1
|
Saffar S, Ghiaseddin A, Irani S, Hamidieh AA. Optimization of In-Situ Exosome Enrichment Methodology On-a-Chip to Mimic Tumor Microenvironment Induces Cancer Stemness in Glioblastoma Tumor Model. Cells 2025; 14:676. [PMID: 40358200 PMCID: PMC12071966 DOI: 10.3390/cells14090676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/26/2025] [Accepted: 04/26/2025] [Indexed: 05/15/2025] Open
Abstract
Understanding cancer etiology requires replicating the tumor microenvironment (TME), which significantly differs from standard in vitro cultures due to nutrient limitations, acidic pH, and oxidative stress. To address this, a microfluidic bioreactor (µBR) with an expanded culture surface was designed to optimize exosome enrichment and glioblastoma cell behavior. Using response surface methodology (RSM), key parameters-including medium exchange volume and interval time-were optimized, leading to about a six-fold increase in exosome concentration without artificial inducers. Characterization techniques (SEM, AFM, DLS, RT-qPCR, and ELISA) confirmed significant alterations in exosome profiles, cancer stemness, and epithelial-mesenchymal transition (EMT)-related markers. Notably, EMT was induced in the µBR system, with a six-fold increase in HIF-1α protein despite normoxic conditions, suggesting activation of compensatory signaling pathways. Molecular analysis showed upregulation of SOX2, OCT4, and Notch1, with SOX2 protein reaching 28 ng/mL, while it was undetectable in traditional culture. Notch1 concentration tripled in the µBR system, correlating with enhanced stemness and phenotypic heterogeneity. Immunofluorescent microscopy confirmed nuclear SOX2 accumulation and co-expression of SOX2 and HIF-1α in dedifferentiated CSC-like cells, demonstrating tumor heterogeneity. These findings highlight the µBR's ability to enhance stemness and mimic glioblastoma's aggressive phenotype, establishing it as a valuable platform for tumor modeling and therapeutic development.
Collapse
Affiliation(s)
- Saleheh Saffar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran; (S.S.); (S.I.)
| | - Ali Ghiaseddin
- Department of Chemistry, Michigan State University, East Lansing, MI 48824-1322, USA
- Institute for Stem Cell Research and Regenerative Medicine, Tehran University of Medical Sciences, Tehran 1419733151, Iran
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran; (S.S.); (S.I.)
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran 1419733151, Iran;
| |
Collapse
|
2
|
Zhong R, Xu X, Tutoni G, Liu M, Yang K, Li K, Jin K, Chen Y, Mai JDH, Becker ML, Huang TJ. An acoustofluidic embedding platform for rapid multiphase microparticle injection. Nat Commun 2025; 16:4144. [PMID: 40319024 PMCID: PMC12049528 DOI: 10.1038/s41467-025-59146-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 04/09/2025] [Indexed: 05/07/2025] Open
Abstract
Droplet manipulation technologies play a critical role in many aspects of biochemical research, including in complex reaction assays useful for drug delivery, for building artificial cells, and in synthetic biology. While advancements have been made in manipulating liquid droplets, the capability to freely and dynamically manipulate solid objects across aqueous and oil phases remains unexplored. Here, we develop an acoustofluidic frequency-associated microsphere embedding platform, which enables microscale rapid injection of microparticles from a fluorinated oil into aqueous droplets. By observing different embedding mechanisms at low and high acoustic frequencies, we establish a theoretical model and practical principles for cross-phase manipulations. The proposed system not only enables multi-phase manipulation but also provides contactless control of specific microparticles within various distinctive phases. We demonstrate the acoustic-driven embedding and subsequent on-demand disassembly of hydrogel microspheres. This system indicates potential for reagent delivery and molecule capture applications. It enhances existing droplet manipulation technologies by enabling both multi-phase and cross-phase operations, paving the way for solid-liquid interaction studies in artificial cell research. The capability for intricate multi-phase loading, transport, and reactions offers promising implications for various fields, including in-droplet biochemical assays, drug delivery, and synthetic biology.
Collapse
Grants
- R01GM141055 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01 GM143439 NIGMS NIH HHS
- R01GM145960 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R44GM154514 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01 GM144417 NIGMS NIH HHS
- R44AG063643 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R44OD024963 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R44GM154515 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01 GM141055 NIGMS NIH HHS
- R44 AG063643 NIA NIH HHS
- R44 GM154515 NIGMS NIH HHS
- R01GM144417 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01 GM145960 NIGMS NIH HHS
- R01 AG084098 NIA NIH HHS
- CMMI-2104295 National Science Foundation (NSF)
- R44 GM154514 NIGMS NIH HHS
- R44 OD024963 NIH HHS
- R01 HD103727 NICHD NIH HHS
- R01AG084098 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01HD103727 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01GM143439 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- National Science Foundation Graduate Research Fellowship, Grant DGE 2139754
Collapse
Affiliation(s)
- Ruoyu Zhong
- Thomas Lord Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA
| | - Xianchen Xu
- Thomas Lord Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA
| | - Gianna Tutoni
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Mingyuan Liu
- Thomas Lord Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
| | - Kaichun Yang
- Thomas Lord Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA
| | - Ke Li
- Thomas Lord Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA
| | - Ke Jin
- Thomas Lord Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA
| | - Ying Chen
- Thomas Lord Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA
| | - John D H Mai
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Matthew L Becker
- Thomas Lord Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA.
| |
Collapse
|
3
|
Mudugamuwa A, Roshan U, Hettiarachchi S, Cha H, Musharaf H, Kang X, Trinh QT, Xia HM, Nguyen N, Zhang J. Periodic Flows in Microfluidics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404685. [PMID: 39246195 PMCID: PMC11636114 DOI: 10.1002/smll.202404685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/24/2024] [Indexed: 09/10/2024]
Abstract
Microfluidics, the science and technology of manipulating fluids in microscale channels, offers numerous advantages, such as low energy consumption, compact device size, precise control, fast reaction, and enhanced portability. These benefits have led to applications in biomedical assays, disease diagnostics, drug discovery, neuroscience, and so on. Fluid flow within microfluidic channels is typically in the laminar flow region, which is characterized by low Reynolds numbers but brings the challenge of efficient mixing of fluids. Periodic flows are time-dependent fluid flows, featuring repetitive patterns that can significantly improve fluid mixing and extend the effective length of microchannels for submicron and nanoparticle manipulation. Besides, periodic flow is crucial in organ-on-a-chip (OoC) for accurately modeling physiological processes, advancing disease understanding, drug development, and personalized medicine. Various techniques for generating periodic flows have been reported, including syringe pumps, peristalsis, and actuation based on electric, magnetic, acoustic, mechanical, pneumatic, and fluidic forces, yet comprehensive reviews on this topic remain limited. This paper aims to provide a comprehensive review of periodic flows in microfluidics, from fundamental mechanisms to generation techniques and applications. The challenges and future perspectives are also discussed to exploit the potential of periodic flows in microfluidics.
Collapse
Affiliation(s)
- Amith Mudugamuwa
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQLD4111Australia
| | - Uditha Roshan
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQLD4111Australia
| | - Samith Hettiarachchi
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQLD4111Australia
| | - Haotian Cha
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQLD4111Australia
| | - Hafiz Musharaf
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQLD4111Australia
| | - Xiaoyue Kang
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQLD4111Australia
| | - Quang Thang Trinh
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQLD4111Australia
| | - Huan Ming Xia
- School of Mechanical EngineeringNanjing University of Science and TechnologyNanjing210094P. R. China
| | - Nam‐Trung Nguyen
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQLD4111Australia
| | - Jun Zhang
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQLD4111Australia
- School of Engineering and Built EnvironmentGriffith UniversityBrisbaneQLD4111Australia
| |
Collapse
|
4
|
Kshetri KG, Nama N. Acoustophoresis around an elastic scatterer in a standing wave field. Phys Rev E 2023; 108:045102. [PMID: 37978594 DOI: 10.1103/physreve.108.045102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/11/2023] [Indexed: 11/19/2023]
Abstract
Acoustofluidic systems often employ prefabricated acoustic scatterers that perturb the imposed acoustic field to realize the acoustophoresis of immersed microparticles. We present a numerical study to investigate the time-averaged streaming and radiation force fields around a scatterer. Based on the streaming and radiation force field, we obtain the trajectories of the immersed microparticles with varying sizes and identify a critical transition size at which the motion of immersed microparticles in the vicinity of a prefabricated scatterer shifts from being streaming dominated to radiation dominated. We consider a range of acoustic frequencies to reveal that the critical transition size decreases with increasing frequency; this result explains the choice of acoustic frequencies in previously reported experimental studies. We also examine the impact of scatterer material and fluid properties on the streaming and radiation force fields, as well as on the critical transition size. Our results demonstrate that the critical transition size decreases with an increase in acoustic contrast factor: a nondimensional quantity that depends on material properties of the scatterer and the fluid. Our results provide a pathway to realize radiation force based manipulation of small particles by increasing the acoustic contrast factor of the scatterer, lowering the kinematic viscosity of the fluid, and increasing the acoustic frequency.
Collapse
Affiliation(s)
- Khemraj Gautam Kshetri
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Nitesh Nama
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| |
Collapse
|
5
|
Alhamli MK, Sadhal SS. Boundary effects on the streaming flow around a bubble located at the velocity antinode of a standing wave. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:1637. [PMID: 37002098 DOI: 10.1121/10.0017456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/15/2023] [Indexed: 06/19/2023]
Abstract
This study uses the singular perturbation method to analyze the streaming flow around a pulsating bubble at the velocity antinode of a standing wave. The bubble radially and laterally oscillates with small nondimensional amplitudes of ε` and ε, respectively. The momentum equation is expanded using ε. The frequency parameter M, which is the ratio of the bubble radius to the viscous length, is included in the expanded equations as OM-1. Four boundary conditions are solved: non-pulsating and pulsating assuming no-slip and shear-free boundaries. For the non-pulsating bubble, the streaming is on the order of OM-1 for the shear-free boundary. The flow has a quadrupole pattern, with direction from the equator to the poles. However, for the non-pulsating bubble with the no-slip boundary, the flow pattern is from the poles to the equator and the direction reverses after a critical value of M=13.3. When bubble pulsation is introduced, the intensity of the streaming increases and is proportional to M. The flow pattern is dipole with a direction from the south to the north pole for the shear-free boundary. For the non-slip boundary, the flow is quadrupole for small values of M and varies with the phase shift ϕ. As M increases, the flow intensifies and becomes dipole. For both cases, the maximum velocity is at the phase shift angle ϕ=135° and M=10.
Collapse
Affiliation(s)
- Mohammad K Alhamli
- College of Technological Studies, Mechanical Engineering (Power), P.O. Box 42325, Shuwaikh 70654, Kuwait
| | - Satwindar Singh Sadhal
- Aerospace and Mechanical Engineering and Ophthalmology, University of Southern California, Olin Hall, OHE 430, Los Angeles, California 90089, USA
| |
Collapse
|
6
|
Voß J, Wittkowski R. Acoustic Propulsion of Nano- and Microcones: Dependence on the Viscosity of the Surrounding Fluid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10736-10748. [PMID: 35998334 DOI: 10.1021/acs.langmuir.2c00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This article investigates how the acoustic propulsion of cone-shaped colloidal particles that are exposed to a traveling ultrasound wave depends on the viscosity of the fluid surrounding the particles. Using acoustofluidic computer simulations, we found that the propulsion of such nano- and microcones decreases strongly and even changes sign for increasing shear viscosity. In contrast, we found only a weak dependence of the propulsion on the bulk viscosity. The obtained results are in line with the findings of previous theoretical and experimental studies.
Collapse
Affiliation(s)
- Johannes Voß
- Institute of Theoretical Physics, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Raphael Wittkowski
- Institute of Theoretical Physics, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|
7
|
Universal Frequency-Dependent Permeability of Heterogeneous Porous Media: Effective–Medium Approximation and Critical-Path Analysis. Transp Porous Media 2022. [DOI: 10.1007/s11242-022-01839-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Yang M, Gao Y, Liu Y, Yang G, Zhao CX, Wu KJ. Integration of microfluidic systems with external fields for multiphase process intensification. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Ye X, Cheng Y, Chen Y, Hao T, Lan Z, Wen R, Ma X. Microcavity-Enabled Local Oscillation of Taylor Bubbles in a Microchannel. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xuan Ye
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yaqi Cheng
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yansong Chen
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Tingting Hao
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Zhong Lan
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Rongfu Wen
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xuehu Ma
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| |
Collapse
|
10
|
Choi J, Lee H, Son Y. Effects of gas sparging and mechanical mixing on sonochemical oxidation activity. ULTRASONICS SONOCHEMISTRY 2021; 70:105334. [PMID: 32932226 PMCID: PMC7786622 DOI: 10.1016/j.ultsonch.2020.105334] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 05/20/2023]
Abstract
The effects of air sparging (0-16 L min-1) and mechanical mixing (0-400 rpm) on enhancing the sonochemical degradation of rhodamine B (RhB) was investigated using a 28 kHz sonoreactor. The degradation of RhB followed pseudo first-order kinetics, where sparging or mixing induced a large sonochemical enhancement. The kinetic constant varied in three stages (gradually increased → increased exponentially → decreased slightly) as the rate of sparging or mixing increased, where the stages were similar for both processes. The highest sonochemical activity was obtained with sparging at 8 L min-1 or mixing at 200 rpm, where the standing wave field was significantly deformed by sparging and mixing, respectively. The cavitational oxidation activity was concentrated at the bottom of the sonicator when higher sparging or mixing rates were employed. Therefore, the large enhancement in the sonochemical oxidation was attributed mainly to the direct disturbance of the ultrasound transmission and the resulting change in the cavitation-active zone in this study. The effect of the position of air sparging and mixing was investigated. The indirect inhibition of the ultrasound transmission resulted in less enhancement of the sonochemical activity. Moreover, the effect of various sparging gases including air, N2, O2, Ar, CO2, and an Ar/O2 (8:2) mixture was compared, where all gases except CO2 induced an enhancement in the sonochemical activity, irrespective of the concentration of dissolved oxygen. The highest activity was obtained with the Ar/O2 (8:2) mixture. Therefore, it was revealed that the sonochemical oxidation activity could be further enhanced by applying gas sparging using the optimal gas.
Collapse
Affiliation(s)
- Jongbok Choi
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea; School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hyeonjae Lee
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea; R&D Center, Changmyoung Industry Co., Yangju 11426, Republic of Korea
| | - Younggyu Son
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea; Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea.
| |
Collapse
|
11
|
Acoustic Microfluidic Separation Techniques and Bioapplications: A Review. MICROMACHINES 2020; 11:mi11100921. [PMID: 33023173 PMCID: PMC7600273 DOI: 10.3390/mi11100921] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022]
Abstract
Microfluidic separation technology has garnered significant attention over the past decade where particles are being separated at a micro/nanoscale in a rapid, low-cost, and simple manner. Amongst a myriad of separation technologies that have emerged thus far, acoustic microfluidic separation techniques are extremely apt to applications involving biological samples attributed to various advantages, including high controllability, biocompatibility, and non-invasive, label-free features. With that being said, downsides such as low throughput and dependence on external equipment still impede successful commercialization from laboratory-based prototypes. Here, we present a comprehensive review of recent advances in acoustic microfluidic separation techniques, along with exemplary applications. Specifically, an inclusive overview of fundamental theory and background is presented, then two sets of mechanisms underlying acoustic separation, bulk acoustic wave and surface acoustic wave, are introduced and discussed. Upon these summaries, we present a variety of applications based on acoustic separation. The primary focus is given to those associated with biological samples such as blood cells, cancer cells, proteins, bacteria, viruses, and DNA/RNA. Finally, we highlight the benefits and challenges behind burgeoning developments in the field and discuss the future perspectives and an outlook towards robust, integrated, and commercialized devices based on acoustic microfluidic separation.
Collapse
|
12
|
Dong Z, Delacour C, Mc Carogher K, Udepurkar AP, Kuhn S. Continuous Ultrasonic Reactors: Design, Mechanism and Application. MATERIALS 2020; 13:ma13020344. [PMID: 31940863 PMCID: PMC7014228 DOI: 10.3390/ma13020344] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 01/01/2023]
Abstract
Ultrasonic small scale flow reactors have found increasing popularity among researchers as they serve as a very useful platform for studying and controlling ultrasound mechanisms and effects. This has led to the use of these reactors for not only research purposes, but also various applications in biological, pharmaceutical and chemical processes mostly on laboratory and, in some cases, pilot scale. This review summarizes the state of the art of ultrasonic flow reactors and provides a guideline towards their design, characterization and application. Particular examples for ultrasound enhanced multiphase processes, spanning from immiscible fluid-fluid to fluid-solid systems, are provided. To conclude, challenges such as reactor efficiency and scalability are addressed.
Collapse
|
13
|
Du X, Duan X, Yang C. Visual Study on the Interphase Mass Transfer of Immiscible Liquid–Liquid System in a Stirred Tank. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b05060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiuxin Du
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxia Duan
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Yang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Zhao S, Yao C, Dong Z, Liu Y, Chen G, Yuan Q. Intensification of liquid-liquid two-phase mass transfer by oscillating bubbles in ultrasonic microreactor. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.04.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Aubert V, Wunenburger R, Valier-Brasier T, Rabaud D, Kleman JP, Poulain C. A simple acoustofluidic chip for microscale manipulation using evanescent Scholte waves. LAB ON A CHIP 2016; 16:2532-2539. [PMID: 27292590 DOI: 10.1039/c6lc00534a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Acoustofluidics is acknowledged as a powerful tool offering a contactless and label-free manipulation of fluids, micro-beads, and living cells. To date, most techniques rely on the use of propagating acoustic waves and take advantage of the associated acoustic radiation force in standing or progressive fields. Here, we present a new approach based on the generation of an evanescent acoustic field above a substrate. This field is obtained by means of subsonic interfacial waves giving rise to a well-defined standing wave pattern. By both imaging and probing the evanescent acoustic field, we show that these interfacial waves are guided waves known as quasi-Scholte acoustic waves. Scholte waves present very interesting features for applications in acoustofluidics. Namely, they confine the acoustic energy to the vicinity of the surface, they are nearly lossless and thus can propagate over long distances along the substrate, and finally they do not require any particular material for the substrate. With a very simple and low-cost device we show several examples of applications including patterning lines or arrays of cells, triggering spinning of living cells, and separating plasma from RBC in a whole blood microdroplet.
Collapse
|
16
|
Nakajima N, Yamada M, Kakegawa S, Seki M. Microfluidic System Enabling Multistep Tuning of Extraction Time Periods for Kinetic Analysis of Droplet-Based Liquid–Liquid Extraction. Anal Chem 2016; 88:5637-43. [DOI: 10.1021/acs.analchem.6b00176] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Natsuki Nakajima
- Department of Applied Chemistry
and Biotechnology, Graduate School of Engineering, Chiba University, 1-33
Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Masumi Yamada
- Department of Applied Chemistry
and Biotechnology, Graduate School of Engineering, Chiba University, 1-33
Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Shunta Kakegawa
- Department of Applied Chemistry
and Biotechnology, Graduate School of Engineering, Chiba University, 1-33
Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Minoru Seki
- Department of Applied Chemistry
and Biotechnology, Graduate School of Engineering, Chiba University, 1-33
Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
17
|
Collins DJ, Ma Z, Ai Y. Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields. Anal Chem 2016; 88:5513-22. [DOI: 10.1021/acs.analchem.6b01069] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- David J. Collins
- Pillar of Engineering Product
Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Zhichao Ma
- Pillar of Engineering Product
Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Ye Ai
- Pillar of Engineering Product
Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| |
Collapse
|
18
|
Xie Y, Nama N, Li P, Mao Z, Huang PH, Zhao C, Costanzo F, Huang TJ. Probing Cell Deformability via Acoustically Actuated Bubbles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:902-10. [PMID: 26715211 PMCID: PMC4876965 DOI: 10.1002/smll.201502220] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 12/02/2015] [Indexed: 05/21/2023]
Abstract
An acoustically actuated, bubble-based technique is developed to investigate the deformability of cells suspended in microfluidic devices. A microsized bubble is generated by an optothermal effect near the targeted cells, which are suspended in a microfluidic chamber. Subsequently, acoustic actuation is employed to create localized acoustic streaming. In turn, the streaming flow results in hydrodynamic forces that deform the cells in situ. The deformability of the cells is indicative of their mechanical properties. The method in this study measures mechanical biomarkers from multiple cells in a single experiment, and it can be conveniently integrated with other bioanalysis and drug-screening platforms. Using this technique, the mean deformability of tens of HeLa, HEK, and HUVEC cells is measured to distinguish their mechanical properties. HeLa cells are deformed upon treatment with Cytochalasin. The technique also reveals the deformability of each subpopulation in a mixed, heterogeneous cell sample by the use of both fluorescent markers and mechanical biomarkers. The technique in this study, apart from being relevant to cell biology, will also enable biophysical cellular diagnosis.
Collapse
Affiliation(s)
- Yuliang Xie
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Nitesh Nama
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Peng Li
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Zhangming Mao
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Po-Hsun Huang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Chenglong Zhao
- Department of Physics & Electro-Optics Program, University of Dayton, Dayton, OH 45469, USA
| | - Francesco Costanzo
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Tony Jun Huang
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
19
|
Radziuk D, Möhwald H. Ultrasonic Mastering of Filter Flow and Antifouling of Renewable Resources. Chemphyschem 2016; 17:931-53. [DOI: 10.1002/cphc.201500960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Darya Radziuk
- Max-Planck Institute of Colloids and Interfaces; Am Mühlenberg 1 D-14476 Potsdam, Science Park Golm Germany
| | - Helmuth Möhwald
- Max-Planck Institute of Colloids and Interfaces; Am Mühlenberg 1 D-14476 Potsdam, Science Park Golm Germany
| |
Collapse
|