1
|
Shakerian N, Darzi-Eslam E, Afsharnoori F, Bana N, Noorabad Ghahroodi F, Tarin M, Mard-Soltani M, Khalesi B, Hashemi ZS, Khalili S. Therapeutic and diagnostic applications of exosomes in colorectal cancer. Med Oncol 2024; 41:203. [PMID: 39031221 DOI: 10.1007/s12032-024-02440-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/26/2024] [Indexed: 07/22/2024]
Abstract
Exosomes play a key role in colorectal cancer (CRC) related processes. This review explores the various functions of exosomes in CRC and their potential as diagnostic markers, therapeutic targets, and drug delivery vehicles. Exosomal long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) significantly influence CRC progression. Specific exosomal lncRNAs are linked to drug resistance and tumor growth, respectively, highlighting their therapeutic potential. Similarly, miRNAs like miR-21, miR-10b, and miR-92a-3p, carried by exosomes, contribute to chemotherapy resistance by altering signaling pathways and gene expression in CRC cells. The review also discusses exosomes' utility in CRC diagnosis. Exosomes from cancer cells have distinct molecular signatures compared to healthy cells, making them reliable biomarkers. Specific exosomal lncRNAs (e.g., CRNDE-h) and miRNAs (e.g., miR-17-92a) have shown effectiveness in early CRC detection and monitoring of treatment responses. Furthermore, exosomes show promise as vehicles for targeted drug delivery. The potential of mesenchymal stem cell (MSC)-derived exosomes in CRC treatment is also noted, with their role varying from promoting to inhibiting tumor progression. The application of multi-omics approaches to exosome research is highlighted, emphasizing the potential for discovering novel CRC biomarkers through comprehensive genomic, transcriptomic, proteomic, and metabolomic analyses. The review also explores the emerging field of exosome-based vaccines, which utilize exosomes' natural properties to elicit strong immune responses. In conclusion, exosomes represent a promising frontier in CRC research, offering new avenues for diagnosis, treatment, and prevention. Their unique properties and versatile functions underscore the need for continued investigation into their clinical applications and underlying mechanisms.
Collapse
Affiliation(s)
- Neda Shakerian
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Elham Darzi-Eslam
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Afsharnoori
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nikoo Bana
- Kish International Campus, University of Teheran, Tehran, Iran
| | - Faezeh Noorabad Ghahroodi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mojtaba Tarin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maysam Mard-Soltani
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Education and Extension Organization, Razi Vaccine and Serum Research Institute, Agricultural Research, Karaj, 3197619751, Iran
| | - Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran.
| |
Collapse
|
2
|
Bansal M, Ansari S, Verma M. Role of miRNAs to control the progression of Chronic Myeloid Leukemia by their expression levels. Med Oncol 2024; 41:55. [PMID: 38216843 DOI: 10.1007/s12032-023-02278-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/30/2023] [Indexed: 01/14/2024]
Abstract
Chronic Myeloid Leukemia (CML) is a myeloproliferative disorder distinguished by a specific genetic anomaly known as a reciprocal translocation between chromosomes 9 and 22. This translocation causes fusion between the BCR and ABL regions. Consequently, BCR::ABL oncoprotein is formed, which plays a significant role in driving CML progression. Imatinib, a tyrosine kinase inhibitor (TKI), became the first line of drugs against CML. However, with continuous treatment, patients developed resistance against it. Indeed, to address this challenge, microRNA-based therapy emerges as a promising approach. miRNAs are 20-25 nucleotides long and hold great significance in various cellular processes, including cell differentiation, proliferation, migration, and apoptosis. In several malignancies, it has been reported that miRNAs might help to promote or prevent tumourigenesis and abnormal expression because they could act as both oncogenes/tumor suppressors. Recently, because of their vital regulatory function in maintaining cell homeostasis, miRNAs might be used to control CML progression and in developing new therapies for TKI-resistant patients. They might also act as potential prognostic, diagnostic, and therapeutic biomarkers based on their expression profiles. Various annotation tools and microarray-based expression profiles can be used to predict dysregulated miRNAs and their target genes. The main purpose of this review is to provide brief insights into the role of dysregulated miRNAs in CML pathogenesis and to emphasize their clinical relevance, such as their significant potential as therapeutics against CML. Utilizing these miRNAs as a therapeutic approach by inhibition or amplification of their activity could unlock new doors for the therapy of CML.
Collapse
MESH Headings
- Humans
- MicroRNAs/genetics
- Fusion Proteins, bcr-abl
- Drug Resistance, Neoplasm/genetics
- Imatinib Mesylate/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Apoptosis
Collapse
Affiliation(s)
- Manvi Bansal
- School of Biotechnology, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Sana Ansari
- School of Biotechnology, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Malkhey Verma
- School of Biotechnology, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
3
|
Pinnenti M, Sami MA, Hassan U. Enabling biomedical technologies for chronic myelogenous leukemia (CML) biomarkers detection. BIOMICROFLUIDICS 2024; 18:011501. [PMID: 38283720 PMCID: PMC10817778 DOI: 10.1063/5.0172550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024]
Abstract
Chronic myelogenous/myeloid leukemia (CML) is a type of cancer of bone marrow that arises from hematopoietic stem cells and affects millions of people worldwide. Eighty-five percent of the CML cases are diagnosed during chronic phase, most of which are detected through routine tests. Leukocytes, micro-Ribonucleic Acids, and myeloid markers are the primary biomarkers for CML diagnosis and are mainly detected using real-time reverse transcription polymerase chain reaction, flow cytometry, and genetic testing. Though multiple therapies have been developed to treat CML, early detection still plays a pivotal role in the overall patient survival rate. The current technologies used for CML diagnosis are costly and are confined to laboratory settings which impede their application in the point-of-care settings for early-stage detection of CML. This study provides detailed analysis and insights into the significance of CML, patient symptoms, biomarkers used for testing, and best possible detection techniques responsible for the enhancement in survival rates. A critical and detailed review is provided around potential microfluidic devices that can be adapted to detect the biomarkers associated with CML while enabling point-of-care testing for early diagnosis of CML to improve patient survival rates.
Collapse
Affiliation(s)
- Meenakshi Pinnenti
- Department of Electrical & Computer Engineering, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Muhammad Ahsan Sami
- Department of Electrical & Computer Engineering, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | | |
Collapse
|
4
|
Parsa-Kondelaji M, Musavi M, Barzegar F, Abbasian N, Rostami M, R Seyedtaghia M, S Hashemi S, Modi M, Nikfar B, A Momtazi-Borojeni A. Dysregulation of miRNA expression in patients with chronic myelogenous leukemia at diagnosis: a systematic review. Biomark Med 2023; 17:1021-1029. [PMID: 38230979 DOI: 10.2217/bmm-2023-0575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024] Open
Abstract
Aim: The present systematic review aimed to explore miRNAs as a potential biomarker for early diagnosis of chronic myeloid leukemia (CML). Materials & methods: A systematic search was conducted in three electronic databases, including Web of Science, Scopus and PubMed, to obtain relevant articles investigating the alteration of miRNA expression in patients with CML. Results: The authors found miRNAs whose expression changes are effective in the induction of CML disease. Among them, miR-21 and miR-155 were identified as the most common miRNAs with increased expression and miR-150 and miR-146 as the most common miRNAs with decreased expression. Conclusion: miRNAs can be used as an indicator for the early detection and treatment of CML phase.
Collapse
Affiliation(s)
- Mohammad Parsa-Kondelaji
- Department of Hematology & Blood Banking, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Musavi
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Faezeh Barzegar
- Department of Hematology & Blood Banking, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Abbasian
- Hematology & Blood Banking Center, Emam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Rostami
- Department of Hematology & Blood Banking, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad R Seyedtaghia
- Department of Medical Genetics & Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyyed S Hashemi
- Department of Medical Genetics & Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdiyeh Modi
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Banafsheh Nikfar
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Amir A Momtazi-Borojeni
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
5
|
Pane AA, Kordaß T, Hotz‐Wagenblatt A, Dickes E, Kopp‐Schneider A, Will R, Seliger B, Osen W, Eichmüller SB. MicroRNAs affecting the susceptibility of melanoma cells to CD8 + T cell-mediated cytolysis. Clin Transl Med 2023; 13:e1186. [PMID: 36718025 PMCID: PMC9887093 DOI: 10.1002/ctm2.1186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The regulatory functions of microRNAs (miRNAs) in anti-tumour immunity have been mainly described in immune effector cells. Since little is known about miRNA effects on the susceptibility of target cells during T cell-target cell interaction, this study focused on the identification of miRNAs expressed in tumour cells controlling their susceptibility to CD8+ T cell-mediated cytotoxicity. METHODS Luciferase expressing B16F10 melanoma (B16F10 Luci+ ) cells transfected with individual miRNAs covering a comprehensive murine miRNA library were screened for their susceptibility to lysis by an established cytotoxic T lymphocyte (CTL) line (5a, clone Nβ) specific for the melanoma-associated antigen tyrosinase-related protein 2. miRNAs with the most pronounced effects on T cell-mediated lysis were validated and stably expressed in B16F10 cells. In silico analyses identified common targets of miRNA sets determined by the screen, which were further confirmed by small interfering RNA (siRNA)-mediated silencing experiments modulating immune surveillance. The Ingenuity Pathway Analysis (IPA) software and RNA sequencing (RNA-seq) data from miRNA-overexpressing cell lines were applied to investigate the underlying mechanisms. The Cancer Genome Atlas (TCGA)-derived miRNA sequencing data were used to assess the correlation of miRNA expression with melanoma patients' survival. RESULTS The miRNA screen resulted in the selection of seven miRNAs enhancing CTL-mediated melanoma cell killing in vitro. Upon stable overexpression of selected miRNAs, hsa-miR-320a-3p, mmu-miR-7037-5p and mmu-miR-666-3p were determined as most effective in enhancing susceptibility to CTL lysis. In silico analyses and subsequent siRNA-mediated silencing experiments identified Psmc3 and Ndufa1 as common miRNA targets possibly involved in the functional effects observed. The analyses of RNA-seq data with IPA showed pathways, networks, biological functions and key molecules potentially involved in the miRNA-mediated functional effects. Finally, based on TCGA data analysis, a positive correlation of the conserved miRNAs among the panel of the seven identified miRNAs with overall survival of melanoma patients was determined. CONCLUSIONS For the first time, this study uncovered miRNA species that affect the susceptibility of melanoma cells to T cell-mediated killing. These miRNAs might represent attractive candidates for novel therapy approaches against melanoma and other tumour entities.
Collapse
Affiliation(s)
- Antonino A. Pane
- Research Group GMP & T Cell TherapyGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Faculty of BiosciencesUniversity of HeidelbergHeidelbergGermany
- Present address:
Immatics Biotechnologies GmbHTübingenGermany
| | - Theresa Kordaß
- Research Group GMP & T Cell TherapyGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Faculty of BiosciencesUniversity of HeidelbergHeidelbergGermany
- Present address:
Section Multiple MyelomaInternal Medicine V, University Clinic HeidelbergHeidelbergGermany
| | - Agnes Hotz‐Wagenblatt
- Omics IT and Data Management Core FacilityGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Elke Dickes
- Research Group GMP & T Cell TherapyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | | | - Rainer Will
- Core Facility Cellular ToolsGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Barbara Seliger
- Institute of Medical ImmunologyMartin‐Luther‐University Halle‐WittenbergHalle/SaaleGermany
| | - Wolfram Osen
- Research Group GMP & T Cell TherapyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Stefan B. Eichmüller
- Research Group GMP & T Cell TherapyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| |
Collapse
|
6
|
Ghazimoradi MH, Karimpour-Fard N, Babashah S. The Promising Role of Non-Coding RNAs as Biomarkers and Therapeutic Targets for Leukemia. Genes (Basel) 2023; 14:131. [PMID: 36672872 PMCID: PMC9859176 DOI: 10.3390/genes14010131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Early-stage leukemia identification is crucial for effective disease management and leads to an improvement in the survival of leukemia patients. Approaches based on cutting-edge biomarkers with excellent accuracy in body liquids provide patients with the possibility of early diagnosis with high sensitivity and specificity. Non-coding RNAs have recently received a great deal of interest as possible biomarkers in leukemia due to their participation in crucial oncogenic processes such as proliferation, differentiation, invasion, apoptosis, and their availability in body fluids. Recent studies have revealed a strong correlation between leukemia and the deregulated non-coding RNAs. On this basis, these RNAs are also great therapeutic targets. Based on these advantages, we tried to review the role of non-coding RNAs in leukemia. Here, the significance of several non-coding RNA types in leukemia is highlighted, and their potential roles as diagnostic, prognostic, and therapeutic targets are covered.
Collapse
Affiliation(s)
- Mohammad H. Ghazimoradi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Naeim Karimpour-Fard
- Department of Pharmacoeconomics and Pharmaceutical Administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| |
Collapse
|
7
|
Rudich A, Garzon R, Dorrance A. Non-Coding RNAs Are Implicit in Chronic Myeloid Leukemia Therapy Resistance. Int J Mol Sci 2022; 23:ijms232012271. [PMID: 36293127 PMCID: PMC9603161 DOI: 10.3390/ijms232012271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm initiated by the presence of the fusion gene BCR::ABL1. The development of tyrosine kinase inhibitors (TKIs) highly specific to p210BCR-ABL1, the constitutively active tyrosine kinase encoded by BCR::ABL1, has greatly improved the prognosis for CML patients. Now, the survival rate of CML nearly parallels that of age matched controls. However, therapy resistance remains a persistent problem in the pursuit of a cure. TKI resistance can be attributed to both BCR::ABL1 dependent and independent mechanisms. Recently, the role of non-coding RNAs (ncRNAs) has been increasingly explored due to their frequent dysregulation in a variety of malignancies. Specifically, microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs) have been shown to contribute to the development and progression of therapy resistance in CML. Since each ncRNA exhibits multiple functions and is capable of controlling gene expression, they exert their effect on CML resistance through a diverse set of mechanisms and pathways. In most cases ncRNAs with tumor suppressing functions are silenced in CML, while those with oncogenic properties are overexpressed. Here, we discuss the relevance of many aberrantly expressed ncRNAs and their effect on therapy resistance in CML.
Collapse
MESH Headings
- Humans
- Fusion Proteins, bcr-abl
- RNA, Circular
- RNA, Long Noncoding/genetics
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Drug Resistance, Neoplasm/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- MicroRNAs/genetics
- MicroRNAs/pharmacology
Collapse
|
8
|
Shi F, Li L. Hsa_circ_0088196 suppresses trophoblast migration and invasion by the miR-525-5p/ABL1 axis and the PI3K/AKT signaling pathway. J Biochem Mol Toxicol 2022; 36:e23150. [PMID: 35781906 DOI: 10.1002/jbt.23150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/28/2022] [Accepted: 06/06/2022] [Indexed: 11/06/2022]
Abstract
Our study aimed to explore the role of circ_0088196 (circular TNC [circTNC]) in trophoblast invasion and migration in preeclampsia (PE) both in vitro and in vivo. CircTNC, miR-525-5p, and ABL1 expression in trophoblast HTR8/SVneo cells were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability, migration, and invasion were detected by Cell Counting Kit-8 (CCK-8), wound healing, and Transwell assays. The binding between circTNC (or ABL1) and miR-525-5p was validated by RNA pulldown and luciferase reporter assays. The mouse model of PE was injected with sh-circTNC and the effects of circTNC knockdown on the mean artery pressure, urine protein concentration, and fetal survival number of pregnant mice were examined. The expression of MMP-2, MMP-9, and PI3K/AKT pathway molecules in placental tissues was assessed by immunohistochemistry, qRT-PCR, and western blot analysis. CircTNC overexpression inhibited cell invasion and migration, but did not influence cell proliferation. CircTNC bound with miR-525-5p, whose knockdown repressed cell invasion and migration, while it exerted no effect on cell proliferation. ABL1, a target of miR-525-5p, attenuated cell migration and invasion, without influence on cell viability. Importantly, either miR-525-5p overexpression or ABL1 depletion antagonized the repression of upregulated circTNC on trophoblast cell migration and invasion, MMP-2 and MMP-9 expression, and the PI3K/AKT pathway. CircTNC knockdown alleviated PE symptoms in pregnant mice. CircTNC knockdown promoted the trophoblast invasiveness in mice placenta by upregulating MMP-2/9 expression and suppressing the PI3K/AKT pathway. Circ_0088196 represses trophoblast invasion and migration both in vitro and in vivo via regulating the miR-525-5p/ABL1 axis and activating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Fenglian Shi
- Department of Gynaecology and Obstetrics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Li Li
- Department of Gynaecology and Obstetrics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Bian H, Dou QL, Wei J, Liu JL, Wang X, Liu X. Erythrocyte Ghost Based Fusogenic Glycoprotein Vesicular Stomatitis Virus Glycoprotein Complexes as an Efficient Deoxyribonucleic Acid Delivery System. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study aimed to construct a new type of fused erythrocyte vector for gene delivery system. The conditioned medium of AD293 cells expressing vesicular stomatitis virus glycoprotein gene was collected, and erythrocyte ghost was prepared by hypotonic lysis. Using cationic polymer to
condense deoxyribonucleic acid to form a complex, fusogenic erythrocyte ghost was incubated with this complex to obtain virion. Flow cytometry and luciferase activity analysis were used to detect the delivery of fusogenic erythrocyte ghost to deoxyribonucleic acid in AD293 cells and refractory
cells, respectively. Transfection efficiency of fusogenic erythrocyte ghost in vivo was detected by confocal microscope. Vesicular stomatitis virus glycoprotein and erythrocyte ghost were effectively integrated, and fusogenic erythrocyte ghost was successfully prepared. deoxyribonucleic
acid/polyethylenimine complexes form 100–300 nm particles. Fusogenic erythrocyte ghost can effectively incorporation deoxyribonucleic acid complexes. Confocal microscope observed red fluorescence close to blue fluorescence, indicating that labeled fusogenic erythrocyte ghost may trigger
liver and spleen tissue endocytosis or fusion. A new delivery vector of fusogenic erythrocyte ghost was constructed. This system could enhance the delivery efficiency even in cells which refractory to conventional transfections in vitro.
Collapse
Affiliation(s)
- Hong Bian
- Department of Thoracic Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Qing-Li Dou
- The Baoan Hospital Affiliated with Southern Medical University, People’s Hospital of Baoan District of Shenzhen, Shenzhen 518101, Guangdong, China
| | - Jian Wei
- The Baoan Hospital Affiliated with Southern Medical University, People’s Hospital of Baoan District of Shenzhen, Shenzhen 518101, Guangdong, China
| | - Jing-Le Liu
- The Baoan Hospital Affiliated with Southern Medical University, People’s Hospital of Baoan District of Shenzhen, Shenzhen 518101, Guangdong, China
| | - Xiao Wang
- The Baoan Hospital Affiliated with Southern Medical University, People’s Hospital of Baoan District of Shenzhen, Shenzhen 518101, Guangdong, China
| | - Xin Liu
- Ningxia Medical University, Yinchuan 750004, Ningxia, China
| |
Collapse
|
10
|
Hatmal MM, Al-Hatamleh MAI, Olaimat AN, Alshaer W, Hasan H, Albakri KA, Alkhafaji E, Issa NN, Al-Holy MA, Abderrahman SM, Abdallah AM, Mohamud R. Immunomodulatory Properties of Human Breast Milk: MicroRNA Contents and Potential Epigenetic Effects. Biomedicines 2022; 10:1219. [PMID: 35740242 PMCID: PMC9219990 DOI: 10.3390/biomedicines10061219] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Infants who are exclusively breastfed in the first six months of age receive adequate nutrients, achieving optimal immune protection and growth. In addition to the known nutritional components of human breast milk (HBM), i.e., water, carbohydrates, fats and proteins, it is also a rich source of microRNAs, which impact epigenetic mechanisms. This comprehensive work presents an up-to-date overview of the immunomodulatory constituents of HBM, highlighting its content of circulating microRNAs. The epigenetic effects of HBM are discussed, especially those regulated by miRNAs. HBM contains more than 1400 microRNAs. The majority of these microRNAs originate from the lactating gland and are based on the remodeling of cells in the gland during breastfeeding. These miRNAs can affect epigenetic patterns by several mechanisms, including DNA methylation, histone modifications and RNA regulation, which could ultimately result in alterations in gene expressions. Therefore, the unique microRNA profile of HBM, including exosomal microRNAs, is implicated in the regulation of the genes responsible for a variety of immunological and physiological functions, such as FTO, INS, IGF1, NRF2, GLUT1 and FOXP3 genes. Hence, studying the HBM miRNA composition is important for improving the nutritional approaches for pregnancy and infant's early life and preventing diseases that could occur in the future. Interestingly, the composition of miRNAs in HBM is affected by multiple factors, including diet, environmental and genetic factors.
Collapse
Affiliation(s)
- Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman 11942, Jordan;
| | - Hanan Hasan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Khaled A. Albakri
- Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Enas Alkhafaji
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Nada N. Issa
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Murad A. Al-Holy
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Salim M. Abderrahman
- Department of Biology and Biotechnology, Faculty of Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Atiyeh M. Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar;
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| |
Collapse
|
11
|
Elias MH, Syed Mohamad SF, Abdul Hamid N. A Systematic Review of Candidate miRNAs, Its Targeted Genes and Pathways in Chronic Myeloid Leukemia-An Integrated Bioinformatical Analysis. Front Oncol 2022; 12:848199. [PMID: 35330714 PMCID: PMC8940286 DOI: 10.3389/fonc.2022.848199] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/15/2022] [Indexed: 12/04/2022] Open
Abstract
Chronic myeloid leukaemia is blood cancer due to a reciprocal translocation, resulting in a BCR-ABL1 oncogene. Although tyrosine kinase inhibitors have been successfully used to treat CML, there are still cases of resistance. The resistance occurred mainly due to the mutation in the tyrosine kinase domain of the BCR-ABL1 gene. However, there are still many cases with unknown causes of resistance as the etiopathology of CML are not fully understood. Thus, it is crucial to figure out the complete pathogenesis of CML, and miRNA can be one of the essential pathogeneses. The objective of this study was to systematically review the literature on miRNAs that were differentially expressed in CML cases. Their target genes and downstream genes were also explored. An electronic search was performed via PubMed, Scopus, EBSCOhost MEDLINE, and Science Direct. The following MeSH (Medical Subject Heading) terms were used: chronic myeloid leukaemia, genes and microRNAs in the title or abstract. From 806 studies retrieved from the search, only clinical studies with in-vitro experimental evidence on the target genes of the studied miRNAs in CML cells were included. Two independent reviewers independently scrutinised the titles and abstracts before examining the eligibility of studies that met the inclusion criteria. Study design, sample size, sampling type, and the molecular method used were identified for each study. The pooled miRNAs were analysed using DIANA tools, and target genes were analysed with DAVID, STRING and Cytoscape MCODE. Fourteen original research articles on miRNAs in CML were included, 26 validated downstream genes and 187 predicted target genes were analysed and clustered into 7 clusters. Through GO analysis, miRNAs’ target genes were localised throughout the cells, including the extracellular region, cytosol, and nucleus. Those genes are involved in various pathways that regulate genomic instability, proliferation, apoptosis, cell cycle, differentiation, and migration of CML cells.
Collapse
Affiliation(s)
- Marjanu Hikmah Elias
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai, Malaysia
| | - Syarifah Faezah Syed Mohamad
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai, Malaysia.,Faculty of Applied Sciences, Universiti Teknologi MARA Cawangan Pahang, Jengka, Malaysia
| | - Nazefah Abdul Hamid
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai, Malaysia
| |
Collapse
|
12
|
Huang Y, Xu M, Jing C, Wu X, Chen X, Zhang W. Extracellular vesicle-derived miR-320a targets ZC3H12B to inhibit tumorigenesis, invasion, and angiogenesis in ovarian cancer. Discov Oncol 2021; 12:51. [PMID: 35201481 PMCID: PMC8777536 DOI: 10.1007/s12672-021-00437-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022] Open
Abstract
Extracellular vesicles (EVs) play crucial roles in intercellular communication. miRNAs derived from EVs emerge as promising diagnostic indicators and therapeutic targets in a variety of malignancies. Tremendous studies have revealed the function of miRNAs derived from EVs in tumorigenesis, metastasis and other aspects. The mechanism of action of EV-derived miRNAs, however, in ovarian cancer remains largely unknown. In this study, EVs were enriched from the ovarian cancer cell lines. EVs as a whole could promote cell proliferation, invasion and new vasculature formation. However, the down-regulated EV-derived miR-320a was demonstrated to potentially suppress tumorigenesis, metastasis and angiogenesis. Moreover, EV-derived miR-320a has been proved to directly regulate a previously unknown target, ZC3H12B. An unreported role of ZC3H12B in promoting ovarian cancer cell proliferation has been elucidated and miR-320a could mediate the expression of ZC3H12B, thereby inhibiting the downstream response. As for the practical clinic values, lower expression of EV-derived miR-320a correlates with shorter survival period, indicating that EV-derived miR-320a may also serve as a prognostic biomarker in ovarian cancer. This research provides new insight into the molecular mechanism of EV-derived miR-320a in ovarian cancer and may provide new therapeutic and prognostic strategies for ovarian cancer treatment.
Collapse
Affiliation(s)
- Yan Huang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, 270 Dong‑an Road, Shanghai, 200032, China
| | - Midie Xu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Chuyu Jing
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, 270 Dong‑an Road, Shanghai, 200032, China
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, 270 Dong‑an Road, Shanghai, 200032, China
| | - Xiaojun Chen
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, 270 Dong‑an Road, Shanghai, 200032, China.
| | - Wei Zhang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, 270 Dong‑an Road, Shanghai, 200032, China.
| |
Collapse
|
13
|
Ma L, Chen Z, Li J, Zhang H, Jia Y, Liu J. DP from Euphorbia fischeriana S. mediated apoptosis in leukemia cells via the PI3k/Akt signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:113889. [PMID: 33524514 DOI: 10.1016/j.jep.2021.113889] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Euphorbia fischeriana S. (E. fischeriana) is a classic Chinese herb with toxicity that is mainly used for cancer treatment and in insect repellent, anti-inflammatory and anti-edema applications (Liu et al., 2001). 12-Deoxyphorbol13-palmitate (DP), a tetracyclic diterpene monomer compound, was extracted from the roots of E. fischeriana by our research groups. AIM Previous studies found that DP could inhibit the proliferation of leukemia cells in vitro. However, the underlying mechanism of DP in leukemia is unknown. Hence, DP's pharmacological effect on leukemia cells was investigated in this study. MATERIALS AND METHODS DP was obtained from the Natural Medicine Chemistry Laboratory of Qiqihaer Medical University. In vitro, K562 cells and HL60 cells were incubated with DP or DP combined with LY294002 at different concentrations. Cell proliferation and apoptosis were detected by the relevant experimental methods. In vivo, nude mouse xenograft models were established by injecting K562 cells. DP was intraperitoneally administered to observe the influence on the growth of transplanted tumors. Gene detection and immunoblot analysis were performed to validate the mechanisms. RESULTS The cell counting kit-8 (CCK-8) assay proved that DP inhibited the growth of K562 and HL60 cells in a time- or dose-dependent manner. At 12 h, DP could induce apoptosis by Annexin V-FITC/propidium iodide (PI) dual labeling, loss of mitochondrial membrane potential (MMP), intracellular reactive oxygen species (ROS), acridine orange/ethidium bromide (AO/EB) staining and transmission electron microscopy (TEM) observation in K562 or HL60 cells. Furthermore, in an assay of gene and protein expression, we found that DP could downregulate the gene and protein expression levels of Bcl-2, upregulate the gene and protein expression levels of Bax and Bim, and downregulate the protein expression levels of PI3k, p-Akt, and p-FoxO3a. Moreover, the effects of DP on proliferation and apoptosis in K562 cells were enhanced by LY294002. Then, we tested the antitumor effects of DP in vivo. Nude mouse xenograft models were established by subcutaneously injecting K562 cells. We found that tumor volume was significantly decreased in DP-treated xenograft nude mice. Morphologic changes, apoptosis degree, and related gene and protein expression levels in transplanted tumor tissue of DP-treated nude mice were assessed by different experimental methods. CONCLUSIONS The in vivo and in vitro experimental results indicated that DP might inhibit the proliferation and induce the apoptosis of leukemia cells, which might be a result of suppressing the PI3k/Akt signaling pathways.
Collapse
Affiliation(s)
- Liwei Ma
- Qiqihaer Medical University, Heilongjiang Qiqihaer, China
| | - Zhe Chen
- Qiqihaer Medical University, Heilongjiang Qiqihaer, China
| | - Jing Li
- The Third Affiliated Hospital of Qiqihaer Medical University, China
| | - Hongtao Zhang
- The Third Affiliated Hospital of Qiqihaer Medical University, China
| | - Yongming Jia
- Qiqihaer Medical University, Heilongjiang Qiqihaer, China
| | - Jicheng Liu
- Qiqihaer Medical University, Heilongjiang Qiqihaer, China.
| |
Collapse
|
14
|
Dong W, Wang F, Liu Q, Wang T, Yang Y, Guo P, Li X, Wei B. Downregulation of miRNA-14669 Reverses Vincristine Resistance in Colorectal Cancer Cells through PI3K/AKT Signaling Pathway. Recent Pat Anticancer Drug Discov 2021; 17:178-186. [PMID: 34365931 DOI: 10.2174/1574892816666210806154225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Vincristine (VCR) is a chemotherapeutic drug commonly used in the treatment of Colorectal Cancer (CRC). However, VCR drug resistance may result in reduced efficacy and even failure of chemotherapy in CRC treatment. MiRNA has been demonstrated to be associated with the sensitivity of tumor cells to chemotherapy. OBJECTIVE This study aimed to identify a novel miRNA-14669 that can reverse vincristine resistance and sensitize drug-resistant colorectal cancer cells. METHODS High-throughput sequencing was performed to screen miRNAs that are associated with VCR drug resistance, and qRT-PCR was used for further validation. The miRNA mimic and inhibitor were designed and transfected into HCT-8,HCT-116 and HCT-8/VCR cells. Wound healing test examined the effect of the miRNA on the migration of colorectal cancer cells. Flow cytometry was used to evaluate cell apoptosis of HCT-8 cells. Survivin, Bcl-2, GST3, MDR1 and MRP1 expressions were detected by Western blot. RESULTS The expression of miRNA-14669 in HCT-8/VCR cells was 1.925 times higher than that of the HCT-8 cells. After transfecting with mimic miRNA, HCT-8 and HCT-116 cells showed an increased survival rate. The survival rate of HCT-8/VCR cells decreased by transfection of inhibitor. The inhibitor also sensitized HCT-8 and HCT-116 cells to VCR or 5-Fluorouracil (5-FU). The migratory ability of HCT-8 and HCT-116 cells increased by miRNA mimic while reduced by miRNA inhibitor. Overexpression of miRNA-14669 reduced apoptosis, while downregulation of miRNA-14669 increased cell apoptosis in HCT-8 cells. The mechanism of the miRNA involved in drug resistance may be attributed to apoptosis of tumor cells, detoxification of GST3 and drug efflux induced by MDR1 and MRP1. PI3K / AKT is the signaling pathway related to drug resistance. CONCLUSION We identified a novel miRNA-14669 that may be associated with the chemotherapeutic resistance in CRC cells.
Collapse
Affiliation(s)
- Weihua Dong
- Department of Biochemistry and Molecular Biology, Basic Medical School, Xinxiang Medical University, Jinsui Road, Henan. China
| | - Fang Wang
- Department of Biochemistry and Molecular Biology, Basic Medical School, Xinxiang Medical University, Jinsui Road, Henan. China
| | - Qingyu Liu
- Basic Medical School, Xinxiang Medical University, Jinsui Road, Henan. China
| | - Tianyun Wang
- Department of Biochemistry and Molecular Biology, Basic Medical School, Xinxiang Medical University, Jinsui Road, Henan. China
| | - Yun Yang
- Department of Biochemistry and Molecular Biology, Basic Medical School, Xinxiang Medical University, Jinsui Road, Henan. China
| | - Peixia Guo
- Basic Medical School, Xinxiang Medical University, Jinsui Road, Henan. China
| | - Xiang Li
- Basic Medical School, Xinxiang Medical University, Jinsui Road, Henan. China
| | - Bingdi Wei
- Basic Medical School, Xinxiang Medical University, Jinsui Road, Henan. China
| |
Collapse
|
15
|
Xie H, Wang J. MicroRNA-320a-containing exosomes from human umbilical cord mesenchymal stem cells curtail proliferation and metastasis in lung cancer by binding to SOX4. J Recept Signal Transduct Res 2021; 42:268-278. [PMID: 34096448 DOI: 10.1080/10799893.2021.1918166] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Exosomes from human umbilical cord mesenchymal stem cells (HUCMSCs) containing microRNAs (miRNAs) have been underscored as possible therapeutic options for cancers. Hence, our goal here was to investigate the relevance of miR-320a-containing exosomes from HUCMSCs to lung cancer. First, H1299 and H460 cells were co-cultured with the exosomes overexpressing miR-320a from HUCMSCs. The data displayed that HUCMSCs-secreted exosomes expressing miR-320a exerted anti-tumor effects in vitro and in vivo. Online analysis available at TargetScan database revealed that miR-320a bound to sex-determining region Y-box 4 (SOX4), and the luciferase reporter gene assay clarified this targeting relationship. Next, a β-catenin-specific agonist WAY-262611 was delivered into the H1299 and H460 cells to assess the effects of the Wnt/β-catenin pathway on lung cancer cellular processes. The results demonstrated that WAY-262611 potentiated lung cancer cell viability, invasion, and migration, but inhibited cell apoptosis. Altogether, exosomes carrying miR-320a from HUCMSCs might suppress lung cancer cell growth via the SOX4/Wnt/β-catenin axis, which highpoints the potency of exosomes expressing miR-320a as a possible therapeutic option for lung cancer treatment.
Collapse
Affiliation(s)
- Huan Xie
- Department of Respiratory Medicine, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, Zhejiang, P.R. China
| | - Jie Wang
- Department of Respiratory Medicine, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, Zhejiang, P.R. China
| |
Collapse
|
16
|
The miR-185/PAK6 axis predicts therapy response and regulates survival of drug-resistant leukemic stem cells in CML. Blood 2021; 136:596-609. [PMID: 32270193 DOI: 10.1182/blood.2019003636] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
Overcoming drug resistance and targeting cancer stem cells remain challenges for curative cancer treatment. To investigate the role of microRNAs (miRNAs) in regulating drug resistance and leukemic stem cell (LSC) fate, we performed global transcriptome profiling in treatment-naive chronic myeloid leukemia (CML) stem/progenitor cells and identified that miR-185 levels anticipate their response to ABL tyrosine kinase inhibitors (TKIs). miR-185 functions as a tumor suppressor: its restored expression impaired survival of drug-resistant cells, sensitized them to TKIs in vitro, and markedly eliminated long-term repopulating LSCs and infiltrating blast cells, conferring a survival advantage in preclinical xenotransplantation models. Integrative analysis with mRNA profiles uncovered PAK6 as a crucial target of miR-185, and pharmacological inhibition of PAK6 perturbed the RAS/MAPK pathway and mitochondrial activity, sensitizing therapy-resistant cells to TKIs. Thus, miR-185 presents as a potential predictive biomarker, and dual targeting of miR-185-mediated PAK6 activity and BCR-ABL1 may provide a valuable strategy for overcoming drug resistance in patients.
Collapse
|
17
|
Falagan-Lotsch P, Murphy CJ. Network-based analysis implies critical roles of microRNAs in the long-term cellular responses to gold nanoparticles. NANOSCALE 2020; 12:21172-21187. [PMID: 32990715 PMCID: PMC7606723 DOI: 10.1039/d0nr04701e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Since gold nanoparticles (AuNPs) have great potential to bring improvements to the biomedical field, their impact on biological systems should be better understood, particularly over the long term, using realistic doses of exposure. MicroRNAs (miRNAs) are small noncoding RNAs that play key roles in the regulation of biological pathways, from development to cellular stress responses. In this study, we performed genome-wide miRNA expression profiling in primary human dermal fibroblasts 20 weeks after chronic and acute (non-chronic) treatments to four AuNPs with different shapes and surface chemistries at a low dose. The exposure condition and AuNP surface chemistry had a significant impact on the modulation of miRNA levels. In addition, a network-based analysis was employed to provide a more complex, systems-level perspective of the miRNA expression changes. In response to the stress caused by AuNPs, miRNA co-expression networks perturbed in cells under non-chronic exposure to AuNPs were enriched for target genes implicated in the suppression of proliferative pathways, possibly in attempt to restore cell homeostasis, while changes in miRNA co-expression networks enriched for target genes related to activation of proliferative and suppression of apoptotic pathways were observed in cells chronically exposed to one specific type of AuNPs. In this case, miRNA dysregulation might be contributing to enforce a new cell phenotype during stress. Our findings suggest that miRNAs exert critical roles in the cellular responses to the stress provoked by a low dose of NPs in the long term and provide a fertile ground for further targeted experimental studies.
Collapse
Affiliation(s)
| | - Catherine J. Murphy
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
18
|
Berkhout RP, Keijser R, Repping S, Lambalk CB, Afink GB, Mastenbroek S, Hamer G. High-quality human preimplantation embryos stimulate endometrial stromal cell migration via secretion of microRNA hsa-miR-320a. Hum Reprod 2020; 35:1797-1807. [PMID: 32644109 PMCID: PMC7398623 DOI: 10.1093/humrep/deaa149] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/22/2020] [Indexed: 01/18/2023] Open
Abstract
STUDY QUESTION How do high-quality human preimplantation embryos influence the endometrium to promote their own implantation? SUMMARY ANSWER High-quality human preimplantation embryos secrete a specific microRNA (miRNA), hsa-miR-320a, which promotes migration of human endometrial stromal cells (hESCs). WHAT IS KNOWN ALREADY We have previously shown that high-quality human preimplantation embryos excrete unknown factors that influence migration of hESCs. STUDY DESIGN, SIZE, DURATION Embryo excreted miRNAs, specifically those excreted by high-quality embryos, were identified and their effect on hESCs was determined by measuring the migration capacity and gene expression patterns of primary isolated hESCs. PARTICIPANTS/MATERIALS, SETTING, METHODS Embryo conditioned medium (ECM) from routine ICSI procedures was used to identify embryo excreted miRNAs. miRNome analyses were performed on ECM from individually cultured embryos with high morphological quality, with low morphological quality or empty control medium. MiRNA mimics and inhibitors were then used to further study the effect of miRNAs of interest on migration and gene expression of hESCs. Migration assays were performed using hESCs that were obtained from endometrial biopsies performed on hysterectomy specimens from women that received surgery for spotting due to a niche in a cesarean section scar. MAIN RESULTS AND THE ROLE OF CHANCE By using miRNA mimics and inhibitors, we showed that hsa-miR-320a alone can stimulate migration of decidualized hESCs, accurately resembling the response typically triggered only by high-quality embryos. Transcriptome analysis further demonstrated that this effect is very likely mediated via altered expression of genes involved in cell adhesion and cytoskeleton organization. LIMITATIONS, REASONS FOR CAUTION The effect of hsa-miR-320a on hESCs was measured in vitro. Further studies on the in vivo effect of hsa-miR-320a are warranted. WIDER IMPLICATIONS OF THE FINDINGS Implantation failure is one of the major success limiting factors in human reproduction. By secreting hsa-miR-320a, high-quality human preimplantation embryos directly influence hESCs, most likely to prime the endometrium at the implantation site for successful implantation. Together, our results indicate that hsa-miR-320a may be a promising target to further increase success rates in assisted reproduction. STUDY FUNDING/COMPETING INTEREST(S) The study was funded by the Amsterdam University Medical Centers and the Amsterdam Reproduction & Development Research Institute. R.P.B., G.H. and S.M. have a patent on the use of hsa-miR-320a in assisted reproduction treatments pending. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Robbert P Berkhout
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Obstetrics and Gynaecology, Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - Remco Keijser
- Reproductive Biology Laboratory, Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sjoerd Repping
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Cornelis B Lambalk
- Department of Obstetrics and Gynaecology, Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - Gijs B Afink
- Reproductive Biology Laboratory, Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sebastiaan Mastenbroek
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Geert Hamer
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Han C, Sun LY, Wang WT, Sun YM, Chen YQ. Non-coding RNAs in cancers with chromosomal rearrangements: the signatures, causes, functions and implications. J Mol Cell Biol 2020; 11:886-898. [PMID: 31361891 PMCID: PMC6884712 DOI: 10.1093/jmcb/mjz080] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/24/2019] [Accepted: 05/26/2019] [Indexed: 12/25/2022] Open
Abstract
Chromosomal translocation leads to the juxtaposition of two otherwise separate DNA loci, which could result in gene fusion. These rearrangements at the DNA level are catastrophic events and often have causal roles in tumorigenesis. The oncogenic DNA messages are transferred to RNA molecules, which are in most cases translated into cancerous fusion proteins. Gene expression programs and signaling pathways are altered in these cytogenetically abnormal contexts. Notably, non-coding RNAs have attracted increasing attention and are believed to be tightly associated with chromosome-rearranged cancers. These RNAs not only function as modulators in downstream pathways but also directly affect chromosomal translocation or the associated products. This review summarizes recent research advances on the relationship between non-coding RNAs and chromosomal translocations and on diverse functions of non-coding RNAs in cancers with chromosomal rearrangements.
Collapse
Affiliation(s)
- Cai Han
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Lin-Yu Sun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Wen-Tao Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu-Meng Sun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Yue-Qin Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
20
|
Humphries BA, Wang Z, Yang C. MicroRNA Regulation of the Small Rho GTPase Regulators-Complexities and Opportunities in Targeting Cancer Metastasis. Cancers (Basel) 2020; 12:E1092. [PMID: 32353968 PMCID: PMC7281527 DOI: 10.3390/cancers12051092] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023] Open
Abstract
The small Rho GTPases regulate important cellular processes that affect cancer metastasis, such as cell survival and proliferation, actin dynamics, adhesion, migration, invasion and transcriptional activation. The Rho GTPases function as molecular switches cycling between an active GTP-bound and inactive guanosine diphosphate (GDP)-bound conformation. It is known that Rho GTPase activities are mainly regulated by guanine nucleotide exchange factors (RhoGEFs), GTPase-activating proteins (RhoGAPs), GDP dissociation inhibitors (RhoGDIs) and guanine nucleotide exchange modifiers (GEMs). These Rho GTPase regulators are often dysregulated in cancer; however, the underlying mechanisms are not well understood. MicroRNAs (miRNAs), a large family of small non-coding RNAs that negatively regulate protein-coding gene expression, have been shown to play important roles in cancer metastasis. Recent studies showed that miRNAs are capable of directly targeting RhoGAPs, RhoGEFs, and RhoGDIs, and regulate the activities of Rho GTPases. This not only provides new evidence for the critical role of miRNA dysregulation in cancer metastasis, it also reveals novel mechanisms for Rho GTPase regulation. This review summarizes recent exciting findings showing that miRNAs play important roles in regulating Rho GTPase regulators (RhoGEFs, RhoGAPs, RhoGDIs), thus affecting Rho GTPase activities and cancer metastasis. The potential opportunities and challenges for targeting miRNAs and Rho GTPase regulators in treating cancer metastasis are also discussed. A comprehensive list of the currently validated miRNA-targeting of small Rho GTPase regulators is presented as a reference resource.
Collapse
Affiliation(s)
- Brock A. Humphries
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Zhishan Wang
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, 1095 V A Drive, Lexington, KY 40536, USA;
| | - Chengfeng Yang
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, 1095 V A Drive, Lexington, KY 40536, USA;
| |
Collapse
|
21
|
MicroRNA-153-3p enhances the sensitivity of chronic myeloid leukemia cells to imatinib by inhibiting B-cell lymphoma-2-mediated autophagy. Hum Cell 2020; 33:610-618. [PMID: 32342278 DOI: 10.1007/s13577-020-00367-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/21/2020] [Indexed: 12/19/2022]
Abstract
Chronic myeloid leukemia (CML) is a hematopoietic stem cell disease caused by abnormal DNA replication of bone marrow stem cells and chemotherapy resistance is a major obstacle to the effective treatment of patients with CML. Imatinib (IM), a tyrosine kinase inhibitor (TKI), is a first-line drug clinically used for CML. Mounting evidence has indicated that the dysregulation of microRNAs (miRNAs) is associated with the chemoresistance of CML. In this study, miR-153-3p, which had been implicated with numerous types of tumors, was identified to be downregulated in IM-resistant CML cells. Upregulation of miR-153-3p significantly increased IM sensitivity and decreased the survival rate of IM-resistant CML cells, whereas downregulation of miR-153-3p attenuated these effects in IM-resistant CML cells. Upregulated miR-153-3p could decrease the autophagy caused by IM in IM-resistant CML cells. Dual-luciferase reporter assays confirmed that Bcl-2 is a direct target of miR-153-3p. Bcl-2 restoration reversed the increased sensitivity to IM induced by miR-153-3p-mimic transfection in IM-resistant CML cells. The results of the present study showed that dysregulated miR-153-3p may target Bcl-2 to promote the development of IM resistance and attenuate IM-induced apoptosis in CML. Therefore, miR-153-3p upregulation combined with IM treatment may serve as a promising therapeutic strategy for patients with low sensitivity.
Collapse
|
22
|
Bao J, Li X, Li Y, Huang C, Meng X, Li J. MicroRNA-141-5p Acts as a Tumor Suppressor via Targeting RAB32 in Chronic Myeloid Leukemia. Front Pharmacol 2020; 10:1545. [PMID: 32038235 PMCID: PMC6987442 DOI: 10.3389/fphar.2019.01545] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/29/2019] [Indexed: 12/11/2022] Open
Abstract
MicroRNA-141-5p (miR-141-5p), an important member of the miR-200 family, has been reported to be involved in cellular proliferation, migration, invasion, and drug resistance in different kinds of human malignant tumors. However, the role and function of miR-141-5p in chronic myeloid leukemia (CML) are unclear. In this current study, we found that the level of miR-141-5p was significantly decreased in peripheral blood cells from CML patients compared with normal blood cells and human leukemic cell line (K562 cells) compared with normal CD34+ cells, but was remarkably elevated in patients after treatment with nilotinib or imatinib. Suppression of miR-141-5p promoted K562 cell proliferation and migration in vitro. As expected, overexpression of miR-141-5p weakened K562 cell proliferation, migration, and promoted cell apoptosis. A xenograft model in nude mice showed that overexpression of miR-141-5p markedly suppressed tumor growth in vivo. Mechanistic studies suggested that RAB32 was the potential target of miR-141-5p, and silencing of RAB32 suppressed the proliferation and migration of K562 cells and promoted cell apoptosis. Taken together, our study demonstrates that miR-141-5p plays an important role in the activation of K562 cells in vitro and may act as a tumor suppressor via targeting RAB32 in the development of CML.
Collapse
Affiliation(s)
- Jing Bao
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China.,Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaofeng Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Yuhuan Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Cheng Huang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Xiaoming Meng
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Jun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| |
Collapse
|
23
|
Wu H, Yin J, Ai Z, Li G, Li Y, Chen L. Overexpression of miR-4433 by suberoylanilide hydroxamic acid suppresses growth of CML cells and induces apoptosis through targeting Bcr-Abl. J Cancer 2019; 10:5671-5680. [PMID: 31737104 PMCID: PMC6843884 DOI: 10.7150/jca.34972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 08/05/2019] [Indexed: 12/27/2022] Open
Abstract
Background: Targeting Bcr-Abl is the key for the treatment of CML. Although great progress has been achieved for the treatment of CML patients in chronic stage, effective drugs with good safety are not available for those in advanced stages of CML patients. In present study, a histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), was used to screen for microRNA that can target Bcr-Abl. Methods: RT-qPCR was used to determine Bcr-Abl and miR-4433 transcription level in CML cells. In CML cells, Proteins including PARP, caspase-3, acetyl-histone 3, histone 3 and Bcr-Abl, as well as Bcr-Abl downstream proteins were detected using western blot. Cell viability and apoptosis were monitored respectively by MTS assay and flow cytometry. The correlation between miR-4433 and Bcr-Abl was determined by luciferase reporter assay. The anti-tumor effect of miR-4433 to K562 cells was evaluated by nude mouse xenograft model in vivo. Results: SAHA up-regulated the acetylation level of histone 3, and effectively inhibited Bcr-Abl mRNA level and its downstream signal transduction pathway, while inhibiting the growth of CML cells and inducing apoptosis. Furthermore, bioinformatics tools predicted that miR-4433 is a putative microRNA targeting Bcr-Abl and that the expression level of miR-4433 was significantly increased after SAHA treatment in K562 cells. Luciferase activity analysis revealed that miR-4433 directly targets Bcr-Abl. Additionally, transient expression of miR-4433 abrogated Bcr-Abl activity and its downstream signaling pathways while inducing apoptosis in K562 cells. Moreover, stable expression of miR-4433 suppressed Bcr-Abl and its downstream signaling pathway, and inhibited the growth of K562 cells in vitro and the growth of K562-xenografts in nude mice. Conclusion: miR-4433 was identified as a microRNA targeting Bcr-Abl, which may be subject to epigenetic regulation of SAHA, a histone deacetylase inhibitor that has been approved by the US FDA for the treatment of cutaneous T-cell lymphoma. The findings of this study provide a molecular basis from another angle for the use of SAHA in the treatment of CML.
Collapse
Affiliation(s)
- Haiyan Wu
- Department of Pathophysiology, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jingyi Yin
- Department of Pathophysiology, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Zhengdong Ai
- Department of Pathophysiology, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Guiming Li
- Department of Pathophysiology, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yan Li
- Department of Cadre Health, The First Affiliated Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Li Chen
- Department of Pathophysiology, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| |
Collapse
|
24
|
Li YS, Zou Y, Dai DQ. MicroRNA-320a suppresses tumor progression by targeting PBX3 in gastric cancer and is downregulated by DNA methylation. World J Gastrointest Oncol 2019; 11:842-856. [PMID: 31662823 PMCID: PMC6815930 DOI: 10.4251/wjgo.v11.i10.842] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/19/2019] [Accepted: 07/28/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Ectopic expression of miRNAs promotes tumor development and progression. miRNA (miR)-320a is downregulated in many cancers, including gastric cancer (GC). However, the mechanism underlying its downregulation and the role of miR-320a in GC are unknown.
AIM To determine expression and biological functions of miR-320a in GC and investigate the underlying molecular mechanisms.
METHODS Quantitative real-time polymerase chain reaction (PCR) was used to determine expression of miR-320a in GC cell lines and tissues. TargetScanHuman7.1, miRDB, and microRNA.org were used to predict the possible targets of miR-320a, and a dual luciferase assay was used to confirm the findings. Western blotting was used to detect the protein levels of pre-B-cell leukemia homeobox 3 (PBX3) in GC cells and tissue samples. Cell Counting Kit-8 proliferation, Transwell, wound healing, and apoptosis assays were performed to analyze the biological functions of miR-320a in GC cells. Methylation-specific PCR was used to analyze the methylation level of the miR-320a promoter CpG islands. 5-Aza-2’-deoxycytidine (5-Aza-CdR) and trichostatin A (TSA) were used to treat GC cells.
RESULTS miR-320a expression was lower in GC cell lines and tissues than in the normal gastric mucosa cell line GES-1 and matched adjacent normal tissues. miR-320a overexpression suppressed GC cell proliferation, invasion and migration, and induced apoptosis. PBX3 was a target of miR-320a in GC. The methylation level of the miR-320a promoter CpG islands was elevated and this was partly reversed by 5-Aza-CdR and TSA.
CONCLUSION miR-320a acts as a tumor suppressor and inhibits malignant behavior of GC cells, partly by targeting PBX3. DNA methylation is an important mechanism associated with low expression of miR-320a.
Collapse
Affiliation(s)
- Yong-Shuang Li
- Department of Gastrointestinal Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning Province, China
| | - Ying Zou
- Department of Gastrointestinal Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning Province, China
| | - Dong-Qiu Dai
- Department of Gastrointestinal Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning Province, China
| |
Collapse
|
25
|
Gao X, Wan Z, Wei M, Dong Y, Zhao Y, Chen X, Li Z, Qin W, Yang G, Liu L. Chronic myelogenous leukemia cells remodel the bone marrow niche via exosome-mediated transfer of miR-320. Am J Cancer Res 2019; 9:5642-5656. [PMID: 31534508 PMCID: PMC6735391 DOI: 10.7150/thno.34813] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/07/2019] [Indexed: 12/20/2022] Open
Abstract
Rationale: Reciprocal interactions between leukemic cells and bone marrow mesenchymal stromal cells (BMMSC) remodel the normal niche into a malignant niche, leading to leukemia progression. Exosomes have emerged as an essential mediator of cell-cell communication. Whether leukemic exosomes involved in bone marrow niche remodeling remains unknown. Methods: We investigated the role of leukemic exosomes in molecular and functional changes of BMMSC in vitro and in vivo. RNA sequencing and bioinformatics were employed to screen for miRNAs that are selectively sorted into leukemic exosomes and the corresponding RNA binding proteins. Results: We demonstrated that leukemia cells significantly inhibited osteogenesis by BMMSC both in vivo and in vitro. Some tumor suppressive miRNAs, especially miR-320, were enriched in exosomes and thus secreted by leukemic cells, resulting in increased proliferation of the donor cells. In turn, the secreted exosomes were significantly endocytosed by adjacent BMMSC and thus inhibited osteogenesis at least partially via β-catenin inhibition. Mechanistically, miR-320 and some other miRNAs were sorted out into the exosomes by RNA binding protein heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1), as these miRNAs harbor the recognition site for HNRNPA1. Conclusion: HNRNPA1-mediated exosomal transfer of miR-320 from leukemia cells to BMMSC is an important mediator of leukemia progression and is a potential therapeutic target for CML.
Collapse
|
26
|
Mahlab-Aviv S, Boulos A, Peretz AR, Eliyahu T, Carmel L, Sperling R, Linial M. Small RNA sequences derived from pre-microRNAs in the supraspliceosome. Nucleic Acids Res 2019; 46:11014-11029. [PMID: 30203035 PMCID: PMC6237757 DOI: 10.1093/nar/gky791] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/06/2018] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that negatively regulate the expression and translation of genes in healthy and diseased tissues. Herein, we characterize short RNAs from human HeLa cells found in the supraspliceosome, a nuclear dynamic machine in which pre-mRNA processing occurs. We sequenced small RNAs (<200 nt) extracted from the supraspliceosome, and identified sequences that are derived from 200 miRNAs genes. About three quarters of them are mature miRNAs, whereas the rest account for various defined regions of the pre-miRNA, and its hairpin-loop precursor. Out of these aligned sequences, 53 were undetected in cellular extract, and the abundance of additional 48 strongly differed from that in cellular extract. Notably, we describe seven abundant miRNA-derived sequences that overlap non-coding exons of their host gene. The rich collection of sequences identical to pre-miRNAs at the supraspliceosome suggests overlooked nuclear functions. Specifically, the abundant hsa-mir-99b may affect splicing of LINC01129 primary transcript through base-pairing with its exon-intron junction. Using suppression and overexpression experiments, we show that hsa-mir-7704 negatively regulates the level of the lncRNA HAGLR. We claim that in cases of extended base-pairing complementarity, such supraspliceosomal pre-miRNA sequences might have a role in transcription attenuation, maturation and processing.
Collapse
Affiliation(s)
- Shelly Mahlab-Aviv
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ayub Boulos
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ayelet R Peretz
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tsiona Eliyahu
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liran Carmel
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ruth Sperling
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Linial
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
27
|
Alves R, Gonçalves AC, Jorge J, Marques G, Luís D, Ribeiro AB, Freitas-Tavares P, Oliveiros B, Almeida AM, Sarmento-Ribeiro AB. MicroRNA signature refine response prediction in CML. Sci Rep 2019; 9:9666. [PMID: 31273251 PMCID: PMC6609611 DOI: 10.1038/s41598-019-46132-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 06/19/2019] [Indexed: 01/04/2023] Open
Abstract
microRNAs (miRs) dysregulation have emerged as a crucial step in tumorigenesis, being related with cancer development, progression and response to treatment. In chronic myeloid leukaemia (CML), the resistance to tyrosine kinase inhibitors (TKI) is responsible for treatment failure and could be linked to changes in miRs expression. This work aimed to correlate the expression levels of 3 miRs, miR-21, miR-26b and miR-451, with response to TKI treatment in CML patients. miR-451 levels at diagnosis were significantly higher in patients with optimal response after 6 and 12 months of therapy. Conversely, patients without optimal response had highest levels of miR-21. miR-21 and miR-451 appear to be good biomarkers of response, able to predict optimal TKI responders (p < 0.05). Using the combined profile of both miRs, we create a predictive model of optimal response after one year of treatment. This study highlights the role of miR-21 and miR-451 expression levels at diagnosis in predicting which patients achieve the optimal response.
Collapse
Affiliation(s)
- Raquel Alves
- Laboratory of Oncobiology and Hematology and University Clinic of Hematology/Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research (iCBR) - Group of Environment Genetics and Oncobiology (CIMAGO), FMUC, Coimbra, Portugal.,Center for Neuroscience and Cell Biology (CNC.IBILI), University of Coimbra, Coimbra, Portugal
| | - Ana Cristina Gonçalves
- Laboratory of Oncobiology and Hematology and University Clinic of Hematology/Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research (iCBR) - Group of Environment Genetics and Oncobiology (CIMAGO), FMUC, Coimbra, Portugal.,Center for Neuroscience and Cell Biology (CNC.IBILI), University of Coimbra, Coimbra, Portugal
| | - Joana Jorge
- Laboratory of Oncobiology and Hematology and University Clinic of Hematology/Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research (iCBR) - Group of Environment Genetics and Oncobiology (CIMAGO), FMUC, Coimbra, Portugal.,Center for Neuroscience and Cell Biology (CNC.IBILI), University of Coimbra, Coimbra, Portugal
| | - Gilberto Marques
- Clinical Pathology Service, Centro Hospitalar Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - Dino Luís
- Clinical Hematology Department, CHUC, Coimbra, Portugal
| | - André B Ribeiro
- Coimbra Institute for Clinical and Biomedical Research (iCBR) - Group of Environment Genetics and Oncobiology (CIMAGO), FMUC, Coimbra, Portugal.,Clinical Hematology Department, CHUC, Coimbra, Portugal
| | | | - Bárbara Oliveiros
- Coimbra Institute for Clinical and Biomedical Research (iCBR) - Group of Environment Genetics and Oncobiology (CIMAGO), FMUC, Coimbra, Portugal.,Laboratory of Biostatistics and Medical Informatics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - António M Almeida
- Hospital da Luz, Lisbon, Portugal.,CIIS (Centro de Investigação Interdisciplinar em Saúde) Universidade Católica Portuguesa de Lisboa, Lisbon, Portugal
| | - Ana Bela Sarmento-Ribeiro
- Laboratory of Oncobiology and Hematology and University Clinic of Hematology/Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal. .,Coimbra Institute for Clinical and Biomedical Research (iCBR) - Group of Environment Genetics and Oncobiology (CIMAGO), FMUC, Coimbra, Portugal. .,Center for Neuroscience and Cell Biology (CNC.IBILI), University of Coimbra, Coimbra, Portugal. .,Clinical Hematology Department, CHUC, Coimbra, Portugal.
| |
Collapse
|
28
|
Nie ZY, Liu XJ, Zhan Y, Liu MH, Zhang XY, Li ZY, Lu YQ, Luo JM, Yang L. miR-140-5p induces cell apoptosis and decreases Warburg effect in chronic myeloid leukemia by targeting SIX1. Biosci Rep 2019; 39:BSR20190150. [PMID: 30962263 PMCID: PMC6488949 DOI: 10.1042/bsr20190150] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/29/2019] [Accepted: 04/06/2019] [Indexed: 12/25/2022] Open
Abstract
microRNAs (miRNA), as tumor suppressors or oncogenes, are involved in modulating cancer cell behavior, including cell proliferation and apoptosis. The miR-140-5p acts as a tumor suppressor in several tumors, but the role of miR-140-5p in chronic myeloid leukemia (CML) remains unclear. Here, we investigated the suppression of miR-140-5p in CML patients and CML cell lines using quantitative PCR (qPCR) and fluorescence in situ hybridization (FISH). Overexpression miR-140-5p in CML cells significantly inhibited cell proliferation as revealed by the CCK-8 assay and promoted cell apoptosis as revealed by flow cytometry. Moreover, the sine oculis homeobox 1 (SIX1) gene had been confirmed as a direct target of miR-140-5p using bioinformatics analysis and luciferase reporter assays. Overexpression of miR-140-5p decreased the SIX1 protein level in CML cells. SIX1 mRNA and protein levels were significantly up-regulated in CML patients and CML cell lines. Knockdown of SIX1 expression significantly inhibited CML cell proliferation and promoted cell apoptosis. Furthermore, SIX1 as a transcriptional factor positively regulated pyruvate kinase isozyme type M2 (PKM2) expression and played an important role in the Warburg effect. In addition, these findings indicated that miR-140-5p functions as a tumor suppressor and plays a critical role in CML cell apoptosis and metabolism by targeting SIX1. Moreover, the miR-140-5p/SIX1 axis may be a potential therapeutic target in CML.
Collapse
MESH Headings
- Adult
- Aged
- Apoptosis/genetics
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Line, Tumor
- Female
- Gene Expression Regulation, Leukemic
- Homeodomain Proteins/genetics
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukocytes, Mononuclear/pathology
- Leukocytes, Mononuclear/physiology
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Middle Aged
- Thyroid Hormones/genetics
- Thyroid Hormones/metabolism
- Thyroid Hormone-Binding Proteins
Collapse
Affiliation(s)
- Zi-Yuan Nie
- Department of Hematology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang 050000, China
| | - Xiao-Jun Liu
- Department of Hematology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang 050000, China
| | - Ying Zhan
- Department of Hematology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang 050000, China
| | - Meng-Han Liu
- Department of Hematology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang 050000, China
| | - Xiao-Yan Zhang
- Department of Hematology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang 050000, China
| | - Zi-Ye Li
- Department of Hematology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang 050000, China
| | - Ya-Qiong Lu
- Department of Hematology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang 050000, China
| | - Jian-Min Luo
- Department of Hematology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang 050000, China
| | - Lin Yang
- Department of Hematology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang 050000, China
| |
Collapse
|
29
|
Di Marco M, Ramassone A, Pagotto S, Anastasiadou E, Veronese A, Visone R. MicroRNAs in Autoimmunity and Hematological Malignancies. Int J Mol Sci 2018; 19:ijms19103139. [PMID: 30322050 PMCID: PMC6213554 DOI: 10.3390/ijms19103139] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/02/2018] [Indexed: 12/13/2022] Open
Abstract
Autoimmunity and hematological malignancies are often concomitant in patients. A causal bidirectional relationship exists between them. Loss of immunological tolerance with inappropriate activation of the immune system, likely due to environmental and genetic factors, can represent a breeding ground for the appearance of cancer cells and, on the other hand, blood cancers are characterized by imbalanced immune cell subsets that could support the development of the autoimmune clone. Considerable effort has been made for understanding the proteins that have a relevant role in both processes; however, literature advances demonstrate that microRNAs (miRNAs) surface as the epigenetic regulators of those proteins and control networks linked to both autoimmunity and hematological malignancies. Here we review the most up-to-date findings regarding the miRNA-based molecular mechanisms that underpin autoimmunity and hematological malignancies.
Collapse
Affiliation(s)
- Mirco Di Marco
- Ageing Research Center and Translational medicine-CeSI-MeT, 66100 Chieti, Italy.
- Department of Medical, Oral and Biotechnological Sciences (DSMOB), "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy.
| | - Alice Ramassone
- Ageing Research Center and Translational medicine-CeSI-MeT, 66100 Chieti, Italy.
- Department of Medical, Oral and Biotechnological Sciences (DSMOB), "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy.
| | - Sara Pagotto
- Ageing Research Center and Translational medicine-CeSI-MeT, 66100 Chieti, Italy.
- Department of Medical, Oral and Biotechnological Sciences (DSMOB), "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy.
| | - Eleni Anastasiadou
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Angelo Veronese
- Ageing Research Center and Translational medicine-CeSI-MeT, 66100 Chieti, Italy.
- Department of Medicine and Aging Science (DMSI), "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy.
| | - Rosa Visone
- Ageing Research Center and Translational medicine-CeSI-MeT, 66100 Chieti, Italy.
- Department of Medical, Oral and Biotechnological Sciences (DSMOB), "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy.
| |
Collapse
|
30
|
Fadaka AO, Ojo BA, Adewale OB, Esho T, Pretorius A. Effect of dietary components on miRNA and colorectal carcinogenesis. Cancer Cell Int 2018; 18:130. [PMID: 30202241 PMCID: PMC6127951 DOI: 10.1186/s12935-018-0631-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/31/2018] [Indexed: 12/14/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common cancers diagnosed and among the commonest causes of cancer-related mortality globally. Despite the various available treatment options, millions of people still suffer from this illness and most of these treatment options have several limitations. Therefore, a less expensive, non-invasive or a treatment that requires the use of dietary products remains a focal point in this review. Main body Aberrant microRNA expression has been revealed to have a functional role in the initiation and progression of CRC. These has shown significant promise in the diagnosis and prognosis of CRC, owing to their unique expression profile associated with cancer types and malignancies. Moreover, microRNA therapeutics show a great promise in preclinical studies, and these encourage further development of their clinical use in CRC patients. Additionally, emerging studies show the chemo-preventive potential of dietary components in microRNA modulation using several CRC models. This review examines the dietary interplay between microRNAs and CRC incidence. Improving the understanding of the interactions between microRNAs and dietary components in the carcinogenesis of CRC will assist the study of CRC progression and finally, in developing personalized approaches for cancer prevention and therapy. Conclusion Although miRNA research is still at its infancy, it could serve as a promising predictive biomarkers and therapeutic targets for CRC. Given the ever-expanding number of miRNAs, understanding their functional aspects represents a promising option for further research.
Collapse
Affiliation(s)
- Adewale Oluwaseun Fadaka
- 1Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa.,3Department of Biochemistry, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, Ekiti State Nigeria
| | - Babajide A Ojo
- 2Department of Nutritional Science, Oklahoma State University, 301, Human Sciences, Stillwater, OK 74075 USA
| | - Olusola Bolaji Adewale
- 3Department of Biochemistry, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, Ekiti State Nigeria
| | - Temitope Esho
- 4Institute of Biochemistry II, Medical Faculty, University of Cologne, Joseph-Stelzmann Str. 52, 50931 Cologne, Germany
| | - Ashley Pretorius
- Biotechnology Innovation Division, Aminotek PTY LTD, Suite 2C, Oude Westhof Village Square Bellville, 7530 South Africa
| |
Collapse
|
31
|
Yang H, Zhang J, Li J, Zhao F, Shen Y, Xing X. Overexpression of miR-574-3p suppresses proliferation and induces apoptosis of chronic myeloid leukemia cells via targeting IL6/JAK/STAT3 pathway. Exp Ther Med 2018; 16:4296-4302. [PMID: 30344703 DOI: 10.3892/etm.2018.6700] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/23/2018] [Indexed: 12/16/2022] Open
Abstract
The present study aimed to elucidate the potential roles and regulatory mechanism of microRNA (miR)-574-3p in the development of chronic myeloid leukemia (CML). The expression of miR-574-3p in peripheral blood obtained from patients with CML was examined. Subsequently, miR-574-3p was overexpressed and suppressed in CML K562 cells to further investigate the effects of miR-574-3p on cell proliferation, and apoptosis. Furthermore, a luciferase reporter assay was performed to investigate whether interleukin-6 (IL-6) was a target of miR-574-3p. In addition, the regulatory association between miR-574-3p and the IL-6/Janus kinase (JNK)/signal transducer and activator of transcription-3 (STAT3) signaling pathway was explored. The expression of miR-574-3p in the peripheral blood obtained from patients with CML was significantly lower compared with that in healthy controls. Overexpression of miR-574-3p significantly inhibited the proliferation and induced the apoptosis of K562 cells, whereas suppression of miR-574-3p exhibited opposite effects. In addition, IL-6 was identified to be a direct target of miR-574-3p. Overexpression of IL-6 significantly promoted the proliferation and inhibited the apoptosis of K562 cells. Furthermore, overexpression of miR-574-3p inhibited the activation of the JAK/STAT3 signaling pathway, which was rescued by overexpression of IL-6. The results of the current study indicate that miR-574-3p overexpression may serve an important role in inhibiting proliferation and inducing apoptosis of K562 cells via suppression of IL-6/JAK/STAT3 signaling pathway activation. miR-574-3p may serve as a potential therapeutic target for CML.
Collapse
Affiliation(s)
- Haoying Yang
- Department of Blood Transfusion, San Er Ling Yi Hospital Affiliated to School of Medicine, Xi'an Jiaotong University, Hanzhong, Shanxi 723000, P.R. China
| | - Jun Zhang
- Department of Clinical Laboratory, San Er Ling Yi Hospital Affiliated to School of Medicine, Xi'an Jiaotong University, Hanzhong, Shanxi 723000, P.R. China
| | - Jiuping Li
- Department of Blood Transfusion, San Er Ling Yi Hospital Affiliated to School of Medicine, Xi'an Jiaotong University, Hanzhong, Shanxi 723000, P.R. China
| | - Furong Zhao
- Department of Blood Transfusion, San Er Ling Yi Hospital Affiliated to School of Medicine, Xi'an Jiaotong University, Hanzhong, Shanxi 723000, P.R. China
| | - Yao Shen
- Department of Clinical Laboratory, San Er Ling Yi Hospital Affiliated to School of Medicine, Xi'an Jiaotong University, Hanzhong, Shanxi 723000, P.R. China
| | - Xuemei Xing
- Department of Clinical Laboratory, San Er Ling Yi Hospital Affiliated to School of Medicine, Xi'an Jiaotong University, Hanzhong, Shanxi 723000, P.R. China
| |
Collapse
|
32
|
Park GT, Heo JR, Kim SU, Choi KC. The growth of K562 human leukemia cells was inhibited by therapeutic neural stem cells in cellular and xenograft mouse models. Cytotherapy 2018; 20:1191-1201. [PMID: 30078654 DOI: 10.1016/j.jcyt.2018.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/07/2018] [Accepted: 05/15/2018] [Indexed: 10/28/2022]
Abstract
To confirm the anti-tumor effect of engineered neural stem cells (NSCs) expressing cytosine deaminase (CD) and interferon-β (IFN-β) with prodrug 5-fluorocytosine (FC), K562 chronic myeloid leukemia (CML) cells were co-cultured with the neural stem cell lines HB1.F3.CD and HB1.F3.CD.IFN-β in 5-FC containing media. A significant decrease in the viability of K562 cells was observed by the treatment of the NSC lines, HB1.F3.CD and HB1.F3.CD.IFN-β, compared with the control. A modified trans-well assay showed that engineered human NSCs significantly migrated toward K562 CML cells more than human normal lung cells. In addition, the important chemoattractant factors involved in the specific migration ability of stem cells were found to be expressed in K562 CML cells. In a xenograft mouse model, NSC treatments via subcutaneous and intravenous injections resulted in significant inhibitions of tumor mass growth and extended survival dates of the mice. Taken together, these results suggest that gene therapy using genetically engineered stem cells expressing CD and IFN-β may be effective for treating CML in these mouse models.
Collapse
Affiliation(s)
- Geon-Tae Park
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Jae-Rim Heo
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Seung U Kim
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea; Institute of Life Science and Bio-Engineering, TheraCell Bio & Science, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
33
|
Zhu Y, Zhang Y, Sui Z, Zhang Y, Liu M, Tang H. USP14 de-ubiquitinates vimentin and miR-320a modulates USP14 and vimentin to contribute to malignancy in gastric cancer cells. Oncotarget 2018; 8:48725-48736. [PMID: 27448976 PMCID: PMC5564720 DOI: 10.18632/oncotarget.10706] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/01/2016] [Indexed: 02/07/2023] Open
Abstract
Vimentin plays important roles in the epithelial-to-mesenchymal transition (EMT). In this study, we found that vimentin was highly expressed in human gastric cancer (GC) tissues and cell lines and significantly promoted cell growth, migration and invasion. Ubiquitin-specific protease 14 (USP14) interacted with the vimentin protein, which led to its de-ubiquitination. miR-320a was found to bind to the 3′UTR of both vimentin and USP14 transcripts and downregulate the expression of both proteins. The downregulation of miR-320a upregulates vimentin expression by directly binding to the 3′UTR of vimentin to derepress expression and indirectly by augmenting USP14 to increase vimentin stability in GC cells. Taken together, these results provide new insight into malignancy in gastric cancers.
Collapse
Affiliation(s)
- Ying Zhu
- Tianjin Life Science Research Center, Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yan Zhang
- Tianjin Life Science Research Center, Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Zhenhua Sui
- Tianjin Life Science Research Center, Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yi Zhang
- Tianjin Life Science Research Center, Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Min Liu
- Tianjin Life Science Research Center, Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Hua Tang
- Tianjin Life Science Research Center, Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
34
|
Ferrero G, Cordero F, Tarallo S, Arigoni M, Riccardo F, Gallo G, Ronco G, Allasia M, Kulkarni N, Matullo G, Vineis P, Calogero RA, Pardini B, Naccarati A. Small non-coding RNA profiling in human biofluids and surrogate tissues from healthy individuals: description of the diverse and most represented species. Oncotarget 2018; 9:3097-3111. [PMID: 29423032 PMCID: PMC5790449 DOI: 10.18632/oncotarget.23203] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/15/2017] [Indexed: 12/14/2022] Open
Abstract
The role of non-coding RNAs in different biological processes and diseases is continuously expanding. Next-generation sequencing together with the parallel improvement of bioinformatics analyses allows the accurate detection and quantification of an increasing number of RNA species. With the aim of exploring new potential biomarkers for disease classification, a clear overview of the expression levels of common/unique small RNA species among different biospecimens is necessary. However, except for miRNAs in plasma, there are no substantial indications about the pattern of expression of various small RNAs in multiple specimens among healthy humans. By analysing small RNA-sequencing data from 243 samples, we have identified and compared the most abundantly and uniformly expressed miRNAs and non-miRNA species of comparable size with the library preparation in four different specimens (plasma exosomes, stool, urine, and cervical scrapes). Eleven miRNAs were commonly detected among all different specimens while 231 miRNAs were globally unique across them. Classification analysis using these miRNAs provided an accuracy of 99.6% to recognize the sample types. piRNAs and tRNAs were the most represented non-miRNA small RNAs detected in all specimen types that were analysed, particularly in urine samples. With the present data, the most uniformly expressed small RNAs in each sample type were also identified. A signature of small RNAs for each specimen could represent a reference gene set in validation studies by RT-qPCR. Overall, the data reported hereby provide an insight of the constitution of the human miRNome and of other small non-coding RNAs in various specimens of healthy individuals.
Collapse
Affiliation(s)
- Giulio Ferrero
- Department of Computer Science, University of Turin, Turin, Italy
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Francesca Cordero
- Department of Computer Science, University of Turin, Turin, Italy
- Italian Institute for Genomic Medicine, IIGM (formerly Human Genetics Foundation, HuGeF), Turin, Italy
| | - Sonia Tarallo
- Italian Institute for Genomic Medicine, IIGM (formerly Human Genetics Foundation, HuGeF), Turin, Italy
| | - Maddalena Arigoni
- Molecular Biotechnology Center, Department of Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Federica Riccardo
- Molecular Biotechnology Center, Department of Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Gaetano Gallo
- Department of Medical and Surgical Sciences, University of Catanzaro, Catanzaro, Italy
- Department of Colorectal Surgery, Clinica S. Rita, Vercelli, Italy
| | - Guglielmo Ronco
- Center for Cancer Epidemiology and Prevention, AO City of Health and Science, Turin, Italy
| | - Marco Allasia
- Department of Surgical Sciences, University of Turin and Città della Salute e della Scienza, Turin, Italy
| | - Neha Kulkarni
- Molecular Biotechnology Center, Department of Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Giuseppe Matullo
- Italian Institute for Genomic Medicine, IIGM (formerly Human Genetics Foundation, HuGeF), Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Paolo Vineis
- Italian Institute for Genomic Medicine, IIGM (formerly Human Genetics Foundation, HuGeF), Turin, Italy
- MRC-HPA Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
| | - Raffaele A. Calogero
- Molecular Biotechnology Center, Department of Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Barbara Pardini
- Italian Institute for Genomic Medicine, IIGM (formerly Human Genetics Foundation, HuGeF), Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Alessio Naccarati
- Italian Institute for Genomic Medicine, IIGM (formerly Human Genetics Foundation, HuGeF), Turin, Italy
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
35
|
Pan S, An L, Meng X, Li L, Ren F, Guan Y. MgCl 2 and ZnCl 2 promote human umbilical vein endothelial cell migration and invasion and stimulate epithelial-mesenchymal transition via the Wnt/β-catenin pathway. Exp Ther Med 2017; 14:4663-4670. [PMID: 29201165 PMCID: PMC5704337 DOI: 10.3892/etm.2017.5144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 02/24/2017] [Indexed: 02/06/2023] Open
Abstract
Previous studies have demonstrated that magnesium and zinc ions promote the migration and epithelial-mesenchymal transition (EMT) of cancer/endothelial cells. However, the impact of MgCl2 and ZnCl2 on the migration, invasion and EMT of human umbilical vein endothelial cells (HUVECs) and the involved mechanisms remain unclear. In the present study, HUVECs were incubated with various doses of MgCl2 and ZnCl2. The optimum concentrations of MgCl2 and ZnCl2 were selected by MTT assay. The migration and invasion capabilities of HUVECs were analyzed by Transwell assays. Subsequently, the expression of matrix metalloproteinase (MMP)-2 and MMP-9 mRNA and protein were determined by reverse transcription-quantitative polymerase chain reaction, western blotting and ELISA. MMP-2 and MMP-9 activities were measured by gelatin zymography. Immunofluorescence staining was performed to investigate cytoskeletal dynamics using Acti-stain™ 488 Fluorescent Phalloidin. Subsequently, the expression of EMT-related markers at the mRNA and protein levels and the activation of Wnt/β-catenin signaling were analyzed. The results identified increases in MMP-2 and MMP-9 expression and activity, indicating that MgCl2 and ZnCl2 promoted HUVEC migration and invasion. In addition, MgCl2 and ZnCl2 treatment induced cytoskeleton remodeling and stimulated EMT via activation of the Wnt/β-catenin signaling pathway, characterized by a decrease in E-cadherin and increases in N-cadherin, vimentin and Snail. These results suggest that MgCl2 and ZnCl2 may enhance the migration and invasion capabilities of HUVECs and promote EMT through the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Shuang Pan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Liwen An
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xin Meng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Liming Li
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning 110819, P.R. China
| | - Fu Ren
- Department of Anatomy, Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Yifu Guan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
36
|
Chen D, Wu D, Shao K, Ye B, Huang J, Gao Y. MiR-15a-5p negatively regulates cell survival and metastasis by targeting CXCL10 in chronic myeloid leukemia. Am J Transl Res 2017; 9:4308-4316. [PMID: 28979704 PMCID: PMC5622273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 03/22/2017] [Indexed: 06/07/2023]
Abstract
Chronic myeloid leukemia (CML) is a common malignant disease from hematopoietic system. Aberrant expression of microRNAs (miRNAs) has been found in CML, however, the roles of many miRNAs including miR-15a-5p in CML are still unknown. In this study, the expression and roles of miR-15a-5p in CML were investigated. We found that restoration miR-15a-5p expression in CML cells decreased cell growth, metastasis and enhanced cell apoptosis. Chemokine ligand 10 (CXCL10) was predicted as a target gene of miR-15a-5p, which was verified by luciferase assay. CXCL10 mRNA and protein was down-regulated in the CML cells with miR-15a-5p overexpression by real time RT-PCR and western blotting. We also found that there were low levels of miR-15a-5p companied with high levels of CXCL10 in blood samples from CML patients. In a conclusion, miR-15a-5p suppresses cell survival and metastasis of CML by targeting CXCL10, which is a therapeutic option for CML patients.
Collapse
Affiliation(s)
- Dan Chen
- Department of Hematology, Fourth Affiliated Hospital, School of Medicine, Zhejiang UniversityYiwu, China
| | - Dijiong Wu
- Department of Hematology, First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhou, China
| | - Keding Shao
- Department of Hematology, First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhou, China
| | - Baodong Ye
- Department of Hematology, First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhou, China
| | - Jian Huang
- Department of Hematology, Fourth Affiliated Hospital, School of Medicine, Zhejiang UniversityYiwu, China
| | - Yanting Gao
- Department of Hematology, First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhou, China
| |
Collapse
|
37
|
Robertson S, Diver LA, Alvarez-Madrazo S, Livie C, Ejaz A, Fraser R, Connell JM, MacKenzie SM, Davies E. Regulation of Corticosteroidogenic Genes by MicroRNAs. Int J Endocrinol 2017; 2017:2021903. [PMID: 28852406 PMCID: PMC5568613 DOI: 10.1155/2017/2021903] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/30/2017] [Accepted: 06/18/2017] [Indexed: 12/14/2022] Open
Abstract
The loss of normal regulation of corticosteroid secretion is important in the development of cardiovascular disease. We previously showed that microRNAs regulate the terminal stages of corticosteroid biosynthesis. Here, we assess microRNA regulation across the whole corticosteroid pathway. Knockdown of microRNA using Dicer1 siRNA in H295R adrenocortical cells increased levels of CYP11A1, CYP21A1, and CYP17A1 mRNA and the secretion of cortisol, corticosterone, 11-deoxycorticosterone, 18-hydroxycorticosterone, and aldosterone. Bioinformatic analysis of genes involved in corticosteroid biosynthesis or metabolism identified many putative microRNA-binding sites, and some were selected for further study. Manipulation of individual microRNA levels demonstrated a direct effect of miR-125a-5p and miR-125b-5p on CYP11B2 and of miR-320a-3p levels on CYP11A1 and CYP17A1 mRNA. Finally, comparison of microRNA expression profiles from human aldosterone-producing adenoma and normal adrenal tissue showed levels of various microRNAs, including miR-125a-5p to be significantly different. This study demonstrates that corticosteroidogenesis is regulated at multiple points by several microRNAs and that certain of these microRNAs are differentially expressed in tumorous adrenal tissue, which may contribute to dysregulation of corticosteroid secretion. These findings provide new insights into the regulation of corticosteroid production and have implications for understanding the pathology of disease states where abnormal hormone secretion is a feature.
Collapse
Affiliation(s)
- Stacy Robertson
- Institute of Cardiovascular and Medical Science, University of Glasgow, Glasgow, UK
| | - Louise A. Diver
- Institute of Cardiovascular and Medical Science, University of Glasgow, Glasgow, UK
| | | | - Craig Livie
- Institute of Cardiovascular and Medical Science, University of Glasgow, Glasgow, UK
| | - Ayesha Ejaz
- Institute of Cardiovascular and Medical Science, University of Glasgow, Glasgow, UK
| | - Robert Fraser
- Institute of Cardiovascular and Medical Science, University of Glasgow, Glasgow, UK
| | - John M. Connell
- Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Scott M. MacKenzie
- Institute of Cardiovascular and Medical Science, University of Glasgow, Glasgow, UK
| | - Eleanor Davies
- Institute of Cardiovascular and Medical Science, University of Glasgow, Glasgow, UK
| |
Collapse
|
38
|
Koschmieder S, Vetrie D. Epigenetic dysregulation in chronic myeloid leukaemia: A myriad of mechanisms and therapeutic options. Semin Cancer Biol 2017; 51:180-197. [PMID: 28778403 DOI: 10.1016/j.semcancer.2017.07.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/13/2017] [Accepted: 07/28/2017] [Indexed: 01/08/2023]
Abstract
The onset of global epigenetic changes in chromatin that drive tumor proliferation and heterogeneity is a hallmark of many forms of cancer. Identifying the epigenetic mechanisms that govern these changes and developing therapeutic approaches to modulate them, is a well-established avenue pursued in translational cancer medicine. Chronic myeloid leukemia (CML) arises clonally when a hematopoietic stem cell (HSC) acquires the capacity to produce the constitutively active tyrosine kinase BCR-ABL1 fusion protein which drives tumor development. Treatment with tyrosine kinase inhibitors (TKI) that target BCR-ABL1 has been transformative in CML management but it does not lead to cure in the vast majority of patients. Thus novel therapeutic approaches are required and these must target changes to biological pathways that are aberrant in CML - including those that occur when epigenetic mechanisms are altered. These changes may be due to alterations in DNA or histones, their biochemical modifications and requisite 'writer' proteins, or to dysregulation of various types of non-coding RNAs that collectively function as modulators of transcriptional control and DNA integrity. Here, we review the evidence for subverted epigenetic mechanisms in CML and how these impact on a diverse set of biological pathways, on disease progression, prognosis and drug resistance. We will also discuss recent progress towards developing epigenetic therapies that show promise to improve CML patient care and may lead to improved cure rates.
Collapse
Affiliation(s)
- Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | - David Vetrie
- Epigenetics Unit, Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
39
|
Wang W, Yang J, Xiang YY, Pi J, Bian J. Overexpression of Hsa-miR-320 Is Associated With Invasion and Metastasis of Ovarian Cancer. J Cell Biochem 2017; 118:3654-3661. [PMID: 28338235 DOI: 10.1002/jcb.26009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/23/2017] [Indexed: 12/31/2022]
Abstract
Ovarian cancer is one of the most common malignant tumor of female genital organs which ranks the third morbidity. We aimed to provide a better understanding of the mechanism of invasion and metastasis of ovarian cancer. The ovarian cancer samples were downloaded from GEO. Then clustering was performed to classify the stage of miRNAs based on the difference of prognosis and metastasis. Furthermore, the miRNAs model was build and the survival analysis processes was performed to observe the influence on prognosis, invasion and metastasis. At last, miRNAs co-expression network was built to explore the core miRNAs and the risk classification model was built to perform the risk assessment based on these core miRNAs. A total of 17 significantly differential expressed miRNAs were obtained. Functional enrichment of 1,488 target genes, pathways like cell cycle, focal adhesion, and pathways in cancer, which are closely related to the proliferation and metastasis of cancer cells were highly enriched, this indicate that these miRNAs are related to the proliferation and metastasis of cancer cells. The co-expressed network shows that the high expression of hsa-miR-320 indicated negative prognosis and high risk of metastasis. In conclusion, the expression level of hsa-miR-320 is highly related to the migration and invasion of cancer. The high expression of hsa-miR-320 directly indicated negative prognosis and high risk of metastasis. These findings reveal that hsa-miR-320 may serve as an important therapeutic target in ovarian cancer therapy. J. Cell. Biochem. 118: 3654-3661, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wei Wang
- Reproductive Center, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, China
| | - Juan Yang
- Department of Gynecology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuan-Yuan Xiang
- Cervical Disease Clinic, Jiangsu Huai'an Maternity and Children Hospital, Huai'an, China
| | - Jie Pi
- Reproductive Center, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, China
| | - Jiang Bian
- Department of Obstetrics and Gynecology, Shanghai Jiaotong University Affiliated Six People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| |
Collapse
|
40
|
Wang J, Shi C, Wang J, Cao L, Zhong L, Wang D. MicroRNA-320a is downregulated in non-small cell lung cancer and suppresses tumor cell growth and invasion by directly targeting insulin-like growth factor 1 receptor. Oncol Lett 2017; 13:3247-3252. [PMID: 28521431 DOI: 10.3892/ol.2017.5863] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 12/16/2016] [Indexed: 11/05/2022] Open
Abstract
Accumulating evidence has demonstrated that microRNAs (miRs/miRNAs) are implicated in carcinogenesis and cancer progression, and can function as oncogenes or tumor suppressor genes in human cancer types. Previous profile studies of miRNA expression levels have revealed that miR-320a was downregulated in breast cancer, colon cancer, bladder cancer, glioblastoma and salivary adenoid cystic carcinoma. However, its expression level, potential functions and the mechanisms underlying its functions in non-small cell lung cancer (NSCLC) require further investigation. The present study investigated the expression level, biological roles and underlying molecular mechanisms of miR-320a in NSCLC. The expression levels of miR-320a in NSCLC tissue and cell lines were detected using the reverse transcription-quantitative polymerase chain reaction. Cell proliferation and Transwell invasion assays were performed to examine the effects of miR-320a on NSCLC cells. In addition, bioinformatic analysis, western blot analysis and luciferase reporter assays were performed to identify the direct gene target of miR-320a in NSCLC. In the present study it was demonstrated that miR-320a was significantly downregulated in NSCLC tissues and cell lines. Ectopic overexpression of miR-320a suppressed the proliferation and invasion of NSCLC cells. Further studies indicated that miR-320a directly targeted the 3'-untranslated region of insulin-like growth factor 1 receptor (IGF-1R) and suppressed its expression at the mRNA and protein levels. As well as restoring the miR-320a expression level, the knockdown of IGF-1R also decreased the growth and invasion of the NSCLC cells. These results suggested that miR-320a served as a tumor suppressor in the NSCLC cells by directly targeting IGF-1R. Therefore, miR-320a should be investigated as a therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Jianguo Wang
- College of Life Sciences, Agricultural University of Hebei, Baoding, Hebei 071001, P.R. China.,Clinical Laboratory, Affiliated Hospital of Hebei University, Baoding, Hebei 071001, P.R. China
| | - Chunyun Shi
- Department of Pediatrics, Baoding Children's Hospital, Hebei 071000, P.R. China
| | - Jianfei Wang
- College of Life Sciences, Hebei University, Baoding, Hebei 071000, P.R. China
| | - Li Cao
- College of Life Sciences, Hebei University, Baoding, Hebei 071000, P.R. China
| | - Li Zhong
- College of Life Sciences, Hebei University, Baoding, Hebei 071000, P.R. China
| | - Dongmei Wang
- College of Life Sciences, Agricultural University of Hebei, Baoding, Hebei 071001, P.R. China
| |
Collapse
|
41
|
MicroRNAs as prognostic biomarker and relapse indicator in leukemia. Clin Transl Oncol 2017; 19:951-960. [PMID: 28271337 DOI: 10.1007/s12094-017-1638-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 02/23/2017] [Indexed: 12/15/2022]
Abstract
Despite significant progress in the treatment of different types of leukemia, relapse remains a challenging clinical problem that is observed in a number of patients who are often resistant to chemotherapy and exhibit multi-drug resistance. Identification of new functional biomarkers, including microRNAs, is essential to determine prognosis and relapse at the time of diagnosis. The aim of this study was to detect the specific microRNAs involved in predicting relapse or progression in acute and chronic leukemias, as well as their relationship with overall survival (OS) and relapse-free survival (RFS). The relevant literature was identified through a PubMed and Scholar search (2008-2016) of English-language papers using the terms Leukemia, microRNAs, survival and relapse. Different leukemia types and subtypes show specific microRNA expression profile and different changes, which can be useful in the differentiation between leukemias and evaluation of relapse at the time of diagnosis. Altered microRNA expression profiles can turn these molecules into oncogenes or tumor suppressors, which affect the expression of relapse-related genes. Therefore, monitoring of specific microRNA expression profiles from diagnosis and during follow-up of patients can contribute to the assessment of outcome and determination of relapse and prognosis of leukemic patients.
Collapse
|
42
|
Chang JTH, Wang F, Chapin W, Huang RS. Identification of MicroRNAs as Breast Cancer Prognosis Markers through the Cancer Genome Atlas. PLoS One 2016; 11:e0168284. [PMID: 27959953 PMCID: PMC5154569 DOI: 10.1371/journal.pone.0168284] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/29/2016] [Indexed: 12/21/2022] Open
Abstract
Breast cancer is the second-most common cancer and second-leading cause of cancer mortality in American women. The dysregulation of microRNAs (miRNAs) plays a key role in almost all cancers, including breast cancer. We comprehensively analyzed miRNA expression, global gene expression, and patient survival from the Cancer Genomes Atlas (TCGA) to identify clinically relevant miRNAs and their potential gene targets in breast tumors. In our analysis, we found that increased expression of 12 mature miRNAs-hsa-miR-320a, hsa-miR-361-5p, hsa-miR-103a-3p, hsa-miR-21-5p, hsa-miR-374b-5p, hsa-miR-140-3p, hsa-miR-25-3p, hsa-miR-651-5p, hsa-miR-200c-3p, hsa-miR-30a-5p, hsa-miR-30c-5p, and hsa-let-7i-5p -each predicted improved breast cancer survival. Of the 12 miRNAs, miR-320a, miR-361-5p, miR-21-5p, miR-103a-3p were selected for further analysis. By correlating global gene expression with miRNA expression and then employing miRNA target prediction analysis, we suggest that the four miRNAs may exert protective phenotypes by targeting breast oncogenes that contribute to patient survival. We propose that miR-320a targets the survival-associated genes RAD51, RRP1B, and TDG; miR-361-5p targets ARCN1; and miR-21-5p targets MSH2, RMND5A, STAG2, and UBE2D3. The results of our stringent bioinformatics approach for identifying clinically relevant miRNAs and their targets indicate that miR-320a, miR-361-5p, and miR-21-5p may contribute to breast cancer survival.
Collapse
Affiliation(s)
- Jeremy T-H. Chang
- Biological Sciences Collegiate Division, University of Chicago, Chicago, Illinois, United States of America
| | - Fan Wang
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - William Chapin
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - R. Stephanie Huang
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
43
|
Litwińska Z, Machaliński B. miRNAs in chronic myeloid leukemia: small molecules, essential function. Leuk Lymphoma 2016; 58:1297-1305. [PMID: 27736267 DOI: 10.1080/10428194.2016.1243676] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative disorder associated with clonal expansion of cancerous bone marrow stem cells. Tyrosine kinase inhibitors (TKIs) targeting Bcr-Abl oncoprotein are the first-line therapy for most CML patients, however, some are unresponsive to it or develop resistance. Recently, microRNAs (miRNAs) have been implicated in the progression of CML and the development of TKI resistance based on their important regulatory function in cell homeostasis. MicroRNAs are small noncoding RNAs that post-transcriptionally regulate gene expression. Since microRNAs can function either as oncogenes or tumor suppressor genes in leukemogenesis, the potential of using them as therapeutic targets by inhibiting or amplifying their activity, opens up new opportunities for leukemia therapy. In this review, we focus on recent studies on the important roles of microRNAs in the pathogenesis of CML and their relevance as biomarkers for diagnosis, monitoring disease progression, and treatment response.
Collapse
Affiliation(s)
- Zofia Litwińska
- a Department of General Pathology , Pomeranian Medical University , Szczecin , Poland
| | - Bogusław Machaliński
- a Department of General Pathology , Pomeranian Medical University , Szczecin , Poland
| |
Collapse
|
44
|
Liang B, Song Y, Zheng W, Ma W. miRNA143 Induces K562 Cell Apoptosis Through Downregulating BCR-ABL. Med Sci Monit 2016; 22:2761-7. [PMID: 27492780 PMCID: PMC4978212 DOI: 10.12659/msm.895833] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Background Leukemia seriously threats human health and life. MicroRNA regulates cell growth, proliferation, apoptosis, and cell cycle. Whether microRNA could be treated as a target for leukemia is still unclear and the mechanism by which microRNA143 regulates K562 cells needs further investigation. Material/Methods miRNA143 and its scramble miRNA were synthesized and transfected to K562 cells. MTT assay was used to detect K562 cell proliferation. Flow cytometry and a caspase-3 activity detection kit were used to test K562 cell apoptosis. Western blot analysis was performed to determine breakpoint cluster region-Abelson (BCR-ABL) expression. BCR-ABL overexpression and siRNA were used to change BCR-ABL level, and cell apoptosis was detected again after lipofection transfection. Results miRNA143 transfection inhibited K562 cell growth and induced its apoptosis. miRNA143 transfection decreased BCR-ABL expression. BCR-ABL overexpression suppressed miRNA143-induced K562 cell apoptosis, while its reduction enhanced miRNA143-induced apoptosis. Conclusions miRNA143 induced K562 cell apoptosis through downregulating BCR-ABL. miRNA143 might be a target for a new leukemia therapy.
Collapse
Affiliation(s)
- Bing Liang
- Institute of Genetic Engineering, Southern Medical University, Baiyun, Guangzhou, China (mainland)
| | - Yanbin Song
- Institute of Genetic Engineering, Southern Medical University, Baiyun, Guangzhou, China (mainland)
| | - Wenling Zheng
- Institute of Genetic Engineering, Southern Medical University, Baiyun, Guangzhou, China (mainland)
| | - Wenli Ma
- Institute of Genetic Engineering, Southern Medical University, Baiyun, Guangzhou, China (mainland)
| |
Collapse
|
45
|
OKATO ATSUSHI, GOTO YUSUKE, KUROZUMI AKIRA, KATO MAYUKO, KOJIMA SATOKO, MATSUSHITA RYOSUKE, YONEMORI MASAYA, MIYAMOTO KAZUTAKA, ICHIKAWA TOMOHIKO, SEKI NAOHIKO. Direct regulation of LAMP1 by tumor-suppressive microRNA-320a in prostate cancer. Int J Oncol 2016; 49:111-22. [PMID: 27212625 PMCID: PMC4902064 DOI: 10.3892/ijo.2016.3522] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/19/2016] [Indexed: 01/12/2023] Open
Abstract
Advanced prostate cancer (PCa) metastasizes to bone and lymph nodes, and currently available treatments cannot prevent the progression and metastasis of the disease. Therefore, an improved understanding of the molecular mechanisms of the progression and metastasis of advanced PCa using current genomic approaches is needed. Our miRNA expression signature in castration-resistant prostate cancer (CRPC) revealed that microRNA-320a (miR‑320a) was significantly reduced in cancer tissues, suggesting that miR‑320a may be a promising anticancer miRNA. The aim of this study was to investigate the functional roles of miR‑320a in naïve PCa and CRPC cells and to identify miR‑320a-regulated genes involved in PCa metastasis. The expression levels of miR‑320a were significantly reduced in naïve PCa, CRPC specimens, and PCa cell lines. Restoration of mature miR‑320a in PCa cell lines showed that miR‑320a significantly inhibited cancer cell migration and invasion. Moreover, we found that lysosomal-associated membrane protein 1 (LAMP1) was a direct target of miR‑320a in PCa cells. Silencing of LAMP1 using siRNA significantly inhibited cell proliferation, migration, and invasion in PCa cells. Overexpression of LAMP1 was observed in PCa and CRPC clinical specimens. Moreover, downstream pathways were identified using si-LAMP1-transfected cells. The discovery of tumor-suppressive miR‑320a-mediated pathways may provide important insights into the potential mechanisms of PCa metastasis.
Collapse
Affiliation(s)
- ATSUSHI OKATO
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
- Department of Urology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - YUSUKE GOTO
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
- Department of Urology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - AKIRA KUROZUMI
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
- Department of Urology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - MAYUKO KATO
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
- Department of Urology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - SATOKO KOJIMA
- Department of Urology, Teikyo University Chiba Medical Centre, Chiba 299-0111, Japan
| | - RYOSUKE MATSUSHITA
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - MASAYA YONEMORI
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - KAZUTAKA MIYAMOTO
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - TOMOHIKO ICHIKAWA
- Department of Urology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - NAOHIKO SEKI
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| |
Collapse
|
46
|
The chimeric ubiquitin ligase SH2-U-box inhibits the growth of imatinib-sensitive and resistant CML by targeting the native and T315I-mutant BCR-ABL. Sci Rep 2016; 6:28352. [PMID: 27329306 PMCID: PMC4916441 DOI: 10.1038/srep28352] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/02/2016] [Indexed: 01/01/2023] Open
Abstract
Chronic myeloid leukemia (CML) is characterized by constitutively active fusion protein tyrosine kinase BCR-ABL. Although the tyrosine kinase inhibitor (TKI) against BCR-ABL, imatinib, is the first-line therapy for CML, acquired resistance almost inevitably emerges. The underlying mechanism are point mutations within the BCR-ABL gene, among which T315I is notorious because it resists to almost all currently available inhibitors. Here we took use of a previously generated chimeric ubiquitin ligase, SH2-U-box, in which SH2 from the adaptor protein Grb2 acts as a binding domain for activated BCR-ABL, while U-box from CHIP functions as an E3 ubiquitin ligase domain, so as to target the ubiquitination and degradation of both native and T315I-mutant BCR-ABL. As such, SH2-U-box significantly inhibited proliferation and induced apoptosis in CML cells harboring either the wild-type or T315I-mutant BCR-ABL (K562 or K562R), with BCR-ABL-dependent signaling pathways being repressed. Moreover, SH2-U-box worked in concert with imatinib in K562 cells. Importantly, SH2-U-box-carrying lentivirus could markedly suppress the growth of K562-xenografts in nude mice or K562R-xenografts in SCID mice, as well as that of primary CML cells. Collectively, by degrading the native and T315I-mutant BCR-ABL, the chimeric ubiquitin ligase SH2-U-box may serve as a potential therapy for both imatinib-sensitive and resistant CML.
Collapse
|
47
|
Crivellaro S, Carrà G, Panuzzo C, Taulli R, Guerrasio A, Saglio G, Morotti A. The non-genomic loss of function of tumor suppressors: an essential role in the pathogenesis of chronic myeloid leukemia chronic phase. BMC Cancer 2016; 16:314. [PMID: 27184141 PMCID: PMC4869339 DOI: 10.1186/s12885-016-2346-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 05/09/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Chronic Myeloid Leukemia was always referred as a unique cancer due to the apparent independence from tumor suppressors' deletions/mutations in the early stages of the disease. However, it is now well documented that even genetically wild-type tumor suppressors can be involved in tumorigenesis, when functionally inactivated. In particular, tumor suppressors' functions can be impaired by subtle variations of protein levels, changes in cellular compartmentalization and post-transcriptional/post-translational modifications, such as phosphorylation, acetylation, ubiquitination and sumoylation. Notably, tumor suppressors inactivation offers challenging therapeutic opportunities. The reactivation of an inactive and genetically wild-type tumor suppressor could indeed promote selective apoptosis of cancer cells without affecting normal cells. MAIN BODY Chronic Myeloid Leukemia (CML) could be considered as the paradigm for non-genomic loss of function of tumor suppressors due to the ability of BCR-ABL to directly promote functionally inactivation of several tumor suppressors. SHORT CONCLUSION In this review we will describe new insights on the role of FoxO, PP2A, p27, BLK, PTEN and other tumor suppressors in CML pathogenesis. Finally, we will describe strategies to promote tumor suppressors reactivation in CML.
Collapse
Affiliation(s)
- Sabrina Crivellaro
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Cristina Panuzzo
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Riccardo Taulli
- Department of Oncology, University of Turin, Orbassano, Italy
| | - Angelo Guerrasio
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Giuseppe Saglio
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, Regione Gonzole 10, 10043, Orbassano, Italy.
| |
Collapse
|
48
|
Yeh CH, Moles R, Nicot C. Clinical significance of microRNAs in chronic and acute human leukemia. Mol Cancer 2016; 15:37. [PMID: 27179712 PMCID: PMC4867976 DOI: 10.1186/s12943-016-0518-2] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/01/2016] [Indexed: 01/01/2023] Open
Abstract
Small non-coding microRNAs (miRNAs) are epigenetic regulators that target specific cellular mRNA to modulate gene expression patterns and cellular signaling pathways. miRNAs are involved in a wide range of biological processes and are frequently deregulated in human cancers. Numerous miRNAs promote tumorigenesis and cancer progression by enhancing tumor growth, angiogenesis, invasion and immune evasion, while others have tumor suppressive effects (Hayes, et al., Trends Mol Med 20(8): 460-9, 2014; Stahlhut and Slack, Genome Med 5 (12): 111, 2013). The expression profile of cancer miRNAs can be used to predict patient prognosis and clinical response to treatment (Bouchie, Nat Biotechnol 31(7): 577, 2013). The majority of miRNAs are intracellular localized, however circulating miRNAs have been detected in various body fluids and represent new biomarkers of solid and hematologic cancers (Fabris and Calin, Mol Oncol 10(3):503-8, 2016; Allegra, et al., Int J Oncol 41(6): 1897-912, 2012). This review describes the clinical relevance of miRNAs, lncRNAs and snoRNAs in the diagnosis, prognosis and treatment response in patients with chronic lymphocytic leukemia (CLL), chronic myeloid leukemia (CML), acute lymphocytic leukemia (ALL), acute myeloid leukemia (AML) and acute adult T-cell leukemia (ATL).
Collapse
Affiliation(s)
- Chien-Hung Yeh
- Department of Pathology, Center for Viral Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Ramona Moles
- Department of Pathology, Center for Viral Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Christophe Nicot
- Department of Pathology, Center for Viral Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| |
Collapse
|
49
|
Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: Νew trends in the development of miRNA therapeutic strategies in oncology (Review). Int J Oncol 2016; 49:5-32. [PMID: 27175518 PMCID: PMC4902075 DOI: 10.3892/ijo.2016.3503] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/29/2016] [Indexed: 12/16/2022] Open
Abstract
MicroRNA (miRNA or miR) therapeutics in cancer are based on targeting or mimicking miRNAs involved in cancer onset, progression, angiogenesis, epithelial-mesenchymal transition and metastasis. Several studies conclusively have demonstrated that miRNAs are deeply involved in tumor onset and progression, either behaving as tumor-promoting miRNAs (oncomiRNAs and metastamiRNAs) or as tumor suppressor miRNAs. This review focuses on the most promising examples potentially leading to the development of anticancer, miRNA-based therapeutic protocols. The inhibition of miRNA activity can be readily achieved by the use of miRNA inhibitors and oligomers, including RNA, DNA and DNA analogues (miRNA antisense therapy), small molecule inhibitors, miRNA sponges or through miRNA masking. On the contrary, the enhancement of miRNA function (miRNA replacement therapy) can be achieved by the use of modified miRNA mimetics, such as plasmid or lentiviral vectors carrying miRNA sequences. Combination strategies have been recently developed based on the observation that i) the combined administration of different antagomiR molecules induces greater antitumor effects and ii) some anti-miR molecules can sensitize drug-resistant tumor cell lines to therapeutic drugs. In this review, we discuss two additional issues: i) the combination of miRNA replacement therapy with drug administration and ii) the combination of antagomiR and miRNA replacement therapy. One of the solid results emerging from different independent studies is that miRNA replacement therapy can enhance the antitumor effects of the antitumor drugs. The second important conclusion of the reviewed studies is that the combination of anti-miRNA and miRNA replacement strategies may lead to excellent results, in terms of antitumor effects.
Collapse
|
50
|
Lu Y, Wu D, Wang J, Li Y, Chai X, Kang Q. miR-320a regulates cell proliferation and apoptosis in multiple myeloma by targeting pre-B-cell leukemia transcription factor 3. Biochem Biophys Res Commun 2016; 473:1315-1320. [PMID: 27086852 DOI: 10.1016/j.bbrc.2016.04.069] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 02/08/2023]
Abstract
Aberrant expression of microRNAs (miRNAs) is implicated in cancer development and progression. While miR-320a is reported to be deregulated in many malignancy types, its biological role in multiple myeloma (MM) remains unclear. Here, we observed reduced expression of miR-320a in MM samples and cell lines. Ectopic expression of miR-320a dramatically suppressed cell viability and clonogenicity and induced apoptosis in vitro. Mechanistic investigation led to the identification of Pre-B-cellleukemia transcription factor 3 (PBX3) as a novel and direct downstream target of miR-320a. Interestingly, reintroduction of PBX3 abrogated miR-320a-induced MM cell growth inhibition and apoptosis. In a mouse xenograft model, miR-320a overexpression inhibited tumorigenicity and promoted apoptosis. Our findings collectively indicate that miR-320a inhibits cell proliferation and induces apoptosis in MM cells by directly targeting PBX3, supporting its utility as a novel and potential therapeutic agent for miRNA-based MM therapy.
Collapse
Affiliation(s)
- Yinghao Lu
- Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis Under Ministry of Health, Collaborative Innovation Center of Hematology, Suzhou, 215006, China; Department of Hematology, Affiliated Hospital of Guizhou Medical University, The Hematopoietic Stem Cell Transplant Center of Guizhou Province, Blood Diseases Diagnosis and Treatment Center of Guizhou Province, Guiyang, 550004, Guizhou Province, China
| | - Depei Wu
- Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis Under Ministry of Health, Collaborative Innovation Center of Hematology, Suzhou, 215006, China.
| | - Jishi Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, The Hematopoietic Stem Cell Transplant Center of Guizhou Province, Blood Diseases Diagnosis and Treatment Center of Guizhou Province, Guiyang, 550004, Guizhou Province, China.
| | - Yan Li
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, The Hematopoietic Stem Cell Transplant Center of Guizhou Province, Blood Diseases Diagnosis and Treatment Center of Guizhou Province, Guiyang, 550004, Guizhou Province, China
| | - Xiao Chai
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, The Hematopoietic Stem Cell Transplant Center of Guizhou Province, Blood Diseases Diagnosis and Treatment Center of Guizhou Province, Guiyang, 550004, Guizhou Province, China
| | - Qian Kang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, The Hematopoietic Stem Cell Transplant Center of Guizhou Province, Blood Diseases Diagnosis and Treatment Center of Guizhou Province, Guiyang, 550004, Guizhou Province, China
| |
Collapse
|