1
|
Chen X, Wu Z, Yang Y, Tao Q, Na N, Wan W, Tian C, Gong W, Li Z. The complete mitochondrial genome and phylogenetic analysis of Lotus corniculatus (Fabaceae, Papilionoideae). FRONTIERS IN PLANT SCIENCE 2025; 16:1555595. [PMID: 40134620 PMCID: PMC11933009 DOI: 10.3389/fpls.2025.1555595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 02/14/2025] [Indexed: 03/27/2025]
Abstract
Introduction Lotus corniculatus is a perennial leguminous herb and serves as a high-quality forage, playing a key role in both grassland ecological restoration and the development of grazing livestock farming. Methods In this study, we successfully assembled the L. corniculatus mitochondrial genome and investigated various related aspects, including genomic features, RNA editing sites, codon preference, gene transfer events, and phylogeny. Results and discussion We found that the length of the L. corniculatus mitochondrial genome is 401,301 bp, and its GC content is 45.15%. It consists of 53 genes, comprising 32 protein-coding genes, 3 ribosomal RNA genes, and 18 transfer RNA genes. A total of 146 scattered repeats, 8 tandem repeats, and 124 simple sequence repeats are present in the mitochondrial genome. A thorough examination of all protein-coding genes revealed 485 instances of RNA editing and 9579 codons. Additionally, 57 homologous fragments were identified in L. corniculatus mitochondrial genome and chloroplast genomes, accounting for approximately 4.04% of the L. corniculatus mitochondrial genome. Furthermore, a phylogenetic tree based on mitochondrial genome data from 33 species belonging to four Fabaceae subfamilies and two species from other families validated the evolutionary relationship of Lotus. These findings have significant implications for understanding the organization and evolution of the L. corniculatus mitochondrial genome as well as for the identification of genetic markers. They also offer valuable perspectives relevant to devising strategies for molecular breeding and evolutionary categorization of legumes.
Collapse
Affiliation(s)
- Xiaofei Chen
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Zinian Wu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Ministry of Agriculture of the People's Republic of China, Institute of Grassland Research, CAAS, Hohhot, China
| | - Yanting Yang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Ministry of Agriculture of the People's Republic of China, Institute of Grassland Research, CAAS, Hohhot, China
| | - Qibo Tao
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Na Na
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Ministry of Agriculture of the People's Republic of China, Institute of Grassland Research, CAAS, Hohhot, China
| | - Wenya Wan
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Chunyu Tian
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Ministry of Agriculture of the People's Republic of China, Institute of Grassland Research, CAAS, Hohhot, China
| | - Wenlong Gong
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Ministry of Agriculture of the People's Republic of China, Institute of Grassland Research, CAAS, Hohhot, China
| | - Zhiyong Li
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Ministry of Agriculture of the People's Republic of China, Institute of Grassland Research, CAAS, Hohhot, China
| |
Collapse
|
2
|
Wilson K, Holjencin C, Lee H, Annamalai B, Ishii M, Gilbert JL, Jakymiw A, Rohrer B. Development of a cell-penetrating peptide-based nanocomplex for long-term delivery of intact mitochondrial DNA into epithelial cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102449. [PMID: 39991470 PMCID: PMC11847061 DOI: 10.1016/j.omtn.2025.102449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 01/10/2025] [Indexed: 02/25/2025]
Abstract
Gene therapy approaches for mitochondrial DNA (mtDNA)-associated damage/diseases have thus far been limited, and despite advancements in single gene therapy for mtDNA mutations and progress in mitochondrial transplantation, no method exists for restoring the entire mtDNA molecule in a clinically translatable manner. Here, we present for the first time a strategy to deliver an exogenous, fully intact, and healthy mtDNA template into cells to correct endogenous mtDNA mutations and deletions, with the potential to be developed into an efficient pan-therapy for inherited and/or acquired mtDNA disorders. More specifically, the novel therapeutic nanoparticle complex used in our study was generated by combining a cell-penetrating peptide (CPP) with purified mtDNA, in conjunction with a mitochondrial targeting reagent. The generated nanoparticle complexes were found to be taken up by cells and localized to mitochondria, with exogenous mtDNA retention/maintenance, along with mitochondrial RNA and protein production, observed in mitochondria-depleted ARPE-19 cells at least 4 weeks following a single treatment. These data demonstrate the feasibility of restoring mtDNA in cells via a CPP carrier, with the therapeutic potential to correct mtDNA damage independent of the number of gene mutations found within the mtDNA.
Collapse
Affiliation(s)
- Kyrie Wilson
- Department of Ophthalmology, College of Medicine, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA
| | - Charles Holjencin
- Division of Basic Science Research, Department of Biomedical & Community Health Sciences, James B. Edwards College of Dental Medicine, MUSC, Charleston, SC 29425, USA
| | - Hwaran Lee
- Department of Bioengineering, Clemson University, Clemson – MUSC Bioengineering Program, MUSC, Charleston, SC 29425, USA
| | - Balasubramaniam Annamalai
- Department of Ophthalmology, College of Medicine, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA
| | - Masaaki Ishii
- Department of Ophthalmology, College of Medicine, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA
| | - Jeremy L. Gilbert
- Department of Bioengineering, Clemson University, Clemson – MUSC Bioengineering Program, MUSC, Charleston, SC 29425, USA
| | - Andrew Jakymiw
- Division of Basic Science Research, Department of Biomedical & Community Health Sciences, James B. Edwards College of Dental Medicine, MUSC, Charleston, SC 29425, USA
- Department of Biochemistry & Molecular Biology, College of Medicine, Hollings Cancer Center, MUSC, Charleston, SC 29425, USA
| | - Bärbel Rohrer
- Department of Ophthalmology, College of Medicine, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA
| |
Collapse
|
3
|
Li ZZ, Wang Y, He XY, Li WG. The Taihangia mitogenome provides new insights into its adaptation and organelle genome evolution in Rosaceae. PLANTA 2025; 261:59. [PMID: 39939538 DOI: 10.1007/s00425-025-04629-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/19/2025] [Indexed: 02/14/2025]
Abstract
MAIN CONCLUSION We present the first Taihangia mitogenome, uncovering frequent rearrangements and significant length variation in Rosaceae, likely driven by hybridization and repeat content, alongside widespread mito-chloroplast phylogenetic conflicts. Taihangia, an ancient and endangered monotypic genus within the subfamily Rosoideae of the family Rosaceae, is endemic to cliffs and serves as an ideal material for studying the adaptations of cliff-dwelling plants and the evolutionary processes of the Rosaceae family. In this study, the mitogenome and plastome of T. rupestris var. ciliata were assembled, with lengths of 265,633 bp and 155,467 bp, both exhibiting typical circular structures. Positive selection was detected in the nad4L and sdh4 genes, likely playing a role in adaptation to harsh environments. Comparative genomic analysis indicated that repetitive sequences are likely the main contributors to genome size variation in Rosaceae and also influence horizontal gene transfer between organelle genomes. In T. rupestris var. ciliata, 20 mitochondrial plastid DNA sequences were identified, including 16 complete plastid genes. Moreover, frequent rearrangements were observed in the non-coding regions of mitogenome within the subfamily Rosoideae, potentially linked to the complex evolutionary history and the presence of repetitive sequences. In contrast, coding regions remained highly conserved (over 83% similarity) to maintain essential mitochondrial functions. Phylogenomic analysis of the two organelle genomes revealed conflicts in the phylogenetic relationships within Rosaceae, potentially due to the inconsistent mutation rates and frequent hybridization events in the evolutionary history of the family. In conclusion, the organelle genome analysis of Taihangia provides crucial genomic resources for understanding the evolution and adaptation of Rosaceae species.
Collapse
Affiliation(s)
- Zhi-Zhong Li
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in WanjiangBasin Co-Funded By Anhui Province and Ministry of Education of the People's Republic of China, School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China.
| | - Ying Wang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in WanjiangBasin Co-Funded By Anhui Province and Ministry of Education of the People's Republic of China, School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Xiang-Yan He
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei-Guo Li
- School of Resource and Environment, Henan Polytechnic University, Jiaozuo, 454000, Henan, China.
| |
Collapse
|
4
|
Xiao X, Chen J, Ran Z, Huang L, Li Z. Comparative Analysis of Complete Chloroplast Genomes and Phylogenetic Relationships of 21 Sect. Camellia ( Camellia L.) Plants. Genes (Basel) 2025; 16:49. [PMID: 39858596 PMCID: PMC11764880 DOI: 10.3390/genes16010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/27/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
Background: Section Camellia is the most diverse group in the genus Camellia L., and this group of plants has a long history of cultivation in China as popular ornamental flowers and oil plants. Sect. Camellia plants present diverse morphological variations and complexity among species, resulting in uncertainty in the classification of species, which has resulted in a degree of inconvenience and confusion in the use of plant resources and research. Methods: Here, We sequenced and assembled the chloroplast genomes of 6 sect. Camellia and performed comparative chloroplast genome analysis and phylogenetic studies combined with 15 existing sect. Camellia plants. Results: The chloroplast genome of 21 species in sect. Camellia species were quadripartite with length of 156,587-157,068 bp base pairs (bp), and a highly conserved and moderately differentiated chloroplast genome arrangement. The 21 sect. Camellia chloroplast genomes were similar to those of angiosperms, with high consistency in gene number, gene content and gene structure. After the annotation process, we identified a total of 132 genes, specifically 87 sequences coding for proteins (CDS), 37 transfer RNA (tRNA) genes, and 8 ribosomal RNA (rRNA) genes. The ycf1 gene in 21 species of the sect. Camellia was present only in the small single-copy/inverted repeat of a (SSC/IRa) region. Sequence variation was greater in the large single-copy (LSC) region than in the IR region, and the majority of the protein-coding genes presented high codon preferences. The chloroplast genomes of 21 plant species exhibit relatively conserved SC (single copy region)/IR (inverted repeat region) boundaries. We detected a total of 2975 single sequence repeats (SSRs) as well as 833 dispersed nuclear elements (INEs). Among these SSRs, A/T repeats and AT/AT repeats dominated, while among INEs, forward repeats and palindromic repeats predominated. Codon usage frequencies were largely similar, with 30 high-frequency codons detected. Comparative analysis revealed five hotspot regions (rps16, psaJ, rpl33, rps8, and rpl16) and two gene intervals (atpH-atpI and petD-rpoA) in the cp genome, which can be used as potential molecular markers. In addition, the phylogenetic tree constructed from the chloroplast genome revealed that these 21 species and Camellia oleifera aggregated into a single branch, which was further subdivided into two evolutionarily independent sub-branches. Conclusions: It was confirmed that sect. Camellia and C. oleifera Abel are closely related in Camellia genus. These findings will enhance our knowledge of the sect. Camellia of plants, deepen our understanding of their genetic characteristics and phylogenetic pathways, and provide strong support for the scientific development and rational utilization of the plant resources of the sect. Camellia.
Collapse
Affiliation(s)
- Xu Xiao
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Academy of Forestry, Guiyang 550005, China; (X.X.); (L.H.)
| | - Juyan Chen
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Academy of Forestry, Guiyang 550005, China; (X.X.); (L.H.)
| | - Zhaohui Ran
- College of Forestry, Guizhou University, Guiyang 550025, China;
| | - Lang Huang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Academy of Forestry, Guiyang 550005, China; (X.X.); (L.H.)
| | - Zhi Li
- College of Forestry, Guizhou University, Guiyang 550025, China;
| |
Collapse
|
5
|
Jo S, Park M, Yusupov Z, Tojibaev KS, Kenicer GJ, Choi S, Paik JH. Intracellular gene transfer (IGT) events from the mitochondrial genome to the plastid genome of the subtribe ferulinae drude (Apiaceae) and their implications. BMC PLANT BIOLOGY 2024; 24:1172. [PMID: 39643875 PMCID: PMC11622593 DOI: 10.1186/s12870-024-05891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Intracellular gene transfer (IGT) is a phenomenon in genome evolution that occurs between the nuclear and organellar genomes of plants or between the genomes of different organelles. The majority of the plastid genomes (plastomes) in angiosperms have a conserved structure, but some species exhibit unexpected structural variations. RESULTS In this study, we focused on the Ferulinae, which includes Ferula, one of the largest genera in the Apiaceae family. We discovered IGTs in the rps12-trnV IGS region of the plastome's inverted repeat (IR). We found that partial mitochondrial genome (mitogenome) sequences, ranging in length from about 2.8 to 5.8 kb, were imported into the plastome. In addition to these, that are known from other Scandiceae subtribes, the Ferulinae plastomes contained two unique mitogenome sequences. We have named these sequences Ferula Mitochondrial Plastid sequences (FeMP). FeMP1 varies in length from 336 bp to 1,100 bp, while FeMP2 ranges from 50 bp to 740 bp in length, with the exception of F. conocaula and F. kingdon-wardii, which do not possess FeMP2. Notably, FeMP2 includes a complete rps7 gene of mitogenome origin. In the maximum likelihood (ML) tree constructed from 79 protein-coding genes, Ferulinae appears as a monophyletic group, while Ferula shows paraphyly. Dorema and Fergania are nested within the Ferula clade, sharing the unusual characteristics of the Ferula plastome. Based on these findings, a reclassification of Dorema and Fergania is warranted. CONCLUSIONS Our results shed light on the mechanism of plastome evolution in the Scandiceae with a focus on the unique plastome structure found in the Apiaceae. These findings enhance our understanding of the evolution of plant organellar genomes.
Collapse
Affiliation(s)
- Sangjin Jo
- International Biological Material Research Center (IBMRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
| | - Minsu Park
- International Biological Material Research Center (IBMRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
| | - Ziyoviddin Yusupov
- Institute of Botany, Academy of Sciences, Durmon yuli str. 32, Tashkent, 100125, Uzbekistan
| | - Komiljon Sh Tojibaev
- Institute of Botany, Academy of Sciences, Durmon yuli str. 32, Tashkent, 100125, Uzbekistan
| | - Gregory J Kenicer
- Royal Botanical Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, UK
| | - Sangho Choi
- International Biological Material Research Center (IBMRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
| | - Jin-Hyub Paik
- International Biological Material Research Center (IBMRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea.
| |
Collapse
|
6
|
Li L, Fu H, Altaf MA, Wang Z, Lu X. The complete mitochondrial genome assembly of Capsicum pubescens reveals key evolutionary characteristics of mitochondrial genes of two Capsicum subspecies. BMC Genomics 2024; 25:1064. [PMID: 39528932 PMCID: PMC11552386 DOI: 10.1186/s12864-024-10985-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Pepper (Capsicum pubescens), one of five domesticated pepper species, has unique characteristics, such as numerous hairs on the epidermis of its leaves and stems, black seeds, and vibrant purple flowers. To date, no studies have reported on the complete assembly of the mitochondrial genome (mitogenome) of C. pubescens. Understanding the mitogenome is crucial for further research on C. pubescens. RESULTS In our study, we successfully assembled the first mitogenome of C. pubescens, which was assigned the GenBank accession number OP957066. This mitogenome has a length of 454,165 bp and exhibits the typical circular structure observed in most mitogenomes. We annotated a total of 70 genes, including 35 protein-coding genes (PCGs), 30 tRNA genes, 3 rRNA genes, and 2 pseudogenes. Compared to the other three pepper mitogenomes (KJ865409, KJ865410, and MN196478), C. pubescens OP957066 exhibited four unique PCGs (atp4, atp8, mttB, and rps1), while two PCGs (rpl10 and rps3) were absent. Notably, each of the three pepper mitogenomes from C. annuum (KJ865409, KJ865410, and MN196478) experienced the loss of four PCGs (atp4, atp8, mttB, and rps1). To further explore the evolutionary relationships, we reconstructed a phylogenetic tree using the mitogenomes of C. pubescens and fourteen other species. Structural comparison and synteny analysis of the above four pepper mitogenomes revealed that C. pubescens shares high sequence similarity with KJ865409 and that C. pubescens has rearranged with the other three pepper mitogenomes. Interestingly, we observed 72 similar sequences between the mitochondrial and chloroplast genomes, which accounted for 12.60% of the mitogenome, with a total length of 57,207 bp. These sequences encompassed 12 tRNA genes and the rRNA gene (rrn18). Remarkably, selective pressure analysis suggested that the nad5 gene underwent obvious positive selection. Furthermore, a single-base mutation in three genes (nad1, nad2, and nad4) resulted in an amino acid change. CONCLUSION This study provides a high-quality mitogenome of pepper, providing valuable molecular data for future investigations into the exchange of genetic information between pepper organelle genomes.
Collapse
Affiliation(s)
- Lin Li
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication) , Hainan University, Sanya Hainan, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Huizhen Fu
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication) , Hainan University, Sanya Hainan, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Muhammad Ahsan Altaf
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication) , Hainan University, Sanya Hainan, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Zhiwei Wang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication) , Hainan University, Sanya Hainan, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Xu Lu
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication) , Hainan University, Sanya Hainan, 572025, China.
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.
| |
Collapse
|
7
|
Wu CS, Wang RJ, Chaw SM. Integration of large and diverse angiosperm DNA fragments into Asian Gnetum mitogenomes. BMC Biol 2024; 22:140. [PMID: 38915079 PMCID: PMC11197197 DOI: 10.1186/s12915-024-01924-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 05/21/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Horizontal gene transfer (HGT) events have rarely been reported in gymnosperms. Gnetum is a gymnosperm genus comprising 25‒35 species sympatric with angiosperms in West African, South American, and Southeast Asian rainforests. Only a single acquisition of an angiosperm mitochondrial intron has been documented to date in Asian Gnetum mitogenomes. We wanted to develop a more comprehensive understanding of frequency and fragment length distribution of such events as well as their evolutionary history in this genus. RESULTS We sequenced and assembled mitogenomes from five Asian Gnetum species. These genomes vary remarkably in size and foreign DNA content. We identified 15 mitochondrion-derived and five plastid-derived (MTPT) foreign genes. Our phylogenetic analyses strongly indicate that these foreign genes were transferred from diverse eudicots-mostly from the Rubiaceae genus Coptosapelta and ten genera of Malpighiales. This indicates that Asian Gnetum has experienced multiple independent HGT events. Patterns of sequence evolution strongly suggest DNA-mediated transfer between mitochondria as the primary mechanism giving rise to these HGT events. Most Asian Gnetum species are lianas and often entwined with sympatric angiosperms. We therefore propose that close apposition of Gnetum and angiosperm stems presents opportunities for interspecific cell-to-cell contact through friction and wounding, leading to HGT. CONCLUSIONS Our study reveals that multiple HGT events have resulted in massive amounts of angiosperm mitochondrial DNA integrated into Asian Gnetum mitogenomes. Gnetum and its neighboring angiosperms are often entwined with each other, possibly accounting for frequent HGT between these two phylogenetically remote lineages.
Collapse
Affiliation(s)
- Chung-Shien Wu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Rui-Jiang Wang
- South China Botanical Garden, Chinese Academy of Science, Guangzhou, China
| | - Shu-Miaw Chaw
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
8
|
Park S, Park S. Intrageneric structural variation in organelle genomes from the genus Dystaenia (Apiaceae): genome rearrangement and mitochondrion-to-plastid DNA transfer. FRONTIERS IN PLANT SCIENCE 2023; 14:1283292. [PMID: 38116150 PMCID: PMC10728875 DOI: 10.3389/fpls.2023.1283292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023]
Abstract
Introduction During plant evolution, intracellular DNA transfer (IDT) occurs not only from organelles to the nucleus but also between organelles. To further comprehend these events, both organelle genomes and transcriptomes are needed. Methods In this study, we constructed organelle genomes and transcriptomes for two Dystaenia species and described their dynamic IDTs between their nuclear and mitochondrial genomes, or plastid and mitochondrial genomes (plastome and mitogenome). Results and Discussion We identified the putative functional transfers of the mitochondrial genes 5' rpl2, rps10, rps14, rps19, and sdh3 to the nucleus in both Dystaenia species and detected two transcripts for the rpl2 and sdh3 genes. Additional transcriptomes from the Apicaceae species also provided evidence for the transfers and duplications of these mitochondrial genes, showing lineage-specific patterns. Intrageneric variations of the IDT were found between the Dystaenia organelle genomes. Recurrent plastid-to-mitochondrion DNA transfer events were only identified in the D. takeshimana mitogenome, and a pair of mitochondrial DNAs of plastid origin (MIPTs) may generate minor alternative isoforms. We only found a mitochondrion-to-plastid DNA transfer event in the D. ibukiensis plastome. This event may be linked to inverted repeat boundary shifts in its plastome. We inferred that the insertion region involved an MIPT that had already acquired a plastid sequence in its mitogenome via IDT. We propose that the MIPT acts as a homologous region pairing between the donor and recipient sequences. Our results provide insight into the evolution of organelle genomes across the family Apiaceae.
Collapse
Affiliation(s)
- Seongjun Park
- Institute of Natural Science, Yeungnam University, Gyeongsan, Republic of Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
9
|
Sanchez-Puerta MV, Ceriotti LF, Gatica-Soria LM, Roulet ME, Garcia LE, Sato HA. Invited Review Beyond parasitic convergence: unravelling the evolution of the organellar genomes in holoparasites. ANNALS OF BOTANY 2023; 132:909-928. [PMID: 37503831 PMCID: PMC10808021 DOI: 10.1093/aob/mcad108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND The molecular evolution of organellar genomes in angiosperms has been studied extensively, with some lineages, such as parasitic ones, displaying unique characteristics. Parasitism has emerged 12 times independently in angiosperm evolution. Holoparasitism is the most severe form of parasitism, and is found in ~10 % of parasitic angiosperms. Although a few holoparasitic species have been examined at the molecular level, most reports involve plastomes instead of mitogenomes. Parasitic plants establish vascular connections with their hosts through haustoria to obtain water and nutrients, which facilitates the exchange of genetic information, making them more susceptible to horizontal gene transfer (HGT). HGT is more prevalent in the mitochondria than in the chloroplast or nuclear compartments. SCOPE This review summarizes current knowledge on the plastid and mitochondrial genomes of holoparasitic angiosperms, compares the genomic features across the different lineages, and discusses their convergent evolutionary trajectories and distinctive features. We focused on Balanophoraceae (Santalales), which exhibits extraordinary traits in both their organelles. CONCLUSIONS Apart from morphological similarities, plastid genomes of holoparasitic plants also display other convergent features, such as rampant gene loss, biased nucleotide composition and accelerated evolutionary rates. In addition, the plastomes of Balanophoraceae have extremely low GC and gene content, and two unexpected changes in the genetic code. Limited data on the mitochondrial genomes of holoparasitic plants preclude thorough comparisons. Nonetheless, no obvious genomic features distinguish them from the mitochondria of free-living angiosperms, except for a higher incidence of HGT. HGT appears to be predominant in holoparasitic angiosperms with a long-lasting endophytic stage. Among the Balanophoraceae, mitochondrial genomes exhibit disparate evolutionary paths with notable levels of heteroplasmy in Rhopalocnemis and unprecedented levels of HGT in Lophophytum. Despite their differences, these Balanophoraceae share a multichromosomal mitogenome, a feature also found in a few free-living angiosperms.
Collapse
Affiliation(s)
- M Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA, Mendoza, Argentina
| | - Luis F Ceriotti
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA, Mendoza, Argentina
| | - Leonardo M Gatica-Soria
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA, Mendoza, Argentina
| | - M Emilia Roulet
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
| | - Laura E Garcia
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA, Mendoza, Argentina
| | - Hector A Sato
- Facultad de Ciencias Agrarias, Cátedra de Botánica General–Herbario JUA, Alberdi 47, Universidad Nacional de Jujuy, 4600 Jujuy, Argentina
| |
Collapse
|
10
|
Yu J, Han Y, Xu H, Han S, Li X, Niu Y, Chen S, Zhang F. Structural divergence and phylogenetic relationships of Ajania (Asteraceae) from plastomes and ETS. BMC Genomics 2023; 24:602. [PMID: 37817095 PMCID: PMC10566131 DOI: 10.1186/s12864-023-09716-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/04/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Ajania Poljakov, an Asteraceae family member, grows mostly in Asia's arid and semi-desert areas and is a significant commercial and decorative plant. Nevertheless, the genus' classification has been disputed, and the evolutionary connections within the genus have not been thoroughly defined. Hence, we sequenced and analyzed Ajania's plastid genomes and combined them with ETS data to assess their phylogenetic relationships. RESULTS We obtained a total of six new Ajania plastid genomes and nine ETS sequences. The whole plastome lengths of the six species sampled ranged from 151,002 bp to 151,115 bp, showing conserved structures. Combined with publicly available data from GenBank, we constructed six datasets to reconstruct the phylogenetic relationships, detecting nucleoplasmic clashes. Our results reveal the affinities of Artemisia, Chrysanthemum and Stilpnolepis to Ajania and validate the early taxonomy reclassification. Some of the plastid genes with low phylogenetic information and gene trees with topological differences may have contributed to the ambiguous phylogenetic results of Ajania. There is extensive evolutionary rate heterogeneity in plastid genes. The psbH and ycf2 genes, which are involved in photosynthesis and ATP transport, are under selective pressure. Plastomes from Ajania species diverged, and structural aspects of plastomes may indicate some of the real evolutionary connections. We suggest the ycf1 gene as a viable plastid DNA barcode because it has significant nucleotide diversity and better reflects evolutionary connections. CONCLUSION Our findings validate the early Ajania taxonomy reclassification and show evolutionary rate heterogeneity, genetic variety, and phylogenetic heterogeneity of plastid genes. This research might provide new insights into the taxonomy and evolution of Ajania, as well as provide useful information for germplasm innovation and genetic enhancement in horticultural species.
Collapse
Affiliation(s)
- Jingya Yu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yun Han
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Hao Xu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Shuang Han
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xiaoping Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yu Niu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Shilong Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, 810008, China
| | - Faqi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, 810008, China.
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining, 810008, China.
| |
Collapse
|
11
|
Peng C, Guo XL, Zhou SD, He XJ. Backbone phylogeny and adaptive evolution of Pleurospermum s. l.: New insights from phylogenomic analyses of complete plastome data. FRONTIERS IN PLANT SCIENCE 2023; 14:1148303. [PMID: 37063181 PMCID: PMC10101341 DOI: 10.3389/fpls.2023.1148303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Pleurospermum is a taxonomically challenging taxon of Apiaceae, as its circumscription and composition remain controversial for morphological similarities with several related genera, leading to a dispute between Pleurospermum in the broad sense and strict sense. While evidence from previous molecular studies recognized plural branching lineages within the Pleurospermum s. l., it did not support the latest delimitation of Pleurospermum s. str. by only two closely related northern species. So far, no proper delimitation for Pleurospermum has come up, and many of the plural taxa in Pleurospermum s. l. remain unresolved, which may be due to poor phylogenetic resolution yielded barely from ITS sequences. Herein, we newly assembled 40 complete plastomes from 36 species of Pleurospermum s. l. and related genera, 34 of which were first reported and generated a well-resolved backbone phylogeny in a framework of the subfamily Apioideae. From the phylogeny with greatly improved resolution, a total of six well-supported monophyletic lineages within Pleurospermum s. l. were recognized falling in different major clades of Apioideae. Combining morphological characteristics with phylogenetic inference, we suggested to re-delimit the Pleurospermum s. str. by introducing nine species mainly from the Himalayan regions and proposed its boundary features; the remaining species were suggested to be excluded from Pleurospermum to incorporate into their more related taxa being revealed. On this basis, the plastome comparison revealed not only the high conservatism but also the mild differences among lineages in plastome structure and gene evolution. Overall, our study provided a backbone phylogeny essential for further studies of the taxonomically difficult taxa within Pleurospermum s. l.
Collapse
Affiliation(s)
| | | | | | - Xing-Jin He
- *Correspondence: Xing-Jin He, ; Song-Dong Zhou,
| |
Collapse
|
12
|
Hu Y, Sun Y, Zhu QH, Fan L, Li J. Poaceae Chloroplast Genome Sequencing: Great Leap Forward in Recent Ten Years. Curr Genomics 2023; 23:369-384. [PMID: 37920556 PMCID: PMC10173419 DOI: 10.2174/1389202924666221201140603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/02/2022] [Accepted: 10/19/2022] [Indexed: 12/11/2022] Open
Abstract
The first complete chloroplast genome of rice (Oryza sativa) was published in 1989, ushering in a new era of studies of chloroplast genomics in Poaceae. Progresses in Next-Generation Sequencing (NGS) and Third-Generation Sequencing (TGS) technologiesand in the development of genome assembly software, have significantly advanced chloroplast genomics research. Poaceae is one of the most targeted families in chloroplast genome research because of its agricultural, ecological, and economic importance. Over the last 30 years, 2,050 complete chloroplast genome sequences from 40 tribes and 282 genera have been generated, most (97%) of them in the recent ten years. The wealth of data provides the groundwork for studies on species evolution, phylogeny, genetic transformation, and other aspects of Poaceae chloroplast genomes. As a result, we have gained a deeper understanding of the properties of Poaceae chloroplast genomes. Here, we summarize the achievements of the studies of the Poaceae chloroplast genomes and envision the challenges for moving the area ahead.
Collapse
Affiliation(s)
- Yiyu Hu
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Yanqing Sun
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Qian-Hao Zhu
- CSIRO, Agriculture and Food, Canberra, ACT 2601, Australia
| | - Longjiang Fan
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Jianhua Li
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Wu CS, Chen CI, Chaw SM. Plastid phylogenomics and plastome evolution in the morning glory family (Convolvulaceae). FRONTIERS IN PLANT SCIENCE 2022; 13:1061174. [PMID: 36605953 PMCID: PMC9808526 DOI: 10.3389/fpls.2022.1061174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Convolvulaceae, the morning glories or bindweeds, is a large family containing species of economic value, including crops, traditional medicines, ornamentals, and vegetables. However, not only are the phylogenetic relationships within this group still debated at the intertribal and intergeneric levels, but also plastid genome (plastome) complexity within Convolvulaceae is not well surveyed. We gathered 78 plastomes representing 17 genera across nine of the 12 Convolvulaceae tribes. Our plastid phylogenomic trees confirm the monophyly of Convolvulaceae, place the genus Jacquemontia within the subfamily Dicranostyloideae, and suggest that the tribe Merremieae is paraphyletic. In contrast, positions of the two genera Cuscuta and Erycibe are uncertain as the bootstrap support of the branches leading to them is moderate to weak. We show that nucleotide substitution rates are extremely variable among Convolvulaceae taxa and likely responsible for the topological uncertainty. Numerous plastomic rearrangements are detected in Convolvulaceae, including inversions, duplications, contraction and expansion of inverted repeats (IRs), and losses of genes and introns. Moreover, integrated foreign DNA of mitochondrial origin was found in the Jacquemontia plastome, adding a rare example of gene transfer from mitochondria to plastids in angiosperms. In the IR of Dichondra, we discovered an extra copy of rpl16 containing a direct repeat of ca. 200 bp long. This repeat was experimentally demonstrated to trigger effective homologous recombination, resulting in the coexistence of intron-containing and -lacking rpl16 duplicates. Therefore, we propose a hypothetical model to interpret intron loss accompanied by invasion of direct repeats at appropriate positions. Our model complements the intron loss model driven by retroprocessing when genes have lost introns but contain abundant RNA editing sites adjacent to former splicing sites.
Collapse
Affiliation(s)
- Chung-Shien Wu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chung-I. Chen
- Department of Forestry, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shu-Miaw Chaw
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
14
|
Yun S, Kim SC. Comparative plastomes and phylogenetic analysis of seven Korean endemic Saussurea (Asteraceae). BMC PLANT BIOLOGY 2022; 22:550. [PMID: 36443690 PMCID: PMC9706989 DOI: 10.1186/s12870-022-03946-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Saussurea is one of the most species-rich genera in the Cardueae, Asteraceae. There are approximately 40 Saussurea species distributed in Korea, with nearly 40% of them endemics. Infrageneric relationships remain uncertain due to insufficient resolutions and low statistical support. In this study, we sequenced the plastid genomes of five Korean endemic Saussurea (S. albifolia, S. calcicola, S. diamantica, S. grandicapitula, and S. seoulensis), and comparative analyses including two other endemics (S. chabyoungsanica and S. polylepis) were conducted. RESULTS The plastomes of Korean endemics were highly conserved in gene content, order, and numbers. Exceptionally, S. diamantica had mitochondrial DNA sequences including two tRNAs in SSC region. There were no significant differences of the type and numbers of SSRs among the seven Korean endemics except in S. seoulensis. Nine mutation hotspots with high nucleotide diversity value (Pi > 0.0033) were identified, and phylogenetic analysis suggested that those Korean endemic species most likely evolved several times from diverse lineages within the genus. Moreover, molecular dating estimated that the Korean endemic species diverged since the late Miocene. CONCLUSIONS This study provides insight into understanding the plastome evolution and evolutionary relationships of highly complex species of Saussurea in Korean peninsula.
Collapse
Affiliation(s)
- Seona Yun
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Suwon, Gyeonggi-do, 16419, Korea
- Present Address: Department of Environmental Biology, State University of New York College of Environmental Science and Forestry, One Forestry Drive, Syracuse, NY, 13210, USA
| | - Seung-Chul Kim
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Suwon, Gyeonggi-do, 16419, Korea.
| |
Collapse
|
15
|
Kersten B, Rellstab C, Schroeder H, Brodbeck S, Fladung M, Krutovsky KV, Gugerli F. The mitochondrial genome sequence of Abies alba Mill. reveals a high structural and combinatorial variation. BMC Genomics 2022; 23:776. [PMID: 36443651 PMCID: PMC9703787 DOI: 10.1186/s12864-022-08993-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/05/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Plant mitogenomes vary widely in size and genomic architecture. Although hundreds of plant mitogenomes of angiosperm species have already been sequence-characterized, only a few mitogenomes are available from gymnosperms. Silver fir (Abies alba) is an economically important gymnosperm species that is widely distributed in Europe and occupies a large range of environmental conditions. Reference sequences of the nuclear and chloroplast genome of A. alba are available, however, the mitogenome has not yet been assembled and studied. RESULTS Here, we used paired-end Illumina short reads generated from a single haploid megagametophyte in combination with PacBio long reads from high molecular weight DNA of needles to assemble the first mitogenome sequence of A. alba. Assembly and scaffolding resulted in 11 mitogenome scaffolds, with the largest scaffold being 0.25 Mbp long. Two of the scaffolds displayed a potential circular structure supported by PCR. The total size of the A. alba mitogenome was estimated at 1.43 Mbp, similar to the size (1.33 Mbp) of a draft assembly of the Abies firma mitogenome. In total, 53 distinct genes of known function were annotated in the A. alba mitogenome, comprising 41 protein-coding genes, nine tRNA, and three rRNA genes. The proportion of highly repetitive elements (REs) was 0.168. The mitogenome seems to have a complex and dynamic structure featured by high combinatorial variation, which was specifically confirmed by PCR for the contig with the highest mapping coverage. Comparative analysis of all sequenced mitogenomes of gymnosperms revealed a moderate, but significant positive correlation between mitogenome size and proportion of REs. CONCLUSIONS The A. alba mitogenome provides a basis for new comparative studies and will allow to answer important structural, phylogenetic and other evolutionary questions. Future long-read sequencing with higher coverage of the A. alba mitogenome will be the key to further resolve its physical structure. The observed positive correlation between mitogenome size and proportion of REs will be further validated once available mitogenomes of gymnosperms would become more numerous. To test whether a higher proportion of REs in a mitogenome leads to an increased recombination and higher structural complexity and variability is a prospective avenue for future research.
Collapse
Affiliation(s)
- Birgit Kersten
- Thünen Institute of Forest Genetics, Sieker Landstrasse 2, 22927 Grosshansdorf, Germany
| | - Christian Rellstab
- grid.419754.a0000 0001 2259 5533Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Hilke Schroeder
- Thünen Institute of Forest Genetics, Sieker Landstrasse 2, 22927 Grosshansdorf, Germany
| | - Sabine Brodbeck
- grid.419754.a0000 0001 2259 5533Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Matthias Fladung
- Thünen Institute of Forest Genetics, Sieker Landstrasse 2, 22927 Grosshansdorf, Germany
| | - Konstantin V. Krutovsky
- grid.7450.60000 0001 2364 4210Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Felix Gugerli
- grid.419754.a0000 0001 2259 5533Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| |
Collapse
|
16
|
Choi IS, Wojciechowski MF, Steele KP, Hunter SG, Ruhlman TA, Jansen RK. Born in the mitochondrion and raised in the nucleus: evolution of a novel tandem repeat family in Medicago polymorpha (Fabaceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:389-406. [PMID: 35061308 DOI: 10.1111/tpj.15676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Plant nuclear genomes harbor sequence elements derived from the organelles (mitochondrion and plastid) through intracellular gene transfer (IGT). Nuclear genomes also show a dramatic range of repeat content, suggesting that any sequence can be readily amplified. These two aspects of plant nuclear genomes are well recognized but have rarely been linked. Through investigation of 31 Medicago taxa we detected exceptionally high post-IGT amplification of mitochondrial (mt) DNA sequences containing rps10 in the nuclear genome of Medicago polymorpha and closely related species. The amplified sequences were characterized as tandem arrays of five distinct repeat motifs (2157, 1064, 987, 971, and 587 bp) that have diverged from the mt genome (mitogenome) in the M. polymorpha nuclear genome. The mt rps10-like arrays were identified in seven loci (six intergenic and one telomeric) of the nuclear chromosome assemblies and were the most abundant tandem repeat family, representing 1.6-3.0% of total genomic DNA, a value approximately three-fold greater than the entire mitogenome in M. polymorpha. Compared to a typical mt gene, the mt rps10-like sequence coverage level was 691.5-7198-fold higher in M. polymorpha and closely related species. In addition to the post-IGT amplification, our analysis identified the canonical telomeric repeat and the species-specific satellite arrays that are likely attributable to an ancestral chromosomal fusion in M. polymorpha. A possible relationship between chromosomal instability and the mt rps10-like tandem repeat family in the M. polymorpha clade is discussed.
Collapse
Affiliation(s)
- In-Su Choi
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | | | - Kelly P Steele
- Division of Science and Mathematics, Arizona State University, Mesa, AZ, 85212, USA
| | - Sarah G Hunter
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Tracey A Ruhlman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Robert K Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
- Centre of Excellence in Bionanoscience Research, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
17
|
Yu J, Xia M, Wang Y, Chi X, Xu H, Chen S, Zhang F. Short and long reads chloroplast genome assemblies and phylogenomics of Artemisia tangutica (Asteraceae). Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-021-00951-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
18
|
Lin Y, Li P, Zhang Y, Akhter D, Pan R, Fu Z, Huang M, Li X, Feng Y. Unprecedented organelle genomic variations in morning glories reveal independent evolutionary scenarios of parasitic plants and the diversification of plant mitochondrial complexes. BMC Biol 2022; 20:49. [PMID: 35172831 PMCID: PMC8851834 DOI: 10.1186/s12915-022-01250-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/08/2022] [Indexed: 01/01/2023] Open
Abstract
Background The morning glories (Convolvulaceae) are distributed worldwide and produce economically important crops, medicinal herbs, and ornamentals. Members of this family are diverse in morphological characteristics and trophic modes, including the leafless parasitic Cuscuta (dodders). Organelle genomes were generally used for studying plant phylogeny and genomic variations. Notably, plastomes in parasitic plants always show non-canonical features, such as reduced size and accelerated rates. However, few organelle genomes of this group have been sequenced, hindering our understanding of their evolution, and dodder mitogenome in particular. Results We assembled 22 new mitogenomes and 12 new plastomes in Convolvulaceae. Alongside previously known ones, we totally analyzed organelle genomes of 23 species in the family. Our sampling includes 16 leafy autotrophic species and 7 leafless parasitic dodders, covering 8 of the 12 tribes. Both the plastid and mitochondrial genomes of these plants have encountered variations that were rarely observed in other angiosperms. All of the plastomes possessed atypical IR boundaries. Besides the gene and IR losses in dodders, some leafy species also showed gene and intron losses, duplications, structural variations, and insertions of foreign DNAs. The phylogeny reconstructed by plastid protein coding sequences confirmed the previous relationship of the tribes. However, the monophyly of ‘Merremieae’ and the sister group of Cuscuta remained uncertain. The mitogenome was significantly inflated in Cuscuta japonica, which has exceeded over 800 kb and integrated massive DNAs from other species. In other dodders, mitogenomes were maintained in small size, revealing divergent evolutionary strategies. Mutations unique to plants were detected in the mitochondrial gene ccmFc, which has broken into three fragments through gene fission and splicing shift. The unusual changes likely initially happened to the common ancestor of the family and were caused by a foreign insertion from rosids followed by double-strand breaks and imprecise DNA repairs. The coding regions of ccmFc expanded at both sides after the fission, which may have altered the protein structure. Conclusions Our family-scale analyses uncovered unusual scenarios for both organelle genomes in Convolvulaceae, especially in parasitic plants. The data provided valuable genetic resources for studying the evolution of Convolvulaceae and plant parasitism. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01250-1.
Collapse
Affiliation(s)
- Yanxiang Lin
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Pan Li
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yuchan Zhang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Delara Akhter
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China.,Department of Genetics and Plant Breeding, Sylhet Agricultural University, Sylhet Division 3100, Sylhet, Bangladesh
| | - Ronghui Pan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Zhixi Fu
- College of Life Science, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Mingqing Huang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Xiaobo Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China.,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang, China
| | - Yanlei Feng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China. .,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang, China.
| |
Collapse
|
19
|
Traditional System Versus DNA Barcoding in Identification of Bamboo Species: A Systematic Review. Mol Biotechnol 2021; 63:651-675. [PMID: 34002354 DOI: 10.1007/s12033-021-00337-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
Bamboo, a gramineous plant belonging to the family Poaceae, comprises of 1575 species from 116 genera across the globe. It has the ability to grow and evolve on degraded land and hence, can be utilized in the various applications as an alternative for plastic and wood. DNA barcoding, a long genomic sequence, identifies barcode region which shows species-specific nucleotide differences. This technology is considered as advanced molecular technique utilized for characterization and classification of the various species by applying distinctive molecular markers. Recent investigations revealed the potential application of various barcode regions such as matK, rbcL, rpoB, rpoC1, psbA-trnH, and ITS2, in identification of many bamboo species from different genus. In this review we comprehensively discussed the relevance of DNA barcoding as a tool in classification/identification of various bamboo species. We highlighted the methodology, how this advance technology overcomes the challenges associated with traditional methods along with prospects for future research.
Collapse
|
20
|
Kim H, Kim J. Structural Mutations in the Organellar Genomes of Valeriana sambucifolia f. dageletiana (Nakai. ex Maekawa) Hara Show Dynamic Gene Transfer. Int J Mol Sci 2021; 22:ijms22073770. [PMID: 33916499 PMCID: PMC8038606 DOI: 10.3390/ijms22073770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/04/2021] [Accepted: 04/01/2021] [Indexed: 12/18/2022] Open
Abstract
Valeriana sambucifolia f. dageletiana (Nakai. ex Maekawa) Hara is a broad-leaved valerian endemic to Ulleung Island, a noted hot spot of endemism in Korea. However, despite its widespread pharmacological use, this plant remains comparatively understudied. Plant cells generally contain two types of organellar genomes (the plastome and the mitogenome) that have undergone independent evolution, which accordingly can provide valuable information for elucidating the phylogenetic relationships and evolutionary histories of terrestrial plants. Moreover, the extensive mega-data available for plant genomes, particularly those of plastomes, can enable researchers to gain an in-depth understanding of the transfer of genes between different types of genomes. In this study, we analyzed two organellar genomes (the 155,179 bp plastome and the 1,187,459 bp mitogenome) of V. sambucifolia f. dageletiana and detected extensive changes throughout the plastome sequence, including rapid structural mutations associated with inverted repeat (IR) contraction and genetic variation. We also described features characterizing the first reported mitogenome sequence obtained for a plant in the order Dipsacales and confirmed frequent gene transfer in this mitogenome. We identified eight non-plastome-originated regions (NPRs) distributed within the plastome of this endemic plant, for six of which there were no corresponding sequences in the current nucleotide sequence databases. Indeed, one of these unidentified NPRs unexpectedly showed certain similarities to sequences from bony fish. Although this is ostensibly difficult to explain, we suggest that this surprising association may conceivably reflect the occurrence of gene transfer from a bony fish to the plastome of an ancestor of V. sambucifolia f. dageletiana mediated by either fungi or bacteria.
Collapse
Affiliation(s)
- Hyoungtae Kim
- Institute of Agriculture Science and Technology, Chungbuk National University, Cheongju, Chungbuk 28644, Korea;
| | - Jungsung Kim
- Department of Forest Science, Chungbuk National University, Cheongju, Chungbuk 28644, Korea
- Correspondence: ; Tel.: +82-43-261-2535
| |
Collapse
|
21
|
Fu P, Sun S, Twyford AD, Li B, Zhou R, Chen S, Gao Q, Favre A. Lineage-specific plastid degradation in subtribe Gentianinae (Gentianaceae). Ecol Evol 2021; 11:3286-3299. [PMID: 33841784 PMCID: PMC8019047 DOI: 10.1002/ece3.7281] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 01/03/2023] Open
Abstract
The structure and sequence of plastid genomes is highly conserved across most land plants, except for a minority of lineages that show gene loss and genome degradation. Understanding the early stages of plastome degradation may provide crucial insights into the repeatability and predictability of genomic evolutionary trends. We investigated these trends in subtribe Gentianinae of the Gentianaceae, which encompasses ca. 450 species distributed around the world, particularly in alpine and subalpine environments. We sequenced, assembled, and annotated the plastomes of 41 species, representing all six genera in subtribe Gentianinae and all main sections of the species-rich genus Gentiana L. We reconstructed the phylogeny, estimated divergence times, investigated the phylogenetic distribution of putative gene losses, and related these to substitution rate shifts and species' habitats. We obtained a strongly supported topology consistent with earlier studies, with all six genera in Gentianinae recovered as monophyletic and all main sections of Gentiana having full support. While closely related species have very similar plastomes in terms of size and structure, independent gene losses, particularly of the ndh complex, have occurred in multiple clades across the phylogeny. Gene loss was usually associated with a shift in the boundaries of the small single-copy and inverted repeat regions. Substitution rates were variable between clades, with evidence for both elevated and decelerated rate shifts. Independent lineage-specific loss of ndh genes occurred at a wide range of times, from Eocene to Pliocene. Our study illustrates that diverse degradation patterns shape the evolution of the plastid in this species-rich plant group.
Collapse
Affiliation(s)
- Peng‐Cheng Fu
- School of Life ScienceLuoyang Normal UniversityLuoyangChina
| | - Shan‐Shan Sun
- School of Life ScienceLuoyang Normal UniversityLuoyangChina
| | - Alex D. Twyford
- Ashworth LaboratoriesInstitute of Evolutionary BiologyThe University of EdinburghEdinburghUK
- Royal Botanic Garden EdinburghEdinburghUK
| | - Bei‐Bei Li
- School of Life ScienceLuoyang Normal UniversityLuoyangChina
| | - Rui‐Qi Zhou
- School of Life ScienceLuoyang Normal UniversityLuoyangChina
| | - Shi‐Long Chen
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
- Qinghai Provincial Key Laboratory of Crop Molecular BreedingXiningChina
| | - Qing‐Bo Gao
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
- Qinghai Provincial Key Laboratory of Crop Molecular BreedingXiningChina
| | - Adrien Favre
- Senckenberg Research Institute and Natural History MuseumFrankfurt am MainGermany
| |
Collapse
|
22
|
Li L, Hu Y, He M, Zhang B, Wu W, Cai P, Huo D, Hong Y. Comparative chloroplast genomes: insights into the evolution of the chloroplast genome of Camellia sinensis and the phylogeny of Camellia. BMC Genomics 2021; 22:138. [PMID: 33637038 PMCID: PMC7912895 DOI: 10.1186/s12864-021-07427-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 02/05/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Chloroplast genome resources can provide useful information for the evolution of plant species. Tea plant (Camellia sinensis) is among the most economically valuable member of Camellia. Here, we determined the chloroplast genome of the first natural triploid Chinary type tea ('Wuyi narcissus' cultivar of Camellia sinensis var. sinensis, CWN) and conducted the genome comparison with the diploid Chinary type tea (Camellia sinensis var. sinensis, CSS) and two types of diploid Assamica type teas (Camellia sinensis var. assamica: Chinese Assamica type tea, CSA and Indian Assamica type tea, CIA). Further, the evolutionary mechanism of the chloroplast genome of Camellia sinensis and the relationships of Camellia species based on chloroplast genome were discussed. RESULTS Comparative analysis showed the evolutionary dynamics of chloroplast genome of Camellia sinensis were the repeats and insertion-deletions (indels), and distribution of the repeats, indels and substitutions were significantly correlated. Chinese tea and Indian tea had significant differences in the structural characteristic and the codon usage of the chloroplast genome. Analysis of sequence characterized amplified region (SCAR) using sequences of the intergenic spacers (trnE/trnT) showed none of 292 different Camellia sinensis cultivars had similar sequence characteristic to triploid CWN, but the other four Camellia species did. Estimations of the divergence time showed that CIA diverged from the common ancestor of two Assamica type teas about 6.2 Mya (CI: 4.4-8.1 Mya). CSS and CSA diverged to each other about 0.8 Mya (CI: 0.4-1.5 Mya). Moreover, phylogenetic clustering was not exactly consistent with the current taxonomy of Camellia. CONCLUSIONS The repeat-induced and indel-induced mutations were two important dynamics contributed to the diversification of the chloroplast genome in Camellia sinensis, which were not mutually exclusive. Chinese tea and Indian tea might have undergone different selection pressures. Chloroplast transfer occurred during the polyploid evolution in Camellia sinensis. In addition, our results supported the three different domestication origins of Chinary type tea, Chinese Assamica type tea and Indian Assamica type tea. And, the current classification of some Camellia species might need to be further discussed.
Collapse
Affiliation(s)
- Li Li
- College of Tea and Food Science, Wuyi University, 358# Baihua Road, Wuyishan, 354300, China.
| | - Yunfei Hu
- College of Tea and Food Science, Wuyi University, 358# Baihua Road, Wuyishan, 354300, China
| | - Min He
- College of Tea and Food Science, Wuyi University, 358# Baihua Road, Wuyishan, 354300, China
| | - Bo Zhang
- College of Tea and Food Science, Wuyi University, 358# Baihua Road, Wuyishan, 354300, China
| | - Wei Wu
- College of Mathematics and Computer Science, Wuyi University, 358# Baihua Road, Wuyishan, 354300, China
| | - Pumo Cai
- College of Tea and Food Science, Wuyi University, 358# Baihua Road, Wuyishan, 354300, China
| | - Da Huo
- College of Tea and Food Science, Wuyi University, 358# Baihua Road, Wuyishan, 354300, China
| | - Yongcong Hong
- College of Tea and Food Science, Wuyi University, 358# Baihua Road, Wuyishan, 354300, China.
| |
Collapse
|
23
|
Comparative analysis of nuclear, chloroplast, and mitochondrial genomes of watermelon and melon provides evidence of gene transfer. Sci Rep 2021; 11:1595. [PMID: 33452307 PMCID: PMC7811005 DOI: 10.1038/s41598-020-80149-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/17/2020] [Indexed: 11/08/2022] Open
Abstract
During plant evolution, there is genetic communication between organelle and nuclear genomes. A comparative analysis was performed on the organelle and nuclear genomes of the watermelon and melon. In the watermelon, chloroplast-derived sequences accounted for 7.6% of the total length of the mitochondrial genome. In the melon, chloroplast-derived sequences accounted for approximately 2.73% of the total mitochondrial genome. In watermelon and melon, the chloroplast-derived small-fragment sequences are either a subset of large-fragment sequences or appeared multiple times in the mitochondrial genome, indicating that these fragments may have undergone multiple independent migration integrations or emerged in the mitochondrial genome after migration, replication, and reorganization. There was no evidence of migration from the mitochondria to chloroplast genome. A sequence with a total length of about 73 kb (47%) in the watermelon chloroplast genome was homologous to a sequence of about 313 kb in the nuclear genome. About 33% of sequences in the watermelon mitochondrial genome was homologous with a 260 kb sequence in the nuclear genome. A sequence with a total length of about 38 kb (25%) in the melon chloroplast genome was homologous with 461 sequences in the nuclear genome, with a total length of about 301 kb. A 3.4 Mb sequence in the nuclear genome was homologous with a melon mitochondrial sequence. These results indicate that, during the evolution of watermelon and melon, a large amount of genetic material was exchanged between the nuclear genome and the two organelle genomes in the cytoplasm.
Collapse
|
24
|
Abstract
The plastid genome (plastome ) has proved a valuable source of data for evaluating evolutionary relationships among angiosperms. Through basic and applied approaches, plastid transformation technology offers the potential to understand and improve plant productivity, providing food, fiber, energy, and medicines to meet the needs of a burgeoning global population. The growing genomic resources available to both phylogenetic and biotechnological investigations is allowing novel insights and expanding the scope of plastome research to encompass new species. In this chapter, we present an overview of some of the seminal and contemporary research that has contributed to our current understanding of plastome evolution and attempt to highlight the relationship between evolutionary mechanisms and the tools of plastid genetic engineering.
Collapse
Affiliation(s)
- Tracey A Ruhlman
- Integrative Biology, University of Texas at Austin, Austin, TX, USA.
| | - Robert K Jansen
- Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
25
|
Putintseva YA, Bondar EI, Simonov EP, Sharov VV, Oreshkova NV, Kuzmin DA, Konstantinov YM, Shmakov VN, Belkov VI, Sadovsky MG, Keech O, Krutovsky KV. Siberian larch (Larix sibirica Ledeb.) mitochondrial genome assembled using both short and long nucleotide sequence reads is currently the largest known mitogenome. BMC Genomics 2020; 21:654. [PMID: 32972367 PMCID: PMC7517811 DOI: 10.1186/s12864-020-07061-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/10/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Plant mitochondrial genomes (mitogenomes) can be structurally complex while their size can vary from ~ 222 Kbp in Brassica napus to 11.3 Mbp in Silene conica. To date, in comparison with the number of plant species, only a few plant mitogenomes have been sequenced and released, particularly for conifers (the Pinaceae family). Conifers cover an ancient group of land plants that includes about 600 species, and which are of great ecological and economical value. Among them, Siberian larch (Larix sibirica Ledeb.) represents one of the keystone species in Siberian boreal forests. Yet, despite its importance for evolutionary and population studies, the mitogenome of Siberian larch has not yet been assembled and studied. RESULTS Two sources of DNA sequences were used to search for mitochondrial DNA (mtDNA) sequences: mtDNA enriched samples and nucleotide reads generated in the de novo whole genome sequencing project, respectively. The assembly of the Siberian larch mitogenome contained nine contigs, with the shortest and the largest contigs being 24,767 bp and 4,008,762 bp, respectively. The total size of the genome was estimated at 11.7 Mbp. In total, 40 protein-coding, 34 tRNA, and 3 rRNA genes and numerous repetitive elements (REs) were annotated in this mitogenome. In total, 864 C-to-U RNA editing sites were found for 38 out of 40 protein-coding genes. The immense size of this genome, currently the largest reported, can be partly explained by variable numbers of mobile genetic elements, and introns, but unlikely by plasmid-related sequences. We found few plasmid-like insertions representing only 0.11% of the entire Siberian larch mitogenome. CONCLUSIONS Our study showed that the size of the Siberian larch mitogenome is much larger than in other so far studied Gymnosperms, and in the same range as for the annual flowering plant Silene conica (11.3 Mbp). Similar to other species, the Siberian larch mitogenome contains relatively few genes, and despite its huge size, the repeated and low complexity regions cover only 14.46% of the mitogenome sequence.
Collapse
Affiliation(s)
- Yuliya A Putintseva
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, 660036, Russia
| | - Eugeniya I Bondar
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, 660036, Russia
- Laboratory of Genomic Research and Biotechnology, Federal Research Center "Krasnoyarsk Science Center", Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036, Russia
| | - Evgeniy P Simonov
- Institute of Environmental and Agricultural Biology (X-BIO), University of Tyumen, Tyumen, 625003, Russia
| | - Vadim V Sharov
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, 660036, Russia
- Laboratory of Genomic Research and Biotechnology, Federal Research Center "Krasnoyarsk Science Center", Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036, Russia
- Department of High Performance Computing, Institute of Space and Information Technologies, Siberian Federal University, Krasnoyarsk, 660074, Russia
| | - Natalya V Oreshkova
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, 660036, Russia
- Laboratory of Genomic Research and Biotechnology, Federal Research Center "Krasnoyarsk Science Center", Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036, Russia
- Laboratory of Forest Genetics and Selection, V. N. Sukachev Institute of Forest, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036, Russia
| | - Dmitry A Kuzmin
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, 660036, Russia
- Department of High Performance Computing, Institute of Space and Information Technologies, Siberian Federal University, Krasnoyarsk, 660074, Russia
| | - Yuri M Konstantinov
- Laboratory of Plant Genetic Engineering, Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences, Irkutsk, 664033, Russia
| | - Vladimir N Shmakov
- Laboratory of Plant Genetic Engineering, Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences, Irkutsk, 664033, Russia
| | - Vadim I Belkov
- Laboratory of Plant Genetic Engineering, Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences, Irkutsk, 664033, Russia
| | - Michael G Sadovsky
- Institute of Computational Modeling, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036, Russia
| | - Olivier Keech
- Department of Plant Physiology, UPSC, Umeå University, S-90187, Umeå, Sweden
| | - Konstantin V Krutovsky
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, 660036, Russia.
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, 37077, Göttingen, Germany.
- Center for Integrated Breeding Research, George-August University of Göttingen, 37075, Göttingen, Germany.
- Laboratory of Population Genetics, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia.
- Department of Ecosystem Science and Management, Texas A&M University, College Station, TX, 77843-2138, USA.
| |
Collapse
|
26
|
Jin JJ, Yu WB, Yang JB, Song Y, dePamphilis CW, Yi TS, Li DZ. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol 2020; 21:241. [PMID: 32912315 PMCID: PMC7488116 DOI: 10.1186/s13059-020-02154-5] [Citation(s) in RCA: 1793] [Impact Index Per Article: 358.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022] Open
Abstract
GetOrganelle is a state-of-the-art toolkit to accurately assemble organelle genomes from whole genome sequencing data. It recruits organelle-associated reads using a modified "baiting and iterative mapping" approach, conducts de novo assembly, filters and disentangles the assembly graph, and produces all possible configurations of circular organelle genomes. For 50 published plant datasets, we are able to reassemble the circular plastomes from 47 datasets using GetOrganelle. GetOrganelle assemblies are more accurate than published and/or NOVOPlasty-reassembled plastomes as assessed by mapping. We also assemble complete mitochondrial genomes using GetOrganelle. GetOrganelle is freely released under a GPL-3 license ( https://github.com/Kinggerm/GetOrganelle ).
Collapse
Affiliation(s)
- Jian-Jun Jin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Wen-Bin Yu
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Yu Song
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar
| | - Claude W dePamphilis
- Department of Biology, The Pennsylvania State University, University Park, PA, 16801, USA
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
| |
Collapse
|
27
|
Jin JJ, Yu WB, Yang JB, Song Y, dePamphilis CW, Yi TS, Li DZ. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol 2020. [PMID: 32912315 DOI: 10.1101/256479] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
GetOrganelle is a state-of-the-art toolkit to accurately assemble organelle genomes from whole genome sequencing data. It recruits organelle-associated reads using a modified "baiting and iterative mapping" approach, conducts de novo assembly, filters and disentangles the assembly graph, and produces all possible configurations of circular organelle genomes. For 50 published plant datasets, we are able to reassemble the circular plastomes from 47 datasets using GetOrganelle. GetOrganelle assemblies are more accurate than published and/or NOVOPlasty-reassembled plastomes as assessed by mapping. We also assemble complete mitochondrial genomes using GetOrganelle. GetOrganelle is freely released under a GPL-3 license ( https://github.com/Kinggerm/GetOrganelle ).
Collapse
Affiliation(s)
- Jian-Jun Jin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Wen-Bin Yu
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Yu Song
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar
| | - Claude W dePamphilis
- Department of Biology, The Pennsylvania State University, University Park, PA, 16801, USA
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
| |
Collapse
|
28
|
Sharpe RM, Williamson-Benavides B, Edwards GE, Dhingra A. Methods of analysis of chloroplast genomes of C 3, Kranz type C 4 and Single Cell C 4 photosynthetic members of Chenopodiaceae. PLANT METHODS 2020; 16:119. [PMID: 32874195 PMCID: PMC7457496 DOI: 10.1186/s13007-020-00662-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Chloroplast genome information is critical to understanding forms of photosynthesis in the plant kingdom. During the evolutionary process, plants have developed different photosynthetic strategies that are accompanied by complementary biochemical and anatomical features. Members of family Chenopodiaceae have species with C3 photosynthesis, and variations of C4 photosynthesis in which photorespiration is reduced by concentrating CO2 around Rubisco through dual coordinated functioning of dimorphic chloroplasts. Among dicots, the family has the largest number of C4 species, and greatest structural and biochemical diversity in forms of C4 including the canonical dual-cell Kranz anatomy, and the recently identified single cell C4 with the presence of dimorphic chloroplasts separated by a vacuole. This is the first comparative analysis of chloroplast genomes in species representative of photosynthetic types in the family. RESULTS Methodology with high throughput sequencing complemented with Sanger sequencing of selected loci provided high quality and complete chloroplast genomes of seven species in the family and one species in the closely related Amaranthaceae family, representing C3, Kranz type C4 and single cell C4 (SSC4) photosynthesis six of the eight chloroplast genomes are new, while two are improved versions of previously published genomes. The depth of coverage obtained using high-throughput sequencing complemented with targeted resequencing of certain loci enabled superior resolution of the border junctions, directionality and repeat region sequences. Comparison of the chloroplast genomes with previously sequenced plastid genomes revealed similar genome organization, gene order and content with a few revisions. High-quality complete chloroplast genome sequences resulted in correcting the orientation the LSC region of the published Bienertia sinuspersici chloroplast genome, identification of stop codons in the rpl23 gene in B. sinuspersici and B. cycloptera, and identifying an instance of IR expansion in the Haloxylon ammodendron inverted repeat sequence. The rare observation of a mitochondria-to-chloroplast inter-organellar gene transfer event was identified in family Chenopodiaceae. CONCLUSIONS This study reports complete chloroplast genomes from seven Chenopodiaceae and one Amaranthaceae species. The depth of coverage obtained using high-throughput sequencing complemented with targeted resequencing of certain loci enabled superior resolution of the border junctions, directionality, and repeat region sequences. Therefore, the use of high throughput and Sanger sequencing, in a hybrid method, reaffirms to be rapid, efficient, and reliable for chloroplast genome sequencing.
Collapse
Affiliation(s)
- Richard M. Sharpe
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| | - Bruce Williamson-Benavides
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
- Molecular Plants Sciences, Washington State University, Pullman, WA 99164 USA
| | - Gerald E. Edwards
- Molecular Plants Sciences, Washington State University, Pullman, WA 99164 USA
- School of Biological Sciences, Washington State University, Pullman, WA 99164 USA
| | - Amit Dhingra
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
- Molecular Plants Sciences, Washington State University, Pullman, WA 99164 USA
| |
Collapse
|
29
|
Zhang TT, Liu H, Gao QY, Yang T, Liu JN, Ma XF, Li ZH. Gene transfer and nucleotide sequence evolution by Gossypium cytoplasmic genomes indicates novel evolutionary characteristics. PLANT CELL REPORTS 2020; 39:765-777. [PMID: 32215683 DOI: 10.1007/s00299-020-02529-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
The DNA fragments transferred among cotton cytoplasmic genomes are highly differentiated. The wild D group cotton species have undergone much greater evolution compared with cultivated AD group. Cotton (Gossypium spp.) is one of the most economically important fiber crops worldwide. Gene transfer, nucleotide evolution, and the codon usage preferences in cytoplasmic genomes are important evolutionary characteristics of high plants. In this study, we analyzed the nucleotide sequence evolution, codon usage, and transfer of cytoplasmic DNA fragments in Gossypium chloroplast (cp) and mitochondrial (mt) genomes, including the A genome group, wild D group, and cultivated AD group of cotton species. Our analyses indicated that the differences in the length of transferred cytoplasmic DNA fragments were not significant in mitochondrial and chloroplast sequences. Analysis of the transfer of tRNAs found that trnQ and nine other tRNA genes were commonly transferred between two different cytoplasmic genomes. The Codon Adaptation Index values showed that Gossypium cp genomes prefer A/T-ending codons. Codon preference selection was higher in the D group than the other two groups. Nucleotide sequence evolution analysis showed that intergenic spacer sequences were more variable than coding regions and nonsynonymous mutations were clearly more common in cp genomes than mt genomes. Evolutionary analysis showed that the substitution rate was much higher in cp genomes than mt genomes. Interestingly, the D group cotton species have undergone much faster evolution compared with cultivated AD groups, possibly due to the selection and domestication of diverse cotton species. Our results demonstrate that gene transfer and differential nucleotide sequence evolution have occurred frequently in cotton cytoplasmic genomes.
Collapse
Affiliation(s)
- Ting-Ting Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Heng Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Qi-Yuan Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Ting Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jian-Ni Liu
- State Key Laboratory of Continental Dynamics, Department of Geology, Early Life Institute, Northwest University, Xi'an, 710069, China
| | - Xiong-Feng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China.
- State Key Laboratory of Continental Dynamics, Department of Geology, Early Life Institute, Northwest University, Xi'an, 710069, China.
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
30
|
ddRAD analyses reveal a credible phylogenetic relationship of the four main genera of Bambusa-Dendrocalamus-Gigantochloa complex (Poaceae: Bambusoideae). Mol Phylogenet Evol 2020; 146:106758. [DOI: 10.1016/j.ympev.2020.106758] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 11/19/2022]
|
31
|
Zhang GJ, Dong R, Lan LN, Li SF, Gao WJ, Niu HX. Nuclear Integrants of Organellar DNA Contribute to Genome Structure and Evolution in Plants. Int J Mol Sci 2020; 21:ijms21030707. [PMID: 31973163 PMCID: PMC7037861 DOI: 10.3390/ijms21030707] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 11/16/2022] Open
Abstract
The transfer of genetic material from the mitochondria and plastid to the nucleus gives rise to nuclear integrants of mitochondrial DNA (NUMTs) and nuclear integrants of plastid DNA (NUPTs). This frequently occurring DNA transfer is ongoing and has important evolutionary implications. In this review, based on previous studies and the analysis of NUMT/NUPT insertions of more than 200 sequenced plant genomes, we analyzed and summarized the general features of NUMTs/NUPTs and highlighted the genetic consequence of organellar DNA insertions. The statistics of organellar DNA integrants among various plant genomes revealed that organellar DNA-derived sequence content is positively correlated with the nuclear genome size. After integration, the nuclear organellar DNA could undergo different fates, including elimination, mutation, rearrangement, fragmentation, and proliferation. The integrated organellar DNAs play important roles in increasing genetic diversity, promoting gene and genome evolution, and are involved in sex chromosome evolution in dioecious plants. The integrating mechanisms, involving non-homologous end joining at double-strand breaks were also discussed.
Collapse
Affiliation(s)
- Guo-Jun Zhang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (G.-J.Z.); (R.D.); (L.-N.L.); (S.-F.L.)
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Ran Dong
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (G.-J.Z.); (R.D.); (L.-N.L.); (S.-F.L.)
| | - Li-Na Lan
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (G.-J.Z.); (R.D.); (L.-N.L.); (S.-F.L.)
| | - Shu-Fen Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (G.-J.Z.); (R.D.); (L.-N.L.); (S.-F.L.)
| | - Wu-Jun Gao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (G.-J.Z.); (R.D.); (L.-N.L.); (S.-F.L.)
- Correspondence: (W.-J.G.); (H.-X.N.)
| | - Hong-Xing Niu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (G.-J.Z.); (R.D.); (L.-N.L.); (S.-F.L.)
- Correspondence: (W.-J.G.); (H.-X.N.)
| |
Collapse
|
32
|
Forgione I, Bonavita S, Regina TMR. Mitochondria of Cedrus atlantica and allied species: A new chapter in the horizontal gene transfer history. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:93-101. [PMID: 30824066 DOI: 10.1016/j.plantsci.2019.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 12/30/2018] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
The extraordinary incidence of Horizontal Gene Transfer (HGT) mostly in mitochondrial genomes of flowering plants is well known. Here, we report another episode of HGT affecting a large mitochondrial gene region in the evergreen conifer Atlas cedar (Cedrus atlantica). Mitochondria of this Pinaceae species possess an rps3 gene that harbours two introns and shares the same genomic context with a downstream overlapping rpl16 gene, like in the major groups of gymnosperms and angiosperms analyzed so far. Interestingly, C. atlantica contains additional copies of the rps3 and rpl16 sequences that are more closely related to angiosperm counterparts than to those from gymnosperms, as also confirmed by phylogenetic analyses. This suggests that a lateral transfer from a flowering plant donor is the most likely mechanism for the origin of the Atlas cedar extra sequences. Quantitative PCR and reverse-transcription (RT)-PCR analyses demonstrate, respectively, mitochondrial location and lack of expression for the rps3 and rpl16 additional sequences in C. atlantica. Furthermore, our study provides evidence that a similar HGT event takes place in two other Cedrus species, which occurr in Cyprus and North Africa. Only the West Himalayan C. deodara lacks the transferred genes. The potential donor and the molecular mechanism underlying this lateral DNA transfer remain still unclear.
Collapse
Affiliation(s)
- Ivano Forgione
- Dipartimento di Biologia, Ecologia e Scienze della Terra (DiBEST), Università della Calabria, via Ponte P. Bucci, 87036, Arcavacata di Rende, Cosenza, Italy
| | - Savino Bonavita
- Dipartimento di Biologia, Ecologia e Scienze della Terra (DiBEST), Università della Calabria, via Ponte P. Bucci, 87036, Arcavacata di Rende, Cosenza, Italy
| | - Teresa Maria Rosaria Regina
- Dipartimento di Biologia, Ecologia e Scienze della Terra (DiBEST), Università della Calabria, via Ponte P. Bucci, 87036, Arcavacata di Rende, Cosenza, Italy.
| |
Collapse
|
33
|
Raman G, Park S, Lee EM, Park S. Evidence of mitochondrial DNA in the chloroplast genome of Convallaria keiskei and its subsequent evolution in the Asparagales. Sci Rep 2019; 9:5028. [PMID: 30903007 PMCID: PMC6430787 DOI: 10.1038/s41598-019-41377-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 03/07/2019] [Indexed: 11/10/2022] Open
Abstract
DNA transfer between internal organelles such as the nucleus, mitochondrion, and plastid is a well-known phenomenon in plant evolution, and DNA transfer from the plastid and mitochondrion to the nucleus, from the plastid to the mitochondrion, and from the nucleus to the mitochondrion has been well-documented in angiosperms. However, evidence of the transfer of mitochondrial DNA (mtDNA) to the plastid has only been found in three dicotyledons and one monocotyledon. In the present study, we characterised and analysed two chloroplast (cp) genome sequences of Convallaria keiskei and Liriope spicata, and found that C. keiskei has the largest cp genome (162,109 bp) in the Asparagaceae. Interestingly, C. keiskei had a ~3.3-kb segment of mtDNA in its cp genome and showed similarity with the mt gene rpl10 as a pseudogene. Further analyses revealed that mtDNA transfer only occurred in C. keiskei in the Nolinoideae, which diverged very recently (7.68 million years ago (mya); 95% highest posterior density (HPD): 14.55–2.97 mya). These findings indicate that the C. keiskei cp genome is unique amongst monocotyledon land plants, but further work is necessary to understand the direction and mechanism involved in the uptake of mtDNA by the plastid genome of C. keiskei.
Collapse
Affiliation(s)
- Gurusamy Raman
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk, Republic of Korea
| | - Seongjun Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk, Republic of Korea
| | - Eun Mi Lee
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk, Republic of Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk, Republic of Korea.
| |
Collapse
|
34
|
Kim JI, Shin H, Škaloud P, Jung J, Yoon HS, Archibald JM, Shin W. Comparative plastid genomics of Synurophyceae: inverted repeat dynamics and gene content variation. BMC Evol Biol 2019; 19:20. [PMID: 30634905 PMCID: PMC6330437 DOI: 10.1186/s12862-018-1316-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 12/04/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Synurophyceae is one of most important photosynthetic stramenopile algal lineages in freshwater ecosystems. They are characterized by siliceous scales covering the cell or colony surface and possess plastids of red-algal secondary or tertiary endosymbiotic origin. Despite their ecological and evolutionary significance, the relationships amongst extant Synurophyceae are unclear, as is their relationship to most other stramenopiles. RESULTS Here we report a comparative analysis of plastid genomes sequenced from five representative synurophycean algae. Most of these plastid genomes are highly conserved with respect to genome structure and coding capacity, with the exception of gene re-arrangements and partial duplications at the boundary of the inverted repeat and single-copy regions. Several lineage-specific gene loss/gain events and intron insertions were detected (e.g., cemA, dnaB, syfB, and trnL). CONCLUSIONS Unexpectedly, the cemA gene of Synurophyceae shows a strong relationship with sequences from members of the green-algal lineage, suggesting the occurrence of a lateral gene transfer event. Using a molecular clock approach based on silica fossil record data, we infer the timing of genome re-arrangement and gene gain/loss events in the plastid genomes of Synurophyceae.
Collapse
Affiliation(s)
- Jong Im Kim
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea
| | - Hyunmoon Shin
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea
| | - Pavel Škaloud
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-12800, Prague 2, Czech Republic
| | - Jaehee Jung
- Department of General Education, Hongik University, Seoul, 04066, South Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, South Korea
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Woongghi Shin
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea.
| |
Collapse
|
35
|
Wang W, Schalamun M, Morales-Suarez A, Kainer D, Schwessinger B, Lanfear R. Assembly of chloroplast genomes with long- and short-read data: a comparison of approaches using Eucalyptus pauciflora as a test case. BMC Genomics 2018; 19:977. [PMID: 30594129 PMCID: PMC6311037 DOI: 10.1186/s12864-018-5348-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 12/03/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Chloroplasts are organelles that conduct photosynthesis in plant and algal cells. The information chloroplast genome contained is widely used in agriculture and studies of evolution and ecology. Correctly assembling chloroplast genomes can be challenging because the chloroplast genome contains a pair of long inverted repeats (10-30 kb). Typically, it is simply assumed that the gross structure of the chloroplast genome matches the most commonly observed structure of two single-copy regions separated by a pair of inverted repeats. The advent of long-read sequencing technologies should remove the need to make this assumption by providing sufficient information to completely span the inverted repeat regions. Yet, long-reads tend to have higher error rates than short-reads, and relatively little is known about the best way to combine long- and short-reads to obtain the most accurate chloroplast genome assemblies. Using Eucalyptus pauciflora, the snow gum, as a test case, we evaluated the effect of multiple parameters, such as different coverage of long-(Oxford nanopore) and short-(Illumina) reads, different long-read lengths, different assembly pipelines, with a view to determining the most accurate and efficient approach to chloroplast genome assembly. RESULTS Hybrid assemblies combining at least 20x coverage of both long-reads and short-reads generated a single contig spanning the entire chloroplast genome with few or no detectable errors. Short-read-only assemblies generated three contigs (the long single copy, short single copy and inverted repeat regions) of the chloroplast genome. These contigs contained few single-base errors but tended to exclude several bases at the beginning or end of each contig. Long-read-only assemblies tended to create multiple contigs with a much higher single-base error rate. The chloroplast genome of Eucalyptus pauciflora is 159,942 bp, contains 131 genes of known function. CONCLUSIONS Our results suggest that very accurate assemblies of chloroplast genomes can be achieved using a combination of at least 20x coverage of long- and short-reads respectively, provided that the long-reads contain at least ~5x coverage of reads longer than the inverted repeat region. We show that further increases in coverage give little or no improvement in accuracy, and that hybrid assemblies are more accurate than long-read-only or short-read-only assemblies.
Collapse
Affiliation(s)
- Weiwen Wang
- Research School of Biology, Australian National University, Canberra, Australia.
| | - Miriam Schalamun
- Research School of Biology, Australian National University, Canberra, Australia.,Institute of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - David Kainer
- Research School of Biology, Australian National University, Canberra, Australia
| | | | - Robert Lanfear
- Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
36
|
Yang JB, Dong YR, Wong KM, Gu ZJ, Yang HQ, Li DZ. Genetic structure and differentiation in Dendrocalamus sinicus (Poaceae: Bambusoideae) populations provide insight into evolutionary history and speciation of woody bamboos. Sci Rep 2018; 8:16933. [PMID: 30446690 PMCID: PMC6240087 DOI: 10.1038/s41598-018-35269-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 11/02/2018] [Indexed: 12/14/2022] Open
Abstract
Evolutionary processes, speciation in woody bamboos are presently little understood. Here we used Dendrocalamus sinicus Chia & J.L. Sun as a model species to investigate dispersal or vicariance speciation in woody bamboos. Variation in three chloroplast DNA (cpDNA) fragments and eight simple sequence repeat markers (SSR) among 232 individuals sampled from 18 populations across the known geographic range of D. sinicus was surveyed. D. sinicus populations exhibited a high level of genetic differentiation which divided them into two groups that are consistent with different culm types. Eleven haplotypes and two lineages (Straight-culm and Sinuous-culm lineages) were identified from phylogenetic analyses, and a strong phylogeographic structure across the distribution range was found. The demographic and spatial expansion times of the Straight-culm lineage were calculated as 11.3 Kya and 20.8 Kya, respectively. The populations of D. sinicus had experienced dispersal and long-term isolation, although this trace was diluted by contemporary gene flow revealed by SSR data. Our results provide an phylogeographic insight to better understand the speciation processes of woody bamboos.
Collapse
Affiliation(s)
- Jun Bo Yang
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, Yunnan, 650233, China.,Germplasm Bank of Wild Species, Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Yu Ran Dong
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, Yunnan, 650233, China
| | - Khoon Meng Wong
- Singapore Botanic Gardens, 1 Cluny Road, Singapore, 259569, Republic of Singapore
| | - Zhi Jia Gu
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, Yunnan, 650233, China.,Germplasm Bank of Wild Species, Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Han Qi Yang
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, Yunnan, 650233, China.
| | - De Zhu Li
- Germplasm Bank of Wild Species, Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China.
| |
Collapse
|
37
|
Kim HT, Kim KJ. Evolution of six novel ORFs in the plastome of Mankyua chejuense and phylogeny of eusporangiate ferns. Sci Rep 2018; 8:16466. [PMID: 30405200 PMCID: PMC6220310 DOI: 10.1038/s41598-018-34825-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/26/2018] [Indexed: 11/17/2022] Open
Abstract
In this paper, three plastomes of Mankyua chejuense, Helminthostachys zeylanica, and Botrychium ternatum in Ophioglossaceae were completely sequenced in order to investigate the plastome evolution and phylogeny of eusporangiate ferns. They were similar to each other in terms of length and the gene orders; however, six unknown open reading frames (ORFs) were found between rps4 and trnL-UAA genes in M. chejuense. Similar sequence regions of six ORFs of M. chejuense were found at the plastomes of Ophioglossum californicum and H. zeylanica, as well as the mitochondrial genome (mitogenome) of H. zeylanica, but not in B. ternatum. Interestingly, the translated amino acid sequences of three ORFs were more similar to the proteins of distantly related taxa such as algae and bacteria than they were to proteins in land plants. It is likely that the six ORFs region arose from endosymbiotic gene transfer (EGT) or horizontal gene transfer (HGT), but further study is needed to verify this. Phylogenetic analyses suggested that Mankyua was resolved as the earliest diverging lineage and that Ophioglossum was subsequently diverged in Ophioglossaceae. This result supports why the plastome of M. chejuense have contained the most ancestral six ORFs in the family.
Collapse
Affiliation(s)
- Hyoung Tae Kim
- Division of Life Sciences, School of Life Sciences, Korea University, Seoul, 02841, Korea
- Institute of Agricultural Science and Technology, Chungbuk National University, Chengju, 41566, Korea
| | - Ki-Joong Kim
- Division of Life Sciences, School of Life Sciences, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
38
|
Portugez S, Martin WF, Hazkani-Covo E. Mosaic mitochondrial-plastid insertions into the nuclear genome show evidence of both non-homologous end joining and homologous recombination. BMC Evol Biol 2018; 18:162. [PMID: 30390623 PMCID: PMC6215612 DOI: 10.1186/s12862-018-1279-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/18/2018] [Indexed: 02/06/2023] Open
Abstract
Background Mitochondrial and plastid DNA fragments are continuously transferred into eukaryotic nuclear genomes, giving rise to nuclear copies of mitochondrial DNA (numts) and nuclear copies of plastid DNA (nupts). Numts and nupts are classified as simple if they are composed of a single organelle fragment or as complex if they are composed of multiple fragments. Mosaic insertions are complex insertions composed of fragments of both mitochondrial and plastid DNA. Simple numts and nupts in eukaryotes have been extensively studied, their mechanism of insertion involves non-homologous end joining (NHEJ). Mosaic insertions have been less well-studied and their mechanisms of integration are unknown. Results Here we estimated the number of nuclear mosaic insertions (numins) in nine plant genomes. We show that numins compose up to 10% of the total nuclear insertions of organelle DNA in these plant genomes. The NHEJ hallmarks typical for numts and nupts were also identified in mosaic insertions. However, the number of identified insertions that integrated via NHEJ mechanism is underestimated, as NHEJ signatures are conserved only in recent insertions and mutationally eroded in older ones. A few complex insertions show signatures of long homology that cannot be attributed to NHEJ, a novel observation that implicates gene conversion or single strand annealing mechanisms in organelle nuclear insertions. Conclusions The common NHEJ signature that was identified here reveals that, in plant cells, mitochondria and plastid fragments in numins must meet during or prior to integration into the nuclear genome. Electronic supplementary material The online version of this article (10.1186/s12862-018-1279-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shir Portugez
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, Israel.,School of Molecular Cell Biology & Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - William F Martin
- Institute of Molecular Evolution, Heinrich-Heine University, Düsseldorf, Germany
| | - Einat Hazkani-Covo
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, Israel.
| |
Collapse
|
39
|
Guo X, Thomas DC, Saunders RM. Gene tree discordance and coalescent methods support ancient intergeneric hybridisation between Dasymaschalon and Friesodielsia (Annonaceae). Mol Phylogenet Evol 2018; 127:14-29. [DOI: 10.1016/j.ympev.2018.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 03/23/2018] [Accepted: 04/09/2018] [Indexed: 01/10/2023]
|
40
|
Robison TA, Grusz AL, Wolf PG, Mower JP, Fauskee BD, Sosa K, Schuettpelz E. Mobile Elements Shape Plastome Evolution in Ferns. Genome Biol Evol 2018; 10:2558-2571. [PMID: 30165616 PMCID: PMC6166771 DOI: 10.1093/gbe/evy189] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2018] [Indexed: 12/22/2022] Open
Abstract
Plastid genomes display remarkable organizational stability over evolutionary time. From green algae to angiosperms, most plastid genomes are largely collinear, with only a few cases of inversion, gene loss, or, in extremely rare cases, gene addition. These plastome insertions are mostly clade-specific and are typically of nuclear or mitochondrial origin. Here, we expand on these findings and present the first family-level survey of plastome evolution in ferns, revealing a novel suite of dynamic mobile elements. Comparative plastome analyses of the Pteridaceae expose several mobile open reading frames that vary in sequence length, insertion site, and configuration among sampled taxa. Even between close relatives, the presence and location of these elements is widely variable when viewed in a phylogenetic context. We characterize these elements and refer to them collectively as Mobile Open Reading Frames in Fern Organelles (MORFFO). We further note that the presence of MORFFO is not restricted to Pteridaceae, but is found across ferns and other plant clades. MORFFO elements are regularly associated with inversions, intergenic expansions, and changes to the inverted repeats. They likewise appear to be present in mitochondrial and nuclear genomes of ferns, indicating that they can move between genomic compartments with relative ease. The origins and functions of these mobile elements are unknown, but MORFFO appears to be a major driver of structural genome evolution in the plastomes of ferns, and possibly other groups of plants.
Collapse
Affiliation(s)
| | - Amanda L Grusz
- Department of Biology, University of Minnesota Duluth
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, District of Colombia
| | - Paul G Wolf
- Department of Biology, Utah State University
| | - Jeffrey P Mower
- Department of Agronomy, Center for Plant Science Innovation, University of Nebraska
| | | | | | - Eric Schuettpelz
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, District of Colombia
| |
Collapse
|
41
|
Kim HT, Lee JM. Organellar genome analysis reveals endosymbiotic gene transfers in tomato. PLoS One 2018; 13:e0202279. [PMID: 30183712 PMCID: PMC6124701 DOI: 10.1371/journal.pone.0202279] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/31/2018] [Indexed: 01/13/2023] Open
Abstract
We assembled three complete mitochondrial genomes (mitogenomes), two of Solanum lycopersicum and one of Solanum pennellii, and analyzed their intra- and interspecific variations. The mitogenomes were 423,596-446,257 bp in length. Despite numerous rearrangements between the S. lycopersicum and S. pennellii mitogenomes, over 97% of the mitogenomes were similar to each other. These mitogenomes were compared with plastid and nuclear genomes to investigate genetic material transfers among DNA-containing organelles in tomato. In all mitogenomes, 9,598 bp of plastome sequences were found. Numerous nuclear copies of mitochondrial DNA (NUMTs) and plastid DNA (NUPTs) were observed in the S. lycopersicum and S. pennellii nuclear genomes. Several long organellar DNA fragments were tightly clustered in the nuclear genome; however, the NUMT and NUPT locations differed between the two species. Our results demonstrate the recent occurrence of frequent endosymbiotic gene transfers in tomato genomes.
Collapse
Affiliation(s)
- Hyoung Tae Kim
- Department of Horticultural Science, Kyungpook National University, Daegu, Korea
| | - Je Min Lee
- Department of Horticultural Science, Kyungpook National University, Daegu, Korea
| |
Collapse
|
42
|
Burke SV, Ungerer MC, Duvall MR. Investigation of mitochondrial-derived plastome sequences in the Paspalum lineage (Panicoideae; Poaceae). BMC PLANT BIOLOGY 2018; 18:152. [PMID: 30075756 PMCID: PMC6091044 DOI: 10.1186/s12870-018-1379-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 07/30/2018] [Indexed: 05/02/2023]
Abstract
BACKGROUND The grass family (Poaceae), ca. 12,075 species, is a focal point of many recent studies that aim to use complete plastomes to reveal and strengthen relationships within the family. The use of Next Generation Sequencing technology has revealed intricate details in many Poaceae plastomes; specifically the trnI - trnL intergenic spacer region. This study investigates this region and the putative mitochondrial inserts within it in complete plastomes of Paspalum and other Poaceae. RESULTS Nine newly sequenced plastomes, seven of which contain an insert within the trnI - trnL intergenic spacer, were combined into plastome phylogenomic and divergence date analyses with 52 other species. A robust Paspalum topology was recovered, originating at 10.6 Ma, with the insert arising at 8.7 Ma. The alignment of the insert across Paspalum reveals 21 subregions with pairwise homology in 19. In an analysis of emergent self-organizing maps of tetranucleotide frequencies, the Paspalum insert grouped with mitochondrial DNA. CONCLUSIONS A hypothetical ancestral insert, 17,685 bp in size, was found in the trnI - trnL intergenic spacer for the Paspalum lineage. A different insert, 2808 bp, was found in the same region for Paraneurachne muelleri. Seven different intrastrand deletion events were found within the Paspalum lineage, suggesting selective pressures to remove large portions of noncoding DNA. Finally, a tetranucleotide frequency analysis was used to determine that the origin of the insert in the Paspalum lineage is mitochondrial DNA.
Collapse
Affiliation(s)
- Sean V. Burke
- Department of Biological Sciences and Plant Molecular and Bioinformatics Center, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115-2861 USA
| | - Mark C. Ungerer
- Division of Biology, Kansas State University, 1717 Claflin Rd, Manhattan, KS 66506-4900 USA
| | - Melvin R. Duvall
- Department of Biological Sciences and Plant Molecular and Bioinformatics Center, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115-2861 USA
| |
Collapse
|
43
|
Lin C, Hsu C, Yang L, Lee L, Fu J, Cheng Q, Wu F, Hsiao HC, Zhang Y, Zhang R, Chang W, Yu C, Wang W, Liao L, Gelvin SB, Shih M. Application of protoplast technology to CRISPR/Cas9 mutagenesis: from single-cell mutation detection to mutant plant regeneration. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1295-1310. [PMID: 29230929 PMCID: PMC5999315 DOI: 10.1111/pbi.12870] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 11/22/2017] [Accepted: 12/03/2017] [Indexed: 05/18/2023]
Abstract
Plant protoplasts are useful for assessing the efficiency of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) mutagenesis. We improved the process of protoplast isolation and transfection of several plant species. We also developed a method to isolate and regenerate single mutagenized Nicotianna tabacum protoplasts into mature plants. Following transfection of protoplasts with constructs encoding Cas9 and sgRNAs, target gene DNA could be amplified for further analysis to determine mutagenesis efficiency. We investigated N. tabacum protoplasts and derived regenerated plants for targeted mutagenesis of the phytoene desaturase (NtPDS) gene. Genotyping of albino regenerants indicated that all four NtPDS alleles were mutated in amphidiploid tobacco, and no Cas9 DNA could be detected in most regenerated plants.
Collapse
Affiliation(s)
- Choun‐Sea Lin
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Chen‐Tran Hsu
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Ling‐Hung Yang
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Lan‐Ying Lee
- Department of Biological SciencesPurdue UniversityWest LafayetteINUSA
| | - Jin‐Yuan Fu
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Qiao‐Wei Cheng
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Fu‐Hui Wu
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Han C.‐W. Hsiao
- Department of Bioinformatics and Medical EngineeringAsia UniversityTaichung CityTaiwan
| | - Yesheng Zhang
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of SciencesKunmingChina
| | - Ru Zhang
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of SciencesKunmingChina
| | - Wan‐Jung Chang
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
- Present address:
Department of BiochemistryUniversity of PennsylvaniaPhiladelphiaPA19104‐6030USA
| | - Chen‐Ting Yu
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Wen Wang
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of SciencesKunmingChina
| | - Li‐Jen Liao
- Institute of Life ScienceNational Kaohsiung Normal UniversityKaohsiungTaiwan
| | - Stanton B. Gelvin
- Department of Biological SciencesPurdue UniversityWest LafayetteINUSA
| | - Ming‐Che Shih
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| |
Collapse
|
44
|
Wang W, Chen S, Zhang X. Whole-Genome Comparison Reveals Divergent IR Borders and Mutation Hotspots in Chloroplast Genomes of Herbaceous Bamboos (Bambusoideae: Olyreae). Molecules 2018; 23:E1537. [PMID: 29949900 PMCID: PMC6099781 DOI: 10.3390/molecules23071537] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/15/2018] [Accepted: 06/21/2018] [Indexed: 11/21/2022] Open
Abstract
Herbaceous bamboos (Olyreae) are a separate lineage with idiosyncratic traits, e.g., unisexual flowers and annual or seasonal flowering lifestyle, in the grass family. To elucidate the evolution of herbaceous bamboos we produced two complete chloroplast (cp) genomes from two monotypic genera i.e., Froesiochloa and Rehia via the genome-skimming approach. The assembled F. boutelouoides and R. nervata cp genomes were 135,905 and 136,700 base-pair (bp), respectively. Further whole-genome comparative analyses revealed that the cp genes order was perfectly collinear, but the inverted repeats (IRs) borders, i.e., the junctions between IRs and single copy regions, were highly divergent in Olyreae. The IRs expansions/contractions occurred frequently in Olyreae, which have caused gene content and genome size variations, e.g., the copy number reduction of rps19 and trnH(GUG) genes in Froesiochloa. Subsequent nucleotide mutation analyses uncovered a greatly heterogeneous divergence pattern among different cpDNA regions in Olyreae cp genomes. On average, non-coding loci evolved at a rate of circa 1.9 times faster than coding loci, from which 20 rapidly evolving loci were determined as potential genetic markers for further studies on Olyreae. In addition, the phylogenomic analyses from 67 grass plastomes strongly supported the phylogenetic positions of Froesiochloa and Rehia in the Olyreae.
Collapse
Affiliation(s)
- Wencai Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Siyun Chen
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Xianzhi Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
45
|
Lin M, Qi X, Chen J, Sun L, Zhong Y, Fang J, Hu C. The complete chloroplast genome sequence of Actinidia arguta using the PacBio RS II platform. PLoS One 2018; 13:e0197393. [PMID: 29795601 PMCID: PMC5968424 DOI: 10.1371/journal.pone.0197393] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/01/2018] [Indexed: 01/01/2023] Open
Abstract
Actinidia arguta is the most basal species in a phylogenetically and economically important genus in the family Actinidiaceae. To better understand the molecular basis of the Actinidia arguta chloroplast (cp), we sequenced the complete cp genome from A. arguta using Illumina and PacBio RS II sequencing technologies. The cp genome from A. arguta was 157,611 bp in length and composed of a pair of 24,232 bp inverted repeats (IRs) separated by a 20,463 bp small single copy region (SSC) and an 88,684 bp large single copy region (LSC). Overall, the cp genome contained 113 unique genes. The cp genomes from A. arguta and three other Actinidia species from GenBank were subjected to a comparative analysis. Indel mutation events and high frequencies of base substitution were identified, and the accD and ycf2 genes showed a high degree of variation within Actinidia. Forty-seven simple sequence repeats (SSRs) and 155 repetitive structures were identified, further demonstrating the rapid evolution in Actinidia. The cp genome analysis and the identification of variable loci provide vital information for understanding the evolution and function of the chloroplast and for characterizing Actinidia population genetics.
Collapse
Affiliation(s)
- Miaomiao Lin
- Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou, China
| | - Xiujuan Qi
- Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou, China
| | - Jinyong Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou, China
| | - Leiming Sun
- Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou, China
| | - Yunpeng Zhong
- Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou, China
| | - Jinbao Fang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou, China
- * E-mail: (JF); (CH)
| | - Chungen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Hua Zhong Agricultural University, Wuhan, China
- * E-mail: (JF); (CH)
| |
Collapse
|
46
|
Zhao N, Wang Y, Hua J. The Roles of Mitochondrion in Intergenomic Gene Transfer in Plants: A Source and a Pool. Int J Mol Sci 2018; 19:ijms19020547. [PMID: 29439501 PMCID: PMC5855769 DOI: 10.3390/ijms19020547] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/31/2018] [Accepted: 02/06/2018] [Indexed: 11/30/2022] Open
Abstract
Intergenomic gene transfer (IGT) is continuous in the evolutionary history of plants. In this field, most studies concentrate on a few related species. Here, we look at IGT from a broader evolutionary perspective, using 24 plants. We discover many IGT events by assessing the data from nuclear, mitochondrial and chloroplast genomes. Thus, we summarize the two roles of the mitochondrion: a source and a pool. That is, the mitochondrion gives massive sequences and integrates nuclear transposons and chloroplast tRNA genes. Though the directions are opposite, lots of likenesses emerge. First, mitochondrial gene transfer is pervasive in all 24 plants. Second, gene transfer is a single event of certain shared ancestors during evolutionary divergence. Third, sequence features of homologies vary for different purposes in the donor and recipient genomes. Finally, small repeats (or micro-homologies) contribute to gene transfer by mediating recombination in the recipient genome.
Collapse
Affiliation(s)
- Nan Zhao
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, College of Agronomy and Biotechnology , China Agricultural University, Beijing 100193, China.
| | - Yumei Wang
- Institute of Cash Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Jinping Hua
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, College of Agronomy and Biotechnology , China Agricultural University, Beijing 100193, China.
| |
Collapse
|
47
|
Saarela JM, Burke SV, Wysocki WP, Barrett MD, Clark LG, Craine JM, Peterson PM, Soreng RJ, Vorontsova MS, Duvall MR. A 250 plastome phylogeny of the grass family (Poaceae): topological support under different data partitions. PeerJ 2018; 6:e4299. [PMID: 29416954 PMCID: PMC5798404 DOI: 10.7717/peerj.4299] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 01/08/2018] [Indexed: 12/23/2022] Open
Abstract
The systematics of grasses has advanced through applications of plastome phylogenomics, although studies have been largely limited to subfamilies or other subgroups of Poaceae. Here we present a plastome phylogenomic analysis of 250 complete plastomes (179 genera) sampled from 44 of the 52 tribes of Poaceae. Plastome sequences were determined from high throughput sequencing libraries and the assemblies represent over 28.7 Mbases of sequence data. Phylogenetic signal was characterized in 14 partitions, including (1) complete plastomes; (2) protein coding regions; (3) noncoding regions; and (4) three loci commonly used in single and multi-gene studies of grasses. Each of the four main partitions was further refined, alternatively including or excluding positively selected codons and also the gaps introduced by the alignment. All 76 protein coding plastome loci were found to be predominantly under purifying selection, but specific codons were found to be under positive selection in 65 loci. The loci that have been widely used in multi-gene phylogenetic studies had among the highest proportions of positively selected codons, suggesting caution in the interpretation of these earlier results. Plastome phylogenomic analyses confirmed the backbone topology for Poaceae with maximum bootstrap support (BP). Among the 14 analyses, 82 clades out of 309 resolved were maximally supported in all trees. Analyses of newly sequenced plastomes were in agreement with current classifications. Five of seven partitions in which alignment gaps were removed retrieved Panicoideae as sister to the remaining PACMAD subfamilies. Alternative topologies were recovered in trees from partitions that included alignment gaps. This suggests that ambiguities in aligning these uncertain regions might introduce a false signal. Resolution of these and other critical branch points in the phylogeny of Poaceae will help to better understand the selective forces that drove the radiation of the BOP and PACMAD clades comprising more than 99.9% of grass diversity.
Collapse
Affiliation(s)
- Jeffery M. Saarela
- Beaty Centre for Species Discovery and Botany Section, Canadian Museum of Nature, Ottawa, ON, Canada
| | - Sean V. Burke
- Plant Molecular and Bioinformatics Center, Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| | - William P. Wysocki
- Center for Data Intensive Sciences, University of Chicago, Chicago, IL, USA
| | - Matthew D. Barrett
- Botanic Gardens and Parks Authority, Kings Park and Botanic Garden, West Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Lynn G. Clark
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA
| | | | - Paul M. Peterson
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Robert J. Soreng
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Maria S. Vorontsova
- Comparative Plant & Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - Melvin R. Duvall
- Plant Molecular and Bioinformatics Center, Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| |
Collapse
|
48
|
Van de Paer C, Bouchez O, Besnard G. Prospects on the evolutionary mitogenomics of plants: A case study on the olive family (Oleaceae). Mol Ecol Resour 2017; 18:407-423. [PMID: 29172252 DOI: 10.1111/1755-0998.12742] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 11/14/2017] [Accepted: 11/18/2017] [Indexed: 11/30/2022]
Abstract
The mitogenome is rarely used to reconstruct the evolutionary history of plants, contrary to nuclear and plastid markers. Here, we evaluate the usefulness of mitochondrial DNA for molecular evolutionary studies in Oleaceae, in which cases of cytoplasmic male sterility (CMS) and of potentially contrasted organelle inheritance are known. We compare the diversity and the evolution of mitochondrial and chloroplast genomes by focusing on the olive complex and related genera. Using high-throughput techniques, we reconstructed complete mitogenomes (ca. 0.7 Mb) and plastomes (ca. 156 kb) for six olive accessions and one Chionanthus. A highly variable organization of mitogenomes was observed at the species level. In olive, two specific chimeric genes were identified in the mitogenome of lineage E3 and may be involved in CMS. Plastid-derived regions (mtpt) were observed in all reconstructed mitogenomes. Through phylogenetic reconstruction, we demonstrate that multiple integrations of mtpt regions have occurred in Oleaceae, but mtpt regions shared by all members of the olive complex derive from a common ancestor. We then assembled 52 conserved mitochondrial gene regions and complete plastomes of ten additional accessions belonging to tribes Oleeae, Fontanesieae and Forsythieae. Phylogenetic congruence between topologies based on mitochondrial regions and plastomes suggests a strong disequilibrium linkage between both organellar genomes. Finally, while phylogenetic reconstruction based on plastomes fails to resolve the evolutionary history of maternal olive lineages in the Mediterranean area, their phylogenetic relationships were successfully resolved with complete mitogenomes. Overall, our study demonstrates the great potential of using mitochondrial DNA in plant phylogeographic and metagenomic studies.
Collapse
Affiliation(s)
- Céline Van de Paer
- CNRS, Université de Toulouse, ENSFEA, IRD, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Toulouse, France
| | - Olivier Bouchez
- INRA, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Guillaume Besnard
- CNRS, Université de Toulouse, ENSFEA, IRD, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Toulouse, France
| |
Collapse
|
49
|
Yurchenko T, Ševčíková T, Strnad H, Butenko A, Eliáš M. The plastid genome of some eustigmatophyte algae harbours a bacteria-derived six-gene cluster for biosynthesis of a novel secondary metabolite. Open Biol 2017; 6:rsob.160249. [PMID: 27906133 PMCID: PMC5133447 DOI: 10.1098/rsob.160249] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/31/2016] [Indexed: 01/26/2023] Open
Abstract
Acquisition of genes by plastid genomes (plastomes) via horizontal gene transfer (HGT) seems to be a rare phenomenon. Here, we report an interesting case of HGT revealed by sequencing the plastomes of the eustigmatophyte algae Monodopsis sp. MarTras21 and Vischeria sp. CAUP Q 202. These plastomes proved to harbour a unique cluster of six genes, most probably acquired from a bacterium of the phylum Bacteroidetes, with homologues in various bacteria, typically organized in a conserved uncharacterized putative operon. Sequence analyses of the six proteins encoded by the operon yielded the following annotation for them: (i) a novel family without discernible homologues; (ii) a new family within the superfamily of metallo-dependent hydrolases; (iii) a novel subgroup of the UbiA superfamily of prenyl transferases; (iv) a new clade within the sugar phosphate cyclase superfamily; (v) a new family within the xylose isomerase-like superfamily; and (vi) a hydrolase for a phosphate moiety-containing substrate. We suggest that the operon encodes enzymes of a pathway synthesizing an isoprenoid–cyclitol-derived compound, possibly an antimicrobial or other protective substance. To the best of our knowledge, this is the first report of an expansion of the metabolic capacity of a plastid mediated by HGT into the plastid genome.
Collapse
Affiliation(s)
- Tatiana Yurchenko
- Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic.,Faculty of Science, Institute of Environmental Technologies, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Tereza Ševčíková
- Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Hynek Strnad
- Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| | - Anzhelika Butenko
- Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Marek Eliáš
- Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic .,Faculty of Science, Institute of Environmental Technologies, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| |
Collapse
|
50
|
Rabah SO, Lee C, Hajrah NH, Makki RM, Alharby HF, Alhebshi AM, Sabir JSM, Jansen RK, Ruhlman TA. Plastome Sequencing of Ten Nonmodel Crop Species Uncovers a Large Insertion of Mitochondrial DNA in Cashew. THE PLANT GENOME 2017; 10. [PMID: 29293812 DOI: 10.3835/plantgenome2017.03.0020] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In plant evolution, intracellular gene transfer (IGT) is a prevalent, ongoing process. While nuclear and mitochondrial genomes are known to integrate foreign DNA via IGT and horizontal gene transfer (HGT), plastid genomes (plastomes) have resisted foreign DNA incorporation and only recently has IGT been uncovered in the plastomes of a few land plants. In this study, we completed plastome sequences for l0 crop species and describe a number of structural features including variation in gene and intron content, inversions, and expansion and contraction of the inverted repeat (IR). We identified a putative in cinnamon ( J. Presl) and other sequenced Lauraceae and an apparent functional transfer of to the nucleus of quinoa ( Willd.). In the orchard tree cashew ( L.), we report the insertion of an ∼6.7-kb fragment of mitochondrial DNA into the plastome IR. BLASTn analyses returned high identity hits to mitogenome sequences including an intact open reading frame. Using three plastome markers for five species of , we generated a phylogeny to investigate the distribution and timing of the insertion. Four species share the insertion, suggesting that this event occurred <20 million yr ago in a single clade in the genus. Our study extends the observation of mitochondrial to plastome IGT to include long-lived tree species. While previous studies have suggested possible mechanisms facilitating IGT to the plastome, more examples of this phenomenon, along with more complete mitogenome sequences, will be required before a common, or variable, mechanism can be elucidated.
Collapse
|