1
|
Liu X, Qi P, Fan W, Liu W, Li X, Nie Y, Wu XL. Non-Respiratory Extracellular Electron Transfer Competes with Nitrogenase for Electrons in Rhodopseudomonas Palustris. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501376. [PMID: 40367360 DOI: 10.1002/advs.202501376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/24/2025] [Indexed: 05/16/2025]
Abstract
Biological nitrogen fixation (BNF) is a pivotal process that reduces nitrogen to ammonium within the nitrogen cycle. Extracellular electron transfer (EET) between diazotrophs and the extracellular environment influences the occurrence and efficiency of BNF. Although extracellular electron acceptors can function as a component of the electron transport chain, providing energy for chemotrophic nitrogen fixation via extracellular respiration, the function and mechanism of outward EET in photosynthetic diazotrophs remain unclear. Here, using Rhodopseudomonas palustris TIE-1, a photosynthetic bioelectrochemical nitrogen fixation system is established for simultaneous nitrogen fixation and current generation, to dissect the complex interaction between these two processes. Outward EET functions are found to maintain redox balance, rather than serving as an extracellular respiration pathway. It significantly suppresses BNF by competing with nitrogenase for electrons. Lumichrome serves as the primary electron shuttle for indirect electron transfer, while cytochromes play an important role in direct electron transfer. Notably, the pio operon participates in outward EET. This study reveals the interaction mechanism between photosynthetic BNF and outward EET, providing new insight into the regulatory mechanisms of nitrogen fixation in anoxygenic phototrophs across diverse environmental conditions.
Collapse
Affiliation(s)
- Xuewen Liu
- College of Engineering, Peking University, Beijing, 100871, China
| | - Panqing Qi
- College of Engineering, Peking University, Beijing, 100871, China
| | - Weipeng Fan
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Wuyang Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xingjiang Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yong Nie
- College of Engineering, Peking University, Beijing, 100871, China
| | - Xiao-Lei Wu
- College of Engineering, Peking University, Beijing, 100871, China
- Institute of Ecology, Peking University, Beijing, 100871, China
| |
Collapse
|
2
|
Mandal S, Sarangi R, Acharya A. Impact of Native Environment in Multiheme-Cytochrome Chains of the MtrCAB Complex. J Chem Inf Model 2025; 65:4568-4575. [PMID: 40279472 PMCID: PMC12076491 DOI: 10.1021/acs.jcim.4c02382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/18/2025] [Accepted: 04/17/2025] [Indexed: 04/27/2025]
Abstract
MtrCAB protein complex plays a crucial role in exporting electrons through the outer membrane (OM) to external acceptors. This complex consists of three proteins and contains 20 hemes. Optimal protein-protein interactions and, consequently, heme-heme interactions facilitate efficient electron transfer through the conduit of hemes. The cytochrome MtrA remains mostly inside porin MtrB, and the MtrB barrel contains two calcium ions on its surface. In this study, we investigate the effect of porin-bound calcium ions on the heme-heme distances in the twenty-heme network. We performed all-atom molecular dynamics simulations of the OM-protein complex, MtrCAB, in the presence and absence of the MtrB-bound calcium ions. We observe that the calcium ions bound to MtrB affect the interfacial heme-heme distance when all of the hemes are oxidized and impact one of the heme-heme distances in MtrC when all of the hemes are reduced. In both cases, the absence of calcium ions increases the heme-heme distance, highlighting the crucial role of calcium ions in maintaining the heme network, which is essential for long-range charge transport.
Collapse
Affiliation(s)
- Sasthi
C. Mandal
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Ronit Sarangi
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Atanu Acharya
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
3
|
Wang X, Liu TC, Wang XW, Dang CC, Tan X, Lu Y, Liu BF, Xing DF, Ren NQ, Xie GJ. Microbial manganese redox cycling drives co-removal of nitrate and ammonium. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124095. [PMID: 39848182 DOI: 10.1016/j.jenvman.2025.124095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/13/2024] [Accepted: 01/08/2025] [Indexed: 01/25/2025]
Abstract
Manganese (Mn), abundant in the Earth's crust, can act as an oxidant or a reductant for diverse nitrogen biotransformation processes. However, the functional microorganisms and their metabolic pathways, as well as interactions, remain largely elusive. Here, a microbial consortium was enriched from a mixture of freshwater sediments and activated sludge by feeding ammonium, nitrate and Mn(II), which established manganese-driven co-removal of nitrate and ammonium with removal rates of 5.83 and 2.30 mg N L-1 d-1, respectively. The batch tests and metagenomic analyses revealed a nitrate-dependent anaerobic manganese oxidation (NDMO) process mediated by Anaerolineales and Phycisphaerales and a manganese reduction coupled to anaerobic ammonium oxidation (Mnammox) process mediated by Chthonomonadales. Based on identified key genes involved in the nitrogen and manganese metabolic pathways, nitrate was likely reduced to nitrite and nitrogen gas in the NDMO process while ammonium was oxidized to nitrite in the Mnammox process, which in turn fuelled the Anammox process carried out by Candidatus Brocadia. This revealed the microbial interactions of NDMO, Mnammox, and Anammox processes responsible for manganese-driven co-removal of ammonium and nitrate. These findings provide a potential solution for biological nitrogen removal and expand our understanding of the nitrogen and manganese biogeochemical cycles.
Collapse
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Tian-Chen Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xiao-Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Cheng-Cheng Dang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xin Tan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yang Lu
- Water Innovation and Smart Environment Laboratory, School of Civil and Environmental Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, 4001, Australia
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
4
|
Partipilo G, Bowman EK, Palmer EJ, Gao Y, Ridley RS, Alper HS, Keitz BK. Single-cell phenotyping of extracellular electron transfer via microdroplet encapsulation. Appl Environ Microbiol 2025; 91:e0246524. [PMID: 39807859 PMCID: PMC11784080 DOI: 10.1128/aem.02465-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Electroactive organisms contribute to metal cycling, pollutant removal, and other redox-driven environmental processes via extracellular electron transfer (EET). Unfortunately, developing genotype-phenotype relationships for electroactive organisms is challenging because EET is necessarily removed from the cell of origin. Microdroplet emulsions, which encapsulate individual cells in aqueous droplets, have been used to study a variety of extracellular phenotypes but have not been applied to investigate EET. Here, we describe the development of a microdroplet emulsion system to sort and enrich EET-capable organisms from complex populations. We validated our system using the model electrogen Shewanella oneidensis and described the tooling of a benchtop microfluidic system for oxygen-limited conditions. We demonstrated the enrichment of strains exhibiting electroactive phenotypes from mixed wild-type and EET-deficient populations. As a proof-of-concept application, we collected samples from iron sedimentation in Town Lake (Austin, TX) and subjected them to microdroplet enrichment. We measured an increase in electroactive organisms in the sorted population that was distinct compared to a population growing in bulk culture with Fe(III) as the sole electron acceptor. Finally, two bacterial species not previously shown to be EET-capable, Cronobacter sakazakii and Vagococcus fessus, were further cultured and characterized for electroactivity. Our results demonstrate the utility of microdroplet emulsions for isolating and identifying EET-capable bacteria.IMPORTANCEThis work outlines a new high-throughput method for identifying electroactive bacteria from mixed populations. Electroactive bacteria play key roles in iron trafficking, soil remediation, and pollutant degradation. Many existing methods for identifying electroactive bacteria are coupled to microbial growth and fitness-as a result, the contributions from weak or poor-growing electrogens are often muted. However, extracellular electron transfer (EET) has historically been difficult to study in high-throughput in a mixed population since extracellular reduction is challenging to trace back to the parent cell and there are no suitable fluorescent readouts for EET. Our method circumvents these challenges by utilizing an aqueous microdroplet emulsion wherein a single cell is statistically isolated in a pico- to nano-liter-sized droplet. Then, via fluorescence obtained from copper reduction, the mixed population can be fluorescently sorted and gated by performance. Utilizing our technique, we characterize two previously unrecognized weak electrogens Vagococcus fessus and Cronobacter sakazakii.
Collapse
Affiliation(s)
- Gina Partipilo
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Emily K. Bowman
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, Texas, USA
| | - Emma J. Palmer
- Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Yang Gao
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Rodney S. Ridley
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Hal S. Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Benjamin K. Keitz
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
5
|
Bayar B, Soares R, Nalakath H, Alves A, Paquete CM, Louro RO. Electron transfer in multicentre redox proteins: from fundamentals to extracellular electron transfer. Biosci Rep 2025; 45:1-18. [PMID: 39714013 DOI: 10.1042/bsr20240576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 12/24/2024] Open
Abstract
Multicentre redox proteins participate in diverse metabolic processes, such as redox shuttling, multielectron catalysis, or long-distance electron conduction. The detail in which these processes can be analysed depends on the capacity of experimental methods to discriminate the multiple microstates that can be populated while the protein changes from the fully reduced to the fully oxidized state. The population of each state depends on the redox potential of the individual centres and on the magnitude of the interactions between the individual redox centres and their neighbours. It also depends on the interactions with binding sites for other ligands, such as protons, giving origin to the redox-Bohr effect. Modelling strategies that match the capacity of experimental methods to discriminate the contributions of individual centres are presented. These models provide thermodynamic and kinetic characterization of multicentre redox proteins. The current state of the art in the characterization of multicentre redox proteins is illustrated using the case of multiheme cytochromes involved in the process of extracellular electron transfer. In this new frontier of biological electron transfer, which can extend over distances that exceed the size of the individual multicentre redox proteins by orders of magnitude, current experimental data are still unable, in most cases, to provide discrimination between incoherent conduction by heme orbitals and coherent band conduction.
Collapse
Affiliation(s)
- Büşra Bayar
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ricardo Soares
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Instituto Nacional de Investigação Agrária e Veterinária, Oeiras, Portugal
| | - Haris Nalakath
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Alexandra Alves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Catarina M Paquete
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ricardo O Louro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
6
|
Chang J, Liang D, Gao Y, Sun Y, Wang X, Ren NQ, Li N. Nano-magnetite enhances dissimilated iron reduction to vivianite from sewage by structuring an enormous and compact electron transfer network. WATER RESEARCH 2024; 268:122583. [PMID: 39393178 DOI: 10.1016/j.watres.2024.122583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/21/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024]
Abstract
Acting as both terminal and conductor of extracellular electron transfer (EET), little studies were focused on how nano-magnetite participated in the dissimilated iron reduction (DIR), especially the synthesis of vivianite, which was the typical DIR products from sewage. In this study, nano-magnetite was confirmed to enhance DIR of ferrihydrite and akaganeite for vivianite recovery from sewage. Nano-magnetite incorporation enriched Comamonas and Geobacter in sewage, and microbial protein content was increased by 123 % and 57 % in ferrihydrite and akaganeite batches, respectively. In Geobacter sulfurreducens PCA pure culture, vivianite yield was promoted by 21 % and 37 % in ferrihydrite and akaganeite batches in the presence of nano-magnetite, respectively. Due to its nanoscale size and superior electrical conductivity, nano-magnetite embedded in the gaps formed by the microorganisms and electron acceptor, and architected coherent conductive pathways to promote EET. Simultaneously, the addition of nano-magnetite stimulated the secretion of proteins, polysaccharides, and humic acids in the extracellular polymeric substances. Nano-magnetite addition structured an enormous and compact electron transfer network, thus enhanced DIR and vivianite formation. Our study proposed a new strategy to promote iron-reduction-coupled phosphorus recovery with natural DIR products, and provided theoretical support for clarifying the interaction between minerals and microorganisms.
Collapse
Affiliation(s)
- Jifei Chang
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Danhui Liang
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yan Gao
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yitong Sun
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan Li
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
7
|
Lockwood CJ, Nash BW, Newton-Payne SE, van Wonderen JH, Whiting KPS, Connolly A, Sutton-Cook AL, Crook A, Aithal AR, Edwards MJ, Clarke TA, Sachdeva A, Butt JN. Genetic Code Expansion in Shewanella oneidensis MR-1 Allows Site-Specific Incorporation of Bioorthogonal Functional Groups into a c-Type Cytochrome. ACS Synth Biol 2024; 13:2833-2843. [PMID: 39158169 PMCID: PMC11421213 DOI: 10.1021/acssynbio.4c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/15/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
Genetic code expansion has enabled cellular synthesis of proteins containing unique chemical functional groups to allow the understanding and modulation of biological systems and engineer new biotechnology. Here, we report the development of efficient methods for site-specific incorporation of structurally diverse noncanonical amino acids (ncAAs) into proteins expressed in the electroactive bacterium Shewanella oneidensis MR-1. We demonstrate that the biosynthetic machinery for ncAA incorporation is compatible and orthogonal to the endogenous pathways of S. oneidensis MR-1 for protein synthesis, maturation of c-type cytochromes, and protein secretion. This allowed the efficient synthesis of a c-type cytochrome, MtrC, containing site-specifically incorporated ncAA in S. oneidensis MR-1 cells. We demonstrate that site-specific replacement of surface residues in MtrC with ncAAs does not influence its three-dimensional structure and redox properties. We also demonstrate that site-specifically incorporated bioorthogonal functional groups could be used for efficient site-selective labeling of MtrC with fluorophores. These synthetic biology developments pave the way to expand the chemical repertoire of designer proteins expressed in S. oneidensis MR-1.
Collapse
Affiliation(s)
- Colin
W. J. Lockwood
- School
of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Benjamin W. Nash
- School
of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Simone E. Newton-Payne
- School
of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Jessica H. van Wonderen
- School
of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Keir P. S. Whiting
- School
of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Abigail Connolly
- School
of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Alexander L. Sutton-Cook
- School
of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Archie Crook
- School
of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Advait R. Aithal
- School
of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Marcus J. Edwards
- School
of Life Sciences, University of Essex, Colchester CO4 3SQ, U.K.
| | - Thomas A. Clarke
- School
of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Amit Sachdeva
- School
of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Julea N. Butt
- School
of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| |
Collapse
|
8
|
Gonzalez V, Abarca-Hurtado J, Arancibia A, Claverías F, Guevara MR, Orellana R. Novel Insights on Extracellular Electron Transfer Networks in the Desulfovibrionaceae Family: Unveiling the Potential Significance of Horizontal Gene Transfer. Microorganisms 2024; 12:1796. [PMID: 39338472 PMCID: PMC11434368 DOI: 10.3390/microorganisms12091796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/30/2024] Open
Abstract
Some sulfate-reducing bacteria (SRB), mainly belonging to the Desulfovibrionaceae family, have evolved the capability to conserve energy through microbial extracellular electron transfer (EET), suggesting that this process may be more widespread than previously believed. While previous evidence has shown that mobile genetic elements drive the plasticity and evolution of SRB and iron-reducing bacteria (FeRB), few have investigated the shared molecular mechanisms related to EET. To address this, we analyzed the prevalence and abundance of EET elements and how they contributed to their differentiation among 42 members of the Desulfovibrionaceae family and 23 and 59 members of Geobacteraceae and Shewanellaceae, respectively. Proteins involved in EET, such as the cytochromes PpcA and CymA, the outer membrane protein OmpJ, and the iron-sulfur cluster-binding CbcT, exhibited widespread distribution within Desulfovibrionaceae. Some of these showed modular diversification. Additional evidence revealed that horizontal gene transfer was involved in the acquiring and losing of critical genes, increasing the diversification and plasticity between the three families. The results suggest that specific EET genes were widely disseminated through horizontal transfer, where some changes reflected environmental adaptations. These findings enhance our comprehension of the evolution and distribution of proteins involved in EET processes, shedding light on their role in iron and sulfur biogeochemical cycling.
Collapse
Affiliation(s)
- Valentina Gonzalez
- Laboratorio de Biología Celular y Ecofisiología Microbiana, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Leopoldo Carvallo 270, Valparaíso 2360001, Chile; (V.G.); (J.A.-H.); (A.A.)
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay-Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
- Departamento de Química y Medio Ambiente, Sede Viña del Mar, Universidad Técnica Federico Santa María, Avenida Federico Santa María 6090, Viña del Mar 2520000, Chile
| | - Josefina Abarca-Hurtado
- Laboratorio de Biología Celular y Ecofisiología Microbiana, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Leopoldo Carvallo 270, Valparaíso 2360001, Chile; (V.G.); (J.A.-H.); (A.A.)
| | - Alejandra Arancibia
- Laboratorio de Biología Celular y Ecofisiología Microbiana, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Leopoldo Carvallo 270, Valparaíso 2360001, Chile; (V.G.); (J.A.-H.); (A.A.)
- HUB Ambiental UPLA, Universidad de Playa Ancha, Leopoldo Carvallo 207, Playa Ancha, Valparaíso 2340000, Chile
| | - Fernanda Claverías
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay-Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
| | - Miguel R. Guevara
- Laboratorio de Data Science, Facultad de Ingeniería, Universidad de Playa Ancha, Leopoldo Carvallo 270, Valparaíso 2340000, Chile;
| | - Roberto Orellana
- Laboratorio de Biología Celular y Ecofisiología Microbiana, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Leopoldo Carvallo 270, Valparaíso 2360001, Chile; (V.G.); (J.A.-H.); (A.A.)
- HUB Ambiental UPLA, Universidad de Playa Ancha, Leopoldo Carvallo 207, Playa Ancha, Valparaíso 2340000, Chile
- Núcleo Milenio BioGEM, Valparaíso 2390123, Chile
| |
Collapse
|
9
|
Wang L, Lei Z, Zhang Z, Yang X, Chen R. Deciphering the role of extracellular polymeric substances in the adsorption and biotransformation of organic micropollutants during anaerobic wastewater treatment. WATER RESEARCH 2024; 257:121718. [PMID: 38723358 DOI: 10.1016/j.watres.2024.121718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/20/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024]
Abstract
Extracellular polymeric substances (EPS) participate in the removal of organic micropollutants (OMPs), but the primary pathways of removal and detailed mechanisms remain elusive. We evaluated the effect of EPS on removal for 16 distinct chemical classes of OMPs during anaerobic digestion (AD). The results showed that hydrophobic OMPs (HBOMPs) could not be removed by EPS, while hydrophilic OMPs (HLOMPs) were amenable to removal via adsorption and biotransformation of EPS. The adsorption and biotransformation of HLOMPs by EPS accounted up to 19.4 ± 0.9 % and 6.0 ± 0.8 % of total removal, respectively. Further investigations into the adsorption and biotransformation mechanisms of HLOMPs by EPS were conducted utilizing spectral, molecular dynamics simulation, and electrochemical analysis. The results suggested that EPS provided abundant binding sites for the adsorption of HLOMPs. The binding of HLOMPs to tryptophan-like proteins in EPS formed nonfluorescent complexes. Hydrogen bonds, hydrophobic interactions and water bridges were key to the binding processes and helped stabilize the complexes. The biotransformation of HLOMPs by EPS may be attributed to the presence of extracellular redox active components (c-type cytochromes (c-Cyts), c-Cyts-bound flavins). This study enhanced the comprehension for the role of EPS on the OMPs removal in anaerobic wastewater treatment.
Collapse
Affiliation(s)
- Lianxu Wang
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Zhen Lei
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Zixin Zhang
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Xiaohuan Yang
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Rong Chen
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China.
| |
Collapse
|
10
|
Partipilo G, Bowman EK, Palmer EJ, Gao Y, Ridley RS, Alper HS, Keitz BK. Single-Cell Phenotyping of Extracellular Electron Transfer via Microdroplet Encapsulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598847. [PMID: 38915652 PMCID: PMC11195189 DOI: 10.1101/2024.06.13.598847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Electroactive organisms contribute to metal cycling, pollutant removal, and other redox-driven environmental processes. Studying this phenomenon in high-throughput is challenging since extracellular reduction cannot easily be traced back to its cell of origin within a mixed population. Here, we describe the development of a microdroplet emulsion system to enrich EET-capable organisms. We validated our system using the model electroactive organism S. oneidensis and describe the tooling of a benchtop microfluidic system for oxygen-limited processes. We demonstrated enrichment of EET-capable phenotypes from a mixed wild-type and EET-knockout population. As a proof-of-concept application, bacteria were collected from iron sedimentation from Town Lake (Austin, TX) and subjected to microdroplet enrichment. We observed an increase in EET-capable organisms in the sorted population that was distinct when compared to a population enriched in a bulk culture more closely akin to traditional techniques for discovering EET-capable bacteria. Finally, two bacterial species, C. sakazakii and V. fessus not previously shown to be electroactive, were further cultured and characterized for their ability to reduce channel conductance in an organic electrochemical transistor (OECT) and to reduce soluble Fe(III). We characterized two bacterial species not previously shown to exhibit electrogenic behavior. Our results demonstrate the utility of a microdroplet emulsions for identifying putative EET-capable bacteria and how this technology can be leveraged in tandem with existing methods.
Collapse
Affiliation(s)
- Gina Partipilo
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712
| | - Emily K. Bowman
- Interdisciplinary Life Sciences Graduate Program, University of Texas at Austin, Austin, TX, 78712
| | - Emma J. Palmer
- Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, TX, 78712
| | - Yang Gao
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712
| | - Rodney S. Ridley
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712
| | - Hal S. Alper
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712
| | - Benjamin K. Keitz
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712
| |
Collapse
|
11
|
Abstract
Extracellular electron transfer (EET) is the physiological process that enables the reduction or oxidation of molecules and minerals beyond the surface of a microbial cell. The first bacteria characterized with this capability were Shewanella and Geobacter, both reported to couple their growth to the reduction of iron or manganese oxide minerals located extracellularly. A key difference between EET and nearly every other respiratory activity on Earth is the need to transfer electrons beyond the cell membrane. The past decade has resolved how well-conserved strategies conduct electrons from the inner membrane to the outer surface. However, recent data suggest a much wider and less well understood collection of mechanisms enabling electron transfer to distant acceptors. This review reflects the current state of knowledge from Shewanella and Geobacter, specifically focusing on transfer across the outer membrane and beyond-an activity that enables reduction of highly variable minerals, electrodes, and even other organisms.
Collapse
Affiliation(s)
- J A Gralnick
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA; ,
| | - D R Bond
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA; ,
| |
Collapse
|
12
|
Zhang B, Shi S, Tang R, Qiao C, Yang M, You Z, Shao S, Wu D, Yu H, Zhang J, Cao Y, Li F, Song H. Recent advances in enrichment, isolation, and bio-electrochemical activity evaluation of exoelectrogenic microorganisms. Biotechnol Adv 2023; 66:108175. [PMID: 37187358 DOI: 10.1016/j.biotechadv.2023.108175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023]
Abstract
Exoelectrogenic microorganisms (EEMs) catalyzed the conversion of chemical energy to electrical energy via extracellular electron transfer (EET) mechanisms, which underlay diverse bio-electrochemical systems (BES) applications in clean energy development, environment and health monitoring, wearable/implantable devices powering, and sustainable chemicals production, thereby attracting increasing attentions from academic and industrial communities in the recent decades. However, knowledge of EEMs is still in its infancy as only ~100 EEMs of bacteria, archaea, and eukaryotes have been identified, motivating the screening and capture of new EEMs. This review presents a systematic summarization on EEM screening technologies in terms of enrichment, isolation, and bio-electrochemical activity evaluation. We first generalize the distribution characteristics of known EEMs, which provide a basis for EEM screening. Then, we summarize EET mechanisms and the principles underlying various technological approaches to the enrichment, isolation, and bio-electrochemical activity of EEMs, in which a comprehensive analysis of the applicability, accuracy, and efficiency of each technology is reviewed. Finally, we provide a future perspective on EEM screening and bio-electrochemical activity evaluation by focusing on (i) novel EET mechanisms for developing the next-generation EEM screening technologies, and (ii) integration of meta-omics approaches and bioinformatics analyses to explore nonculturable EEMs. This review promotes the development of advanced technologies to capture new EEMs.
Collapse
Affiliation(s)
- Baocai Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Sicheng Shi
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Rui Tang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chunxiao Qiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Meiyi Yang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zixuan You
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Shulin Shao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Deguang Wu
- Department of Brewing Engineering, Moutai Institute, Luban Ave, Renhuai 564507, Guizhou, PR China
| | - Huan Yu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Junqi Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yingxiu Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Feng Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
13
|
You Z, Li J, Wang Y, Wu D, Li F, Song H. Advances in mechanisms and engineering of electroactive biofilms. Biotechnol Adv 2023; 66:108170. [PMID: 37148984 DOI: 10.1016/j.biotechadv.2023.108170] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/22/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Electroactive biofilms (EABs) are electroactive microorganisms (EAMs) encased in conductive polymers that are secreted by EAMs and formed by the accumulation and cross-linking of extracellular polysaccharides, proteins, nucleic acids, lipids, and other components. EABs are present in the form of multicellular aggregates and play a crucial role in bioelectrochemical systems (BESs) for diverse applications, including biosensors, microbial fuel cells for renewable bioelectricity production and remediation of wastewaters, and microbial electrosynthesis of valuable chemicals. However, naturally occurred EABs are severely limited owing to their low electrical conductivity that seriously restrict the electron transfer efficiency and practical applications. In the recent decade, synthetic biology strategies have been adopted to elucidate the regulatory mechanisms of EABs, and to enhance the formation and electrical conductivity of EABs. Based on the formation of EABs and extracellular electron transfer (EET) mechanisms, the synthetic biology-based engineering strategies of EABs are summarized and reviewed as follows: (i) Engineering the structural components of EABs, including strengthening the synthesis and secretion of structural elements such as polysaccharides, eDNA, and structural proteins, to improve the formation of biofilms; (ii) Enhancing the electron transfer efficiency of EAMs, including optimizing the distribution of c-type cytochromes and conducting nanowire assembly to promote contact-based EET, and enhancing electron shuttles' biosynthesis and secretion to promote shuttle-mediated EET; (iii) Incorporating intracellular signaling molecules in EAMs, including quorum sensing systems, secondary messenger systems, and global regulatory systems, to increase the electron transfer flux in EABs. This review lays a foundation for the design and construction of EABs for diverse BES applications.
Collapse
Affiliation(s)
- Zixuan You
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jianxun Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yuxuan Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Deguang Wu
- Department of Brewing Engineering, Moutai Institute, Luban Ave, Renhuai 564507, Guizhou, PR China
| | - Feng Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
14
|
Molinas M, Meibom KL, Faizova R, Mazzanti M, Bernier-Latmani R. Mechanism of Reduction of Aqueous U(V)-dpaea and Solid-Phase U(VI)-dpaea Complexes: The Role of Multiheme c-Type Cytochromes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7537-7546. [PMID: 37133831 DOI: 10.1021/acs.est.3c00666] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The biological reduction of soluble U(VI) complexes to form immobile U(IV) species has been proposed to remediate contaminated sites. It is well established that multiheme c-type cytochromes (MHCs) are key mediators of electron transfer to aqueous phase U(VI) complexes for bacteria such as Shewanella oneidensis MR-1. Recent studies have confirmed that the reduction proceeds via a first electron transfer forming pentavalent U(V) species that readily disproportionate. However, in the presence of the stabilizing aminocarboxylate ligand, dpaea2- (dpaeaH2═bis(pyridyl-6-methyl-2-carboxylate)-ethylamine), biologically produced U(V) persisted in aqueous solution at pH 7. We aim to pinpoint the role of MHC in the reduction of U(V)-dpaea and to establish the mechanism of solid-phase U(VI)-dpaea reduction. To that end, we investigated U-dpaea reduction by two deletion mutants of S. oneidensis MR-1-one lacking outer membrane MHCs and the other lacking all outer membrane MHCs and a transmembrane MHC-and by the purified outer membrane MHC, MtrC. Our results suggest that solid-phase U(VI)-dpaea is reduced primarily by outer membrane MHCs. Additionally, MtrC can directly transfer electrons to U(V)-dpaea to form U(IV) species but is not strictly necessary, underscoring the primary involvement of outer membrane MHCs in the reduction of this pentavalent U species but not excluding that of periplasmic MHCs.
Collapse
Affiliation(s)
- Margaux Molinas
- Environmental Microbiology Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Karin Lederballe Meibom
- Environmental Microbiology Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Radmila Faizova
- Group of Coordination Chemistry, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Marinella Mazzanti
- Group of Coordination Chemistry, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Rizlan Bernier-Latmani
- Environmental Microbiology Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
15
|
Long X, Tokunou Y, Okamoto A. Mechano-control of Extracellular Electron Transport Rate via Modification of Inter-heme Coupling in Bacterial Surface Cytochrome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7421-7430. [PMID: 37079493 DOI: 10.1021/acs.est.3c00601] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Bacterial outer-membrane multi-heme cytochromes (OMCs) mediate extracellular electron transport (EET). While heme alignment dictates the rate of EET, control of inter-heme coupling in a single OMC remains challenging, especially in intact cells. Given that OMCs diffuse and collide without aggregation on the cell surface, the overexpression of OMCs could increase such mechanical stress to impact the OMCs' protein structure. Here, the heme coupling is modified via mechanical interactions among OMCs by controlling their concentrations. Employment of whole-cell circular dichroism (CD) spectra of genetically engineered Escherichia coli reveals that the OMC concentration significantly impacts the molar CD and redox property of OMCs, resulting in a 4-fold change of microbial current production. The overexpression of OMCs increased the conductive current across the biofilm on an interdigitated electrode, indicating that a higher concentration of OMCs causes more lateral inter-protein electron hopping via collision on the cell surface. The present study would open a novel strategy to increase microbial current production by mechanically enhancing the inter-heme coupling.
Collapse
Affiliation(s)
- Xizi Long
- School of the Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yoshihide Tokunou
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 Japan
| | - Akihiro Okamoto
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, North 13 West 8, Kitaku, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
16
|
Hausladen DM, Peña J. Organic buffers act as reductants of abiotic and biogenic manganese oxides. Sci Rep 2023; 13:6498. [PMID: 37081009 PMCID: PMC10119380 DOI: 10.1038/s41598-023-32691-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/31/2023] [Indexed: 04/22/2023] Open
Abstract
Proton activity is the master variable in many biogeochemical reactions. To control pH, laboratory studies involving redox-sensitive minerals like manganese (Mn) oxides frequently use organic buffers (typically Good's buffers); however, two Good's buffers, HEPES and MES, have been shown to reduce Mn(IV) to Mn(III). Because Mn(III) strongly controls mineral reactivity, avoiding experimental artefacts that increase Mn(III) content is critical to avoid confounding results. Here, we quantified the extent of Mn reduction upon reaction between Mn oxides and several Good's buffers (MES, pKa = 6.10; PIPES, pKa = 6.76; MOPS, pKa = 7.28; HEPES, pKa = 7.48) and TRIS (pKa = 8.1) buffer. For δ-MnO2, Mn reduction was rapid, with up to 35% solid-phase Mn(III) generated within 1 h of reaction with Good's buffers; aqueous Mn was minimal in all Good's buffers experiments except those where pH was one unit below the buffer pKa and the reaction proceeded for 24 h. Additionally, the extent of Mn reduction after 24 h increased in the order MES < MOPS < PIPES < HEPES << TRIS. Of the variables tested, the initial Mn(II,III) content had the greatest effect on susceptibility to reduction, such that Mn reduction scaled inversely with the initial average oxidation number (AMON) of the oxide. For biogenic Mn oxides, which consist of a mixture of Mn oxides, bacterial cells and extracelluar polymeric substances, the extent of Mn reduction was lower than predicted from experiments using abiotic analogs and may result from biotic re-oxidation of reduced Mn or a difference in the reducibility of abiotic versus biogenic oxides. The results from this study show that organic buffers, including morpholinic and piperazinic Good's buffers and TRIS, should be avoided for pH control in Mn oxide systems due to their ability to transfer electrons to Mn, which modifies the composition and reactivity of these redox-active minerals.
Collapse
Affiliation(s)
- Debra M Hausladen
- Institute of Earth Surface Dynamics, University of Lausanne, 1015, Lausanne, Switzerland
- Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Jasquelin Peña
- Institute of Earth Surface Dynamics, University of Lausanne, 1015, Lausanne, Switzerland.
- Department of Civil and Environmental Engineering, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
17
|
Recent Applications and Strategies to Enhance Performance of Electrochemical Reduction of CO2 Gas into Value-Added Chemicals Catalyzed by Whole-Cell Biocatalysts. Processes (Basel) 2023. [DOI: 10.3390/pr11030766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Carbon dioxide (CO2) is one of the major greenhouse gases that has been shown to cause global warming. Decreasing CO2 emissions plays an important role to minimize the impact of climate change. The utilization of CO2 gas as a cheap and sustainable source to produce higher value-added chemicals such as formic acid, methanol, methane, and acetic acid has been attracting much attention. The electrochemical reduction of CO2 catalyzed by whole-cell biocatalysts is a promising process for the production of value-added chemicals because it does not require costly enzyme purification steps and the supply of exogenous cofactors such as NADH. This study covered the recent applications of the diversity of microorganisms (pure cultures such as Shewanella oneidensis MR1, Sporomusa species, and Clostridium species and mixed cultures) as whole-cell biocatalysts to produce a wide range of value-added chemicals including methane, carboxylates (e.g., formate, acetate, butyrate, caproate), alcohols (e.g., ethanol, butanol), and bioplastics (e.g., Polyhydroxy butyrate). Remarkably, this study provided insights into the molecular levels of the proteins/enzymes (e.g., formate hydrogenases for CO2 reduction into formate and electron-transporting proteins such as c-type cytochromes) of microorganisms which are involved in the electrochemical reduction of CO2 into value-added chemicals for the suitable application of the microorganism in the chemical reduction of CO2 and enhancing the catalytic efficiency of the microorganisms toward the reaction. Moreover, this study provided some strategies to enhance the performance of the reduction of CO2 to produce value-added chemicals catalyzed by whole-cell biocatalysts.
Collapse
|
18
|
Norman MP, Edwards MJ, White GF, Burton JAJ, Butt JN, Richardson DJ, Louro RO, Paquete CM, Clarke TA. A Cysteine Pair Controls Flavin Reduction by Extracellular Cytochromes during Anoxic/Oxic Environmental Transitions. mBio 2023; 14:e0258922. [PMID: 36645302 PMCID: PMC9973256 DOI: 10.1128/mbio.02589-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/19/2022] [Indexed: 01/17/2023] Open
Abstract
Many bacteria of the genus Shewanella are facultative anaerobes able to reduce a broad range of soluble and insoluble substrates, including Fe(III) mineral oxides. Under anoxic conditions, the bacterium Shewanella oneidensis MR-1 uses a porin-cytochrome complex (Mtr) to mediate extracellular electron transfer (EET) across the outer membrane to extracellular substrates. However, it is unclear how EET prevents generating harmful reactive oxygen species (ROS) when exposed to oxic environments. The Mtr complex is expressed under anoxic and oxygen-limited conditions and contains an extracellular MtrC subunit. This has a conserved CX8C motif that inhibits aerobic growth when removed. This inhibition is caused by an increase in ROS that kills the majority of S. oneidensis cells in culture. To better understand this effect, soluble MtrC isoforms with modified CX8C were isolated. These isoforms produced increased concentrations of H2O2 in the presence of flavin mononucleotide (FMN) and greatly increased the affinity between MtrC and FMN. X-ray crystallography revealed that the molecular structure of MtrC isoforms was largely unchanged, while small-angle X-ray scattering suggested that a change in flexibility was responsible for controlling FMN binding. Together, these results reveal that FMN reduction in S. oneidensis MR-1 is controlled by the redox-active disulfide on the cytochrome surface. In the presence of oxygen, the disulfide forms, lowering the affinity for FMN and decreasing the rate of peroxide formation. This cysteine pair consequently allows the cell to respond to changes in oxygen level and survive in a rapidly transitioning environment. IMPORTANCE Bacteria that live at the oxic/anoxic interface have to rapidly adapt to changes in oxygen levels within their environment. The facultative anaerobe Shewanella oneidensis MR-1 can use EET to respire in the absence of oxygen, but on exposure to oxygen, EET could directly reduce extracellular oxygen and generate harmful reactive oxygen species that damage the bacterium. By modifying an extracellular cytochrome called MtrC, we show how preventing a redox-active disulfide from forming causes the production of cytotoxic concentrations of peroxide. The disulfide affects the affinity of MtrC for the redox-active flavin mononucleotide, which is part of the EET pathway. Our results demonstrate how a cysteine pair exposed on the surface controls the path of electron transfer, allowing facultative anaerobic bacteria to rapidly adapt to changes in oxygen concentration at the oxic/anoxic interface.
Collapse
Affiliation(s)
- Michael P. Norman
- Babraham Institute, Babraham Research Campus, Babraham, Cambridge, United Kingdom
| | - Marcus J. Edwards
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Gaye F. White
- School of Biological Sciences and School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | - Joshua A. J. Burton
- School of Biological Sciences and School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | - Julea N. Butt
- School of Biological Sciences and School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | - David J. Richardson
- School of Biological Sciences and School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | - Ricardo O. Louro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Catarina M. Paquete
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Thomas A. Clarke
- School of Biological Sciences and School of Chemistry, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
19
|
Wu Y, Zhu X, Wang X, Lin Z, Reinfelder JR, Li F, Liu T. A New Electron Shuttling Pathway Mediated by Lipophilic Phenoxazine via the Interaction with Periplasmic and Inner Membrane Proteins of Shewanella oneidensis MR-1. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2636-2646. [PMID: 36652548 DOI: 10.1021/acs.est.2c07862] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Although it has been established that electron mediators substantially promote extracellular electron transfer (EET), electron shuttling pathways are not fully understood. Here, a new electron shuttling pathway was found in the EET process by Shewanella oneidensis MR-1 with resazurin, a lipophilic electron mediator. With resazurin, the genes encoding outer-membrane cytochromes (mtrCBA and omcA) were downregulated. Although cytochrome deletion substantially reduced biocurrent generation to 1-12% of that of wild-type (WT) cells, the presence of resazurin restored biocurrent generation to 168 μA·cm-2 (ΔmtrA/omcA/mtrC), nearly equivalent to that of WT cells (194 μA·cm-2), indicating that resazurin-mediated electron transfer was not dependent on the Mtr pathway. Biocurrent generation by resazurin was much lower in ΔcymA and ΔmtrA/omcA/mtrC/fccA/cctA mutants (4 and 6 μA·cm-2) than in WT cells, indicating a key role of FccA, CctA, and CymA in this process. The effectiveness of resazurin in EET of Mtr cytochrome mutants is also supported by cyclic voltammetry, resazurin reduction kinetics, and in situ c-type cytochrome spectroscopy results. The findings demonstrated that low molecular weight, lipophilic electron acceptors, such as phenoxazine and phenazine, may facilitate electron transfer directly from periplasmic and inner membrane proteins, thus providing new insight into the roles of exogenous electron mediators in electron shuttling in natural and engineered biogeochemical systems.
Collapse
Affiliation(s)
- Yundang Wu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiao Zhu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xinxin Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Zhixin Lin
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - John R Reinfelder
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Tongxu Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
20
|
Futera Z, Wu X, Blumberger J. Tunneling-to-Hopping Transition in Multiheme Cytochrome Bioelectronic Junctions. J Phys Chem Lett 2023; 14:445-452. [PMID: 36622944 DOI: 10.1021/acs.jpclett.2c03361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Multiheme cytochromes (MHCs) have attracted much interest for use in nanobioelectronic junctions due to their high electronic conductances. Recent measurements on dry MHC junctions suggested that a coherent tunneling mechanism is operative over surprisingly long long distances (>3 nm), which challenges our understanding of coherent transport phenomena. Here we show that this is due to (i) a low exponential distance decay constant for coherent conduction in MHCs (β = 0.2 Å-1) and (ii) a large density of protein electronic states which prolongs the coherent tunneling regime to distances that exceed those in molecular wires made of small molecules. Incoherent hopping conduction is uncompetitive due to the large energy level offset at the protein-electrode interface. Removing this offset, e.g., by gating, we predict that the transport mechanism crosses over from coherent tunneling to incoherent hopping at a protein size of ∼7 nm, thus enabling transport on the micrometer scale with a shallow polynomial (∼1/r) distance decay.
Collapse
Affiliation(s)
- Zdenek Futera
- Faculty of Science, University of South Bohemia, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic
| | - Xiaojing Wu
- University College London, Department of Physics and Astronomy, Gower Street, London WC1E 6BT, U.K
| | - Jochen Blumberger
- University College London, Department of Physics and Astronomy, Gower Street, London WC1E 6BT, U.K
| |
Collapse
|
21
|
Deciphering Molecular Factors That Affect Electron Transfer at the Cell Surface of Electroactive Bacteria: The Case of OmcA from Shewanella oneidensis MR-1. Microorganisms 2022; 11:microorganisms11010079. [PMID: 36677373 PMCID: PMC9861303 DOI: 10.3390/microorganisms11010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Multiheme cytochromes play a central role in extracellular electron transfer, a process that allows microorganisms to sustain their metabolism with external electron acceptors or donors. In Shewanella oneidensis MR-1, the decaheme cytochromes OmcA and MtrC show functional specificity for interaction with soluble and insoluble redox partners. In this work, the capacity of extracellular electron transfer by mutant variants of S. oneidensis MR-1 OmcA was investigated. The results show that amino acid mutations can affect protein stability and alter the redox properties of the protein, without affecting the ability to perform extracellular electron transfer to methyl orange dye or a poised electrode. The results also show that there is a good correlation between the reduction of the dye and the current generated at the electrode for most but not all mutants. This observation opens the door for investigations of the molecular mechanisms of interaction with different electron acceptors to tailor these surface exposed cytochromes towards specific bio-based applications.
Collapse
|
22
|
Abstract
Extracellular electron transfer (EET) is a process via which certain microorganisms, such as bacteria, exchange electrons with extracellular materials by creating an electrical link across their membranes. EET has been studied for the reactions on solid materials such as minerals and electrodes with implication in geobiology and biotechnology. EET-capable bacteria exhibit broad phylogenetic diversity, and some are found in environments with various types of electron acceptors/donors not limited to electrodes or minerals. Oxygen has also been shown to serve as the terminal electron acceptor for EET of Pseudomonas aeruginosa and Faecalibacterium prausnitzii. However, the physiological significance of such oxygen-terminating EETs, as well as the mechanisms underlying them, remain unclear. In order to understand the physiological advantage of oxygen-terminating EET and its link with energy metabolism, in this review, we compared oxygen-terminating EET with aerobic respiration, fermentation, and electrode-terminating EET. We also summarized benefits and limitations of oxygen-terminating EET in a biofilm setting, which indicate that EET capability enables bacteria to create a niche in the anoxic zone of aerobic biofilms, thereby remodeling bacterial metabolic activities in biofilms.
Collapse
|
23
|
Guo J, Jiang J, Peng Z, Zhong Y, Jiang Y, Jiang Z, Hu Y, Dong Y, Shi L. Global occurrence of the bacteria with capability for extracellular reduction of iodate. Front Microbiol 2022; 13:1070601. [PMID: 36504819 PMCID: PMC9732548 DOI: 10.3389/fmicb.2022.1070601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
The γ-proteobacterium Shewanella oneidensis MR-1 reduces iodate to iodide extracellularly. Both dmsEFAB and mtrCAB gene clusters are involved in extracellular reduction of iodate by S. oneidensis MR-1. DmsEFAB reduces iodate to hypoiodous acid and hydrogen peroxide (H2O2). Subsequently, H2O2 is reduced by MtrCAB to facilitate DmsEFAB-mediated extracellular reduction of iodate. To investigate the distribution of bacteria with the capability for extracellular reduction of iodate, bacterial genomes were systematically searched for both dmsEFAB and mtrCAB gene clusters. The dmsEFAB and mtrCAB gene clusters were found in three Ferrimonas and 26 Shewanella species. Coexistence of both dmsEFAB and mtrCAB gene clusters in these bacteria suggests their potentials for extracellular reduction of iodate. Further analyses demonstrated that these bacteria were isolated from a variety of ecosystems, including the lakes, rivers, and subsurface rocks in East and Southeast Asia, North Africa, and North America. Importantly, most of the bacteria with both dmsEFAB and mtrCAB gene clusters were found in different marine environments, which ranged from the Arctic Ocean to Antarctic coastal marine environments as well as from the Atlantic Ocean to the Indian and Pacific Oceans. Widespread distribution of the bacteria with capability for extracellular reduction of iodate around the world suggests their significant importance in global biogeochemical cycling of iodine. The genetic organization of dmsEFAB and mtrCAB gene clusters also varied substantially. The identified mtrCAB gene clusters often contained additional genes for multiheme c-type cytochromes. The numbers of dmsEFAB gene cluster detected in a given bacterial genome ranged from one to six. In latter, duplications of dmsEFAB gene clusters occurred. These results suggest different paths for these bacteria to acquire their capability for extracellular reduction of iodate.
Collapse
Affiliation(s)
- Jinzhi Guo
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Jie Jiang
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Zhaofeng Peng
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China,*Correspondence: Zhaofeng Peng,
| | - Yuhong Zhong
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Yongguang Jiang
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Zhou Jiang
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China,State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Yidan Hu
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Yiran Dong
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China,State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China,Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, China,State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, China
| | - Liang Shi
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China,State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China,Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, China,State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, China,*Correspondence: Zhaofeng Peng,
| |
Collapse
|
24
|
Yu YY, Zhang Y, Peng L. Investigating the interaction between Shewanella oneidensis and phenazine 1-carboxylic acid in the microbial electrochemical processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156501. [PMID: 35667430 DOI: 10.1016/j.scitotenv.2022.156501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/28/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Many exoelectrogens utilize small redox mediators for extracellular electron transfer (EET). Notable examples include Shewanella species, which synthesize flavins, and Pseudomonas species, which produce phenazines. In natural and engineered environments, redox-active metabolites from different organisms coexist. The interaction between Shewanella oneidensis and phenazine 1-carboxylic acid (PCA, a representative phenazine compound) was investigated to demonstrate exoelectrogens utilizing metabolites secreted by other organisms as redox mediators. After 24 h in a reactor with and without added PCA (1 μM), the anodic current generated by Shewanella was 235 ± 11 and 51.7 ± 2.8 μA, respectively. Shewanella produced oxidative current approximately three times as high with medium containing PCA as with medium containing the same concentration of riboflavin. PCA also stimulated inward EET in Shewanella. The strong effect of PCA on EET was attributed to its enrichment at the biofilm/electrode interface. The PCA voltammetric peak heights with a Shewanella bioanode were 25-30 times higher than under abiotic conditions. The electrochemical properties of PCA were also altered by the transition from two-electron to single-electron electrochemistry, which suggests PCA was bound between the electrode and cell surface redox proteins. This behavior would benefit electroactive bacteria, which usually dwell in open systems where mediators are present in low concentrations. Like flavins, PCA can be immobilized under both bioanode and biocathode conditions but not under metabolically inactive conditions. Shewanella rapidly transfers electrons to PCA via its Mtr pathway. Compared with wild-type Shewanella, the PCA reduction ability was decreased in gene knockout mutants lacking Mtr pathway cytochromes, especially in the mutants with severely undermined electrode-reduction capacities. These strains also lost the ability to immobilize PCA, even under current-generating conditions.
Collapse
Affiliation(s)
- Yi-Yan Yu
- School of Resources & Environment, Southwest University, Chongqing 400716, PR China
| | - Yong Zhang
- School of Resources & Environment, Southwest University, Chongqing 400716, PR China
| | - Luo Peng
- School of Resources & Environment, Southwest University, Chongqing 400716, PR China.
| |
Collapse
|
25
|
Soares R, Costa NL, Paquete CM, Andreini C, Louro RO. A new paradigm of multiheme cytochrome evolution by grafting and pruning protein modules. Mol Biol Evol 2022; 39:6609985. [PMID: 35714268 PMCID: PMC9250108 DOI: 10.1093/molbev/msac139] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Multiheme cytochromes play key roles in diverse biogeochemical cycles, but understanding the origin and evolution of these proteins is a challenge due to their ancient origin and complex structure. Up until now, the evolution of multiheme cytochromes composed by multiple redox modules in a single polypeptide chain was proposed to occur by gene fusion events. In this context, the pentaheme nitrite reductase NrfA and the tetraheme cytochrome c554 were previously proposed to be at the origin of the extant octa- and nonaheme cytochrome c involved in metabolic pathways that contribute to the nitrogen, sulfur, and iron biogeochemical cycles by a gene fusion event. Here, we combine structural and character-based phylogenetic analysis with an unbiased root placement method to refine the evolutionary relationships between these multiheme cytochromes. The evidence show that NrfA and cytochrome c554 belong to different clades, which suggests that these two multiheme cytochromes are products of truncation of ancestral octaheme cytochromes related to extant octaheme nitrite reductase and MccA, respectively. From our phylogenetic analysis, the last common ancestor is predicted to be an octaheme cytochrome with nitrite reduction ability. Evolution from this octaheme framework led to the great diversity of extant multiheme cytochromes analyzed here by pruning and grafting of protein modules and hemes. By shedding light into the evolution of multiheme cytochromes that intervene in different biogeochemical cycles, this work contributes to our understanding about the interplay between biology and geochemistry across large time scales in the history of Earth.
Collapse
Affiliation(s)
- Ricardo Soares
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Portugal.,Instituto Nacional de Investigação Agrária e Veterinária, Portugal
| | - Nazua L Costa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Portugal
| | - Catarina M Paquete
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Portugal
| | - Claudia Andreini
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Ricardo O Louro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Portugal
| |
Collapse
|
26
|
Campbell IJ, Atkinson JT, Carpenter MD, Myerscough D, Su L, Ajo-Franklin CM, Silberg JJ. Determinants of Multiheme Cytochrome Extracellular Electron Transfer Uncovered by Systematic Peptide Insertion. Biochemistry 2022; 61:1337-1350. [PMID: 35687533 DOI: 10.1021/acs.biochem.2c00148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The multiheme cytochrome MtrA enables microbial respiration by transferring electrons across the outer membrane to extracellular electron acceptors. While structural studies have identified residues that mediate the binding of MtrA to hemes and to other cytochromes that facilitate extracellular electron transfer (EET), the relative importance of these interactions for EET is not known. To better understand EET, we evaluated how insertion of an octapeptide across all MtrA backbone locations affects Shewanella oneidensis MR-1 respiration on Fe(III). The EET efficiency was found to be inversely correlated with the proximity of the insertion to the heme prosthetic groups. Mutants with decreased EET efficiencies also arose from insertions in a subset of the regions that make residue-residue contacts with the porin MtrB, while all sites contacting the extracellular cytochrome MtrC presented high peptide insertion tolerance. MtrA variants having peptide insertions within the CXXCH motifs that coordinate heme cofactors retained some ability to support respiration on Fe(III), although these variants presented significantly decreased EET efficiencies. Furthermore, the fitness of cells expressing different MtrA variants under Fe(III) respiration conditions correlated with anode reduction. The peptide insertion profile, which represents the first comprehensive sequence-structure-function map for a multiheme cytochrome, implicates MtrA as a strategic protein engineering target for the regulation of EET.
Collapse
Affiliation(s)
- Ian J Campbell
- Department of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States
| | - Joshua T Atkinson
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Matthew D Carpenter
- Department of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States
| | - Dru Myerscough
- Department of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States
| | - Lin Su
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Caroline M Ajo-Franklin
- Department of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States.,Department of Bioengineering, Rice University, 6100 Main Street, MS-142, Houston, Texas 77005, United States
| | - Jonathan J Silberg
- Department of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States.,Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, Texas 77005, United States.,Department of Bioengineering, Rice University, 6100 Main Street, MS-142, Houston, Texas 77005, United States
| |
Collapse
|
27
|
Li N, Quan X, Zhuo M, Zhang X, Quan Y, Liang P. Enhancing methanogenesis of anaerobic granular sludge by incorporating Fe/Fe oxides nanoparticles aided with biofilm disassembly agents and mediating redox activity of extracellular polymer substances. WATER RESEARCH 2022; 216:118293. [PMID: 35306457 DOI: 10.1016/j.watres.2022.118293] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/16/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Anaerobic granular sludge (AGS) is a promising technology for organic wastewater treatment and energy recovery. In this study, three different kinds of Fe and Fe oxides nanoparticles (Fe3O4, Fe2O3 and ZVI) were tried to be incorporated into AGS through direct loading or aided with biofilm disassembly agents of norspermidine and D-tyrosine, which was aimed to enhance methane production capacity of AGS via increasing redox activity of extracellular polymer substance (EPS) and interspecies electron transfer. Despite the loading methods, incorporation of Fe and Fe oxides nanoparticles into AGS increased methane production capacity remarkably, with an enhancement of 36.49-85.17%, 20.37-204.95% and 189.71-243.32%, respectively, for the Fe3O4, Fe2O3 and ZVI loaded AGS. Pretreatment of AGS using biofilm disassembly agents helped to incorporate more Fe and Fe oxides into the inner structure of AGS, which further enhanced methane production capacity by 48.68% and 184.58%, respectively, for the Fe3O4 and Fe2O3 loaded AGS. Loading Fe and Fe oxides into AGS not only introduced exogenous conductive substances and Fe(III)/Fe(II) redox couples into EPS matrix of AGS, but also stimulated the production of redox active components of flavins and c-Cyts. All these factors may contribute to the reduced resistance of EPS, enhanced interspecies electron transfer and methane production capacity of AGS. This study provides a novel strategy and facile method to accelerate interspecies electron transfer and enhance methane production for matured AGS.
Collapse
Affiliation(s)
- Naiyu Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xiangchun Quan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Meihui Zhuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xiangfeng Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yanping Quan
- School of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
28
|
Single molecule tracking of bacterial cell surface cytochromes reveals dynamics that impact long-distance electron transport. Proc Natl Acad Sci U S A 2022; 119:e2119964119. [PMID: 35503913 PMCID: PMC9171617 DOI: 10.1073/pnas.2119964119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multiheme cytochromes in Shewanella oneidensis MR-1 transport electrons across the cell wall, in a process called extracellular electron transfer. These electron conduits can also enable electron transport along and between cells. While the underlying mechanism is thought to involve a combination of electron hopping and lateral diffusion of cytochromes along membranes, these diffusive dynamics have never been observed in vivo. Here, we observe the mobility of quantum dot-labeled cytochromes on living cell surfaces and membrane nanowires, quantify their diffusion with single-particle tracking techniques, and simulate the contribution of these dynamics to electron transport. This work reveals the impact of redox molecule dynamics on bacterial electron transport, with implications for understanding and harnessing this process in the environment and bioelectronics. Using a series of multiheme cytochromes, the metal-reducing bacterium Shewanella oneidensis MR-1 can perform extracellular electron transfer (EET) to respire redox-active surfaces, including minerals and electrodes outside the cell. While the role of multiheme cytochromes in transporting electrons across the cell wall is well established, these cytochromes were also recently found to facilitate long-distance (micrometer-scale) redox conduction along outer membranes and across multiple cells bridging electrodes. Recent studies proposed that long-distance conduction arises from the interplay of electron hopping and cytochrome diffusion, which allows collisions and electron exchange between cytochromes along membranes. However, the diffusive dynamics of the multiheme cytochromes have never been observed or quantified in vivo, making it difficult to assess their hypothesized contribution to the collision-exchange mechanism. Here, we use quantum dot labeling, total internal reflection fluorescence microscopy, and single-particle tracking to quantify the lateral diffusive dynamics of the outer membrane-associated decaheme cytochromes MtrC and OmcA, two key components of EET in S. oneidensis. We observe confined diffusion behavior for both quantum dot-labeled MtrC and OmcA along cell surfaces (diffusion coefficients DMtrC = 0.0192 ± 0.0018 µm2/s, DOmcA = 0.0125 ± 0.0024 µm2/s) and the membrane extensions thought to function as bacterial nanowires. We find that these dynamics can trace a path for electron transport via overlap of cytochrome trajectories, consistent with the long-distance conduction mechanism. The measured dynamics inform kinetic Monte Carlo simulations that combine direct electron hopping and redox molecule diffusion, revealing significant electron transport rates along cells and membrane nanowires.
Collapse
|
29
|
Darma A, Yang J, Zandi P, Liu J, Możdżeń K, Xia X, Sani A, Wang Y, Schnug E. Significance of Shewanella Species for the Phytoavailability and Toxicity of Arsenic-A Review. BIOLOGY 2022; 11:biology11030472. [PMID: 35336844 PMCID: PMC8944983 DOI: 10.3390/biology11030472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/02/2022]
Abstract
Simple Summary The availability of some toxic heavy metals, such as arsenic (As), is related to increased human and natural activities. This type of metal availability in the environment is associated with various health and environmental issues. Such problems may arise due to direct contact with or consumption of plant products containing this metal in some of their parts. A microbial approach that employs a group of bacteria (Shewanella species) is proposed to reduce the negative consequences of the availability of this metal (As) in the environment. This innovative strategy can reduce As mobility, its spread, and uptake by plants in the environment. The benefits of this approach include its low cost and the possibility of not exposing other components of the environment to unfavourable consequences. Abstract The distribution of arsenic continues due to natural and anthropogenic activities, with varying degrees of impact on plants, animals, and the entire ecosystem. Interactions between iron (Fe) oxides, bacteria, and arsenic are significantly linked to changes in the mobility, toxicity, and availability of arsenic species in aquatic and terrestrial habitats. As a result of these changes, toxic As species become available, posing a range of threats to the entire ecosystem. This review elaborates on arsenic toxicity, the mechanisms of its bioavailability, and selected remediation strategies. The article further describes how the detoxification and methylation mechanisms used by Shewanella species could serve as a potential tool for decreasing phytoavailable As and lessening its contamination in the environment. If taken into account, this approach will provide a globally sustainable and cost-effective strategy for As remediation and more information to the literature on the unique role of this bacterial species in As remediation as opposed to conventional perception of its role as a mobiliser of As.
Collapse
Affiliation(s)
- Aminu Darma
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.D.); (X.X.); (Y.W.)
- Department of Biological Sciences, Faculty of Life Science, Bayero University, Kano 700006, Nigeria;
| | - Jianjun Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.D.); (X.X.); (Y.W.)
- Correspondence: (J.Y.); (E.S.); Tel.: +86-010-82105996 (J.Y.)
| | - Peiman Zandi
- International Faculty of Applied Technology, Yibin University, Yibin 644600, China;
| | - Jin Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100094, China;
| | - Katarzyna Możdżeń
- Institute of Biology, Pedagogical University of Krakow, Podchorążych 2 St., 30-084 Krakow, Poland;
| | - Xing Xia
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.D.); (X.X.); (Y.W.)
| | - Ali Sani
- Department of Biological Sciences, Faculty of Life Science, Bayero University, Kano 700006, Nigeria;
| | - Yihao Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.D.); (X.X.); (Y.W.)
| | - Ewald Schnug
- Department of Life Sciences, Institute for Plant Biology, Technical University of Braunschweig, 38106 Braunschweig, Germany
- Correspondence: (J.Y.); (E.S.); Tel.: +86-010-82105996 (J.Y.)
| |
Collapse
|
30
|
Partipilo G, Graham AJ, Belardi B, Keitz BK. Extracellular Electron Transfer Enables Cellular Control of Cu(I)-Catalyzed Alkyne-Azide Cycloaddition. ACS CENTRAL SCIENCE 2022; 8:246-257. [PMID: 35233456 PMCID: PMC8875427 DOI: 10.1021/acscentsci.1c01208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Indexed: 05/03/2023]
Abstract
Extracellular electron transfer (EET) is an anaerobic respiration process that couples carbon oxidation to the reduction of metal species. In the presence of a suitable metal catalyst, EET allows for cellular metabolism to control a variety of synthetic transformations. Here, we report the use of EET from the electroactive bacterium Shewanella oneidensis for metabolic and genetic control over Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC). CuAAC conversion under anaerobic and aerobic conditions was dependent on live, actively respiring S. oneidensis cells. The reaction progress and kinetics were manipulated by tailoring the central carbon metabolism. Similarly, EET-CuAAC activity was dependent on specific EET pathways that could be regulated via inducible expression of EET-relevant proteins: MtrC, MtrA, and CymA. EET-driven CuAAC exhibited modularity and robustness in the ligand and substrate scope. Furthermore, the living nature of this system could be exploited to perform multiple reaction cycles without regeneration, something inaccessible to traditional chemical reductants. Finally, S. oneidensis enabled bioorthogonal CuAAC membrane labeling on live mammalian cells without affecting cell viability, suggesting that S. oneidensis can act as a dynamically tunable biocatalyst in complex environments. In summary, our results demonstrate how EET can expand the reaction scope available to living systems by enabling cellular control of CuAAC.
Collapse
Affiliation(s)
- Gina Partipilo
- McKetta
Department of Chemical Engineering, University
of Texas at Austin, Austin, Texas 78712, United States
- Center
for Dynamics and Control of Materials, University
of Texas at Austin, Austin, Texas 78712, United States
| | - Austin J. Graham
- McKetta
Department of Chemical Engineering, University
of Texas at Austin, Austin, Texas 78712, United States
- Center
for Dynamics and Control of Materials, University
of Texas at Austin, Austin, Texas 78712, United States
| | - Brian Belardi
- McKetta
Department of Chemical Engineering, University
of Texas at Austin, Austin, Texas 78712, United States
| | - Benjamin K. Keitz
- McKetta
Department of Chemical Engineering, University
of Texas at Austin, Austin, Texas 78712, United States
- Center
for Dynamics and Control of Materials, University
of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
31
|
Thermodynamic controls on rates of iron oxide reduction by extracellular electron shuttles. Proc Natl Acad Sci U S A 2022; 119:2115629119. [PMID: 35017303 PMCID: PMC8784112 DOI: 10.1073/pnas.2115629119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2021] [Indexed: 11/18/2022] Open
Abstract
Anaerobic microbial respiration in suboxic and anoxic environments often involves particulate ferric iron (oxyhydr-)oxides as terminal electron acceptors. To ensure efficient respiration, a widespread strategy among iron-reducing microorganisms is the use of extracellular electron shuttles (EES) that transfer two electrons from the microbial cell to the iron oxide surface. Yet, a fundamental understanding of how EES-oxide redox thermodynamics affect rates of iron oxide reduction remains elusive. Attempts to rationalize these rates for different EES, solution pH, and iron oxides on the basis of the underlying reaction free energy of the two-electron transfer were unsuccessful. Here, we demonstrate that broadly varying reduction rates determined in this work for different iron oxides and EES at varying solution chemistry as well as previously published data can be reconciled when these rates are instead related to the free energy of the less exergonic (or even endergonic) first of the two electron transfers from the fully, two-electron reduced EES to ferric iron oxide. We show how free energy relationships aid in identifying controls on microbial iron oxide reduction by EES, thereby advancing a more fundamental understanding of anaerobic respiration using iron oxides.
Collapse
|
32
|
Clarke TA. Plugging into bacterial nanowires: a comparison of model electrogenic organisms. Curr Opin Microbiol 2022; 66:56-62. [PMID: 34999354 DOI: 10.1016/j.mib.2021.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022]
Abstract
Extracellular electron transport (EET) is an important metabolic process used by many bacteria to remove excess electrons generated through cellular metabolism. However, there is still limited understanding about how the molecular mechanisms used to export electrons impact cellular metabolism. Here the EET pathways of two of the best-studied electrogenic organisms, Shewanella oneidensis and Geobacter sulferreducens, are described. Both organisms have superficially similar overall EET routes, but differ in the mechanisms used to oxidise menaquinol, transfer electrons across the outer membrane and reduce extracellular substrates. These mechanistic differences substantially impact both substrate choice and bacterial lifestyle.
Collapse
Affiliation(s)
- Thomas Andrew Clarke
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom.
| |
Collapse
|
33
|
Finkelstein J, Swartz J, Koffas M. Bioelectrosynthesis systems. Curr Opin Biotechnol 2021; 74:211-219. [PMID: 34979469 DOI: 10.1016/j.copbio.2021.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022]
Abstract
Bioelectrosynthesis (BES) systems exploit extracellular electron transport pathways to augment cellular metabolism. This strategy can be used to improve the economic viability of bio-based syntheses versus conventional methods, most notably petrochemical-based syntheses. It also has the potential to reduce the carbon footprint of biomanufacturing processes. Efficient channeling of cathode-derived electrons towards biosynthesis requires a better understanding of the biological mechanisms of electron transport as well as detailed evaluation of all aspects of process performance. More advanced solutions may deploy cell free systems that use ex situ generated reducing equivalents to improve economic performance.
Collapse
Affiliation(s)
- Joshua Finkelstein
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - James Swartz
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| | - Mattheos Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
34
|
McCuskey SR, Chatsirisupachai J, Zeglio E, Parlak O, Panoy P, Herland A, Bazan GC, Nguyen TQ. Current Progress of Interfacing Organic Semiconducting Materials with Bacteria. Chem Rev 2021; 122:4791-4825. [PMID: 34714064 DOI: 10.1021/acs.chemrev.1c00487] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microbial bioelectronics require interfacing microorganisms with electrodes. The resulting abiotic/biotic platforms provide the basis of a range of technologies, including energy conversion and diagnostic assays. Organic semiconductors (OSCs) provide a unique strategy to modulate the interfaces between microbial systems and external electrodes, thereby improving the performance of these incipient technologies. In this review, we explore recent progress in the field on how OSCs, and related materials capable of charge transport, are being used within the context of microbial systems, and more specifically bacteria. We begin by examining the electrochemical communication modes in bacteria and the biological basis for charge transport. Different types of synthetic organic materials that have been designed and synthesized for interfacing and interrogating bacteria are discussed next, followed by the most commonly used characterization techniques for evaluating transport in microbial, synthetic, and hybrid systems. A range of applications is subsequently examined, including biological sensors and energy conversion systems. The review concludes by summarizing what has been accomplished so far and suggests future design approaches for OSC bioelectronics materials and technologies that hybridize characteristic properties of microbial and OSC systems.
Collapse
Affiliation(s)
- Samantha R McCuskey
- Department of Chemistry, National University of Singapore, Singapore 119077, Singapore
| | - Jirat Chatsirisupachai
- Center for Polymers and Organic Solids & Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States.,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| | - Erica Zeglio
- Division of Micro and Nanosystems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm 17177, Sweden
| | - Onur Parlak
- Dermatology and Venereology Division, Department of Medicine(Solna), Karolinska Institute, Stockholm 17177, Sweden.,AIMES Center of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden
| | - Patchareepond Panoy
- Center for Polymers and Organic Solids & Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States.,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| | - Anna Herland
- Division of Micro and Nanosystems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm 17177, Sweden.,AIMES Center of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden
| | - Guillermo C Bazan
- Department of Chemistry, National University of Singapore, Singapore 119077, Singapore
| | - Thuc-Quyen Nguyen
- Center for Polymers and Organic Solids & Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
35
|
Zhang Y, Fernie AR. Stable and Temporary Enzyme Complexes and Metabolons Involved in Energy and Redox Metabolism. Antioxid Redox Signal 2021; 35:788-807. [PMID: 32368925 DOI: 10.1089/ars.2019.7981] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Significance: Alongside well-characterized permanent multimeric enzymes and multienzyme complexes, relatively unstable transient enzyme-enzyme assemblies, including metabolons, provide an important mechanism for the regulation of energy and redox metabolism. Critical Issues: Despite the fact that enzyme-enzyme assemblies have been proposed for many decades and experimentally analyzed for at least 40 years, there are very few pathways for which unequivocal evidence for the presence of metabolite channeling, the most frequently evoked reason for their formation, has been provided. Further, in contrast to the stronger, permanent interactions for which a deep understanding of the subunit interface exists, the mechanism(s) underlying transient enzyme-enzyme interactions remain poorly studied. Recent Advances: The widespread adoption of proteomic and cell biological approaches to characterize protein-protein interaction is defining an ever-increasing number of enzyme-enzyme assemblies as well as enzyme-protein interactions that likely identify factors which stabilize such complexes. Moreover, the use of microfluidic technologies provided compelling support of a role for substrate-specific chemotaxis in complex assemblies. Future Directions: Embracing current and developing technologies should render the delineation of metabolons from other enzyme-enzyme complexes more facile. In parallel, attempts to confirm that the findings reported in microfluidic systems are, indeed, representative of the cellular situation will be critical to understanding the physiological circumstances requiring and evoking dynamic changes in the levels of the various transient enzyme-enzyme assemblies of the cell. Antioxid. Redox Signal. 35, 788-807.
Collapse
Affiliation(s)
- Youjun Zhang
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria.,Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria.,Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| |
Collapse
|
36
|
Nanosecond heme-to-heme electron transfer rates in a multiheme cytochrome nanowire reported by a spectrally unique His/Met-ligated heme. Proc Natl Acad Sci U S A 2021; 118:2107939118. [PMID: 34556577 PMCID: PMC8488605 DOI: 10.1073/pnas.2107939118] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 11/29/2022] Open
Abstract
Multiheme cytochromes have been identified as essential proteins for electron exchange between bacterial enzymes and redox substrates outside of the cell. In microbiology, these proteins contribute to efficient energy storage and conversion. For biotechnology, multiheme cytochromes contribute to the production of green fuels and electricity. Furthermore, these proteins inspire the design of molecular-scale electronic devices. Here, we report exceptionally high rates of heme-to-heme electron transfer in a multiheme cytochrome. We expect similarly high rates, among the highest reported for ground-state electron transfer in biology, in other multiheme cytochromes as the close-packed hemes adopt similar configurations despite very different amino acid sequences and protein folds. Proteins achieve efficient energy storage and conversion through electron transfer along a series of redox cofactors. Multiheme cytochromes are notable examples. These proteins transfer electrons over distance scales of several nanometers to >10 μm and in so doing they couple cellular metabolism with extracellular redox partners including electrodes. Here, we report pump-probe spectroscopy that provides a direct measure of the intrinsic rates of heme–heme electron transfer in this fascinating class of proteins. Our study took advantage of a spectrally unique His/Met-ligated heme introduced at a defined site within the decaheme extracellular MtrC protein of Shewanella oneidensis. We observed rates of heme-to-heme electron transfer on the order of 109 s−1 (3.7 to 4.3 Å edge-to-edge distance), in good agreement with predictions based on density functional and molecular dynamics calculations. These rates are among the highest reported for ground-state electron transfer in biology. Yet, some fall 2 to 3 orders of magnitude below the Moser–Dutton ruler because electron transfer at these short distances is through space and therefore associated with a higher tunneling barrier than the through-protein tunneling scenario that is usual at longer distances. Moreover, we show that the His/Met-ligated heme creates an electron sink that stabilizes the charge separated state on the 100-μs time scale. This feature could be exploited in future designs of multiheme cytochromes as components of versatile photosynthetic biohybrid assemblies.
Collapse
|
37
|
Piper SEH, Edwards MJ, van Wonderen JH, Casadevall C, Martel A, Jeuken LJC, Reisner E, Clarke TA, Butt JN. Bespoke Biomolecular Wires for Transmembrane Electron Transfer: Spontaneous Assembly of a Functionalized Multiheme Electron Conduit. Front Microbiol 2021; 12:714508. [PMID: 34484155 PMCID: PMC8415449 DOI: 10.3389/fmicb.2021.714508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Shewanella oneidensis exchanges electrons between cellular metabolism and external redox partners in a process that attracts much attention for production of green electricity (microbial fuel cells) and chemicals (microbial electrosynthesis). A critical component of this pathway is the outer membrane spanning MTR complex, a biomolecular wire formed of the MtrA, MtrB, and MtrC proteins. MtrA and MtrC are decaheme cytochromes that form a chain of close-packed hemes to define an electron transfer pathway of 185 Å. MtrA is wrapped inside MtrB for solubility across the outer membrane lipid bilayer; MtrC sits outside the cell for electron exchange with external redox partners. Here, we demonstrate tight and spontaneous in vitro association of MtrAB with separately purified MtrC. The resulting complex is comparable with the MTR complex naturally assembled by Shewanella in terms of both its structure and rates of electron transfer across a lipid bilayer. Our findings reveal the potential for building bespoke electron conduits where MtrAB combines with chemically modified MtrC, in this case, labeled with a Ru-dye that enables light-triggered electron injection into the MtrC heme chain.
Collapse
Affiliation(s)
- Samuel E H Piper
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Marcus J Edwards
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Jessica H van Wonderen
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Carla Casadevall
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | | | - Lars J C Jeuken
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Thomas A Clarke
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Julea N Butt
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
38
|
Blake RC, Nautiyal A, Smith KA, Walton NN, Pendleton B, Wang Z. Ferrimicrobium acidiphilum Exchanges Electrons With a Platinum Electrode via a Cytochrome With Reduced Absorbance Maxima at 448 and 605 nm. Front Microbiol 2021; 12:705187. [PMID: 34381433 PMCID: PMC8350767 DOI: 10.3389/fmicb.2021.705187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/02/2021] [Indexed: 01/22/2023] Open
Abstract
Ferrimicrobium acidiphilum is a Gram-positive member of the Actinobacteria phylum that can respire aerobically or anaerobically with soluble Fe(II) or Fe(III), respectively, in sulfuric acid at pH 1.5. Cyclic voltammetry measurements using intact F. acidiphilum at pH 1.5 produced fully reversible voltammograms that were highly reproducible. The maximum current observed with the anodic peak was considerably less than was the maximum current observed with the cathodic peak. This difference was attributed to the competition between the platinum electrode and the soluble oxygen for the available electrons that were introduced by the cathodic wave into this facultative aerobic organism. The standard reduction potential of the intact organism was determined to be 786 mV vs. the standard hydrogen electrode, slightly more positive than that of 735 mV that was determined for soluble iron at pH 1.5 using the same apparatus. Chronocoulometry measurements conducted at different cell densities revealed that the intact organism remained in close proximity to the working electrode during the measurement, whereas soluble ionic iron did not. When the cyclic voltammetry of intact F. acidiphilum was monitored using an integrating cavity absorption meter, the only small changes in absorbance that were detected were consistent with the participation of a cellular cytochrome with reduced absorbance peaks at 448 and 605 nm. The cytochrome that participated in the exchange of electrons between the intact organism and extracellular solid electrodes like platinum was the same cytochrome whose oxidation was previously shown to be rate-limiting when the organism respired aerobically on extracellular soluble iron.
Collapse
Affiliation(s)
- Robert C Blake
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, United States
| | - Amit Nautiyal
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, United States
| | - Kayla A Smith
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, United States
| | - Noelle N Walton
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, United States
| | - Brealand Pendleton
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, United States
| | - Zhe Wang
- Department of Chemistry, Oakland University, Rochester, NY, United States
| |
Collapse
|
39
|
Dong Y, Shan Y, Xia K, Shi L. The Proposed Molecular Mechanisms Used by Archaea for Fe(III) Reduction and Fe(II) Oxidation. Front Microbiol 2021; 12:690918. [PMID: 34276623 PMCID: PMC8280799 DOI: 10.3389/fmicb.2021.690918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/02/2021] [Indexed: 11/17/2022] Open
Abstract
Iron (Fe) is the fourth most abundant element in the Earth's crust where ferrous Fe [Fe(II)] and ferric Fe [Fe(III)] can be used by archaea for energy conservation. In these archaea-Fe interactions, Fe(III) serves as terminal electron acceptor for anaerobic respiration by a variety of archaea, while Fe(II) serves as electron donor and/or energy sources for archaeal growth. As no Fe is incorporated into the archaeal cells, these redox reactions are referred to as dissimilatory Fe(III) reduction and Fe(II) oxidation, respectively. Dissimilatory Fe(III)-reducing archaea (FeRA) and Fe(II)-oxidizing archaea (FeOA) are widespread on Earth where they play crucial roles in biogeochemical cycling of not only Fe, but also carbon and sulfur. To reduce extracellular Fe(III) (oxyhydr)oxides, some FeRA transfer electrons directly to the Fe(III) (oxyhydr)oxides most likely via multiheme c-type cytochromes (c-Cyts). These multiheme c-Cyts may form the pathways similar to those found in bacteria for transferring electrons from the quinone/quinol pool in the cytoplasmic membrane to the Fe(III) (oxyhydr)oxides external to the archaeal cells. Use of multiheme c-Cyts for extracellular Fe(III) reduction by both Domains of Archaea and Bacteria emphasizes an ancient mechanism of extracellular electron transfer, which is well conserved. Other FeRA, however, reduce Fe(III) (oxyhydr)oxides indirectly via electron shuttles. Similarly, it is proposed that FeOA use pathways to oxidize Fe(II) on the surface of the cytoplasmic membrane and then to transfer the released electrons across the cytoplasmic membrane inward to the O2 and NAD+ in the cytoplasm. In this review, we focus on the latest understandings of the molecular mechanisms used by FeRA and FeOA for Fe(III) reduction and Fe(II) oxidation, respectively.
Collapse
Affiliation(s)
- Yiran Dong
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Yawei Shan
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Kemin Xia
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Liang Shi
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| |
Collapse
|
40
|
Futera Z. Amino-acid interactions with the Au(111) surface: adsorption, band alignment, and interfacial electronic coupling. Phys Chem Chem Phys 2021; 23:10257-10266. [PMID: 33899874 DOI: 10.1039/d1cp00218j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The charge transport properties of biological molecules like peptides and proteins are intensively studied for the great flexibility, redox-state variability, long-range efficiency, and biocompatibility of potential bioelectronic applications. Yet, the electronic interactions of biomolecules with solid metal surfaces, determining the conductivities of the biomolecular junctions, are hard to predict and usually unavailable. Here, we present accurate adsorption structures and energies, electronic band alignment, and interfacial electronic coupling data for all 20 natural amino acids computed using the DFT+Σ scheme based on the vdW-DF and OT-RSH functionals. For comparison, data obtained using the popular PBE functional are provided as well. Tryptophan, compared to other amino acids, is shown to be distinctly exceptional in terms of the electronic properties related to charge transport. Its high adsorption energy, frontier-orbital levels aligned relatively close to the Fermi energy of gold and strong interfacial electronic coupling make it an ideal candidate for facilitating charge transfer on such heterogeneous interfaces. Although the amino acids in peptides and proteins are affected by the structural interactions hindering their contact with the surface, knowledge of the single-molecule surface interactions is necessary for a detailed understanding of such structural effects and tuning of potential applications.
Collapse
Affiliation(s)
- Zdenek Futera
- Faculty of Science, University of South Bohemia, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic.
| |
Collapse
|
41
|
Lopez-Adams R, Newsome L, Moore KL, Lyon IC, Lloyd JR. Dissimilatory Fe(III) Reduction Controls on Arsenic Mobilization: A Combined Biogeochemical and NanoSIMS Imaging Approach. Front Microbiol 2021; 12:640734. [PMID: 33692773 PMCID: PMC7938665 DOI: 10.3389/fmicb.2021.640734] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/22/2021] [Indexed: 11/13/2022] Open
Abstract
Microbial metabolism plays a key role in controlling the fate of toxic groundwater contaminants, such as arsenic. Dissimilatory metal reduction catalyzed by subsurface bacteria can facilitate the mobilization of arsenic via the reductive dissolution of As(V)-bearing Fe(III) mineral assemblages. The mobility of liberated As(V) can then be amplified via reduction to the more soluble As(III) by As(V)-respiring bacteria. This investigation focused on the reductive dissolution of As(V) sorbed onto Fe(III)-(oxyhydr)oxide by model Fe(III)- and As(V)-reducing bacteria, to elucidate the mechanisms underpinning these processes at the single-cell scale. Axenic cultures of Shewanella sp. ANA-3 wild-type (WT) cells [able to respire both Fe(III) and As(V)] were grown using 13C-labeled lactate on an arsenical Fe(III)-(oxyhydr)oxide thin film, and after colonization, the distribution of Fe and As in the solid phase was assessed using nanoscale secondary ion mass spectrometry (NanoSIMS), complemented with aqueous geochemistry analyses. Parallel experiments were conducted using an arrA mutant, able to respire Fe(III) but not As(V). NanoSIMS imaging showed that most metabolically active cells were not in direct contact with the Fe(III) mineral. Flavins were released by both strains, suggesting that these cell-secreted electron shuttles mediated extracellular Fe(III)-(oxyhydr)oxide reduction, but did not facilitate extracellular As(V) reduction, demonstrated by the presence of flavins yet lack of As(III) in the supernatants of the arrA deletion mutant strain. 3D reconstructions of NanoSIMS depth-profiled single cells revealed that As and Fe were associated with the cell surface in the WT cells, whereas for the arrA mutant, only Fe was associated with the biomass. These data were consistent with Shewanella sp. ANA-3 respiring As(V) in a multistep process; first, the reductive dissolution of the Fe(III) mineral released As(V), and once in solution, As(V) was respired by the cells to As(III). As well as highlighting Fe(III) reduction as the primary release mechanism for arsenic, our data also identified unexpected cellular As(III) retention mechanisms that require further investigation.
Collapse
Affiliation(s)
- Rebeca Lopez-Adams
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, United Kingdom
| | - Laura Newsome
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, United Kingdom.,Camborne School of Mines, Environment and Sustainability Institute, University of Exeter, Exeter, United Kingdom
| | - Katie L Moore
- Department of Materials, University of Manchester, Manchester, United Kingdom.,Photon Science Institute, University of Manchester, Manchester, United Kingdom
| | - Ian C Lyon
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, United Kingdom.,Photon Science Institute, University of Manchester, Manchester, United Kingdom
| | - Jonathan R Lloyd
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
42
|
Zhao J, Li F, Cao Y, Zhang X, Chen T, Song H, Wang Z. Microbial extracellular electron transfer and strategies for engineering electroactive microorganisms. Biotechnol Adv 2020; 53:107682. [PMID: 33326817 DOI: 10.1016/j.biotechadv.2020.107682] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/04/2020] [Accepted: 12/09/2020] [Indexed: 11/27/2022]
Abstract
Electroactive microorganisms (EAMs) are ubiquitous in nature and have attracted considerable attention as they can be used for energy recovery and environmental remediation via their extracellular electron transfer (EET) capabilities. Although the EET mechanisms of Shewanella and Geobacter have been rigorously investigated and are well characterized, much less is known about the EET mechanisms of other microorganisms. For EAMs, efficient EET is crucial for the sustainable economic development of bioelectrochemical systems (BESs). Currently, the low efficiency of EET remains a key factor in limiting the development of BESs. In this review, we focus on the EET mechanisms of different microorganisms, (i.e., bacteria, fungi, and archaea). In addition, we describe in detail three engineering strategies for improving the EET ability of EAMs: (1) enhancing transmembrane electron transport via cytochrome protein channels; (2) accelerating electron transport via electron shuttle synthesis and transmission; and (3) promoting the microbe-electrode interface reaction via regulating biofilm formation. At the end of this review, we look to the future, with an emphasis on the cross-disciplinary integration of systems biology and synthetic biology to build high-performance EAM systems.
Collapse
Affiliation(s)
- Juntao Zhao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBioResearch Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Feng Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBioResearch Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yingxiu Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBioResearch Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, People's Republic of China
| | - Tao Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBioResearch Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBioResearch Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Zhiwen Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBioResearch Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China.
| |
Collapse
|
43
|
Starwalt-Lee R, El-Naggar MY, Bond DR, Gralnick JA. Electrolocation? The evidence for redox-mediated taxis in Shewanella oneidensis. Mol Microbiol 2020; 115:1069-1079. [PMID: 33200455 DOI: 10.1111/mmi.14647] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/11/2020] [Indexed: 11/27/2022]
Abstract
Shewanella oneidensis is a dissimilatory metal reducing bacterium and model for extracellular electron transfer (EET), a respiratory mechanism in which electrons are transferred out of the cell. In the last 10 years, migration to insoluble electron acceptors for EET has been shown to be nonrandom and tactic, seemingly in the absence of molecular or energy gradients that typically allow for taxis. As the ability to sense, locate, and respire electrodes has applications in bioelectrochemical technology, a better understanding of taxis in S. oneidensis is needed. While the EET conduits of S. oneidensis have been studied extensively, its taxis pathways and their interplay with EET are not yet understood, making investigation into taxis phenomena nontrivial. Since S. oneidensis is a member of an EET-encoding clade, the genetic circuitry of taxis to insoluble acceptors may be conserved. We performed a bioinformatic analysis of Shewanella genomes to identify S. oneidensis chemotaxis orthologs conserved in the genus. In addition to the previously reported core chemotaxis gene cluster, we identify several other conserved proteins in the taxis signaling pathway. We present the current evidence for the two proposed models of EET taxis, "electrokinesis" and flavin-mediated taxis, and highlight key areas in need of further investigation.
Collapse
Affiliation(s)
- Ruth Starwalt-Lee
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota - Twin Cities, St. Paul, MN, USA
| | - Mohamed Y El-Naggar
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, USA.,Department of Chemistry, University of Southern California, Los Angeles, CA, USA.,Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Daniel R Bond
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota - Twin Cities, St. Paul, MN, USA
| | - Jeffrey A Gralnick
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota - Twin Cities, St. Paul, MN, USA
| |
Collapse
|
44
|
Futera Z, Ide I, Kayser B, Garg K, Jiang X, van Wonderen JH, Butt JN, Ishii H, Pecht I, Sheves M, Cahen D, Blumberger J. Coherent Electron Transport across a 3 nm Bioelectronic Junction Made of Multi-Heme Proteins. J Phys Chem Lett 2020; 11:9766-9774. [PMID: 33142062 PMCID: PMC7681787 DOI: 10.1021/acs.jpclett.0c02686] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Multi-heme cytochromes (MHCs) are fascinating proteins used by bacterial organisms to shuttle electrons within, between, and out of their cells. When placed in solid-state electronic junctions, MHCs support temperature-independent currents over several nanometers that are 3 orders of magnitude higher compared to other redox proteins of similar size. To gain molecular-level insight into their astonishingly high conductivities, we combine experimental photoemission spectroscopy with DFT+Σ current-voltage calculations on a representative Gold-MHC-Gold junction. We find that conduction across the dry, 3 nm long protein occurs via off-resonant coherent tunneling, mediated by a large number of protein valence-band orbitals that are strongly delocalized over heme and protein residues. This picture is profoundly different from the electron hopping mechanism induced electrochemically or photochemically under aqueous conditions. Our results imply that the current output in solid-state junctions can be even further increased in resonance, for example, by applying a gate voltage, thus allowing a quantum jump for next-generation bionanoelectronic devices.
Collapse
Affiliation(s)
- Zdenek Futera
- Faculty
of Science, University of South Bohemia, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic
- Department
of Physics and Astronomy, University College
London, Gower Street, London WC1E
6BT, U.K.
| | - Ichiro Ide
- Graduate
School of Science and Engineering, Chiba
University, Chiba, Japan
| | - Ben Kayser
- Department
of Materials and Interfaces, Weizmann Institute
of Science, Rehovot, Israel
| | - Kavita Garg
- Department
of Materials and Interfaces, Weizmann Institute
of Science, Rehovot, Israel
| | - Xiuyun Jiang
- Department
of Physics and Astronomy, University College
London, Gower Street, London WC1E
6BT, U.K.
| | - Jessica H. van Wonderen
- School
of Chemistry, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Julea N. Butt
- School
of Chemistry, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Hisao Ishii
- Graduate
School of Science and Engineering, Chiba
University, Chiba, Japan
| | - Israel Pecht
- Department
of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Mordechai Sheves
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot, Israel
| | - David Cahen
- Department
of Materials and Interfaces, Weizmann Institute
of Science, Rehovot, Israel
| | - Jochen Blumberger
- Department
of Physics and Astronomy, University College
London, Gower Street, London WC1E
6BT, U.K.
- (J.B.)
. Phone: ++44-(0)20-7679-4373. Fax: ++44-(0)20-7679-7145
| |
Collapse
|
45
|
Chen H, Simoska O, Lim K, Grattieri M, Yuan M, Dong F, Lee YS, Beaver K, Weliwatte S, Gaffney EM, Minteer SD. Fundamentals, Applications, and Future Directions of Bioelectrocatalysis. Chem Rev 2020; 120:12903-12993. [DOI: 10.1021/acs.chemrev.0c00472] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hui Chen
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Olja Simoska
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Koun Lim
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Matteo Grattieri
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Mengwei Yuan
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Fangyuan Dong
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Yoo Seok Lee
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Kevin Beaver
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Samali Weliwatte
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Erin M. Gaffney
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
46
|
Liu T, Luo X, Wu Y, Reinfelder JR, Yuan X, Li X, Chen D, Li F. Extracellular Electron Shuttling Mediated by Soluble c-Type Cytochromes Produced by Shewanella oneidensis MR-1. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10577-10587. [PMID: 32692167 DOI: 10.1021/acs.est.9b06868] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
How metal-reducing bacteria transfer electrons during dissimilatory energy generation under electron acceptor-limited conditions is poorly understood. Here, we incubated the iron and manganese-reducing bacterium Shewanella oneidensis MR-1 without electron acceptors. Removal of soluble extracellular organic compounds (EOCs) dramatically retarded transfer of electrons to an experimental electron acceptor, Cr(VI), by MR-1. However, the return of either high MW (>3000 Da) or low MW (<3000 Da) soluble EOCs produced by MR-1 to washed cells restored Cr(VI) reduction though Cr(VI) reduction was fastest when both size fractions were added together. Spectral and electrochemical characterization of EOCs indicated the presence of flavins and c-type cytochromes (c-Cyts). A model of the kinetics of individual elementary reactions between cells, flavins, released c-Cyts, and Cr(VI), including the direct reduction of flavins, released c-Cyts, and Cr(VI) by cells and the indirect reduction of Cr(VI) by reduced forms of flavins and released c-Cyts, was developed. Model results suggest that released c-Cyts could act as electron mediators to accelerate electron transfer from cells to Cr(VI), and the relative contribution of this pathway was higher than that mediated by flavins. Hence, extracellular c-Cyts produced by MR-1 likely play a role in extracellular electron transfer under electron acceptor-limited conditions. These findings provide new insights into extracellular electron shuttling and the metabolic strategy of metal-reducing bacteria under electron acceptor-limited conditions.
Collapse
Affiliation(s)
- Tongxu Liu
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou 510650, PR China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Xiaobo Luo
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Yundang Wu
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou 510650, PR China
| | - John R Reinfelder
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, New Jersey 08901, United States
| | - Xiu Yuan
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou 510650, PR China
| | - Xiaomin Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
| | - Dandan Chen
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou 510650, PR China
| | - Fangbai Li
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou 510650, PR China
| |
Collapse
|
47
|
Li DB, Edwards MJ, Blake AW, Newton-Payne SE, Piper SEH, Jenner LP, Sokol KP, Reisner E, Van Wonderen JH, Clarke TA, Butt JN. His/Met heme ligation in the PioA outer membrane cytochrome enabling light-driven extracellular electron transfer by Rhodopseudomonas palustris TIE-1. NANOTECHNOLOGY 2020; 31:354002. [PMID: 32403091 DOI: 10.1088/1361-6528/ab92c7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A growing number of bacterial species are known to move electrons across their cell envelopes. Naturally this occurs in support of energy conservation and carbon-fixation. For biotechnology it allows electron exchange between bacteria and electrodes in microbial fuel cells and during microbial electrosynthesis. In this context Rhodopseudomonas palustris TIE-1 is of much interest. These bacteria respond to light by taking electrons from their external environment, including electrodes, to drive CO2-fixation. The PioA cytochrome, that spans the bacterial outer membrane, is essential for this electron transfer and yet little is known about its structure and electron transfer properties. Here we reveal the ten c-type hemes of PioA are redox active across the window +250 to -400 mV versus Standard Hydrogen Electrode and that the hemes with most positive reduction potentials have His/Met and His/H2O ligation. These chemical and redox properties distinguish PioA from the more widely studied family of MtrA outer membrane decaheme cytochromes with ten His/His ligated hemes. We predict a structure for PioA in which the hemes form a chain spanning the longest dimension of the protein, from Heme 1 to Heme 10. Hemes 2, 3 and 7 are identified as those most likely to have His/Met and/or His/H2O ligation. Sequence analysis suggests His/Met ligation of Heme 2 and/or 7 is a defining feature of decaheme PioA homologs from over 30 different bacterial genera. His/Met ligation of Heme 3 appears to be less common and primarily associated with PioA homologs from purple non-sulphur bacteria belonging to the alphaproteobacteria class.
Collapse
Affiliation(s)
- Dao-Bo Li
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom. Present address: Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China and State Key Laboratory of Applied Microbiology Southern China, Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Pirbadian S, Chavez MS, El-Naggar MY. Spatiotemporal mapping of bacterial membrane potential responses to extracellular electron transfer. Proc Natl Acad Sci U S A 2020; 117:20171-20179. [PMID: 32747561 PMCID: PMC7443868 DOI: 10.1073/pnas.2000802117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Extracellular electron transfer (EET) allows microorganisms to gain energy by linking intracellular reactions to external surfaces ranging from natural minerals to the electrodes of bioelectrochemical renewable energy technologies. In the past two decades, electrochemical techniques have been used to investigate EET in a wide range of microbes, with emphasis on dissimilatory metal-reducing bacteria, such as Shewanella oneidensis MR-1, as model organisms. However, due to the typically bulk nature of these techniques, they are unable to reveal the subpopulation variation in EET or link the observed electrochemical currents to energy gain by individual cells, thus overlooking the potentially complex spatial patterns of activity in bioelectrochemical systems. Here, to address these limitations, we use the cell membrane potential as a bioenergetic indicator of EET by S. oneidensis MR-1 cells. Using a fluorescent membrane potential indicator during in vivo single-cell-level fluorescence microscopy in a bioelectrochemical reactor, we demonstrate that membrane potential strongly correlates with EET. Increasing electrode potential and associated EET current leads to more negative membrane potential. This EET-induced membrane hyperpolarization is spatially limited to cells in contact with the electrode and within a near-electrode zone (<30 μm) where the hyperpolarization decays with increasing cell-electrode distance. The high spatial and temporal resolution of the reported technique can be used to study the single-cell-level dynamics of EET not only on electrode surfaces, but also during respiration of other solid-phase electron acceptors.
Collapse
Affiliation(s)
- Sahand Pirbadian
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089
| | - Marko S Chavez
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089
| | - Mohamed Y El-Naggar
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089;
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
49
|
Su L, Fukushima T, Ajo-Franklin CM. A hybrid cyt c maturation system enhances the bioelectrical performance of engineered Escherichia coli by improving the rate-limiting step. Biosens Bioelectron 2020; 165:112312. [PMID: 32729471 DOI: 10.1016/j.bios.2020.112312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/26/2022]
Abstract
Bioelectronic devices can use electron flux to enable communication between biotic components and abiotic electrodes. We have modified Escherichia coli to electrically interact with electrodes by expressing the cytochrome c from Shewanella oneidensis MR-1. However, we observe inefficient electrical performance, which we hypothesize is due to the limited compatibility of the E. coli cytochrome c maturation (Ccm) systems with MR-1 cytochrome c. Here we test whether the bioelectronic performance of E. coli can be improved by constructing hybrid Ccm systems containing protein domains from both E. coli and S. oneidensis MR-1. The hybrid CcmH increased cytochrome c expression by increasing the abundance of CymA 60%, while only slightly changing the abundance of the other cytochromes c. Electrochemical measurements showed that the overall current from the hybrid ccm strain increased 121% relative to the wildtype ccm strain, with an electron flux per cell of 12.3 ± 0.3 fA·cell-1. Additionally, the hybrid ccm strain doubled its electrical response with the addition of exogenous flavin, and quantitative analysis of this demonstrates CymA is the rate-limiting step in this electron conduit. These results demonstrate that this hybrid Ccm system can enhance the bioelectrical performance of the cyt c expressing E. coli, allowing the construction of more efficient bioelectronic devices.
Collapse
Affiliation(s)
- Lin Su
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210018, China; Department of BioSciences, Rice University, Houston, TX, 77005, USA; Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Tatsuya Fukushima
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Caroline M Ajo-Franklin
- Department of BioSciences, Rice University, Houston, TX, 77005, USA; Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Molecular Biophysics and Integrated Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Institute for Biosciences and Bioengineering, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
50
|
Fan G, Graham AJ, Kolli J, Lynd NA, Keitz BK. Aerobic radical polymerization mediated by microbial metabolism. Nat Chem 2020; 12:638-646. [PMID: 32424254 PMCID: PMC7321916 DOI: 10.1038/s41557-020-0460-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 03/23/2020] [Indexed: 01/01/2023]
Abstract
Performing radical polymerizations under ambient conditions is a significant challenge because molecular oxygen is an effective radical quencher. Here we show that the facultative electrogen Shewanella oneidensis can control metal-catalyzed living radical polymerizations under apparent aerobic conditions by first consuming dissolved oxygen via aerobic respiration, then directing extracellular electron flux to a metal catalyst. In both open and closed containers, S. oneidensis enabled living radical polymerizations without requiring the pre-removal of oxygen. Polymerization activity was closely tied to S. oneidensis anaerobic metabolism through specific extracellular electron transfer (EET) proteins and was effective for a variety of monomers using low (ppm) concentrations of metal catalysts. Finally, polymerizations survived repeated challenges of oxygen exposure and could be initiated using lyophilized or spent (recycled) cells. Overall, our results demonstrate how the unique ability of S. oneidensis to use both oxygen and metals as respiratory electron acceptors can be leveraged to address salient challenges in polymer synthesis.
Collapse
Affiliation(s)
- Gang Fan
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA.,Center for Dynamics and Control of Materials, University of Texas at Austin, Austin, TX, USA
| | - Austin J Graham
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA.,Center for Dynamics and Control of Materials, University of Texas at Austin, Austin, TX, USA
| | - Jayaker Kolli
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Nathaniel A Lynd
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA.,Center for Dynamics and Control of Materials, University of Texas at Austin, Austin, TX, USA
| | - Benjamin K Keitz
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA. .,Center for Dynamics and Control of Materials, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|