1
|
Duan S, Ai H, Liu S, Zhou A, Cao Y, Huang X. Functional nutritional rice: current progresses and future prospects. FRONTIERS IN PLANT SCIENCE 2024; 15:1488210. [PMID: 39628528 PMCID: PMC11611556 DOI: 10.3389/fpls.2024.1488210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/04/2024] [Indexed: 12/06/2024]
Abstract
More than half of the world's population relies on rice as their staple food for three meals a day. From a dietary perspective, rice can be considered the most important grain in the world. With the continuous improvement of people's living standards, the demand for food has gradually shifted from being full and eating well to being nutritious and healthy. Developing functional nutritional rice has become an important research direction and strategic initiative for developing a major food concept. In this paper, we review the current progress in the breeding of functional nutritional rice and mineral-biofortified rice. This review focuses on the following aspects: (i) the concept, rice basic structure, nutritional components, and categorization of functional nutritional rice; (ii) genes that have been applied and identified so far, including nutritional functional rice genes, mineral bioenhancement-related genes, and their regulatory mechanisms; (iii) based on the history and technical mainline of rice breeding, research progress in nutritional functional rice using conventional breeding, a combination of conventional breeding and marker-assisted breeding, mutagenesis breeding, genetic engineering technology, and gene editing technology. Based on the current research and industrialization issues, we highlight an outlook of the problems and future developmental directions in nutritional functional rice research.
Collapse
Affiliation(s)
- Sumei Duan
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou, China
| | - Hao Ai
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou, China
| | - Shengqin Liu
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou, China
| | - Aifeng Zhou
- Anhui Xin Fu Xiang Tian Ecological Agriculture Co. Ltd., Ma’anshan, China
| | - Yuhong Cao
- Ma’anshan Agriculture and Rural Bureau, Ma’anshan, China
| | - Xianzhong Huang
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou, China
| |
Collapse
|
2
|
Haxhari F, Savorani F, Rondanelli M, Cantaluppi E, Campanini L, Magnani E, Simonelli C, Gavoci G, Chiadò A, Sozzi M, Cavallini N, Chiodoni A, Gasparri C, Barrile GC, Cavioni A, Mansueto F, Mazzola G, Moroni A, Patelli Z, Pirola M, Tartara A, Guido D, Perna S, Magnaghi R. Endosperm structure and Glycemic Index of Japonica Italian rice varieties. FRONTIERS IN PLANT SCIENCE 2024; 14:1303771. [PMID: 38250450 PMCID: PMC10796725 DOI: 10.3389/fpls.2023.1303771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/08/2023] [Indexed: 01/23/2024]
Abstract
Introduction Given that rice serves as a crucial staple food for a significant portion of the global population and with the increasing number of individuals being diagnosed with diabetes, a primary objective in genetic improvement is to identify and cultivate low Glycemic Index (GI) varieties. This must be done while ensuring the preservation of grain quality. Methods 25 Italian rice genotypes were characterized calculating their GI "in vivo" and, together with other 29 Italian and non-Italian genotypes they were studied to evaluate the grain inner structure through Field Emission Scanning Electron Microscopy (FESEM) technique. Using an ad-hoc developed algorithm, morphological features were extracted from the FESEM images, to be then inspected by means of multivariate data analysis methods. Results and Discussion Large variability was observed in GI values (49 to 92 with respect to glucose), as well as in endosperm morphological features. According to the percentage of porosity is possible to distinguish approximately among rice varieties having a crystalline grain (< 1.7%), those intended for the preparation of risotto (> 5%), and a third group having intermediate characteristics. Waxy rice varieties were not united by a certain porosity level, but they shared a low starch granules eccentricity. With reference to morphological features, rice varieties with low GI (<55) seem to be characterized by large starch granules and low porosity values. Our data testify the wide variability of Italian rice cultivation giving interesting information for future breeding programs, finding that the structure of the endosperm can be regarded as a specific characteristic of each variety.
Collapse
Affiliation(s)
- Filip Haxhari
- Centro Ricerche sul Riso, Ente Nazionale Risi, Castello D’Agogna, Italy
| | - Francesco Savorani
- Department of Applied Science and Technology (DISAT), Polytechnic University of Turin, Torino, Italy
| | - Mariangela Rondanelli
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Enrico Cantaluppi
- Centro Ricerche sul Riso, Ente Nazionale Risi, Castello D’Agogna, Italy
| | - Luigi Campanini
- Centro Ricerche sul Riso, Ente Nazionale Risi, Castello D’Agogna, Italy
| | - Edoardo Magnani
- Centro Ricerche sul Riso, Ente Nazionale Risi, Castello D’Agogna, Italy
| | - Cinzia Simonelli
- Centro Ricerche sul Riso, Ente Nazionale Risi, Castello D’Agogna, Italy
| | - Gentian Gavoci
- Department of Applied Science and Technology (DISAT), Polytechnic University of Turin, Torino, Italy
| | - Alessandro Chiadò
- Department of Applied Science and Technology (DISAT), Polytechnic University of Turin, Torino, Italy
| | - Mattia Sozzi
- Department of Applied Science and Technology (DISAT), Polytechnic University of Turin, Torino, Italy
| | - Nicola Cavallini
- Department of Applied Science and Technology (DISAT), Polytechnic University of Turin, Torino, Italy
| | - Angelica Chiodoni
- Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia, Torino, Italy
| | - Clara Gasparri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ‘‘Istituto Santa Margherita’’, University of Pavia, Pavia, Italy
| | - Gaetan Claude Barrile
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ‘‘Istituto Santa Margherita’’, University of Pavia, Pavia, Italy
| | - Alessandro Cavioni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ‘‘Istituto Santa Margherita’’, University of Pavia, Pavia, Italy
| | - Francesca Mansueto
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ‘‘Istituto Santa Margherita’’, University of Pavia, Pavia, Italy
| | - Giuseppe Mazzola
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ‘‘Istituto Santa Margherita’’, University of Pavia, Pavia, Italy
| | - Alessia Moroni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ‘‘Istituto Santa Margherita’’, University of Pavia, Pavia, Italy
| | - Zaira Patelli
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ‘‘Istituto Santa Margherita’’, University of Pavia, Pavia, Italy
| | - Martina Pirola
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ‘‘Istituto Santa Margherita’’, University of Pavia, Pavia, Italy
| | - Alice Tartara
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ‘‘Istituto Santa Margherita’’, University of Pavia, Pavia, Italy
| | - Davide Guido
- Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Simone Perna
- Department of Biology, College of Science, University of Bahrain, Zallaq, Bahrain
| | | |
Collapse
|
3
|
Thummala SR, Guttikonda H, Tiwari S, Ramanan R, Baisakh N, Neelamraju S, Mangrauthia SK. Whole-Genome Sequencing of KMR3 and Oryza rufipogon-Derived Introgression Line IL50-13 (Chinsurah Nona 2/Gosaba 6) Identifies Candidate Genes for High Yield and Salinity Tolerance in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:810373. [PMID: 35712577 PMCID: PMC9197125 DOI: 10.3389/fpls.2022.810373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
The genomes of an elite rice restorer line KMR3 (salinity-sensitive) and its salinity-tolerant introgression line IL50-13, a popular variety of coastal West Bengal, India, were sequenced. High-quality paired-end reads were obtained for KMR3 (147.6 million) and IL50-13 (131.4 million) with a sequencing coverage of 30X-39X. Scaffolds generated from the pre-assembled contigs of each sequenced genome were mapped separately onto the reference genome of Oryza sativa ssp. japonica cultivar Nipponbare to identify genomic variants in terms of SNPs and InDels. The SNPs and InDels identified for KMR3 and IL50-13 were then compared with each other to identify polymorphic SNPs and InDels unique and common to both the genomes. Functional enrichment analysis of the protein-coding genes with unique InDels identified GO terms involved in protein modification, ubiquitination, deubiquitination, peroxidase activity, and antioxidant activity in IL50-13. Linoleic acid metabolism, circadian rhythm, and alpha-linolenic acid metabolism pathways were enriched in IL50-13. These GO terms and pathways are involved in reducing oxidative damage, thus suggesting their role in stress responses. Sequence analysis of QTL markers or genes known to be associated with grain yield and salinity tolerance showed polymorphism in 20 genes, out of which nine were not previously reported. These candidate genes encoded Nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4 (NB-ARC) domain-containing protein, cyclase, receptor-like kinase, topoisomerase II-associated protein PAT1 domain-containing protein, ion channel regulatory protein, UNC-93 domain-containing protein, subunit A of the heteromeric ATP-citrate lyase, and three conserved hypothetical genes. Polymorphism was observed in the coding, intron, and untranslated regions of the genes on chromosomes 1, 2, 4, 7, 11, and 12. Genes showing polymorphism between the two genomes were considered as sequence-based new candidates derived from Oryza rufipogon for conferring high yield and salinity tolerance in IL50-13 for further functional studies.
Collapse
Affiliation(s)
| | | | - Shrish Tiwari
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | | | - Niranjan Baisakh
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | | | | |
Collapse
|
4
|
Peringottillam M, Kunhiraman Vasumathy S, Selvakumar HKK, Alagu M. Genetic diversity and population structure of rice (Oryza sativa L.) landraces from Kerala, India analyzed through genotyping-by-sequencing. Mol Genet Genomics 2022; 297:169-182. [PMID: 35039933 DOI: 10.1007/s00438-021-01844-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/28/2021] [Indexed: 11/24/2022]
Abstract
Researchers stand at the vanguard of advancement and application of next-generation sequencing technology for developing dominant strategies for the sustainable management of genetically diverse crops. We attempt to fill the existing research lacuna in the molecular characterization of potent rice landraces in Kerala. Genotyping-by-sequencing (GBS) was performed on 96 Kerala rice accessions to identify single-nucleotide polymorphisms (SNPs), to examine the genetic diversity, population structure, and to delineate linkage disequilibrium (LD) pattern. GBS identified 5856 high-quality SNPs. The structure analysis indicated three subpopulations with the highest probability for population clustering with significant genetic differentiation, confirmed by principal component analysis. The genome-wide LD decay distance was 772 kb, at which the r2 dropped to half its maximum value. The analysis of genetic properties of the identified SNP panel with an average polymorphism information content (PIC) value of 0.22 and a minor allele frequency (MAF) > 0.1 unveiled their efficacy in genome-wide association studies (GWAS). High FST (0.266) and low Nm (0.692) portray a strong genetic differentiation among the rice landraces, complementing the genetic structuring observed in the studied population. Slow LD decay in the rice landraces reflects their self-pollinating behavior and the indirect selection of desired traits by domestication. Moreover, the high LD entails only a minimum number of SNP markers for detecting marker-trait association. The diverse germplasm utilized in this study can be further utilized to disclose genetic variants associated with phenotypic traits and define signatures of selection via GWAS and selective sweep, respectively.
Collapse
Affiliation(s)
- Maya Peringottillam
- Department of Genomic Science, Central University of Kerala, Tejaswini Hills, Periye (PO), Kasaragod, Kerala, 671316, India
| | - Smitha Kunhiraman Vasumathy
- Department of Genomic Science, Central University of Kerala, Tejaswini Hills, Periye (PO), Kasaragod, Kerala, 671316, India
| | - Hari Krishna Kumar Selvakumar
- Department of Genomic Science, Central University of Kerala, Tejaswini Hills, Periye (PO), Kasaragod, Kerala, 671316, India
| | - Manickavelu Alagu
- Department of Genomic Science, Central University of Kerala, Tejaswini Hills, Periye (PO), Kasaragod, Kerala, 671316, India.
| |
Collapse
|
5
|
Shanmugam S, Mathiyazhagan J, Parthasarathy V, Jeevan R, Gayathri R, Karthikeyan P, Bakshi P, Malleshi N, Anjana R, Unnikrishnan R, Krishnaswamy K, Jamdar S, Mohan V, Vasudevan S. Effect of gamma irradiation on shelf life, nutritional, and glycemic properties of three indian brown rice varieties. JOURNAL OF DIABETOLOGY 2022. [DOI: 10.4103/jod.jod_83_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
6
|
Kandpal M, Vishwakarma C, Krishnan K, Chinnusamy V, Pareek A, Sharma MK, Sharma R. Gene Expression Dynamics in Rice Peduncles at the Heading Stage. Front Genet 2020; 11:584678. [PMID: 33343630 PMCID: PMC7744745 DOI: 10.3389/fgene.2020.584678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022] Open
Abstract
Improving grain yield in the staple food crop rice has been long sought goal of plant biotechnology. One of the traits with significant impact on rice breeding programs is peduncle elongation at the time of heading failing which leads to significant reduction in grain yield due to incomplete panicle exsertion. To decipher transcriptional dynamics and molecular players underlying peduncle elongation, we performed RNA sequencing analysis of elongating and non-elongating peduncles in two Indian cultivars, Swarna and Pokkali, at the time of heading. Along with genes associated with cell division and cell wall biosynthesis, we observed significant enrichment of genes associated with auxins, gibberellins, and brassinosteroid biosynthesis/signaling in the elongating peduncles before heading in both the genotypes. Similarly, genes associated with carbohydrate metabolism and mobilization, abiotic stress response along with cytokinin, abscisic acid, jasmonic acid, and ethylene biosynthesis/signaling were enriched in non-elongating peduncles post heading. Significant enrichment of genes belonging to key transcription factor families highlights their specialized roles in peduncle elongation and grain filling before and after heading, respectively. A comparison with anther/pollen development-related genes provided 76 candidates with overlapping roles in anther/pollen development and peduncle elongation. Some of these are important for carbohydrate remobilization to the developing grains. These can be engineered to combat with incomplete panicle exsertion in male sterile lines and manipulate carbohydrate dynamics in grasses. Overall, this study provides baseline information about potential target genes for engineering peduncle elongation with implications on plant height, biomass composition and grain yields in rice.
Collapse
Affiliation(s)
- Manu Kandpal
- Grass Genetics and Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Chandrapal Vishwakarma
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Kushagra Krishnan
- Grass Genetics and Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Ashwani Pareek
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Manoj K. Sharma
- Grass Genetics and Informatics Group, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rita Sharma
- Grass Genetics and Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
7
|
Guha T, Barman S, Mukherjee A, Kundu R. Nano-scale zero valent iron modulates Fe/Cd transporters and immobilizes soil Cd for production of Cd free rice. CHEMOSPHERE 2020; 260:127533. [PMID: 32679374 DOI: 10.1016/j.chemosphere.2020.127533] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/07/2020] [Accepted: 06/24/2020] [Indexed: 05/27/2023]
Abstract
In recent decades, nanoscale zero valent iron (nZVI) has been found to be a promising approach for heavy metal remediation. This study is the first report highlighting the role of nZVI to ameliorate Cadmium (Cd) stress in rice along with its effects in expressions of transporter genes, agronomic parameters and grain nutrient status. Initially, 3 concentration of Cd (10, 50, 250 μM) and nZVI (50, 100, 200 mg L-1) were selected. PCA analysis based on growth parameters, photosynthetic pigment contents and lipid peroxidation rate confirmed that 100 mg L-1 nZVI was most suitable for remediation of 10 μM Cd. It was evident that, nZVI can alleviate Cd-induced toxic effects by enhancing antioxidant defense mechanisms and other physiological processes in plants. nZVI treated rice seedlings also showed upregulation of phytochelatins which aided in Cd chelation within vacuoles. Study of root morphology with scanning electron microscopy and ROS imaging with confocal microscopy confirmed that nZVI could alleviate oxidative stress due to Cd uptake. In nZVI treated rice seedlings, gene expressions of iron (Fe) transporters (like, IRT1,IRT2,YSL2,YSL15) which are responsible for both Fe and Cd uptake were significantly down-regulated whereas, OsVIT1 and OsCAX4 genes were over expressed which lead to sequestration of Cd in vacuoles. Cd localization assay with leadmium proved that Cd translocation was reduced with nZVI treatment. To further validate our findings a pot experiment was carried out where it was found that nZVI could immobilize Cd in soil prevented accumulation of Cd in rice grains in addition to improving yield.
Collapse
Affiliation(s)
- Titir Guha
- Centre of Advanced Study, Department of Botany, Calcutta University, 35, Ballygange Circular Road, Kolkata, 19, India
| | - Sandip Barman
- Centre of Advanced Study, Department of Botany, Calcutta University, 35, Ballygange Circular Road, Kolkata, 19, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - Rita Kundu
- Centre of Advanced Study, Department of Botany, Calcutta University, 35, Ballygange Circular Road, Kolkata, 19, India.
| |
Collapse
|
8
|
Jukanti AK, Pautong PA, Liu Q, Sreenivasulu N. Low glycemic index rice—a desired trait in starchy staples. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Vasumathy SK, Peringottillam M, Sundaram KT, Kumar SHK, Alagu M. Genome- wide structural and functional variant discovery of rice landraces using genotyping by sequencing. Mol Biol Rep 2020; 47:7391-7402. [PMID: 32886328 DOI: 10.1007/s11033-020-05794-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022]
Abstract
Rice landraces are vital genetic resources for agronomic and quality traits but the undeniable collection of Kerala landraces remains poorly delineated. To effectively conserve, manage, and use these resources, understanding the genomic structure of germplasm is essential. Genotyping by sequencing (GBS) enables identification of an immense number of single nucleotide polymorphism (SNP) and insertion deletion (InDel) from 96 rice germplasm. In the present study, a total of 16.9 × 107 reads were generated, and among that 16.3 × 107 reads were mapped to the indica reference genome. Exploring GBS data unfolded a wide genomic variations including 82,59,639 SNPs and 1,07,140 Indels. Both neighbor-joining tree and principal coordinate analysis with InDel markers revealed the selected germplasm in this study as highly diverse in structure. We assembled unmapped reads which were further employed for gene ontology analysis. These unmapped sequences that are generally expelled from subsequent studies of GBS data analysis may exist as an unexplored resort for several novel significant biological findings. The discovery of SNPs from the haplotyping results of GS3 and GIF1 genes provided insight into marker- assisted selection based on grain size and yield and can be utilized for rice yield improvement. To our knowledge, this is the first report on structural variation analysis using the GBS platform in rice landraces collected from Kerala. Genomic information from this study endows with valuable resources for perceptive rice landrace structure and can also facilitate sequencing-based molecular breeding.
Collapse
Affiliation(s)
| | - Maya Peringottillam
- Department of Genomic Science, Central University of Kerala, Kasaragod, Kerala, 671316, India
| | - Krishna T Sundaram
- South Asia hub, ICRISAT Campus, International Rice Research Institute, Secundarabad, Telangana, India
| | - S Hari Krishna Kumar
- Department of Genomic Science, Central University of Kerala, Kasaragod, Kerala, 671316, India
| | - Manickavelu Alagu
- Department of Genomic Science, Central University of Kerala, Kasaragod, Kerala, 671316, India.
| |
Collapse
|
10
|
Kumar A, Daware A, Kumar A, Kumar V, Gopala Krishnan S, Mondal S, Patra BC, Singh AK, Tyagi AK, Parida SK, Thakur JK. Genome-wide analysis of polymorphisms identified domestication-associated long low-diversity region carrying important rice grain size/weight quantitative trait loci. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1525-1547. [PMID: 32432802 DOI: 10.1111/tpj.14845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 05/01/2020] [Accepted: 05/12/2020] [Indexed: 05/02/2023]
Abstract
Rice grain size and weight are major determinants of grain quality and yield and so have been under rigorous selection since domestication. However, the genetic basis for contrasting grain size/weight trait among Indian germplasms and their association with domestication-driven evolution is not well understood. In this study, two long (LGG) and two short grain (SGG) genotypes were resequenced. LGG (LGR and PB 1121) differentiated from SGG (Sonasal and Bindli) by 504 439 single nucleotide polymorphisms (SNPs) and 78 166 insertion-and-deletion polymorphisms. The LRK gene cluster was different and a truncation mutation in the LRK8 kinase domain was associated with LGG. Phylogeny with 3000 diverse rice accessions revealed that the four sequenced genotypes belonged to the japonica group and were at the edge of the clades indicating them to be the potential source of genetic diversity available in Indian rice germplasm. Six SNPs were significantly associated with grain size/weight and the top four of these could be validated in mapping a population, suggesting this study as a valuable resource for high-throughput genotyping. A contiguous long low-diversity region (LDR) of approximately 6 Mb carrying a major grain weight quantitative trait loci (harbouring OsTOR gene) was identified on Chromosome 5. This LDR was identified as an evolutionary important site with significant positive selection and multiple selection sweeps, and showed association with many domestication-related traits, including grain size/weight. The aus population retained more allelic variations in the LDR than the japonica and indica populations, suggesting it to be one of the divergence loci. All the data and analyses can be accessed from the RiceSzWtBase database.
Collapse
Affiliation(s)
- Angad Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Anurag Daware
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Arvind Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Vinay Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - S Gopala Krishnan
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India
| | - Subhasish Mondal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Bhaskar C Patra
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, 753006, India
| | - Ashok K Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India
| | - Akhilesh K Tyagi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Swarup K Parida
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jitendra K Thakur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
11
|
In Silico Identification of QTL-Based Polymorphic Genes as Salt-Responsive Potential Candidates through Mapping with Two Reference Genomes in Rice. PLANTS 2020; 9:plants9020233. [PMID: 32054112 PMCID: PMC7076550 DOI: 10.3390/plants9020233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 11/16/2022]
Abstract
Recent advances in next generation sequencing have created opportunities to directly identify genetic loci and candidate genes for abiotic stress responses in plants. With the objective of identifying candidate genes within the previously identified QTL-hotspots, the whole genomes of two divergent cultivars for salt responses, namely At 354 and Bg 352, were re-sequenced using Illumina Hiseq 2500 100PE platform and mapped to Nipponbare and R498 genomes. The sequencing results revealed approximately 2.4 million SNPs and 0.2 million InDels with reference to Nipponbare while 1.3 million and 0.07 million with reference to R498 in two parents. In total, 32,914 genes were reported across all rice chromosomes of this study. Gene mining within QTL hotspots revealed 1236 genes, out of which 106 genes were related to abiotic stress. In addition, 27 abiotic stress-related genes were identified in non-QTL regions. Altogether, 32 genes were identified as potential genes containing polymorphic non-synonymous SNPs or InDels between two parents. Out of 10 genes detected with InDels, tolerant haplotypes of Os01g0581400, Os10g0107000, Os11g0655900, Os12g0622500, and Os12g0624200 were found in the known salinity tolerant donor varieties. Our findings on different haplotypes would be useful in developing resilient rice varieties for abiotic stress by haplotype-based breeding studies.
Collapse
|
12
|
Discovery of Functional SNPs via Genome-Wide Exploration of Malaysian Pigmented Rice Varieties. Int J Genomics 2019; 2019:4168045. [PMID: 31687375 PMCID: PMC6811786 DOI: 10.1155/2019/4168045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/01/2019] [Accepted: 08/19/2019] [Indexed: 01/30/2023] Open
Abstract
Recently, rice breeding program has shown increased interests on the pigmented rice varieties due to their benefits to human health. However, the genetic variation of pigmented rice varieties is still scarce and remains unexplored. Hence, we performed genome-wide SNP analysis from the genome resequencing of four Malaysian pigmented rice varieties, representing two black and two red rice varieties. The genome of four pigmented varieties was mapped against Nipponbare reference genome sequences, and 1.9 million SNPs were discovered. Of these, 622 SNPs with polymorphic sites were identified in 258 protein-coding genes related to metabolism, stress response, and transporter. Comparative analysis of 622 SNPs with polymorphic sites against six rice SNP datasets from the Ensembl Plants variation database was performed, and 70 SNPs were identified as novel SNPs. Analysis of SNPs in the flavonoid biosynthetic genes revealed 40 nonsynonymous SNPs, which has potential as molecular markers for rice seed colour identification. The highlighted SNPs in this study show effort in producing valuable genomic resources for application in the rice breeding program, towards the genetic improvement of new and improved pigmented rice varieties.
Collapse
|
13
|
Song S, Tian D, Zhang Z, Hu S, Yu J. Rice Genomics: over the Past Two Decades and into the Future. GENOMICS, PROTEOMICS & BIOINFORMATICS 2018; 16:397-404. [PMID: 30771506 PMCID: PMC6411948 DOI: 10.1016/j.gpb.2019.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/14/2019] [Accepted: 01/23/2019] [Indexed: 01/08/2023]
Abstract
Domestic rice (Oryza sativa L.) is one of the most important cereal crops, feeding a large number of worldwide populations. Along with various high-throughput genome sequencing projects, rice genomics has been making great headway toward direct field applications of basic research advances in understanding the molecular mechanisms of agronomical traits and utilizing diverse germplasm resources. Here, we briefly review its achievements over the past two decades and present the potential for its bright future.
Collapse
Affiliation(s)
- Shuhui Song
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Dongmei Tian
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhang Zhang
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Songnian Hu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
Moin M, Bakshi A, Madhav MS, Kirti PB. Cas9/sgRNA-based genome editing and other reverse genetic approaches for functional genomic studies in rice. Brief Funct Genomics 2018; 17:339-351. [PMID: 29579147 DOI: 10.1093/bfgp/ely010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
One of the important and direct ways of investigating the function of a gene is to characterize the phenotypic consequences associated with loss or gain-of-function of the corresponding gene. These mutagenesis strategies have been successfully deployed in Arabidopsis, and subsequently extended to crop species including rice. Researchers have made vast advancements in the area of rice genomics and functional genomics, as it is a diploid plant with a relatively smaller genome size unlike other cereals. The advent of rice genome research and the annotation of high-quality genome sequencing along with the developments in databases and computer searches have enabled the functional characterization of unknown genes in rice. Further, with the improvements in the efficiency of regeneration and transformation protocols, it has now become feasible to produce sizable mutant populations in indica rice varieties also. In this review, various mutagenesis methods, the current status of the mutant resources, limitations and strengths of insertional mutagenesis approaches and also results obtained with suitable screens for stress tolerance in rice are discussed. In addition, targeted genome editing using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) or Cas9/single-guide RNA system and its potential applications in generating transgene-free rice plants through genome engineering as an efficient alternative to classical transgenic technology are also discussed.
Collapse
Affiliation(s)
- Mazahar Moin
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), India
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Achala Bakshi
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - M S Madhav
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), India
| | - P B Kirti
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
15
|
Nie SJ, Liu YQ, Wang CC, Gao SW, Xu TT, Liu Q, Chang HL, Chen YB, Yan PC, Peng W, Zheng TQ, Xu JL, Li ZK. Assembly of an early-matured japonica (Geng) rice genome, Suijing18, based on PacBio and Illumina sequencing. Sci Data 2017; 4:170195. [PMID: 29257136 PMCID: PMC5735919 DOI: 10.1038/sdata.2017.195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/16/2017] [Indexed: 11/24/2022] Open
Abstract
The early-matured japonica (Geng) rice variety, Suijing18 (SJ18), carries multiple elite traits including durable blast resistance, good grain quality, and high yield. Using PacBio SMRT technology, we produced over 25 Gb of long-read sequencing raw data from SJ18 with a coverage of 62×. Using Illumina paired-end whole-genome shotgun sequencing technology, we generated 59 Gb of short-read sequencing data from SJ18 (23.6 Gb from a 200 bp library with a coverage of 59× and 35.4 Gb from an 800 bp library with a coverage of 88×). With these data, we assembled a single SJ18 genome and then generated a set of annotation data. These data sets can be used to test new programs for variation deep mining, and will provide new insights into the genome structure, function, and evolution of SJ18, and will provide essential support for biological research in general.
Collapse
Affiliation(s)
- Shou-Jun Nie
- Suihua Branch Institute, Heilongjiang Academy of Agricultural Sciences, 420 Gong-Nong West Road, Suihua, Heilongjiang 152000, China
| | - Yu-Qiang Liu
- Suihua Branch Institute, Heilongjiang Academy of Agricultural Sciences, 420 Gong-Nong West Road, Suihua, Heilongjiang 152000, China
| | - Chun-Chao Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Beijing 100081, China
| | - Shi-Wei Gao
- Suihua Branch Institute, Heilongjiang Academy of Agricultural Sciences, 420 Gong-Nong West Road, Suihua, Heilongjiang 152000, China
| | - Tian-Tian Xu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Beijing 100081, China
| | - Qing Liu
- Suihua Branch Institute, Heilongjiang Academy of Agricultural Sciences, 420 Gong-Nong West Road, Suihua, Heilongjiang 152000, China
| | - Hui-Lin Chang
- Suihua Branch Institute, Heilongjiang Academy of Agricultural Sciences, 420 Gong-Nong West Road, Suihua, Heilongjiang 152000, China
| | - Yu-Bao Chen
- Beijing Computing Center, No. 7 Mid, Fengxian Rd. Yongfeng Industry Base, Beijing 100094, China
| | - Peng-Cheng Yan
- Beijing Computing Center, No. 7 Mid, Fengxian Rd. Yongfeng Industry Base, Beijing 100094, China
| | - Wei Peng
- Beijing Computing Center, No. 7 Mid, Fengxian Rd. Yongfeng Industry Base, Beijing 100094, China
| | - Tian-Qing Zheng
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Beijing 100081, China.,Shenzhen Institute of Breeding for Innovation, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jian-Long Xu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Beijing 100081, China.,Shenzhen Institute of Breeding for Innovation, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhi-Kang Li
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Beijing 100081, China.,Shenzhen Institute of Breeding for Innovation, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
16
|
Whole-Genome Characteristics and Polymorphic Analysis of Vietnamese Rice Landraces as a Comprehensive Information Resource for Marker-Assisted Selection. Int J Genomics 2017; 2017:9272363. [PMID: 28265566 PMCID: PMC5318636 DOI: 10.1155/2017/9272363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 11/21/2016] [Accepted: 12/20/2016] [Indexed: 12/12/2022] Open
Abstract
Next generation sequencing technologies have provided numerous opportunities for application in the study of whole plant genomes. In this study, we present the sequencing and bioinformatic analyses of five typical rice landraces including three indica and two japonica with potential blast resistance. A total of 688.4 million 100 bp paired-end reads have yielded approximately 30-fold coverage to compare with the Nipponbare reference genome. Among them, a small number of reads were mapped to both chromosomes and organellar genomes. Over two million and eight hundred thousand single nucleotide polymorphisms (SNPs) and insertions and deletions (InDels) in indica and japonica lines have been determined, which potentially have significant impacts on multiple transcripts of genes. SNP deserts, contiguous SNP-low regions, were found on chromosomes 1, 4, and 5 of all genomes of rice examined. Based on the distribution of SNPs per 100 kilobase pairs, the phylogenetic relationships among the landraces have been constructed. This is the first step towards revealing several salient features of rice genomes in Vietnam and providing significant information resources to further marker-assisted selection (MAS) in rice breeding programs.
Collapse
|
17
|
Agarwal P, Parida SK, Raghuvanshi S, Kapoor S, Khurana P, Khurana JP, Tyagi AK. Rice Improvement Through Genome-Based Functional Analysis and Molecular Breeding in India. RICE (NEW YORK, N.Y.) 2016; 9:1. [PMID: 26743769 PMCID: PMC4705060 DOI: 10.1186/s12284-015-0073-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/22/2015] [Indexed: 05/05/2023]
Abstract
Rice is one of the main pillars of food security in India. Its improvement for higher yield in sustainable agriculture system is also vital to provide energy and nutritional needs of growing world population, expected to reach more than 9 billion by 2050. The high quality genome sequence of rice has provided a rich resource to mine information about diversity of genes and alleles which can contribute to improvement of useful agronomic traits. Defining the function of each gene and regulatory element of rice remains a challenge for the rice community in the coming years. Subsequent to participation in IRGSP, India has continued to contribute in the areas of diversity analysis, transcriptomics, functional genomics, marker development, QTL mapping and molecular breeding, through national and multi-national research programs. These efforts have helped generate resources for rice improvement, some of which have already been deployed to mitigate loss due to environmental stress and pathogens. With renewed efforts, Indian researchers are making new strides, along with the international scientific community, in both basic research and realization of its translational impact.
Collapse
Affiliation(s)
- Pinky Agarwal
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Swarup K Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Saurabh Raghuvanshi
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Sanjay Kapoor
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Paramjit Khurana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Jitendra P Khurana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Akhilesh K Tyagi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India.
| |
Collapse
|
18
|
Rathinasabapathi P, Purushothaman N, Parani M. Genome-wide DNA polymorphisms in Kavuni, a traditional rice cultivar with nutritional and therapeutic properties. Genome 2016; 59:363-6. [PMID: 27093133 DOI: 10.1139/gen-2016-0025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although rice genome was sequenced in the year 2002, efforts in resequencing the large number of available accessions, landraces, traditional cultivars, and improved varieties of this important food crop are limited. We have initiated resequencing of the traditional cultivars from India. Kavuni is an important traditional rice cultivar from South India that attracts premium price for its nutritional and therapeutic properties. Whole-genome sequencing of Kavuni using Illumina platform and SNPs analysis using Nipponbare reference genome identified 1 150 711 SNPs of which 377 381 SNPs were located in the genic regions. Non-synonymous SNPs (62 708) were distributed in 19 251 genes, and their number varied between 1 and 115 per gene. Large-effect DNA polymorphisms (7769) were present in 3475 genes. Pathway mapping of these polymorphisms revealed the involvement of genes related to carbohydrate metabolism, translation, protein-folding, and cell death. Analysis of the starch biosynthesis related genes revealed that the granule-bound starch synthase I gene had T/G SNPs at the first intron/exon junction and a two-nucleotide combination, which were reported to favour high amylose content and low glycemic index. The present study provided a valuable genomics resource to study the rice varieties with nutritional and medicinal properties.
Collapse
Affiliation(s)
- Pasupathi Rathinasabapathi
- Genomics Laboratory, Department of Genetic Engineering, SRM University, Chennai, Tamil Nadu-603 203, India.,Genomics Laboratory, Department of Genetic Engineering, SRM University, Chennai, Tamil Nadu-603 203, India
| | - Natarajan Purushothaman
- Genomics Laboratory, Department of Genetic Engineering, SRM University, Chennai, Tamil Nadu-603 203, India.,Genomics Laboratory, Department of Genetic Engineering, SRM University, Chennai, Tamil Nadu-603 203, India
| | - Madasamy Parani
- Genomics Laboratory, Department of Genetic Engineering, SRM University, Chennai, Tamil Nadu-603 203, India.,Genomics Laboratory, Department of Genetic Engineering, SRM University, Chennai, Tamil Nadu-603 203, India
| |
Collapse
|
19
|
Henry RJ, Rangan P, Furtado A. Functional cereals for production in new and variable climates. CURRENT OPINION IN PLANT BIOLOGY 2016; 30:11-18. [PMID: 26828379 DOI: 10.1016/j.pbi.2015.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/14/2015] [Accepted: 12/22/2015] [Indexed: 06/05/2023]
Abstract
Adaptation of cereal crops to variable or changing climates requires that essential quality attributes are maintained to deliver food that will be acceptable to human consumers. Advances in cereal genomics are delivering insights into the molecular basis of nutritional and functional quality traits in cereals and defining new genetic resources. Understanding the influence of the environment on expression of these traits will support the retention of these essential functional properties during climate adaptation. New cereals for use as whole grain or ground to flour for other food products may be based upon the traditional species such as rice and wheat currently used in these food applications but may also include new options exploiting genomics tools to allow accelerated domestication of new species.
Collapse
Affiliation(s)
- Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD 4072, Australia.
| | - Parimalan Rangan
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|