1
|
Komura K. CD19: a promising target for systemic sclerosis. Front Immunol 2024; 15:1454913. [PMID: 39421745 PMCID: PMC11484411 DOI: 10.3389/fimmu.2024.1454913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by immune dysregulation, vascular damage, and fibrosis. B cells play a significant role in SSc through autoantibody production, cytokine secretion, and T cell regulation. Autoantibodies like anti-topoisomerase I and anti-RNA polymerase III are specific to SSc and linked to clinical features such as skin and lung involvement. B cell depletion therapies, particularly anti-CD20 antibodies like rituximab, have shown benefits in treating SSc, improving skin and lung disease symptoms. However, CD19, another B cell marker, is more widely expressed and has emerged as a promising target in autoimmune diseases. CD19-targeted therapies, such as CAR T cells and Uplizna® (inebilizumab), have demonstrated potential in treating refractory autoimmune diseases, including SSc. Uplizna® offers advantages over rituximab by targeting a broader range of B cells and showing higher efficacy in specific patient subsets. Clinical trials currently investigate Uplizna®'s effectiveness in SSc, particularly in severe cases. While these therapies offer hope, long-term safety and efficacy remain unknown. SSc is still a complex disease, but advancing B cell-targeted treatments could significantly improve patient outcomes and knowledge about the pathogenesis.
Collapse
Affiliation(s)
- Kazuhiro Komura
- Department of Dermatology, Kanazawa Red Cross Hospital, Japanese Red Cross Society, Kanazawa, Ishikawa, Japan
| |
Collapse
|
2
|
Jolly RD, Perrott MR, Alley MR, Hunter SA, Pas A, Beard H, Hemsley KM, Greaves G. A lower motor neuron disease in takahē ( Porphyrio hochstetteri) is an endoplasmic reticulum storage disease. N Z Vet J 2023:1-8. [PMID: 36938644 DOI: 10.1080/00480169.2023.2190549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
AIMS To investigate the pathogenesis of a disease in takahē with intracytoplasmic inclusion bodies in lower motor neurons. METHODS Four cases aged between 5 and 12 years, from three different wildlife sanctuaries in New Zealand were examined. Of these, only one had signs of spinal dysfunction in the form of paresis. Stained paraffin sections of tissues were examined by light microscopy and immunostained sections of the ventral horn of the spinal cord by confocal microscopy. Epoxy resin sections of the bird with spinal dysfunction were examined by electron microscopy. RESULTS Two types of inclusion bodies were noted, but only in motor neurons of the ventral spinal cord and brain stem. These were large globoid eosinophilic bodies up to 5 µm in diameter, and yellow/brown granular inclusions mostly at the pole of the cell. The globoid bodies stained with Luxol fast blue but not with periodic acid Schiff (PAS), or Sudan black. The granular inclusions stained with Luxol fast blue, PAS and Sudan black. Both bodies were slightly autofluorescent. On electron microscopy the globoid bodies had an even electron-dense texture and were bound by a membrane. Beneath the membrane were large numbers of small intraluminal vesicles. The smaller granular bodies were more heterogeneous, irregularly rounded and membrane-bound accumulations of granular electron-dense material, often with electron-lucent vacuoles. Others were more vesicular but contained varying amounts of electron-dense material. The large globoid bodies did not immunostain for lysosomal markers lysosomal associated protein 1 (LAMP1) or cathepsin D so they were not lysosomal. The small granular bodies stained for cathepsin D by a chromogenic method. A kindred matrix analysis showed two cases to be as closely related as first cousins, and another case was almost as closely related to one of them, but the fourth bird was unrelated to any other. CONCLUSIONS It was concluded that this was an endoplasmic reticulum storage disease due to a specific protein misfolding within endoplasmic reticulum. It was rationalised that the two types of inclusions reflected the same aetiology, but that misfolded protein in the smaller granular bodies had entered the lysosomal system via endoplasmic reticulum autophagy. Although the cause was unclear, it most likely had a genetic aetiology or predisposition and, as such, has clinical relevance.
Collapse
Affiliation(s)
- R D Jolly
- Tāwharau Ora - School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - M R Perrott
- Tāwharau Ora - School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - M R Alley
- Tāwharau Ora - School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - S A Hunter
- Tāwharau Ora - School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - A Pas
- New Zealand Centre for Conservation Medicine, Auckland Zoo, Auckland, New Zealand
| | - H Beard
- Childhood Dementia Research Group, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - K M Hemsley
- Childhood Dementia Research Group, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - G Greaves
- Department of Conservation, Wellington, New Zealand
| |
Collapse
|
3
|
Silva ARD, Andrade GB, Carvalho JKMR, Barreto WTG, Santos FM, Sousa KCMD, André MR, Ferreira LC, Menezes RC, Herrera HM. The outcomes of polyparasitism in stray cats from Brazilian Midwest assessed by epidemiological, hematological and pathological data. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2022; 31:e004222. [PMID: 35792756 DOI: 10.1590/s1984-29612022033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
We evaluated the epidemiological, hematological, and pathological data of Leishmania spp., Toxoplasma gondii, Platynosomum illiciens, feline immunodeficiency virus (FIV), and feline leukemia virus (FeLV) infections and the coinfections in stray cats of an endemic area for leishmaniasis. The diagnosis was performed by serological tests and necropsy. We described gross lesions and histopathological findings. We used immunohistochemistry and chromogenic in situ hybridization for L. infantum detection. We found infection in 27 out of 50 sampled cats, among them, 14 presented coinfections. A strong correlation between splenomegaly and lymphadenomegaly with FeLV, and an association between hepatic lesions and cachexia with parasitism due to P. illiciens were observed. Moreover, we found a significant increase in the monocyte count in the FeLV-infected and a decrease in the red blood cell count in the FIV-infected animals. Amastigote forms of Leishmania spp. and tissue changes were detected in lymphoid organs of an animal coinfected with P. illiciens, T. gondii, and FIV. Polyparasitism recorded in stray cats of the Brazilian Midwest should be considered in effective control strategies for public health diseases. Moreover, stray cats of Campo Grande may be a source of infection of FIV, FeLV and P. illiciens for populations of domiciled cats.
Collapse
Affiliation(s)
| | - Gisele Braziliano Andrade
- Programa de Pós-graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Campo Grande, MS, Brasil
| | | | - Wanessa Teixeira Gomes Barreto
- Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal de Mato Grosso do Sul - UFMS, Campo Grande, MS, Brasil
| | - Filipe Martins Santos
- Programa de Pós-graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Campo Grande, MS, Brasil
| | | | - Marcos Rogério André
- Departamento de Patologia Veterinária, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| | - Luiz Claudio Ferreira
- Laboratório de Pesquisa Clínica em Dermatozoonoses em Animais Domésticos, Instituto Nacional de Infectologia Evandro Chagas - INI, Rio de Janeiro, RJ, Brasil
| | - Rodrigo Caldas Menezes
- Laboratório de Pesquisa Clínica em Dermatozoonoses em Animais Domésticos, Instituto Nacional de Infectologia Evandro Chagas - INI, Rio de Janeiro, RJ, Brasil
| | - Heitor Miraglia Herrera
- Programa de Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brasil
- Programa de Pós-graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Campo Grande, MS, Brasil
- Departamento de Medicina Veterinária, Universidade Católica Dom Bosco, Campo Grande, MS, Brasil
- Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal de Mato Grosso do Sul - UFMS, Campo Grande, MS, Brasil
| |
Collapse
|
4
|
Torres M, Hussain H, Dickson AJ. The secretory pathway - the key for unlocking the potential of Chinese hamster ovary cell factories for manufacturing therapeutic proteins. Crit Rev Biotechnol 2022; 43:628-645. [PMID: 35465810 DOI: 10.1080/07388551.2022.2047004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mammalian cell factories (in particular the CHO cell system) have been crucial in the rise of biopharmaceuticals. Mammalian cells have compartmentalized organelles where intricate networks of proteins manufacture highly sophisticated biopharmaceuticals in a specialized production pipeline - the secretory pathway. In the bioproduction context, the secretory pathway functioning is key for the effectiveness of cell factories to manufacture these life-changing medicines. This review describes the molecular components and events involved in the secretory pathway, and provides a comprehensive summary of the intracellular steps limiting the production of therapeutic proteins as well as the achievements in engineering CHO cell secretory machinery. We also consider antibody-producing plasma cells (so called "professional" secretory cells) to explore the mechanisms underpinning their unique secretory function/features. Such understandings offer the potential to further enhancement of the current CHO cell production platforms for manufacturing next generation of biopharmaceuticals.
Collapse
Affiliation(s)
- Mauro Torres
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK.,Department of Chemical Engineering and Analytical Science, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK
| | - Hirra Hussain
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK.,Department of Chemical Engineering and Analytical Science, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK
| | - Alan J Dickson
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK.,Department of Chemical Engineering and Analytical Science, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK
| |
Collapse
|
5
|
Lim HJ, Jin H, Chua B, Son A. Clustered Detection of Eleven Phthalic Acid Esters by Fluorescence of Graphene Quantum Dots Displaced from Gold Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4186-4196. [PMID: 35029109 DOI: 10.1021/acsami.1c21756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A gold nanoparticle-quenched graphene quantum dot-based aptasensor was developed to perform clustered detection of 11 phthalic acid esters (PAEs). The binding of the target PAEs to the aptasensor frees the graphene quantum dots that are otherwise quenched by the carrier gold nanoparticle. The resultant fluorescence upon excitation is proportional to the number of freed graphene quantum dots and hence the target PAE concentration. The synthesis of the proposed aptasensor was first verified step-by-step via FT-IR measurement, scanning electron microscopy, and fluorescence measurement. Selectivity was evaluated for individual and combined target PAEs and compared against seven non-PAE endocrine disrupting compounds. The proposed aptasensor successfully quantified 11 PAEs in test samples with varying concentrations of 0.001-50 ng PAEs/mL and demonstrated a limit of detection of ∼4 pg./mL. Finally, the AuNP-gQD aptasensor was employed to detect multiple combinations of commonly regulated PAEs (DBP, DIBP, DEHP, and BBP). The recovery (%) for all four PAEs combination in environmentally relevant concentrations of 0.5, 1, 5, and 10 ng/mL were ∼100%.
Collapse
Affiliation(s)
- Hyun Jeong Lim
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
- Department of Environmental Science and Engineering, Ewha Womans Universty, Seoul 03760, Republic of Korea
| | - Hyowon Jin
- Department of Environmental Science and Engineering, Ewha Womans Universty, Seoul 03760, Republic of Korea
| | - Beelee Chua
- School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ahjeong Son
- Department of Environmental Science and Engineering, Ewha Womans Universty, Seoul 03760, Republic of Korea
| |
Collapse
|
6
|
Tachibana M, Tsukamoto K, Takahashi M, Tsutsumi Y. Undifferentiated Pleomorphic Sarcoma With Hyaline Globules (Thanatosomes). Cureus 2021; 13:e15789. [PMID: 34168936 PMCID: PMC8215858 DOI: 10.7759/cureus.15789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2021] [Indexed: 11/30/2022] Open
Abstract
Hyaline globules (HGs) or thanatosomes belong to a well-defined microscopic phenomenon common to any cell type, representing eosinophilic and round-shaped intracytoplasmic inclusions as a result of altered cellular metabolism. We experienced a case of undifferentiated pleomorphic sarcoma (UPS) of the left thigh, immunoreactive diffusely for CD99 and p16INK4a and focally for alpha-smooth muscle actin. HGs were multifocally clustered in the cytoplasm of the tumor cells. An ultrastructural study using a formalin-fixed, paraffin-embedded block was performed to visualize HGs in the UPS cells. Light microscopically, multifocally clustered HGs were PAS-positive with diastase-resistance and fuchsinophilic in Masson's trichrome staining. HGs were immunoreactive for cleaved caspase-3, but negative for ubiquitin. Ultrastructurally, apoptotic tumor cells contained clusters of small-sized electron-dense globules. Granular material was often deposited in the globule matrix. The formation of the HGs is supposedly related to an apoptotic process of the tumor cells. Though a nonspecific and minor microscopic finding, HGs in soft tissue sarcomas may represent a useful histologic marker of enhanced cell turnover and/or ischemic injury. This is the third report describing HGs in UPS.
Collapse
Affiliation(s)
- Mitsuhiro Tachibana
- Department of Diagnostic Pathology, Shimada City General Medical Center, Shimada, JPN
| | - Kei Tsukamoto
- Department of Diagnostic Radiology, Shimada City General Medical Center, Shimada, JPN
| | - Mitsuru Takahashi
- Department of Orthopaedic Surgery, Shizuoka Cancer Center Hospital and Research Institute, Suntou, JPN
| | - Yutaka Tsutsumi
- Diagnostic Pathology Clinic, Pathos Tsutsumi, Inazawa, JPN
- Department of Diagnostic Pathology, Shimada City General Medical Center, Shimada, JPN
| |
Collapse
|
7
|
Arcalis E, Ibl V, Hilscher J, Rademacher T, Avesani L, Morandini F, Bortesi L, Pezzotti M, Vitale A, Pum D, De Meyer T, Depicker A, Stoger E. Russell-Like Bodies in Plant Seeds Share Common Features With Prolamin Bodies and Occur Upon Recombinant Protein Production. FRONTIERS IN PLANT SCIENCE 2019; 10:777. [PMID: 31316529 PMCID: PMC6611407 DOI: 10.3389/fpls.2019.00777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/28/2019] [Indexed: 05/06/2023]
Abstract
Although many recombinant proteins have been produced in seeds at high yields without adverse effects on the plant, endoplasmic reticulum (ER) stress and aberrant localization of endogenous or recombinant proteins have also been reported. The production of murine interleukin-10 (mIL-10) in Arabidopsis thaliana seeds resulted in the de novo formation of ER-derived structures containing a large fraction of the recombinant protein in an insoluble form. These bodies containing mIL-10 were morphologically similar to Russell bodies found in mammalian cells. We confirmed that the compartment containing mIL-10 was enclosed by ER membranes, and 3D electron microscopy revealed that these structures have a spheroidal shape. Another feature shared with Russell bodies is the continued viability of the cells that generate these organelles. To investigate similarities in the formation of Russell-like bodies and the plant-specific protein bodies formed by prolamins in cereal seeds, we crossed plants containing ectopic ER-derived prolamin protein bodies with a line accumulating mIL-10 in Russell-like bodies. This resulted in seeds containing only one population of protein bodies in which mIL-10 inclusions formed a central core surrounded by the prolamin-containing matrix, suggesting that both types of protein aggregates are together removed from the secretory pathway by a common mechanism. We propose that, like mammalian cells, plant cells are able to form Russell-like bodies as a self-protection mechanism, when they are overloaded with a partially transport-incompetent protein, and we discuss the resulting challenges for recombinant protein production.
Collapse
Affiliation(s)
- Elsa Arcalis
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Verena Ibl
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Julia Hilscher
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Thomas Rademacher
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Linda Avesani
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Luisa Bortesi
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Mario Pezzotti
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Alessandro Vitale
- Institute of Agricultural Biology and Biotechnology, CNR, Milan, Italy
| | - Dietmar Pum
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Thomas De Meyer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ann Depicker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Eva Stoger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
- *Correspondence: Eva Stoger, ;
| |
Collapse
|
8
|
Roles of N-glycans in the polymerization-dependent aggregation of mutant Ig-μ chains in the early secretory pathway. Sci Rep 2017; 7:41815. [PMID: 28157181 PMCID: PMC5291101 DOI: 10.1038/srep41815] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/28/2016] [Indexed: 02/07/2023] Open
Abstract
The polymeric structure of secretory IgM allows efficient antigen binding and complement fixation. The available structural models place the N-glycans bound to asparagines 402 and 563 of Ig-μ chains within a densely packed core of native IgM. These glycans are found in the high mannose state also in secreted IgM, suggesting that polymerization hinders them to Golgi processing enzymes. Their absence alters polymerization. Here we investigate their role following the fate of aggregation-prone mutant μ chains lacking the Cμ1 domain (μ∆). Our data reveal that μ∆ lacking 563 glycans (μ∆5) form larger intracellular aggregates than μ∆ and are not secreted. Like μ∆, they sequester ERGIC-53, a lectin previously shown to promote polymerization. In contrast, μ∆ lacking 402 glycans (μ∆4) remain detergent soluble and accumulate in the ER, as does a double mutant devoid of both (μ∆4–5). These results suggest that the two C-terminal Ig-μ glycans shape the polymerization-dependent aggregation by engaging lectins and acting as spacers in the alignment of individual IgM subunits in native polymers.
Collapse
|