1
|
Zhu F, Hu S, Mei L. Production and quality evaluation of a novel γ-aminobutyric acid-enriched yogurt. Front Nutr 2024; 11:1404743. [PMID: 38784135 PMCID: PMC11112111 DOI: 10.3389/fnut.2024.1404743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Objective γ-aminobutyric acid (GABA) is a neurotransmitter inhibitor that has beneficial effects on various health conditions such as hypertension, cognitive dysfunction, and anxiety. In this study, we investigated a novel yogurt naturally enriched with GABA using a Levilactobacillus brevis strain isolated in our laboratory; the specific optimum yogurt production conditions for this strain were determined. Methods We isolated an L. brevis strain and used it to produce yogurt naturally enriched with GABA. We explored the optimal conditions to enhance GABA yield, including fermentation temperature, inoculation amount, L-monosodium glutamate (L-MSG) concentration, fermentation time, and sucrose content. We also performed mixed fermentation with Streptococcus thermophilus and evaluated the quality of the yogurt. Results Following optimization (43°C, 8% inoculation amount, 1.5 g/L L-MSG, and 8% sucrose for 40 h of fermentation), the GABA yield of the yogurt increased by 2.2 times, reaching 75.3 mg/100 g. Mixed fermentation with S. thermophilus demonstrated favorable results, achieving a GABA yield akin to that found in some commercially available functional foods. Moreover, the viable microbe count in the GABA-enriched yogurt exceeded 1 × 108 cfu/mL, which is higher than that of commercial standards. The yogurt also exhibited a suitable water-holding capacity, viscosity, 3-week storage time, and favorable sensory test results. Conclusion This study highlights the potential of naturally enriched GABA yogurt as a competitive commercial yogurt with beneficial health effects.
Collapse
Affiliation(s)
- Fei Zhu
- Department of Food Science, Zhejiang Pharmaceutical University, Ningbo, China
| | - Sheng Hu
- Country School of Biological and Chemical Engineering, NingboTech University, Ningbo, China
| | - Lehe Mei
- Jinhua Advanced Research Institute, Jinhua, China
- College of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Colzato L, Zhang W, Walter H, Beste C, Stock AK. An Oppositional Tolerance Account for Potential Cognitive Deficits Caused by the Discontinuation of Antidepressant Drugs. PHARMACOPSYCHIATRY 2021; 54:252-260. [PMID: 34293810 PMCID: PMC8575552 DOI: 10.1055/a-1520-4784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/26/2021] [Indexed: 10/24/2022]
Abstract
Depression is the leading cause of disability worldwide, making antidepressant drugs the most used psychiatric drugs in the USA. Withdrawal effects and rebound symptoms frequently occur after the reduction and/or discontinuation of these drugs. Although these phenomena have been investigated with respect to the clinical symptomatology, no studies have systematically investigated the effects of withdrawal/rebound on general cognition. We present a novel framework based on the idea of allostatic adaptation, which allows to predict how different antidepressants likely impair different cognitive processes as a result of withdrawal and rebound effects. This framework relies on the assumptions that the type of cognitive impairments evoked by an antidepressant is determined by the targeted neurotransmitter systems, while the severity of deficits depends on its half-life. Our model predicts that the severity of detrimental cognitive withdrawal and rebound effects increases with a shorter half-life of the discontinued antidepressant drug. It further proposes drug-specific effects: antidepressants mainly targeting serotonin should primarily impair aversive and emotional processing, those targeting norepinephrine should impair the processing of alerting signals, those targeting dopamine should impair motivational processes and reward processing, and those targeting acetylcholine should impair spatial learning and memory. We hope that this framework will motivate further research to better understand and explain cognitive changes as a consequence of antidepressant discontinuation.
Collapse
Affiliation(s)
- Lorenza Colzato
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
- Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China
| | - Wenxin Zhang
- Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China
| | - Henrik Walter
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- Biopsychology, Faculty of Psychology, TU Dresden, Dresden, Germany
| |
Collapse
|
3
|
Akiyama J, Ohta M. Hormonal and Neurological Aspects of Dog Walking for Dog Owners and Pet Dogs. Animals (Basel) 2021; 11:ani11092732. [PMID: 34573698 PMCID: PMC8465204 DOI: 10.3390/ani11092732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/03/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
The hormone oxytocin is involved in various aspects of the relationship between humans and animals. Dog walking is a common activity for dog owners and their dogs. The walk, of course, should be good for the health of the dog as well as its owner. In Experiment I, we assessed whether salivary oxytocin and cortisol in dog owners changed because of walking their dogs. Ten owners walked with their dogs and walked alone. Similar to other previous research, walking with a dog did not significantly change oxytocin and cortisol. Therefore, in Experiment II, we investigated the effect of dog walking on brain noradrenergic and GABAergic neural activity, as indicated by salivary MHPG and GABA, in 14 dog owners. Walking with a dog reduced salivary MHPG compared to walking alone, and MHPG was correlated negatively with GABA. Thus, dog walking activated GABAergic nerves in the brain and suppressed noradrenergic nerves, effectively relieving stress.
Collapse
Affiliation(s)
- Junko Akiyama
- Department of Animal Health Technology, Yamazaki University of Animal Health Technology, Tokyo 192-0364, Japan;
| | - Mitsuaki Ohta
- School of Veterinary Medicine, Azabu University, Sagamihara-shi 252-5201, Japan
- Correspondence:
| |
Collapse
|
4
|
Ignatow G. The microbiome‐gut‐brain and social behavior. JOURNAL FOR THE THEORY OF SOCIAL BEHAVIOUR 2021. [DOI: 10.1111/jtsb.12315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Gabe Ignatow
- Department of Sociology University of North Texas Denton Texas USA
| |
Collapse
|
5
|
Lockhofen DEL, Mulert C. Neurochemistry of Visual Attention. Front Neurosci 2021; 15:643597. [PMID: 34025339 PMCID: PMC8133366 DOI: 10.3389/fnins.2021.643597] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/12/2021] [Indexed: 11/25/2022] Open
Abstract
Visual attention is the cognitive process that mediates the selection of important information from the environment. This selection is usually controlled by bottom-up and top-down attentional biasing. Since for most humans vision is the dominant sense, visual attention is critically important for higher-order cognitive functions and related deficits are a core symptom of many neuropsychiatric and neurological disorders. Here, we summarize the importance and relative contributions of different neuromodulators and neurotransmitters to the neural mechanisms of top-down and bottom-up attentional control. We will not only review the roles of widely accepted neuromodulators, such as acetylcholine, dopamine and noradrenaline, but also the contributions of other modulatory substances. In doing so, we hope to shed some light on the current understanding of the role of neurochemistry in shaping neuron properties contributing to the allocation of attention in the visual field.
Collapse
Affiliation(s)
| | - Christoph Mulert
- Center for Psychiatry and Psychotherapy, Justus-Liebig University, Hessen, Germany
| |
Collapse
|
6
|
GABA Supplementation Negatively Affects Cognitive Flexibility Independent of Tyrosine. J Clin Med 2021; 10:jcm10091807. [PMID: 33919136 PMCID: PMC8122390 DOI: 10.3390/jcm10091807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/30/2021] [Accepted: 04/16/2021] [Indexed: 12/24/2022] Open
Abstract
Increasing evidence, particularly from animal studies, suggests that dopamine and GABA are important modulators of cognitive flexibility. In humans, increasing dopamine synthesis through its precursor tyrosine has been shown to result in performance improvements, but few studies have reported the effects of GABA supplementation in healthy participants. We conducted a double-blind, placebo-controlled, randomized experiment to test the interactive effects of tyrosine and GABA administration on two measures of cognitive flexibility, response inhibition and task switching. A total of 48 healthy volunteers were split into four groups (placebo, tyrosine alone, GABA alone, and tyrosine and GABA combined). They completed cognitive flexibility tasks at baseline and after drug administration. We found that tyrosine alone had no impact on the measures of cognitive flexibility, whereas GABA alone and in combination with tyrosine worsened task switching. Our results provide preliminary evidence that putative increases in GABA and dopamine synthesis do not interact to affect cognitive flexibility performance.
Collapse
|
7
|
Moore JF, DuVivier R, Johanningsmeier SD. Formation of γ-aminobutyric acid (GABA) during the natural lactic acid fermentation of cucumber. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Colzato L, Beste C. A literature review on the neurophysiological underpinnings and cognitive effects of transcutaneous vagus nerve stimulation: challenges and future directions. J Neurophysiol 2020; 123:1739-1755. [PMID: 32208895 DOI: 10.1152/jn.00057.2020] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Brain stimulation approaches are important to gain causal mechanistic insights into the relevance of functional brain regions and/or neurophysiological systems for human cognitive functions. In recent years, transcutaneous vagus nerve stimulation (tVNS) has attracted considerable popularity. It is a noninvasive brain stimulation technique based on the stimulation of the vagus nerve. The stimulation of this nerve activates subcortical nuclei, such as the locus coeruleus and the nucleus of the solitary tract, and from there, the activation propagates to the cortex. Since tVNS is a novel stimulation technique, this literature review outlines a brief historical background of tVNS, before detailing underlying neurophysiological mechanisms of action, stimulation parameters, cognitive effects of tVNS on healthy humans, and, lastly, current challenges and future directions of tVNS research in cognitive functions. Although more research is needed, we conclude that tVNS, by increasing norepineprine (NE) and gamma-aminobutyric acid (GABA) levels, affects NE- and GABA-related cognitive performance. The review provides detailed background information how to use tVNS as a neuromodulatory tool in cognitive neuroscience and outlines important future leads of research on tVNS.
Collapse
Affiliation(s)
- Lorenza Colzato
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany.,Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China
| |
Collapse
|
9
|
Mancini A, Carafa I, Franciosi E, Nardin T, Bottari B, Larcher R, Tuohy KM. In vitro probiotic characterization of high GABA producing strain Lactobacilluas brevis DSM 32386 isolated from traditional “wild” Alpine cheese. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01527-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Abstract
Purpose
γ-Aminobutyric acid (GABA) is recognised as a potential metabolic bioactive food ingredient with increasing evidence of its effects on the gut-brain axis and systemic metabolic health. Different lactic acid bacteria are capable of producing GABA, particularly strains of Lactobacillus brevis. In this study, we characterized a Lb. brevis isolated from traditional alpine cheese (Lb. brevis DSM 32386) for its ability to accumulate high levels of GABA in the culture medium and for other important probiotic phenotypic traits.
Methods
In vitro analysis were used to study the Lb. brevis DSM 32386 probiotic traits and the gene expression involved in GABA production
Result
Lactobacillus brevis DSM 32386 converted monosodium glutamate to GABA more efficiently than the type strain Lb. brevis DSM 20054, resulting in more than 200% of GABA produced. This ability seemed to be related to the higher transcriptional activation of the gene encoding for the glutamate (gad) decarboxylase antiporter (gadC) and regulator (gadR). Lactobacillus brevis DSM 32386 performed well in vitro under the stress conditions mimicking the gastro-intestinal tract, being resistant to acid pH (pH 2.5) and growing in simulated pancreatic fluid and 0.3% ox-bile.
Conclusion
These preliminary studies indicate that Lb. brevis DSM 32386 holds promise as a starter for GABA-rich dairy fermented foods and possibly a promising next-generation probiotic microorganism in the context of the gut (microbiota):brain axis.
Collapse
|
10
|
Dresler M, Sandberg A, Bublitz C, Ohla K, Trenado C, Mroczko-Wąsowicz A, Kühn S, Repantis D. Hacking the Brain: Dimensions of Cognitive Enhancement. ACS Chem Neurosci 2019; 10:1137-1148. [PMID: 30550256 PMCID: PMC6429408 DOI: 10.1021/acschemneuro.8b00571] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022] Open
Abstract
In an increasingly complex information society, demands for cognitive functioning are growing steadily. In recent years, numerous strategies to augment brain function have been proposed. Evidence for their efficacy (or lack thereof) and side effects has prompted discussions about ethical, societal, and medical implications. In the public debate, cognitive enhancement is often seen as a monolithic phenomenon. On a closer look, however, cognitive enhancement turns out to be a multifaceted concept: There is not one cognitive enhancer that augments brain function per se, but a great variety of interventions that can be clustered into biochemical, physical, and behavioral enhancement strategies. These cognitive enhancers differ in their mode of action, the cognitive domain they target, the time scale they work on, their availability and side effects, and how they differentially affect different groups of subjects. Here we disentangle the dimensions of cognitive enhancement, review prominent examples of cognitive enhancers that differ across these dimensions, and thereby provide a framework for both theoretical discussions and empirical research.
Collapse
Affiliation(s)
- Martin Dresler
- Donders Institute for Brain, Cognition and Behaviour , Radboud University Medical Centre , Nijmegen 6525 EN , The Netherlands
| | - Anders Sandberg
- Future of Humanity Institute , Oxford University , Oxford OX1 1PT , United Kingdom
| | | | - Kathrin Ohla
- Institute of Neuroscience and Medicine, Cognitive Neuroscience (INM3) , Forschungszentrum Jülich , Jülich 52428 , Germany
| | - Carlos Trenado
- Institute of Clinical Neuroscience and Medical Psychology , Heinrich Heine University Düsseldorf , Düsseldorf 40225 , Germany
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors , TU Dortmund , Dortmund 44139 , Germany
| | | | - Simone Kühn
- Max Planck Institute for Human Development , Berlin 14195 , Germany
- Department of Psychiatry and Psychotherapy , University Clinic Hamburg Eppendorf , Hamburg 20246 , Germany
| | - Dimitris Repantis
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin 12203 , Germany
| |
Collapse
|
11
|
Lyte JM. Eating for 3.8 × 10 13: Examining the Impact of Diet and Nutrition on the Microbiota-Gut-Brain Axis Through the Lens of Microbial Endocrinology. Front Endocrinol (Lausanne) 2019; 9:796. [PMID: 30761092 PMCID: PMC6361751 DOI: 10.3389/fendo.2018.00796] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 12/19/2018] [Indexed: 12/30/2022] Open
Abstract
The study of host-microbe neuroendocrine crosstalk, termed microbial endocrinology, suggests the impact of diet on host health and microbial viability is, in part, reliant upon nutritional modulation of shared host-microbe neuroendocrine axes. In the 1990's it was first recognized that neuroendocrine pathways are major components of the microbiota-gut-brain axis, and that diet-induced changes in the gut microbiota were correlated with changes in host behavior and cognition. A causative link, however, between nutritional-induced shifts in microbiota composition and change in host behavior has yet to be fully elucidated. Substrates found in food which are utilized by bacteria in the production of microbial-derived neurochemicals, which are structurally identical to those made by the host, likely represent a microbial endocrinology-based route by which the microbiota causally influence the host and microbial community dynamics via diet. For example, food safety is strongly impacted by the microbial production of biogenic amines. While microbial-produced tyramine found in cheese can elicit hypertensive crises, microorganisms which are common inhabitants of the human intestinal tract can convert L-histidine found in common foodstuffs to histamine and thereby precipitate allergic reactions. Hence, there is substantial evidence suggesting a microbial endocrinology-based role by which the gastrointestinal microbiota can utilize host dietary components to produce neuroactive molecules that causally impact the host. Conversely, little is known regarding the reverse scenario whereby nutrition-mediated changes in host neuroendocrine production affect microbial viability, composition, and/or function. Mechanisms in the direction of brain-to-gut, such as how host production of catecholamines drives diverse changes in microbial growth and functionality within the gut, require greater examination considering well-known nutritional effects on host stress physiology. As dietary intake mediates changes in host stress, such as the effects of caffeine on the hypothalamic-pituitary-adrenal axis, it is likely that nutrition can impact host neuroendocrine production to affect the microbiota. Likewise, the plasticity of the microbiota to changes in host diet has been hypothesized to drive microbial regulation of host food preference via a host-microbe feedback loop. This review will focus on food as concerns microbial endocrinology with emphasis given to nutrition as a mediator of host-microbe bi-directional neuroendocrine crosstalk and its impact on microbial viability and host health.
Collapse
Affiliation(s)
- Joshua M. Lyte
- Poultry Production and Product Safety Research Unit, Agricultural Research Service, United States Department of Agriculture, Fayetteville, AR, United States
| |
Collapse
|
12
|
Reid SNS, Ryu JK, Kim Y, Jeon BH. The Effects of Fermented Laminaria japonica on Short-Term Working Memory and Physical Fitness in the Elderly. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:8109621. [PMID: 30008787 PMCID: PMC6020467 DOI: 10.1155/2018/8109621] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/20/2018] [Indexed: 11/18/2022]
Abstract
Considering the neuroprotective and antioxidant potential of fermented Laminaria japonica A. (FST), the purpose of the present study is to establish whether FST may be considered a viable, efficacious supplement that can be administered in later life to offset neurodegenerative conditions associated with aging. Forty senior subjects participated in a randomized, double-blind, and placebo-controlled study. Two groups were formed, one FST group (n = 32, 72.35 ± 5.54 yrs) and one placebo (CON) (n = 28, 74.57 ± 5.69 yrs), which received 1.5 g/day of FST for 6 weeks. Subjects were asked to abstain from any regular exercise. In order to analyze short-term memory, a variety of neuropsychological tests were implemented. Body composition, physical fitness evaluations, antioxidant function, and inflammatory markers were also included in the analyses pre- and posttest. We demonstrated that FST significantly improved neuropsychological test scores, including higher scores in the K-MMSE, numerical memory test, Raven test, and iconic memory, compared to the CON group. Shorter test trial times in the 6-meter [corrected] walk test were observed in the FST group (p<0.001 and p<0.05, trials 1 and 2, respectively). FST also significantly increased antioxidant activity of GPx, GSR, and SOD, reduced the production of TBARS, and lowered 8-oxoDG levels. The present study highlights the potential widespread application of FST in protecting against the degenerative effects of aging on short-term memory and physical function. Neuropsychological evaluation indicates that FST may provide a protective mechanism against cognitive impairment associated with dementia. Neuromuscular integrity and physical function are typically compromised in aging and dementia patients; thus, whether by stimulation of muscle-related growth factors or an increase in serum BDNF, FST supplementation may act to preserve physical function in the elderly. The bioactive constituents of FST such as GABA and fucoidan acting to provide improvements in antioxidant activity following FST supplementation may protect against progressive degeneration purportedly caused by reactive oxygen species.
Collapse
Affiliation(s)
- Storm N. S. Reid
- Department of Physical Education, School of Sports and Health, Kyungsung University, Busan 48434, Republic of Korea
| | - Je-kwang Ryu
- Institute for Cognitive Science, College of Humanities, Seoul National University, Seoul 08826, Republic of Korea
| | - Yunsook Kim
- Marine Bio-Industry Development Center, Marine Bioprocesses Co., Ltd., Busan 46048, Republic of Korea
| | - Byeong Hwan Jeon
- Department of Physical Education, School of Sports and Health, Kyungsung University, Busan 48434, Republic of Korea
| |
Collapse
|
13
|
Briguglio M, Dell'Osso B, Panzica G, Malgaroli A, Banfi G, Zanaboni Dina C, Galentino R, Porta M. Dietary Neurotransmitters: A Narrative Review on Current Knowledge. Nutrients 2018; 10:E591. [PMID: 29748506 PMCID: PMC5986471 DOI: 10.3390/nu10050591] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/12/2022] Open
Abstract
Foods are natural sources of substances that may exert crucial effects on the nervous system in humans. Some of these substances are the neurotransmitters (NTs) acetylcholine (ACh), the modified amino acids glutamate and γ-aminobutyric acid (GABA), and the biogenic amines dopamine, serotonin (5-HT), and histamine. In neuropsychiatry, progressive integration of dietary approaches in clinical routine made it necessary to discern the more about some of these dietary NTs. Relevant books and literature from PubMed and Scopus databases were searched for data on food sources of Ach, glutamate, GABA, dopamine, 5-HT, and histamine. Different animal foods, fruits, edible plants, roots, and botanicals were reported to contain NTs. These substances can either be naturally present, as part of essential metabolic processes and ecological interactions, or derive from controlled/uncontrolled food technology processes. Ripening time, methods of preservation and cooking, and microbial activity further contributes to NTs. Moreover, gut microbiota are considerable sources of NTs. However, the significance of dietary NTs intake needs to be further investigated as there are no significant data on their bioavailability, neuronal/non neuronal effects, or clinical implications. Evidence-based interventions studies should be encouraged.
Collapse
Affiliation(s)
- Matteo Briguglio
- Tourette's Syndrome and Movement Disorders Centre, I.R.C.C.S. Galeazzi Hospital, 20161 Milan, Italy.
| | - Bernardo Dell'Osso
- Department of Pathophysiology and Transplantation, I.R.C.C.S. Ca' Granda Foundation, Ospedale Maggiore Policlinico, 20122 Milan, Italy.
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Giancarlo Panzica
- Department of Neuroscience, Rita Levi Montalcini, University of Turin, 10126 Turin, Italy.
| | - Antonio Malgaroli
- Neurobiology of Learning Unit, Division of Neuroscience, Vita-Salute San Raffaele University, 20132 Milan, Italy.
| | - Giuseppe Banfi
- Scientific Direction, I.R.C.C.S. Galeazzi Hospital, 20161 Milan, Italy.
| | - Carlotta Zanaboni Dina
- Tourette's Syndrome and Movement Disorders Centre, I.R.C.C.S. Galeazzi Hospital, 20161 Milan, Italy.
| | - Roberta Galentino
- Tourette's Syndrome and Movement Disorders Centre, I.R.C.C.S. Galeazzi Hospital, 20161 Milan, Italy.
| | - Mauro Porta
- Tourette's Syndrome and Movement Disorders Centre, I.R.C.C.S. Galeazzi Hospital, 20161 Milan, Italy.
| |
Collapse
|
14
|
γ-Aminobutyric Acid (GABA): Biosynthesis, Role, Commercial Production, and Applications. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2018. [DOI: 10.1016/b978-0-444-64057-4.00013-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Leonte A, Colzato LS, Steenbergen L, Hommel B, Akyürek EG. Supplementation of gamma-aminobutyric acid (GABA) affects temporal, but not spatial visual attention. Brain Cogn 2017; 120:8-16. [PMID: 29222993 DOI: 10.1016/j.bandc.2017.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/22/2017] [Accepted: 11/22/2017] [Indexed: 01/30/2023]
Abstract
In a randomized, double-blind, and placebo-controlled experiment, the acute effects of gamma-aminobutyric acid (GABA) supplementation on temporal and spatial attention in young healthy adults were investigated. A hybrid two-target rapid serial visual presentation task was used to measure temporal attention and integration. Additionally, a visual search task was used to measure the speed and accuracy of spatial attention. While temporal attention depends primarily on the distribution of limited attentional resources across time, spatial attention represents the engagement and disengagement by relevant and irrelevant stimuli across the visual field. Although spatial attention was unaffected by GABA supplementation altogether, we found evidence supporting improved performance in the temporal attention task. The attentional blink was numerically, albeit not significantly, attenuated at Lag 3, and significantly fewer order errors were committed at Lag 1, compared to the placebo condition. No effect was found on temporal integration rates. Although there is controversy about whether oral GABA can cross the blood-brain barrier, our results offer preliminary evidence that GABA intake might help to distribute limited attentional resources more efficiently, and can specifically improve the identification and ordering of visual events that occur in close temporal succession.
Collapse
Affiliation(s)
- Anna Leonte
- Department of Psychology, Experimental Psychology, University of Groningen, The Netherlands
| | - Lorenza S Colzato
- Institute for Psychological Research, Leiden Institute for Brain and Cognition, Leiden University, The Netherlands
| | - Laura Steenbergen
- Institute for Psychological Research, Leiden Institute for Brain and Cognition, Leiden University, The Netherlands
| | - Bernhard Hommel
- Institute for Psychological Research, Leiden Institute for Brain and Cognition, Leiden University, The Netherlands
| | - Elkan G Akyürek
- Department of Psychology, Experimental Psychology, University of Groningen, The Netherlands.
| |
Collapse
|
16
|
Corticospinal Plasticity in Bilateral Primary Motor Cortices Induced by Paired Associative Stimulation to the Dominant Hemisphere Does Not Differ between Young and Older Adults. Neural Plast 2017; 2017:8319049. [PMID: 29147586 PMCID: PMC5632910 DOI: 10.1155/2017/8319049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/10/2017] [Indexed: 01/07/2023] Open
Abstract
Older adults have been shown to exhibit a reduction in the lateralization of neural activity. Although neuroplasticity induced by noninvasive brain stimulation has been reported to be attenuated in the targeted motor cortex of older adults, it remains possible that the plasticity effects may instead manifest in a more distributed (bilateral) network. Furthermore, attention, which modulates neuroplasticity in young adults, may influence these effects. To address these questions, plasticity was induced in young (19–32 years) and older (65–78 years) adults using transcranial magnetic stimulation (TMS) paired with peripheral nerve stimulation. The plasticity effects induced by this paired associative stimulation (PAS) protocol in the targeted and nontargeted hemispheres were probed using TMS-induced motor-evoked potentials (MEPs) recorded from the abductor pollicis brevis (APB) muscle of each hand. PAS-induced effects were highly variable across individuals, with only half of the participants in each group demonstrating the expected increase in MEP amplitude. Contrary to predictions, however, PAS-induced corticospinal plasticity manifests predominately in the targeted hemisphere for both young and older adults. Attention to the target hand did not enhance corticospinal plasticity. The results suggest that plasticity does not manifest differently across bilateral corticospinal pathways between young and older adults.
Collapse
|
17
|
High vagally mediated resting-state heart rate variability is associated with superior action cascading. Neuropsychologia 2017; 106:1-6. [PMID: 28866318 DOI: 10.1016/j.neuropsychologia.2017.08.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/22/2017] [Accepted: 08/29/2017] [Indexed: 01/01/2023]
Abstract
The neurovisceral integration model suggests that individual differences in heart rate variability (HRV), an index of vagal tone, may relate to prefrontal cortical activity and predict performance on cognitive control tasks. The aim of this study was to further verify this model by investigating the relationship between vagally-mediated resting-state HRV and action cascading, a crucial cognitive control function which refers to the ability to cope with multiple response options when confronted with various task goals. Resting-state HRV and performance on the stop-change paradigm, which provides a relatively well-established diagnostic measure of action cascading and response inhibition, was assessed in 88 healthy volunteers (age range 18-33). Compared to individuals with low resting-state HRV, participants with high resting-state HRV showed enhanced action cascading performance, both when a disruption (stopping) and change towards an alternative response were required simultaneously, and when requirements were cascaded (i.e. when the stopping process had already finished at the time the change was required). Our findings represent an important step towards extending our understanding of the neurovisceral integration model in cognitive control.
Collapse
|
18
|
Jongkees BJ, Steenbergen L, Colzato LS. Color vision predicts processing modes of goal activation during action cascading. Cortex 2017; 94:123-130. [PMID: 28759802 DOI: 10.1016/j.cortex.2017.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/03/2017] [Accepted: 07/03/2017] [Indexed: 11/19/2022]
Abstract
One of the most important functions of cognitive control is action cascading: the ability to cope with multiple response options when confronted with various task goals. A recent study implicates a key role for dopamine (DA) in this process, suggesting higher D1 efficiency shifts the action cascading strategy toward a more serial processing mode, whereas higher D2 efficiency promotes a shift in the opposite direction by inducing a more parallel processing mode (Stock, Arning, Epplen, & Beste, 2014). Given that DA is found in high concentration in the retina and modulation of retinal DA release displays characteristics of D2-receptors (Peters, Schweibold, Przuntek, & Müller, 2000), color vision discrimination might serve as an index of D2 efficiency. We used color discrimination, assessed with the Lanthony Desaturated Panel D-15 test, to predict individual differences (N = 85) in a stop-change paradigm that provides a well-established measure of action cascading. In this task it is possible to calculate an individual slope value for each participant that estimates the degree of overlap in task goal activation. When the stopping process of a previous task goal has not finished at the time the change process toward a new task goal is initiated (parallel processing), the slope value becomes steeper. In case of less overlap (more serial processing), the slope value becomes flatter. As expected, participants showing better color vision were more prone to activate goals in a parallel manner as indicated by a steeper slope. Our findings suggest that color vision might represent a predictor of D2 efficiency and the predisposed processing mode of goal activation during action cascading.
Collapse
Affiliation(s)
- Bryant J Jongkees
- Institute of Psychological Research and Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands.
| | - Laura Steenbergen
- Institute of Psychological Research and Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands; Amsterdam Brain & Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Lorenza S Colzato
- Institute of Psychological Research and Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands; Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany; Institute for Sports and Sport Science, University of Kassel, Kassel, Germany
| |
Collapse
|
19
|
Influences of glutamine administration on response selection and sequence learning: a randomized-controlled trial. Sci Rep 2017; 7:2693. [PMID: 28578427 PMCID: PMC5457419 DOI: 10.1038/s41598-017-02957-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 04/21/2017] [Indexed: 01/08/2023] Open
Abstract
Precursors of neurotransmitters are increasingly often investigated as potential, easily-accessible methods of neuromodulation. However, the amino-acid glutamine, precursor to the brain’s main excitatory and inhibitory neurotransmitters glutamate and GABA, remains notably little investigated. The current double-blind, randomized, placebo-controlled study provides first evidence 2.0 g glutamine administration in healthy adults affects response selection but not motor sequence learning in a serial reaction time task. Specifically, glutamine increased response selection errors when the current target response required a different hand than the directly preceding target response, which might indicate enhanced cortical excitability via a presumed increase in glutamate levels. These results suggest glutamine can alter cortical excitability but, despite the critical roles of glutamate and GABA in motor learning, at its current dose glutamine does not affect sequence learning.
Collapse
|
20
|
van Thriel C, Quetscher C, Pesch B, Lotz A, Lehnert M, Casjens S, Weiss T, Van Gelder R, Plitzke K, Brüning T, Beste C. Are multitasking abilities impaired in welders exposed to manganese? Translating cognitive neuroscience to neurotoxicology. Arch Toxicol 2017; 91:2865-2877. [DOI: 10.1007/s00204-017-1932-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/12/2017] [Indexed: 01/03/2023]
|
21
|
Mazzoli R, Pessione E. The Neuro-endocrinological Role of Microbial Glutamate and GABA Signaling. Front Microbiol 2016; 7:1934. [PMID: 27965654 PMCID: PMC5127831 DOI: 10.3389/fmicb.2016.01934] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 11/17/2016] [Indexed: 12/11/2022] Open
Abstract
Gut microbiota provides the host with multiple functions (e.g., by contributing to food digestion, vitamin supplementation, and defense against pathogenic strains) and interacts with the host organism through both direct contact (e.g., through surface antigens) and soluble molecules, which are produced by the microbial metabolism. The existence of the so-called gut–brain axis of bi-directional communication between the gastrointestinal tract and the central nervous system (CNS) also supports a communication pathway between the gut microbiota and neural circuits of the host, including the CNS. An increasing body of evidence has shown that gut microbiota is able to modulate gut and brain functions, including the mood, cognitive functions, and behavior of humans. Nonetheless, given the extreme complexity of this communication network, its comprehension is still at its early stage. The present contribution will attempt to provide a state-of-the art description of the mechanisms by which gut microbiota can affect the gut–brain axis and the multiple cellular and molecular communication circuits (i.e., neural, immune, and humoral). In this context, special attention will be paid to the microbial strains that produce bioactive compounds and display ascertained or potential probiotic activity. Several neuroactive molecules (e.g., catecholamines, histamine, serotonin, and trace amines) will be considered, with special focus on Glu and GABA circuits, receptors, and signaling. From the basic science viewpoint, “microbial endocrinology” deals with those theories in which neurochemicals, produced by both multicellular organisms and prokaryotes (e.g., serotonin, GABA, glutamate), are considered as a common shared language that enables interkingdom communication. With regards to its application, research in this area opens the way toward the possibility of the future use of neuroactive molecule-producing probiotics as therapeutic agents for the treatment of neurogastroenteric and/or psychiatric disorders.
Collapse
Affiliation(s)
- Roberto Mazzoli
- Laboratory of Biochemistry, Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino Torino, Italy
| | - Enrica Pessione
- Laboratory of Biochemistry, Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino Torino, Italy
| |
Collapse
|
22
|
Action Video Gaming and Cognitive Control: Playing First Person Shooter Games Is Associated with Improved Action Cascading but Not Inhibition. PLoS One 2015; 10:e0144364. [PMID: 26655929 PMCID: PMC4675555 DOI: 10.1371/journal.pone.0144364] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/17/2015] [Indexed: 01/13/2023] Open
Abstract
There is a constantly growing interest in developing efficient methods to enhance cognitive functioning and/or to ameliorate cognitive deficits. One particular line of research focuses on the possibly cognitive enhancing effects that action video game (AVG) playing may have on game players. Interestingly, AVGs, especially first person shooter games, require gamers to develop different action control strategies to rapidly react to fast moving visual and auditory stimuli, and to flexibly adapt their behaviour to the ever-changing context. This study investigated whether and to what extent experience with such videogames is associated with enhanced performance on cognitive control tasks that require similar abilities. Experienced action videogame-players (AVGPs) and individuals with little to no videogame experience (NVGPs) performed a stop-change paradigm that provides a relatively well-established diagnostic measure of action cascading and response inhibition. Replicating previous findings, AVGPs showed higher efficiency in response execution, but not improved response inhibition (i.e. inhibitory control), as compared to NVGPs. More importantly, compared to NVGPs, AVGPs showed enhanced action cascading processes when an interruption (stop) and a change towards an alternative response were required simultaneously, as well as when such a change had to occur after the completion of the stop process. Our findings suggest that playing AVGs is associated with enhanced action cascading and multi-component behaviour without affecting inhibitory control.
Collapse
|
23
|
Boonstra E, de Kleijn R, Colzato LS, Alkemade A, Forstmann BU, Nieuwenhuis S. Neurotransmitters as food supplements: the effects of GABA on brain and behavior. Front Psychol 2015; 6:1520. [PMID: 26500584 PMCID: PMC4594160 DOI: 10.3389/fpsyg.2015.01520] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/22/2015] [Indexed: 12/20/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the human cortex. The food supplement version of GABA is widely available online. Although many consumers claim that they experience benefits from the use of these products, it is unclear whether these supplements confer benefits beyond a placebo effect. Currently, the mechanism of action behind these products is unknown. It has long been thought that GABA is unable to cross the blood–brain barrier (BBB), but the studies that have assessed this issue are often contradictory and range widely in their employed methods. Accordingly, future research needs to establish the effects of oral GABA administration on GABA levels in the human brain, for example using magnetic resonance spectroscopy. There is some evidence in favor of a calming effect of GABA food supplements, but most of this evidence was reported by researchers with a potential conflict of interest. We suggest that any veridical effects of GABA food supplements on brain and cognition might be exerted through BBB passage or, more indirectly, via an effect on the enteric nervous system. We conclude that the mechanism of action of GABA food supplements is far from clear, and that further work is needed to establish the behavioral effects of GABA.
Collapse
Affiliation(s)
- Evert Boonstra
- Cognitive Psychology Unit, Institute of Psychology, Leiden University , Leiden, Leiden ; Leiden Institute for Brain and Cognition, Leiden University , Leiden, Leiden
| | - Roy de Kleijn
- Cognitive Psychology Unit, Institute of Psychology, Leiden University , Leiden, Leiden ; Leiden Institute for Brain and Cognition, Leiden University , Leiden, Leiden
| | - Lorenza S Colzato
- Cognitive Psychology Unit, Institute of Psychology, Leiden University , Leiden, Leiden ; Leiden Institute for Brain and Cognition, Leiden University , Leiden, Leiden
| | - Anneke Alkemade
- Cognitive Science Center Amsterdam, University of Amsterdam , Amsterdam, Netherlands
| | - Birte U Forstmann
- Cognitive Science Center Amsterdam, University of Amsterdam , Amsterdam, Netherlands ; Max Planck Institute for Human Cognitive and Brain Sciences , Leipzig, Germany
| | - Sander Nieuwenhuis
- Cognitive Psychology Unit, Institute of Psychology, Leiden University , Leiden, Leiden ; Leiden Institute for Brain and Cognition, Leiden University , Leiden, Leiden
| |
Collapse
|