Pharmacy, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
| | - Yi-Hao Sun
- Department of Pharmacy, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
| | - Ying-Yin Chen
- Department of Pharmacy, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
| |
Collapse
|
4
|
Das S, Devireddy R, Gartia MR. Surface Plasmon Resonance (SPR) Sensor for Cancer Biomarker Detection. BIOSENSORS 2023; 13:396. [PMID: 36979608 PMCID: PMC10046379 DOI: 10.3390/bios13030396] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
A biomarker is a physiological observable marker that acts as a stand-in and, in the best-case scenario, forecasts a clinically significant outcome. Diagnostic biomarkers are more convenient and cost-effective than directly measuring the ultimate clinical outcome. Cancer is among the most prominent global health problems and a major cause of morbidity and death globally. Therefore, cancer biomarker assays that are trustworthy, consistent, precise, and verified are desperately needed. Biomarker-based tumor detection holds a lot of promise for improving disease knowledge at the molecular scale and early detection and surveillance. In contrast to conventional approaches, surface plasmon resonance (SPR) allows for the quick and less invasive screening of a variety of circulating indicators, such as circulating tumor DNA (ctDNA), microRNA (miRNA), circulating tumor cells (CTCs), lipids, and proteins. With several advantages, the SPR technique is a particularly beneficial choice for the point-of-care identification of biomarkers. As a result, it enables the timely detection of tumor markers, which could be used to track cancer development and suppress the relapse of malignant tumors. This review emphasizes advancements in SPR biosensing technologies for cancer detection.
Collapse
|
5
|
Kim SY, Lee JP, Shin WR, Oh IH, Ahn JY, Kim YH. Cardiac biomarkers and detection methods for myocardial infarction. Mol Cell Toxicol 2022; 18:443-455. [PMID: 36105117 PMCID: PMC9463516 DOI: 10.1007/s13273-022-00287-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 12/14/2022]
Abstract
Background A significant heart attack known as a myocardial infarction (MI) occurs when the blood supply to the heart is suddenly interrupted, harming the heart muscles due to a lack of oxygen. The incidence of myocardial infarction is increasing worldwide. A relationship between COVID-19 and myocardial infarction due to the recent COVID-19 pandemic has also been revealed. Objective We propose a biomarker and a method that can be used for the diagnosis of myocardial infarction, and an aptamer-based approach. Results For the diagnosis of myocardial infarction, an algorithm-based diagnosis method was developed using electrocardiogram data. A diagnosis method through biomarker detection was then developed. Conclusion Myocardial infarction is a disease that is difficult to diagnose based on the aspect of a single factor. For this reason, it is necessary to use a combination of various methods to diagnose myocardial infarction quickly and accurately. In addition, new materials such as aptamers must be grafted and integrated into new ways. Purpose of Review The incidence of myocardial infarction is increasing worldwide, and some studies are being conducted on the association between COVID-19 and myocardial infarction. The key to properly treating myocardial infarction is early detection, thus we aim to do this by offering both tools and techniques as well as the most recent diagnostic techniques. Recent Findings Myocardial infarction is diagnosed using an electrocardiogram and echocardiogram, which utilize cardiac signals. It is required to identify biomarkers of myocardial infarction and use biomarker-based ELISA, SPR, gold nanoparticle, and aptamer technologies in order to correctly diagnose myocardial infarction.
Collapse
Affiliation(s)
- Sang Young Kim
- Department of Food Science and Biotechnology, Shin Ansan University, 135 Sinansandaehak-Ro, Danwon-Gu, Ansan, 15435 Republic of Korea
| | - Jin-Pyo Lee
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644 South Korea
| | - Woo-Ri Shin
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644 South Korea
| | - In-Hwan Oh
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644 South Korea
| | - Ji-Young Ahn
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644 South Korea
| | - Yang-Hoon Kim
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644 South Korea
| |
Collapse
|
6
|
Shin WR, Park DY, Kim JH, Lee JP, Thai NQ, Oh IH, Sekhon SS, Choi W, Kim SY, Cho BK, Kim SC, Min J, Ahn JY, Kim YH. Structure based innovative approach to analyze aptaprobe-GPC3 complexes in hepatocellular carcinoma. J Nanobiotechnology 2022; 20:204. [PMID: 35477501 PMCID: PMC9044640 DOI: 10.1186/s12951-022-01391-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/21/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Glypican-3 (GPC3), a membrane-bound heparan sulfate proteoglycan, is a biomarker of hepatocellular carcinoma (HCC) progression. Aptamers specifically binding to target biomolecules have recently emerged as clinical disease diagnosis targets. Here, we describe 3D structure-based aptaprobe platforms for detecting GPC3, such as aptablotting, aptaprobe-based sandwich assay (ALISA), and aptaprobe-based imaging analysis. RESULTS For preparing the aptaprobe-GPC3 platforms, we obtained 12 high affinity aptamer candidates (GPC3_1 to GPC3_12) that specifically bind to target GPC3 molecules. Structure-based molecular interactions identified distinct aptatopic residues responsible for binding to the paratopic nucleotide sequences (nt-paratope) of GPC3 aptaprobes. Sandwichable and overlapped aptaprobes were selected through structural analysis. The aptaprobe specificity for using in HCC diagnostics were verified through Aptablotting and ALISA. Moreover, aptaprobe-based imaging showed that the binding property of GPC3_3 and their GPC3 specificity were maintained in HCC xenograft models, which may indicate a new HCC imaging diagnosis. CONCLUSION Aptaprobe has the potential to be used as an affinity reagent to detect the target in vivo and in vitro diagnosing system.
Collapse
Affiliation(s)
- Woo-Ri Shin
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Dae-Young Park
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Ji Hun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jin-Pyo Lee
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Nguyen Quang Thai
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - In-Hwan Oh
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Simranjeet Singh Sekhon
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Wooil Choi
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Sung Yeon Kim
- College of Pharmacy, Wonkwang University, Shinyoung-dong 344-2, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jiho Min
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Ji-Young Ahn
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.
| | - Yang-Hoon Kim
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
7
|
Jia W, Wang Z, Lu Z, Ding B, Li Z, Xu D. The discovery of lactoferrin dual aptamers through surface plasmon resonance imaging combined with a bioinformation analysis. Analyst 2021; 145:6298-6306. [PMID: 32940261 DOI: 10.1039/d0an01513j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An analytical method for screening aptamers for different recognition sites in lactoferrin (Lac) molecules has been developed based on Surface Plasmon Resonance imaging (SPRi), combined with the cluster classification calculation of a quasi-aptamer library strategy and molecular docking simulation analysis. Using the software simulation, a homology analysis was performed on the selected quasi-aptamer sequences, which could be divided into 8 different families. Based on the principle of biomolecular recognition, a label-free, high-throughput dual immune site screening method was established, in which the nucleic acid aptamers of recognizing ability for lactoferrin molecules were fixed onto the surface of the SPRi sensor chip and could bind to the lactoferrin molecules. Then, the aptamer candidates to be paired were introduced, and the recognition event of the second immune site was judged by observing the binding signal of SPRi. The paired SPRi signal was generated only when the site identified by the second nucleic acid molecule was different from the first immune site. Based on this principle, a pair of Lac nucleic acid aptamers (Lac-8 and Lac-25) was finally screened and confirmed using computerized simulation, and has been employed to assay Lac in milk by ELONA (Enzyme-Linked Oligonucleotide Assay).
Collapse
Affiliation(s)
- Wenchao Jia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | | | | | | | | | | |
Collapse
|
8
|
Hu Y, Yu XA, Zhang Y, Zhang R, Bai X, Lu M, Li J, Gu L, Liu JH, Yu BY, Tian J. Rapid and sensitive detection of NGAL for the prediction of acute kidney injury via a polydopamine nanosphere/aptamer nanocomplex coupled with DNase I-assisted recycling amplification. Analyst 2021; 145:3620-3625. [PMID: 32338259 DOI: 10.1039/d0an00474j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Early detection of acute kidney injury (AKI) is important, as early intervention and treatment can prevent further kidney injury and improve kidney health. Neutrophil gelatinase-associated lipocalin (NGAL) has emerged as the earliest and promising non-invasive biomarker of AKI in urine, and has been used as a new predictive biomarker of AKI in the bench-to-bedside journey. In this work, a nanocomplex composed of a polydopamine nanosphere (PDANS) and a fluorophore-labelled aptamer has been constructed for the detection of NGAL using a DNase I-assisted recycling amplification strategy. After the addition of NGAL, the fluorescence intensity increases linearly over the NGAL concentration range from 12.5 to 400 pg mL-1. The limit of detection of this strategy is found to be 6.25 pg mL-1, which is almost 5 times lower than that of the method that does not involve DNase I. The process can be completed within 1 h, indicating a fast fluorescence response. Furthermore, the method using the nanocomplex coupled with DNase I has been successfully utilized for the detection of NGAL in the urine from cisplatin-induced AKI and five-sixths nephrectomized mice, demonstrating its promising ability for the early prediction of AKI. This method also demonstrates the protective effect of the Huangkui capsule on AKI, and provides an effective way to screen potentially protective drugs for renal disease.
Collapse
Affiliation(s)
- Yiting Hu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China.
| | - Xie-An Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China.
| | - Ying Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China.
| | - Ran Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China.
| | - Xuefei Bai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China.
| | - Mi Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China.
| | - Jiwei Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China.
| | - Lifei Gu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China.
| | - Ji-Hua Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China.
| | - Bo-Yang Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China.
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China.
| |
Collapse
|
9
|
Ojha YR, Giovannucci DR, Cameron BD. Selection and characterization of structure-switching DNA aptamers for the salivary peptide histatin 3. J Biotechnol 2020; 327:9-17. [PMID: 33387594 DOI: 10.1016/j.jbiotec.2020.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 11/10/2020] [Accepted: 12/24/2020] [Indexed: 12/21/2022]
Abstract
In this study, single-stranded DNA aptamers that switch structural conformation upon binding to the salivary peptide histatin 3 have been reported for the first time. Histatin 3 is an antimicrobial peptide that possesses the capability of being a therapeutic agent against oral candidiasis and has recently been linked as a novel biomarker for acute stress. The aptamers were identified through a library immobilization version of an iterative in vitro process known as the Systematic Evolution of Ligands by EXponential enrichment (SELEX). Through the SELEX process, four unique aptamer candidates sharing a consensus sequence were identified. These selected sequences exhibited binding affinity and specificity to histatin 3 and in order to further characterize these aptamers, a direct format enzyme-linked aptamer sorbent assay (ELASA) was developed. The best performing candidate demonstrated an equilibrium dissociation constant (Kd) value of 1.97 ± 0.48 μM. These novel aptamers have the potential to lead to the further development of refined sensing assays and platforms for the detection and quantification of histatin 3 in human saliva and other biological media.
Collapse
Affiliation(s)
- Yagya R Ojha
- Department of Bioengineering, University of Toledo, Toledo, OH 43606, USA
| | | | - Brent D Cameron
- Department of Bioengineering, University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
10
|
|
11
|
Wang W, Wang X, Cheng N, Luo Y, Lin Y, Xu W, Du D. Recent advances in nanomaterials-based electrochemical (bio)sensors for pesticides detection. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116041] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Mohammadinezhad R, Jalali SAH, Farahmand H. Evaluation of different direct and indirect SELEX monitoring methods and implementation of melt-curve analysis for rapid discrimination of variant aptamer sequences. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3823-3835. [PMID: 32676627 DOI: 10.1039/d0ay00491j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Systematic Evolution of Ligands by Exponential enrichment (SELEX) is an iterative method for in vitro selection of aptamers from a random synthetic oligonucleotide library. Successful retrieving of aptamers by SELEX relies on optimization of various steps including target immobilization, aptamer partitioning, amplification, and ssDNA generation, which all require spending considerable effort and cost. Furthermore, due to the random nature of the initial library, SELEX may redirect toward the selection of low-affinity aptamers that are over-represented in the ssDNA population due to PCR bias. Thus, precise monitoring of the SELEX process is crucial to ensure the selection of target-specific aptamers. In the present study, we investigated the reliability and simplicity of different direct and indirect monitoring methods including UV-Vis spectroscopy, real-time PCR quantification and melt-curve analysis, electrophoretic mobility shift assay (EMSA) and enzyme-linked oligonucleotide assay (ELONA) for selection of DNA aptamers for a protein target. All the examined methods were capable of illustrating the gradual evolution of specific aptamers by the progression of SELEX and showed almost similar results regarding the identification of the enriched round of selection. Moreover, we describe the use of melt-curve analysis in the colony real-time PCR method as a simple, robust, and repeatable tool for pre-sequencing separation of distinct aptamer clones.
Collapse
Affiliation(s)
- Rezvan Mohammadinezhad
- Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | | | | |
Collapse
|
13
|
Docking Simulation and Sandwich Assay for Aptamer-Based Botulinum Neurotoxin Type C Detection. BIOSENSORS-BASEL 2020; 10:bios10080098. [PMID: 32806662 PMCID: PMC7460441 DOI: 10.3390/bios10080098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023]
Abstract
Aptamers are biomaterials that bind to a target molecule through a unique structure, and have high applicability in the diagnostic and medical fields. To effectively utilize aptamers, it is important to analyze the structure of the aptamer binding to the target molecule; however, there are difficulties in experimentally identifying this structure. In the modern pharmaceutical industry, computer-driven docking simulations that predict intermolecular binding models are used to select candidates that effectively bind target molecules. Botulinum toxin (BoNT) is the most poisonous neurotoxin produced from the Clostridium botulinum bacteria, and BoNT/C, one of the eight serotypes, causes paralysis in livestock. In this study, the aptamers that bound to BoNT/C were screened via the systematic evolution of ligands by exponential enrichment, and the binding affinity analysis and binding model were evaluated to select optimal aptamers. Based on surface plasmon resonance analysis and molecular operating environment docking simulation, a pair of aptamers that had high binding affinity to BoNT/C and were bound to different BoNT/C sites were selected. A sandwich assay based on this aptamer pair detected the BoNT/C protein to a concentration as low as ~0.2 ng Ml-1. These results show that docking simulations are a useful strategy for screening aptamers that bind to specific targets.
Collapse
|
14
|
Ma Y, Li X, Liu J, Li W, Liu Z. Convenient Construction of Orthogonal Dual Aptamer-Based Plasmonic Immunosandwich Assay for Probing Protein Disease Markers in Complex Samples and Living Animals. ACS Sens 2020; 5:1436-1444. [PMID: 32279504 DOI: 10.1021/acssensors.0c00359] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aptamers, because of their outstanding merits including simple synthesis and easy modification, have been widely used as antibody alternatives to construct novel immunosandwich assays. Dual aptamer-based sandwich assays exhibit multiple advantages over conventional immunosandwich assays and single aptamer-based sandwich assays. However, their construction is hampered by the limited knowledge of binding orthogonality of aptamers reported in the literature. Herein, we present a new strategy for conveniently constructing an orthogonal dual aptamer-based plasmonic immunosandwich assay (odA-PISA) for probing proteins in complex samples and living animals. An orthogonal aptamer pair was first efficiently selected from the aptamers reported in the literature by affinity capillary electrophoresis. Then, a target protein-capturing gold thin-layer-coated probe and silver nanoparticle-based Raman labeling nanotags were conveniently prepared with the selected aptamers and used to construct the assay. The double aptamers used ensured the specificity, whereas the plasmonic coupling effect between the target-capturing probe and the generated Raman nanotags significantly enhanced the Raman signal intensity, providing high sensitivity. As a proof of principle, alkaline phosphatase (ALP) was used as the target. The constructed odA-PISA exhibited high specificity and high sensitivity toward ALP, giving cross-reactivity ≤ 4.2% and the limit of detection of 3.8 pM (S/N = 4). The quantitative determination of ALP in human serum and probing ALP in tumor-bearing mice were achieved, showing the great application potential of the method. This strategy is widely applicable to other protein disease markers. Therefore, it opened a new access to the construction of sensitive dual aptamer-based sandwich assays for real-world applications, particularly disease diagnosis.
Collapse
Affiliation(s)
- Yanyan Ma
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xinglin Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jia Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
15
|
Bakhtiari H, Palizban AA, Khanahmad H, Mofid MR. Aptamer-based approaches for in vitro molecular detection of cancer. Res Pharm Sci 2020; 15:107-122. [PMID: 32582351 PMCID: PMC7306249 DOI: 10.4103/1735-5362.283811] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/06/2020] [Accepted: 02/26/2020] [Indexed: 01/08/2023] Open
Abstract
Cancer is typically associated with abnormal production of various tumor-specific molecules known as tumor markers. Probing these markers by utilizing efficient approaches could be beneficial for cancer diagnosis. The current widely-used biorecognition probes, antibodies, suffer from some undeniable shortcomings. Fortunately, novel oligonucleotide-based molecular probes named aptamers are being emerged as alternative detection tools with distinctive advantages compared to antibodies. All of the existing strategies in cancer diagnostics, including those of in vitro detection, can potentially implement aptamers as the detecting moiety. Several studies have been performed in the field of in vitro cancer detection over the last decade. In order to direct future studies, it is necessary to comprehensively summarize and review the current status of the field. Most previous studies involve only a few cancer diagnostic strategies. Here, we thoroughly review recent significant advances on the applications of aptamer in various in vitro detection strategies. Furthermore, we will discuss the status of diagnostic aptamers in clinical trials.
Collapse
Affiliation(s)
- Hadi Bakhtiari
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I. R. Iran
| | - Abbas Ali Palizban
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I. R. Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I. R. Iran
| | - Mohammad Reza Mofid
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I. R. Iran
| |
Collapse
|
16
|
Aydoğdu Tığ G, Pekyardımcı Ş. An electrochemical sandwich-type aptasensor for determination of lipocalin-2 based on graphene oxide/polymer composite and gold nanoparticles. Talanta 2019; 210:120666. [PMID: 31987191 DOI: 10.1016/j.talanta.2019.120666] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 01/05/2023]
Abstract
In this work, we reported an electrochemical aptasensor based on the poly-3-amino-1,2,4-triazole-5-thiol/graphene oxide composite (P(ATT)-GO) and gold nanoparticles (AuNPs) modified graphite screen-printed electrode (GSPE) (GSPE/P(ATT)-GO/AuNPs) for determination of lipocalin-2 (LCN2) (neutrophil gelatinase-associated lipocalin). A sandwich based strategy was utilized to enhance the electrochemical signal. First, a thiol tethered DNA aptamer was immobilized onto the composite electrode. Then, the LCN2 solution was incubated with the aptamer modified GSPE/P(ATT)-GO/AuNPs. Secondary aptamer (Apt2) peculiar to the LCN2 and labeled with biotin was interacted with the LCN2. A streptavidin-alkaline phosphatase conjugate was then applied to the surface. The determination of LCN2 was performed by using the electroactive property of α-naphthol which is acquired the product from the interaction between alkaline phosphatase and α-naphthyl phosphate. The constructed electrode was characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The aptamer modified GSPE/P(ATT)-GO/AuNPs showed the superior electrocatalytic performance towards the voltammetric determination of LCN2 with a wide linear range (1.0-1000.0 ng/mL) and a low limit of detection (LOD) (0.3 ng/mL). The proposed aptasensor revealed the excellent sensitivity, anti-interference ability and reproducibility which approved that the GSPE/P (ATT)-GO/AuNPs is a promising composite for the sensitive detection of LCN2. The fabricated aptasensor was applied for the determination of LCN2 in fetal bovine serum samples using the standard addition method and the recovery values were in the range of 99.2% and 103.22%.
Collapse
Affiliation(s)
- Gözde Aydoğdu Tığ
- Ankara University, Faculty of Science, Department of Chemistry, Ankara, 06100, Turkey.
| | - Şule Pekyardımcı
- Ankara University, Faculty of Science, Department of Chemistry, Ankara, 06100, Turkey
| |
Collapse
|
17
|
Kooshki H, Abbaszadeh R, Heidari R, Akbariqomi M, Mazloumi M, Shafei S, Absalan M, Tavoosidana G. Developing a DNA aptamer-based approach for biosensing cystatin-c in serum: An alternative to antibody-based methods. Anal Biochem 2019; 584:113386. [DOI: 10.1016/j.ab.2019.113386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/22/2019] [Accepted: 08/03/2019] [Indexed: 12/28/2022]
|
18
|
Hong X, Yan H, Xie F, Wang K, Wang Q, Huang H, Yang K, Huang S, Zhao T, Wang J, Chen Y, Liu K, Lan X. Development of a novel ssDNA aptamer targeting neutrophil gelatinase-associated lipocalin and its application in clinical trials. J Transl Med 2019; 17:204. [PMID: 31215436 PMCID: PMC6582607 DOI: 10.1186/s12967-019-1955-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/13/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Neutrophil gelatinase-associated lipocalin (NGAL) is a promising biomarker of early diagnosis and prediction for acute kidney injury (AKI). However, the current program for NGAL detection is not extensively applied in clinics due to the high expense of antibodies. Nucleic acid aptamers are single-strand DNAs or RNAs which could bind to targets with high specificity and affinity, and they have been widely used in the diagnosis and therapy for multiple diseases. It is valuable for us to develop a new method for NGAL detection using aptamers instead of antibodies to achieve increased efficiency and decreased cost. METHODS Nucleic acid aptamers against NGAL were obtained after SELEX process using magnetic beads, and an enzyme-linked aptamer analysis (ELAA), which can be widely used in clinical diagnosis at low cost, were successfully established. The feasibility of ELAA was further validated with urine samples harvested from 43 AKI patients and 30 healthy people. RESULTS Three candidate aptamers, including NA36, NA42 and NA53, were obtained after 8 rounds of SELEX process with magnetic beads and verified by quantitative polymerase chain reaction (qPCR), and the Kd value of each aptamer was 43.59, 66.55 and 32.52 nM, respectively. Moreover, the linear relationship was consistent at the range of 125-4000 ng/mL, and the detection limit of ELAA assay was 30.45 ng/mL. We also found that NGAL could be exclusively detected with NA53, and no cross-reaction between NA53 and human albumin or globulin occurred, the coefficient of variation (CV) between inner-plate and inter-plate was less than 15%, and the recovery rate was between 80 and 110%. Moreover, the sensitivity and specificity of ELAA assay in this study are 100% and 90%, respectively. Consistently, these results could also diagnose whether the occurrence of AKI in lots of patients, which has been demonstrated with the ELAA method we established after using NA53. CONCLUSIONS Taken together, NA53, the best candidate aptamer targeting NGAL protein, can be applied in clinical testing.
Collapse
Affiliation(s)
- Xiaoqian Hong
- Institute for Laboratory Medicine, 900 Hospital of the Joint Logistics Team, Navy Medical University (Second Military Medical University) or Dongfang Hospital, Fuzhou, 350025, Fujian, China.,Department of Laboratory Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Huihui Yan
- Institute for Laboratory Medicine, 900 Hospital of the Joint Logistics Team, Navy Medical University (Second Military Medical University) or Dongfang Hospital, Fuzhou, 350025, Fujian, China
| | - Fuan Xie
- Institute for Laboratory Medicine, 900 Hospital of the Joint Logistics Team, Navy Medical University (Second Military Medical University) or Dongfang Hospital, Fuzhou, 350025, Fujian, China
| | - Kaiyu Wang
- Institute for Laboratory Medicine, 900 Hospital of the Joint Logistics Team, Navy Medical University (Second Military Medical University) or Dongfang Hospital, Fuzhou, 350025, Fujian, China
| | - Qiang Wang
- Department of Nephrology, 900 Hospital of the Joint Logistics Team, Fuzhou, 350025, Fujian, China
| | - Huijuan Huang
- Department of Gynaecology and Obstetrics, 900 Hospital of the Joint Logistics Team or Dongfang Hospital, Fuzhou, 350025, Fujian, China
| | - Kunrong Yang
- Institute for Laboratory Medicine, 900 Hospital of the Joint Logistics Team, Navy Medical University (Second Military Medical University) or Dongfang Hospital, Fuzhou, 350025, Fujian, China.,Fujian Medical University, Fuzhou, 350025, Fujian, China
| | - Suhong Huang
- Department of Laboratory Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Tingting Zhao
- Institute for Laboratory Medicine, 900 Hospital of the Joint Logistics Team, Navy Medical University (Second Military Medical University) or Dongfang Hospital, Fuzhou, 350025, Fujian, China.,School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Junkai Wang
- School of Life Science, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yunyun Chen
- Institute for Laboratory Medicine, 900 Hospital of the Joint Logistics Team, Navy Medical University (Second Military Medical University) or Dongfang Hospital, Fuzhou, 350025, Fujian, China.,School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Kuancan Liu
- Institute for Laboratory Medicine, 900 Hospital of the Joint Logistics Team, Navy Medical University (Second Military Medical University) or Dongfang Hospital, Fuzhou, 350025, Fujian, China. .,School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China. .,Fujian Medical University, Fuzhou, 350025, Fujian, China.
| | - Xiaopeng Lan
- Institute for Laboratory Medicine, 900 Hospital of the Joint Logistics Team, Navy Medical University (Second Military Medical University) or Dongfang Hospital, Fuzhou, 350025, Fujian, China.
| |
Collapse
|
19
|
Hanif A, Farooq R, Rehman MU, Khan R, Majid S, Ganaie MA. Aptamer based nanobiosensors: Promising healthcare devices. Saudi Pharm J 2019; 27:312-319. [PMID: 30976173 PMCID: PMC6438676 DOI: 10.1016/j.jsps.2018.11.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/22/2018] [Indexed: 12/20/2022] Open
Abstract
Nanobiosensors based on aptamer are extensively being studied as potent analytical tools in clinical analysis. These biosensors provide high sensitivity, fast response, specificity and desired portability in addition to simplicity and decreased cost compared to conventional methods. The purpose of this manuscript is to provide readers with an overview of current advances about electrochemical, electrochemiluminescent and photoelectrochemical aptasensors from the sea of available literature. These are mainly used for determination of protein-based biomarkers, especially for cancer diagnosis. Here in we have given special emphasis on nanosize-based aptasensors which have been reported to show considerable improvement in the analytical performance.
Collapse
Affiliation(s)
- Aamir Hanif
- City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Rabia Farooq
- Department of Biochemistry, Govt Medical College (GMC) Srinagar, J&K 190010, India
| | - Muneeb U. Rehman
- Department of Biochemistry, Govt Medical College (GMC) Srinagar, J&K 190010, India
| | - Rehan Khan
- Nanotherapeutics, Institute of Nanoscience & Technology (DST-INST), Habitat Centre Phase 10, Mohali, Punjab, India
| | - Sabhiya Majid
- Department of Biochemistry, Govt Medical College (GMC) Srinagar, J&K 190010, India
| | - Majid Ahmad Ganaie
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
20
|
Lorenzo-Gómez R, Fernández-Alonso N, Miranda-Castro R, de-Los-Santos-Álvarez N, Lobo-Castañón MJ. Unravelling the lipocalin 2 interaction with aptamers: May rolling circle amplification improve their functional affinity? Talanta 2019; 197:406-412. [PMID: 30771954 DOI: 10.1016/j.talanta.2019.01.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/30/2022]
Abstract
Cancer diagnosis based on serum biomarkers requires receptors of extreme sensitivity and selectivity. Tunability of aptamer selection makes them ideal for that challenge. However, aptamer characterization is a time-consuming task, not always thoroughly addressed, leading to suboptimal aptamer performance. In this work, we report on the affinity characterization and potential usage of two aptamers against a candidate cancer biomarker, the neutrophil gelatinase-associated lipocalin (NGAL). Electrochemical sandwich assays on Au electrodes and SPR experiments showed a restricted capture ability of one of the aptamers (LCN2-4) and a small detectability of the other (LCN2-2). Interestingly, a truncated version of the signaling aptamer LCN2-2 selectively binds to NGAL covalently linked to magnetic beads due to high local protein concentration. The functional affinity of this aptamer is enhanced by three-orders of magnitude using rolling circle amplification (RCA), completed in only 15 min, followed by hybridization with short complementary fluorescein-tag probes, enzyme labeling and chronoamperometric measurement. Microscale thermophoresis experiments show a poor affinity for the protein in solution, which urges the importance of a full and in-depth characterization of aptamers to be used as diagnostic reagents.
Collapse
Affiliation(s)
- Ramón Lorenzo-Gómez
- Dpto. Química Física y Analítica, Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011 Oviedo, Spain
| | - Noelia Fernández-Alonso
- Dpto. Química Física y Analítica, Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
| | - Rebeca Miranda-Castro
- Dpto. Química Física y Analítica, Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011 Oviedo, Spain
| | - Noemí de-Los-Santos-Álvarez
- Dpto. Química Física y Analítica, Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011 Oviedo, Spain
| | - María Jesús Lobo-Castañón
- Dpto. Química Física y Analítica, Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011 Oviedo, Spain.
| |
Collapse
|
21
|
Mie M, Niimi T, Mashimo Y, Kobatake E. Construction of DNA-NanoLuc luciferase conjugates for DNA aptamer-based sandwich assay using Rep protein. Biotechnol Lett 2019; 41:357-362. [PMID: 30603832 DOI: 10.1007/s10529-018-02641-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/19/2018] [Indexed: 01/07/2023]
Abstract
OBJECTIVE We developed a DNA-NanoLuc luciferase (NnaoLuc) conjugates for DNA aptamer-based sandwich assay using the catalytic domain of the replication initiator protein derived from porcine circovirus type 2 (pRep). RESULTS For construction of DNA aptamer and NanoLuc conjugate using the catalytic domain of Rep from PCV2. pRep fused to NanoLuc was genetically constructed and expressed in E. coli. After purification, the activities of fused pRep and NanoLuc were evaluated, and DNA-NanoLuc conjugates were constructed via the fused pRep. Finally, constructed DNA-NanoLuc conjugates were applied for use in a DNA aptamer-based sandwich assay. Here, pRep was used not only for conjugation of the NanoLuc to the detection aptamer, but also for immobilization of the capture aptamer on the plate surface. CONCLUSION We have demonstrated that DNA-NanoLuc conjugates via the catalytic domain of PCV2 Rep could be applied for DNA aptamer-based sandwich assay system.
Collapse
Affiliation(s)
- Masayasu Mie
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-Ku, Yokohama, 226-8502, Japan.
| | - Takahiro Niimi
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-Ku, Yokohama, 226-8502, Japan
| | - Yasumasa Mashimo
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-Ku, Yokohama, 226-8502, Japan
| | - Eiry Kobatake
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-Ku, Yokohama, 226-8502, Japan
| |
Collapse
|
22
|
Xu Y, Wang H, Zeng Y, Tian Y, Shen Z, Xie Z, Chen F, Sun L, Shu R, Li PP, Chen C, Yu J, Wang K, Luo H. Overexpression of CLN3 contributes to tumour progression and predicts poor prognosis in hepatocellular carcinoma. Surg Oncol 2018; 28:180-189. [PMID: 30851897 DOI: 10.1016/j.suronc.2018.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 11/16/2018] [Accepted: 12/16/2018] [Indexed: 02/07/2023]
Abstract
The aberrant expression of ceroid-lipofuscinosis 3 (CLN3) has been reported in a variety of human malignancies. However, the role of CLN3 in the progression and prognosis of hepatocellular carcinoma (HCC) remains unknown. In this study, we found that CLN3 was frequently upregulated in HCC clinical samples and HCC-derived cell lines and was significantly correlated with an APF serum level ≥20 μg/L, a tumour size ≥5 cm, multiple tumours, and the absence of encapsulation. Kaplan-Meier showed that CLN3 upregulation predicted shorter recurrence-free survival (RFS) and overall survival (OS) time in HCC patients. Cox regression analysis revealed that CLN3 upregulation was an independent risk factor for RFS and OS. A functional study demonstrated that the knockdown of CLN3 expression profoundly suppressed the growth and metastasis of HCC cells both in vitro and in vivo. Mechanistic investigation revealed that the EGFR/PI3K/AKT pathway was essential for mediating CLN3 function. In conclusion, our results provide the first evidence that CLN3 contributes to tumour progression and metastasis and offer a potential prognostic predictor and therapeutic target for HCC.
Collapse
Affiliation(s)
- Yu Xu
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, PR China; Yunnan Clinical Center for General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China; Yunnan Engineering Technology Centre for Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China
| | - Huawei Wang
- Yunnan Clinical Center for General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China; Yunnan Engineering Technology Centre for Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China
| | - Yujian Zeng
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, PR China; Yunnan Clinical Center for General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China; Yunnan Engineering Technology Centre for Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China
| | - Yan Tian
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, PR China; Yunnan Clinical Center for General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China; Yunnan Engineering Technology Centre for Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China
| | - Zongwen Shen
- Yunnan Clinical Center for General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China; Yunnan Engineering Technology Centre for Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China
| | - Zhenrong Xie
- Yunnan Clinical Center for General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China; Yunnan Engineering Technology Centre for Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China
| | - Fengrong Chen
- Yunnan Clinical Center for General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China; Yunnan Engineering Technology Centre for Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China
| | - Liang Sun
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, PR China; Yunnan Clinical Center for General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China; Yunnan Engineering Technology Centre for Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China
| | - Ruo Shu
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, PR China; Yunnan Clinical Center for General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China; Yunnan Engineering Technology Centre for Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China
| | - Peng Peng Li
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, PR China; Yunnan Clinical Center for General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China; Yunnan Engineering Technology Centre for Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China
| | - Cheng Chen
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, PR China; Yunnan Clinical Center for General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China; Yunnan Engineering Technology Centre for Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China
| | - Juehua Yu
- Yunnan Clinical Center for General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China; Yunnan Engineering Technology Centre for Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China.
| | - Kunhua Wang
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, PR China; Yunnan Clinical Center for General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China; Yunnan Engineering Technology Centre for Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China.
| | - Huayou Luo
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, PR China; Yunnan Clinical Center for General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China; Yunnan Engineering Technology Centre for Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China.
| |
Collapse
|
23
|
Sergelen K, Liedberg B, Knoll W, Dostálek J. A surface plasmon field-enhanced fluorescence reversible split aptamer biosensor. Analyst 2018; 142:2995-3001. [PMID: 28744534 DOI: 10.1039/c7an00970d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Surface plasmon field-enhanced fluorescence is reported for the readout of a heterogeneous assay that utilizes low affinity split aptamer ligands. Weak affinity ligands that reversibly interact with target analytes hold potential for facile implementation in continuous monitoring biosensor systems. This functionality is not possible without the regeneration of more commonly used assays relying on high affinity ligands and end-point measurement. In fluorescence-based sensors, the use of low affinity ligands allows avoiding this step but it imposes a challenge associated with the weak optical response to the specific capture of the target analyte which is also often masked by a strong background. The coupling of fluorophore labels with a confined field of surface plasmons is reported for strong amplification of the fluorescence signal emitted from the sensor surface and its efficient discrimination from the background. This optical scheme is demonstrated for time-resolved analysis of chosen model analytes - adenoside and adenosine triphosphate - with a split aptamer that exhibits an equilibrium affinity binding constant between 0.73 and 1.35 mM. The developed biosensor enables rapid and specific discrimination of target analyte concentration changes from low μM to mM in buffer as well as in 10% serum.
Collapse
Affiliation(s)
- K Sergelen
- BioSensor Technologies, AIT-Austrian Institute of Technology, Muthgasse 11, 1190 Vienna, Austria.
| | | | | | | |
Collapse
|
24
|
Taheri RA, Eskandari K, Negahdary M. An electrochemical dopamine aptasensor using the modified Au electrode with spindle-shaped gold nanostructure. Microchem J 2018. [DOI: 10.1016/j.microc.2018.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Immunocytochemistry Based on a Cell-Type-Specific Aptamer for Rapid Immunostaining of Adenocarcinoma Cells in Clinical Serosal Fluids. Pathol Oncol Res 2018; 25:1143-1152. [PMID: 30478720 DOI: 10.1007/s12253-018-0555-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 11/19/2018] [Indexed: 12/26/2022]
Abstract
All too often, conventional immunocytochemistry (ICC) via an antibody on cytological samples is limited to a few smears due to scant cellularity. To circumvent these limitations, this study employed a cell-type-specific aptamer as the core tool in ICC protocols for a timely and highly specific ICC diagnosis. S6, an aptamer against A549 lung carcinoma cells, was adopted instead of antibodies in this study for differentiating cancer cells in serosal fluids. Here, we developed three different strategies for discriminating the adenocarcinoma cells in effusion cytology specimens using the S6 aptamer in ICC. These strategies included a biotin-labeled S6 aptamer, an FAM-labeled S6 aptamer, and an activatable S6 aptamer. A total of 112 serosal fluid specimens with known diagnoses were evaluated by all three modes of use of the S6 aptamer. ICC procedures based on biotin-labeled or FAM-labeled S6 aptamers required time-consuming washing to avoid interference from nonspecific adsorption. ICC procedures based on an activatable S6 aptamer probe showed a weak fluorescence signal in the absence of target cells, but the procedures showed a strong fluorescence signal due to alteration of the conformation without any complicated washing steps, in the presence of targets. The specificity and sensitivity are higher in all three different ICC protocols based on the S6 aptamer than those for antibody protocols for differentiating adenocarcinoma cells in clinical effusion cytology. ICC based on cell-type-specific aptamers, instead of on a panel of a set of antibodies, is promising as an auxiliary method for the diagnosis of cancer.
Collapse
|
26
|
Zhou Y, Li W, Tseng Y, Zhang J, Liu J. Developing slow-off dickkopf-1 aptamers for early-diagnosis of hepatocellular carcinoma. Talanta 2018; 194:422-429. [PMID: 30609553 DOI: 10.1016/j.talanta.2018.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/25/2018] [Accepted: 10/03/2018] [Indexed: 01/10/2023]
Abstract
In this work, we obtained fast-off and slow-off aptamer recognizing dickkopf-1(DKK1), a promising biomarker for detection of early-stage hepatocellular carcinoma (HCC), with high affinity in a single SELEX procedure. The two types of aptamer possessed distinct characteristics confirmed via different validation methods. In comparison to fast-off aptamers, slow-off aptamers were proven more suitable for aptamer-based ELISA assay. Using slow dissociation SELEX, slow-off aptamers were selectively retained. Meanwhile, a mutant (34del) of slow-off D10 was estimated with picomolar affinity (371.9 pM). The mutant was further truncated into 39nt before pairing with an antibody in the aptamer-based ELISA. The aptamer-target-antibody construction showed similar performance as conventional ELISA with a detection limit of 62.5 pg/ml. Quantification in 60 sera samples with the construction was also correlated with conventional ELISA. The results demonstrated novel DKK1 aptamer could replace capture antibody for potential early HCC diagnosis.
Collapse
Affiliation(s)
- Yin Zhou
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Wenshuai Li
- Department of Digestive Diseases of Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200040, China
| | - Yujen Tseng
- Department of Digestive Diseases of Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200040, China
| | - Jun Zhang
- Department of Digestive Diseases of Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200040, China.
| | - Jie Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Digestive Diseases of Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200040, China.
| |
Collapse
|
27
|
Shin WR, Sekhon SS, Rhee SK, Ko JH, Ahn JY, Min J, Kim YH. Aptamer-Based Paper Strip Sensor for Detecting Vibrio fischeri. ACS COMBINATORIAL SCIENCE 2018; 20:261-268. [PMID: 29553704 DOI: 10.1021/acscombsci.7b00190] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aptamer-based paper strip sensor for detecting Vibrio fischeri was developed. Our method was based on the aptamer sandwich assay between whole live cells, V. fischeri and DNA aptamer probes. Following 9 rounds of Cell-SELEX and one of the negative-SELEX, V. fischeri Cell Aptamer (VFCA)-02 and -03 were isolated, with the former showing approximately 10-fold greater avidity (in the subnanomolar range) for the target cells when arrayed on a surface. The colorimetric response of a paper sensor based on VFCA-02 was linear in the range of 4 × 101 to 4 × 105 CFU/mL of target cell by using scanning reader. The linear regression correlation coefficient ( R2) was 0.9809. This system shows promise for use in aptamer-conjugated gold nanoparticle probes in paper strip format for in-field detection of marine bioindicating bacteria.
Collapse
Affiliation(s)
- Woo-Ri Shin
- School of Biological Sciences, Chungbuk National University 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea
| | - Simranjeet Singh Sekhon
- School of Biological Sciences, Chungbuk National University 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea
| | - Sung-Keun Rhee
- School of Biological Sciences, Chungbuk National University 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea
| | - Jung Ho Ko
- College of Veterinary Medicine, Western University of Health Sciences, 309 East Second Street, Pomona California 91766, United States
| | - Ji-Young Ahn
- School of Biological Sciences, Chungbuk National University 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea
| | - Jiho Min
- Department of Bioprocess Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin-Gu Jeonju, Jeonbuk 54896, South Korea
| | - Yang-Hoon Kim
- School of Biological Sciences, Chungbuk National University 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea
| |
Collapse
|
28
|
Ladju RB, Pascut D, Massi MN, Tiribelli C, Sukowati CH. Aptamer: A potential oligonucleotide nanomedicine in the diagnosis and treatment of hepatocellular carcinoma. Oncotarget 2018; 9:2951-2961. [PMID: 29416827 PMCID: PMC5788695 DOI: 10.18632/oncotarget.23359] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers with a high mortality rate. Late diagnosis and poor prognosis are still a major drawback since curative therapies such as liver resection and liver transplantation are effective only for an early stage HCC. Development of novel molecular targeting therapies against HCC may provide new options that will improve the efficiency of the diagnosis and the success of the therapy, thus ameliorating the life expectancy of the patients. The aptamer is an oligonucleotide nanomedicine that has high binding affinity and specificity to small and large target molecules in the intracellular and extracellular environment with agonist or antagonist function. Currently, several aptamers for diagnostic and therapeutic purposes are under development to recognize different molecules of HCC. In in vitro models, the aptamer has been shown to be able to reduce the growth of HCC cells and increase the sensitivity to conventional chemotherapies. In in vivo mouse models, aptamer could induce cell apoptosis with antitumor activity. Overall data had shown that aptamer has limited toxicity and might be safe in clinical application. This review summarizes recent information of aptamer as a potential oligonucleotide nanomedicine tool, in diagnostics, targeted therapy, and as drug delivery nano-vehicles.
Collapse
Affiliation(s)
- Rusdina Bte Ladju
- Fondazione Italiana Fegato, AREA Science Park Basovizza, Trieste, Italy
- Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Devis Pascut
- Fondazione Italiana Fegato, AREA Science Park Basovizza, Trieste, Italy
| | | | - Claudio Tiribelli
- Fondazione Italiana Fegato, AREA Science Park Basovizza, Trieste, Italy
| | | |
Collapse
|
29
|
Lee KH, Zeng H. Aptamer-Based ELISA Assay for Highly Specific and Sensitive Detection of Zika NS1 Protein. Anal Chem 2017; 89:12743-12748. [PMID: 29120623 DOI: 10.1021/acs.analchem.7b02862] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report here a few Zika NS1-binding ssDNA aptamers selected using the conventional SELEX protocol, and their application in an ELISA assay for sensitive diagnosis of Zika NS1 protein. Among the aptamers identified, aptamers 2 and 10 could recognize different binding epitopes of Zika NS1 protein. This complementary in binding site, when coupled with an extraordinarily high binding affinity by 2 (41-nt, KD = 45 pM) and high specificity by 10, was used successfully to construct an ELISA-based assay where 2 and 10 serve as the capture and detection agents, respectively, giving rise to a highly specific detection of Zika NS1 with a detection limit of 100 ng/mL in buffer. Further testing of a few in-house anti-Zika NS1 antibodies show that 2 could also pair with an anti-Zika NS1 antibody. Such aptamer-antibody pairing not only lowers the detection sensitivity by 3 orders of magnitude to 0.1 ng/mL in buffer but also enable highly sensitive detection of as low as 1 and 10 ng/mL of Zika NS1 to be carried out in 10% and 100% human serum, respectively. These results suggest that the selected aptamers would be useful for medical diagnosis of Zika virus infection in various aptamer-based diagnostic devices including ELISA assay.
Collapse
Affiliation(s)
- Kyung Hyun Lee
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos, Singapore 138669
| | - Huaqiang Zeng
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos, Singapore 138669
| |
Collapse
|
30
|
Sekhon SS, Um HJ, Shin WR, Lee SH, Min J, Ahn JY, Kim YH. Aptabody-aptatope interactions in aptablotting assays. NANOSCALE 2017; 9:7464-7475. [PMID: 28530298 DOI: 10.1039/c7nr01827d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We demonstrate an aptablotting assay method that involves direct and indirect aptabody recognition. Nanoscale single-stranded DNA aptamers against GST and DIG-tags are utilized as aptabodies (GST-2 and DIG-1, respectively), and the GST-2 aptabody binding site, or aptatope, as predicted by a MOE-docking simulation of the protein-aptamer complex, shows the interaction of the GST-2 aptabody at the catalytically active region. The aptabody-aptatope interaction was evaluated by an in vitro enzyme inhibitory analysis. The binding capacity of the GST-2 aptabody was assessed by dot-blot, EMSA and SDS-PAGE/electroblot analyses, and the results showed that the aptabodies interact with both the native mono-/dimeric form and the denatured GST form on a membrane. The use of aptabodies can overcome the obstacles of current immunoblot assays, and these molecules are easily assessable via ELISA systems. Moreover, the hybridization of aptabodies and antibodies (hybrid-aptablotting) may have considerable impacts on the design of bioassay platforms.
Collapse
Affiliation(s)
- Simranjeet Singh Sekhon
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea.
| | | | | | | | | | | | | |
Collapse
|
31
|
Song MS, Sekhon SS, Shin WR, Kim HC, Min J, Ahn JY, Kim YH. Detecting and Discriminating Shigella sonnei Using an Aptamer-Based Fluorescent Biosensor Platform. Molecules 2017; 22:molecules22050825. [PMID: 28513559 PMCID: PMC6154610 DOI: 10.3390/molecules22050825] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/11/2017] [Accepted: 05/14/2017] [Indexed: 11/16/2022] Open
Abstract
In this paper, a Whole-Bacteria SELEX (WB-SELEX) strategy was adopted to isolate specific aptamers against Shigella sonnei. Real-time PCR amplification and post-SELEX experiment revealed that the selected aptmers possessed a high binding affinity and specificity for S. sonnei. Of the 21 aptamers tested, the C(t) values of the SS-3 and SS-4 aptamers (Ct = 13.89 and Ct = 12.23, respectively) had the lowest value compared to other aptamer candidates. The SS-3 and SS-4 aptamers also displayed a binding affinity (KD) of 39.32 ± 5.02 nM and 15.89 ± 1.77 nM, respectively. An aptamer-based fluorescent biosensor assay was designed to detect and discriminate S. sonnei cells using a sandwich complex pair of SS-3 and SS-4. The detection of S. sonnei by the aptamer based fluorescent biosensor platform consisted of three elements: (1) 5’amine-SS-4 modification in a 96-well type microtiter plate surface (N-oxysuccinimide, NOS) as capture probes; (2) the incubation with S. sonnei and test microbes in functionalized 96 assay wells in parallel; (3) the readout of fluorescent activity using a Cy5-labeled SS-3 aptamer as the detector. Our platform showed a significant ability to detect and discriminate S. sonnei from other enteric species such as E. coli, Salmonella typhimurium and other Shigella species (S. flexneri, S. boydii). In this study, we demonstrated the feasibility of an aptamer sensor platform to detect S. sonnei in a variety of foods and pave the way for its use in diagnosing shigellosis through multiple, portable designs.
Collapse
Affiliation(s)
- Myeong-Sub Song
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, Korea.
| | - Simranjeet Singh Sekhon
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, Korea.
| | - Woo-Ri Shin
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, Korea.
| | - Hyung Cheol Kim
- Technology Transfer Center, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-Ro, Yuseong-Gu, Daejeon 34141, Korea.
| | - Jiho Min
- Department of Bioprocess Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin-Gu Jeonju, Jeonbuk 54896, Korea.
| | - Ji-Young Ahn
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, Korea.
| | - Yang-Hoon Kim
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, Korea.
| |
Collapse
|
32
|
Sekhon SS, Lee SH, Lee KA, Min J, Lee BT, Kim KW, Ahn JY, Kim YH. Defining the copper binding aptamotif and aptamer integrated recovery platform (AIRP). NANOSCALE 2017; 9:2883-2894. [PMID: 28177016 DOI: 10.1039/c6nr09408b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The potential copper binding sites in aptamers have been predicted on the basis of secondary structures and the binding affinity of aptamers with copper. Out of the 4 aptamers (Cu-A1 to Cu-A4) selected by SELEX and examined in the present study, the Cu-A2 aptamer shows the highest binding affinity to copper with the lowest KD value of 1.83 × 10-11 M. In order to confirm the binding of copper to the proposed region, the binding affinity was experimentally validated using mutation and deletion analysis. We have confirmed that the high G-C pairing patterns and short stem-interval distance play important roles in copper binding. Aptamer specificity was also verified against diverse heavy metals. We also demonstrate an Aptamer Integrated Recovery Platform (AIRP) to recover copper from acidic mine drainage. AIRP can be easily regenerated at least 20 times without significant deterioration of the retrieval performance. To the best of our knowledge, AIRP is the first demonstration of copper specific recovery using aptamers. This can be scaled up and would have diverse applications in metal contaminated water treatment, recovery and as a potential biosensor for environmental analysis, monitoring, and risk assessment.
Collapse
Affiliation(s)
- Simranjeet Singh Sekhon
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea.
| | - Sang-Hee Lee
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea.
| | - Kyeong-Ah Lee
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea.
| | - Jiho Min
- Department of Bioprocess Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin-Gu Jeonju 54896, South Korea
| | - Byung-Tae Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Sciences and Technology (GIST), 123 Cheomdan-gwagiro, 500-712, South Korea
| | - Kyoung-Woong Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Sciences and Technology (GIST), 123 Cheomdan-gwagiro, 500-712, South Korea
| | - Ji-Young Ahn
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea.
| | - Yang-Hoon Kim
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea.
| |
Collapse
|
33
|
Abstract
The design and application of sensors for monitoring biomolecules in clinical samples is a common goal of the sensing research community. Surface plasmon resonance (SPR) and other plasmonic techniques such as localized surface plasmon resonance (LSPR) and imaging SPR are reaching a maturity level sufficient for their application in monitoring biomolecules in clinical samples. In recent years, the first examples for monitoring antibodies, proteins, enzymes, drugs, small molecules, peptides, and nucleic acids in biofluids collected from patients afflicted with a series of medical conditions (Alzheimer's, hepatitis, diabetes, leukemia, and cancers such as prostate and breast cancers, among others) demonstrate the progress of SPR sensing in clinical chemistry. This Perspective reviews the current status of the field, showcasing a series of early successes in the application of SPR for clinical analysis and detailing a series of considerations regarding sensing schemes, exposing issues with analysis in biofluids, and comparing SPR with ELISA, while providing an outlook of the challenges currently associated with plasmonic materials, instrumentation, microfluidics, bioreceptor selection, selection of a clinical market, and validation of a clinical assay for applying SPR sensors to clinical samples. Research opportunities are proposed to further advance the field and transition SPR biosensors from research proof-of-concept stage to actual clinical applications.
Collapse
Affiliation(s)
- Jean-Francois Masson
- Département
de chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montreal, Quebec H3C 3J7, Canada
- Centre
for self-assembled chemical structures (CSACS), McGill University, 801
Sherbrooke Street West, Montreal, Quebec H3A 2K6, Canada
| |
Collapse
|
34
|
Sharma TK, Bruno JG, Dhiman A. ABCs of DNA aptamer and related assay development. Biotechnol Adv 2017; 35:275-301. [PMID: 28108354 DOI: 10.1016/j.biotechadv.2017.01.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/19/2016] [Accepted: 01/17/2017] [Indexed: 12/14/2022]
Abstract
This review is intended to guide the novice in aptamer research and development to understand virtually all of the aptamer development options and currently available assay modalities. Aptamer development topics range from discussions of basic and advanced versions of Systematic Evolution of Ligands by EXponential Enrichment (SELEX) and SELEX variations involving incorporation of exotic unnatural nucleotides to expand library diversity for even greater aptamer affinity and specificity to improved next generation methods of DNA sequencing, screening and tracking aptamer development throughout the SELEX process and characterization of lead aptamer candidates. Aptamer assay development topics include descriptions of various colorimetric and fluorescent assays in microplates or on membranes including homogeneous beacon and multiplexed Fluorescence Resonance Energy Transfer (FRET) assays. Finally, a discussion of the potential for marketing successful aptamer-based assays or test kits is included.
Collapse
Affiliation(s)
- Tarun Kumar Sharma
- Center for Biodesign and Diagnostics, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India; AptaBharat Innovation Private Limited, Translational Health Science and Technology Institute Incubator, Haryana 121001, India.
| | - John G Bruno
- Operational Technologies Corporation, 4100 NW Loop 410, Suite, 230, San Antonio, TX 78229, USA..
| | - Abhijeet Dhiman
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India.; Faculty of Pharmacy, Uttarakhand Technical University, Dehradun 248007, Uttarakhand, India
| |
Collapse
|
35
|
Nik Kamarudin NAA, Mohammed NA, Mustaffa KMF. Aptamer Technology: Adjunct Therapy for Malaria. Biomedicines 2017; 5:biomedicines5010001. [PMID: 28536344 PMCID: PMC5423489 DOI: 10.3390/biomedicines5010001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/08/2016] [Accepted: 12/16/2016] [Indexed: 02/07/2023] Open
Abstract
Malaria is a life-threatening parasitic infection occurring in the endemic areas, primarily in children under the age of five, pregnant women, and patients with human immunodeficiency virus and acquired immunodeficiency syndrome (HIV)/(AIDS) as well as non-immune individuals. The cytoadherence of infected erythrocytes (IEs) to the host endothelial surface receptor is a known factor that contributes to the increased prevalence of severe malaria cases due to the accumulation of IEs, mainly in the brain and other vital organs. Therefore, further study is needed to discover a new potential anti-adhesive drug to treat severe malaria thus reducing its mortality rate. In this review, we discuss how the aptamer technology could be applied in the development of a new adjunct therapy for current malaria treatment.
Collapse
Affiliation(s)
- Nik Abdul Aziz Nik Kamarudin
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, Kubang Kerian, 16150 Kelantan, Malaysia.
| | - Nurul Adila Mohammed
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, Kubang Kerian, 16150 Kelantan, Malaysia.
| | - Khairul Mohd Fadzli Mustaffa
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, Kubang Kerian, 16150 Kelantan, Malaysia.
| |
Collapse
|
36
|
Yoon SY, Gee G, Hong KJ, Seo SH. Application of aptamers for assessment of vaccine efficacy. Clin Exp Vaccine Res 2017; 6:160-163. [PMID: 28775981 PMCID: PMC5540965 DOI: 10.7774/cevr.2017.6.2.160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 11/23/2022] Open
Abstract
Assessing antigen concentration of vaccine is essential step in determining the quality of the vaccine prior to vaccination. After vaccination, vaccine-induced antibody titer should also be measured to verify the vaccine efficacy. Since conventional assay used for vaccine concentrations and induced Ab-titers is antibody-based enzyme-linked immunosorbent assay, the assay inevitably brings drawbacks of antibody such as high cost for production, limited stability, and inconsistent quality between lot-to-lots. Aptamer is single-stranded nucleic acid having three-dimensional structure and has features overcoming limitations of antibody. This review will briefly introduce the features of aptamer and potential of aptamer-based system for evaluation of vaccine efficacy.
Collapse
Affiliation(s)
| | - Grace Gee
- INTERPARK Bio-Convergence Center, Seoul, Korea
| | | | | |
Collapse
|
37
|
Cordeiro M, Ferreira Carlos F, Pedrosa P, Lopez A, Baptista PV. Gold Nanoparticles for Diagnostics: Advances towards Points of Care. Diagnostics (Basel) 2016; 6:diagnostics6040043. [PMID: 27879660 PMCID: PMC5192518 DOI: 10.3390/diagnostics6040043] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/13/2016] [Accepted: 11/18/2016] [Indexed: 12/24/2022] Open
Abstract
The remarkable physicochemical properties of gold nanoparticles (AuNPs) have prompted developments in the exploration of biomolecular interactions with AuNP-containing systems, in particular for biomedical applications in diagnostics. These systems show great promise in improving sensitivity, ease of operation and portability. Despite this endeavor, most platforms have yet to reach maturity and make their way into clinics or points of care (POC). Here, we present an overview of emerging and available molecular diagnostics using AuNPs for biomedical sensing that are currently being translated to the clinical setting.
Collapse
Affiliation(s)
- Mílton Cordeiro
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal.
- Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal.
| | - Fábio Ferreira Carlos
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal.
| | - Pedro Pedrosa
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal.
| | - António Lopez
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal.
| | - Pedro Viana Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal.
| |
Collapse
|
38
|
Csordas AT, Jørgensen A, Wang J, Gruber E, Gong Q, Bagley ER, Nakamoto MA, Eisenstein M, Soh HT. High-Throughput Discovery of Aptamers for Sandwich Assays. Anal Chem 2016; 88:10842-10847. [PMID: 27813404 DOI: 10.1021/acs.analchem.6b03450] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sandwich assays are among the most powerful tools in molecular detection. These assays use "pairs" of affinity reagents so that the detection signal is generated only when both reagents bind simultaneously to different sites on the target molecule, enabling highly sensitive and specific measurements in complex samples. Thus, the capability to efficiently screen affinity reagent pairs at a high throughput is critical. In this work, we describe an experimental strategy for screening "aptamer pairs" at a throughput of 106 aptamer pairs per hour-which is many orders of magnitude higher than the current state of the art. The key step in our process is the conversion of solution-phase aptamers into "aptamer particles" such that we can directly measure the simultaneous binding of multiple aptamers to a target protein based on fluorescence signals and sort individual particles harboring aptamer pairs via the fluorescence-activated cell-sorter instrument. As proof of principle, we successfully isolated a high-quality DNA aptamer pair for plasminogen activator inhibitor 1 (PAI-1). Within only two rounds of screening, we discovered DNA aptamer pairs with low-nanomolar sensitivity in dilute serum and excellent specificity with minimal off-target binding even to closely related proteins such as PAI-2.
Collapse
Affiliation(s)
- Andrew T Csordas
- Institute for Collaborative Biotechnologies, University of California at Santa Barbara , Santa Barbara, California 93106, United States
| | - Anna Jørgensen
- Institute for Collaborative Biotechnologies, University of California at Santa Barbara , Santa Barbara, California 93106, United States
| | - Jinpeng Wang
- Institute for Collaborative Biotechnologies, University of California at Santa Barbara , Santa Barbara, California 93106, United States
| | - Emily Gruber
- Institute for Collaborative Biotechnologies, University of California at Santa Barbara , Santa Barbara, California 93106, United States
| | - Qiang Gong
- Institute for Collaborative Biotechnologies, University of California at Santa Barbara , Santa Barbara, California 93106, United States
| | - Elizabeth R Bagley
- Institute for Collaborative Biotechnologies, University of California at Santa Barbara , Santa Barbara, California 93106, United States
| | - Margaret A Nakamoto
- Department of Microbiology and Immunology, Stanford University School of Medicine , Stanford, California 94305, United States
| | - Michael Eisenstein
- Institute for Collaborative Biotechnologies, University of California at Santa Barbara , Santa Barbara, California 93106, United States
| | - H Tom Soh
- Institute for Collaborative Biotechnologies, University of California at Santa Barbara , Santa Barbara, California 93106, United States
| |
Collapse
|
39
|
Wang Z, Qu L, Deng B, Sun X, Wu S, Liao J, Fan J, Peng Z. STYK1 promotes epithelial-mesenchymal transition and tumor metastasis in human hepatocellular carcinoma through MEK/ERK and PI3K/AKT signaling. Sci Rep 2016; 6:33205. [PMID: 27628214 PMCID: PMC5024114 DOI: 10.1038/srep33205] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 08/16/2016] [Indexed: 12/13/2022] Open
Abstract
Serine/threonine/tyrosine kinase 1 (STYK1) is known to be involved in tumor progression. However, its molecular role and mechanism in hepatocellular carcinoma (HCC) remains unknown. We evaluated the effect of STYK1 expression in HCC tissues and investigated the underlying mechanisms associated with progression. HCC tissues expressed greater levels of STYK1 than paired non-tumor tissues. Patients with HCC expressing low levels of STYK1 showed both, greater disease-free (p < 0.0001) and overall (p = 0.0004) survival than those expressing high levels of STYK1. Decreased expression of STYK1 was significantly associated with decreased cell proliferation, reduced migratory capability, and reduced invasive capability. Overexpression of STYK1 was significantly associated with increased cell proliferation, migratory capability, and invasive capability in vitro, as well as increased volume of tumor, weight of tumor, and number of pulmonary metastases in vivo. Furthermore, STYK1's mechanism of promoting cancer cell mobility and epithelial-mesenchymal transition (EMT) was found to be via the MEK/ERK and PI3K/AKT pathways, resulting in increased expression of mesenchymal protein markers: snail, fibronectin, and vimentin, and decreased E-cadherin expression. Our results suggest that STYK1 acts as an oncogene by inducing cell invasion and EMT via the MEK/ERK and PI3K/AKT signaling pathways and it therefore may be a potential therapeutic target in HCC.
Collapse
Affiliation(s)
- Zhaowen Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| | - Lei Qu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| | - Biao Deng
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| | - Xing Sun
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| | - Shaohan Wu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| | - Jianhua Liao
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| | - Junwei Fan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| | - Zhihai Peng
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| |
Collapse
|
40
|
Suk K. Lipocalin-2 as a therapeutic target for brain injury: An astrocentric perspective. Prog Neurobiol 2016; 144:158-72. [DOI: 10.1016/j.pneurobio.2016.08.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 06/18/2016] [Accepted: 08/03/2016] [Indexed: 12/31/2022]
|
41
|
Aptamer-based 'point-of-care testing'. Biotechnol Adv 2016; 34:198-208. [PMID: 26876017 DOI: 10.1016/j.biotechadv.2016.02.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 02/06/2016] [Accepted: 02/07/2016] [Indexed: 12/13/2022]
Abstract
Aptamers are single-stranded oligonucleotides that can be artificially generated by a method called Systematic evolution of ligands by exponential enrichment (SELEX). The generated aptamers have been assessed for high-performance sensing applications due to their appealing characteristics. With either aptamers alone or complementing with antibodies, several high sensitive and portable sensors have been demonstrated for use in 'point-of-care testing'. Due to their high suitability and flexibility, aptamers are conjugated with nanostructures and utilized in field applications. Moreover, aptamers are more amenable to chemical modifications, making them capable of utilization with most developed sensors. In this overview, we discuss novel, portable, and aptamer-based sensing strategies that are suitable for 'point-of-care testing'.
Collapse
|
42
|
Surface plasmon resonance imaging (SPRi) for analysis of DNA aptamer:β-conglutin interactions. Methods 2015; 97:20-6. [PMID: 26515644 DOI: 10.1016/j.ymeth.2015.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/14/2015] [Accepted: 10/20/2015] [Indexed: 12/22/2022] Open
Abstract
Surface plasmon resonance imaging (SPRi) is a label-free detection method that offers a suitable and reliable platform for the real time monitoring of biomolecular interactions. In the work reported here, SPRi was used to evaluate the affinity and specificity of three different aptamers selected against the Lup an 1 anaphylactic allergen β-conglutin (β-conglutin binding aptamers I and II (β-CBA I and β-CBA II)), as well as an 11-mer truncated version of β-CBA I. Thiol modified aptamers were immobilised on a gold substrate through a self-assembling process and the use of different blocking strategies to prevent non-specific binding were evaluated. Dissociation constants of 20, 13 and 1 nM were determined for β-CBA I, β-CBA II and the 11-mer truncated aptamer, respectively. The three aptamers were then studied in various different sandwich formats and the β-CBA I/11-mer and β-CBA II were observed to bind to different aptatopes on the target protein. Each of the aptamers were then used either as surface immobilised aptamer, or as reporter aptamer, and added with the protein target β-conglutin in either a sequential of simultaneous manner, and the changes in SPR signal monitored. The preferred approach for formation of a sandwich aptacomplex was with immobilised β-CBA II, followed by addition of pre-incubated β-conglutin and 11-mer, whilst addition of the 11-mer following addition of the β-conglutin, resulted in displacement of the bound target. The ability to provide parallel qualitative and quantitative detection establishes SPRi as a powerful tool for the study of immobilised aptamer-target interactions.
Collapse
|