1
|
Allahyari Z, Lotfabadi NN, Zare F. The role of leukemia inhibitory factor in regulating angiogenesis-related gene expression in a mouse model of recurrent miscarriage. Placenta 2025; 165:91-101. [PMID: 40228388 DOI: 10.1016/j.placenta.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/03/2025] [Accepted: 04/08/2025] [Indexed: 04/16/2025]
Abstract
BACKGROUND Recurrent miscarriage is an early pregnancy complication that affects approximately 1-3 % of pregnant couples. Leukemia Inhibitory Factor (LIF) plays an important role in various biological processes, including angiogenesis and pregnancy. This study aimed to evaluate the role of LIF in regulating angiogenesis-related genes in a mouse model of recurrent miscarriage. METHOD Female CBA/J mice mated with DBA/2J males were utilized as a miscarriage model. The study population was randomly assigned to three groups, normal group, mating female CBA/J mouse with male Balb/c without injection; miscarriage model control group with PBS injection; and the miscarriage group, in which LIF was injected. Following detection of a vaginal plug, mice were dissected on days 4, 7, and 14 of pregnancy. Uterine and placental tissues were collected to assess the expression of angiogenesis-related genes, including VEGF, PDGF, ANG1, FGF, and TGF-β, using real-time PCR. RESULT Data analysis revealed no significant differences in the expression of angiogenesis-related genes on days 4 and 7 of pregnancy compared with the control group. However, on day 14 of pregnancy, the expression of VEGF and TGF-β was significantly elevated in the miscarriage group receiving LIF compared to other groups (P = 0.03 and P = 0.04, respectively). The placental expression of the studied genes also exhibited a non-significant increase in the miscarriage group, with VEGF and TGF-β showing the most prominent increases, although these changes were not statistically significant. Correlation analysis between uterine and placental gene expression on day 14 revealed no significant association. CONCLUSION LIF regulates the uterine and placental expression of angiogenesis-related genes, particularly VEGF and TGF-β. These findings highlight the role of LIF in regulating angiogenesis-related gene expression and suggest that LIF could be a potential therapeutic candidate for improving pregnancy outcomes in cases of recurrent miscarriage.
Collapse
Affiliation(s)
- Zahra Allahyari
- Molecular Genetics, Faculty of Science, Science and Arts University, Yazd, Iran
| | | | - Fateme Zare
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
2
|
Dai F, Zhang Y, Deng Z, Zhang J, Wang R, Chen J, Yang D, Mao S, Liu H, Cheng Y, Hu M. IGF2BP3 participates in the pathogenesis of recurrent spontaneous abortion by regulating ferroptosis. J Reprod Immunol 2024; 165:104271. [PMID: 39054220 DOI: 10.1016/j.jri.2024.104271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 07/27/2024]
Abstract
The aberrant invasive capability of trophoblast cells is widely acknowledged as a primary mechanism underlying RSA. Recently, IGF2BP3 has been implicated in various cancers due to its influence on cellular invasion and migration. However, whether IGF2BP3 involve in the occurrence of RSA and the specific functions it assumes in the development of RSA remain elusive. In our study, we firstly collected villous tissues from RSA and those with normal pregnancies individuals to performed Protein sequencing and then detected the expression of IGF2BP3 through Western blot, qRT-PCR and immunohistochemistry. Secondly, we analyzed the single-cell data (GSE214607) to assess the expression of IGF2BP3 in invasive EVT trophoblasts. Thirdly, we utilized lentivirus technology to establish HTR-8/SVneo cell lines with stable IGF2BP3 knockdown and RNA-seq analysis was employed to investigate the GO functional pathway enrichment of IGF2BP3. Meanwhile, the effect of IGF2BP3 knockdown on trophoblast cells apoptosis, migration, and ferroptosis was evaluated through functional experiments. Additionally, LPS-induced abortion animal model was constructed to evaluate IGF2BP3 expression in placental tissues. A significant downregulation of IGF2BP3 was observed in the villous tissues of RSA patient, a finding corroborated by subsequent single cell sequencing results. Furthermore, it suggested that IGF2BP3 may be involved in the migration and apoptotic processes of trophoblast cells. Mechanistic research indicated that IGF2BP3 knockdown could compromise GPX4 mRNA stability, leading to the promotion of ferroptosis. Finally, our investigation observed the down-regulation of IGF2BP3 expression in placental villous tissues of an LPS-induced abortion animal model. Our findings revealed that IGF2BP3 was downregulated in the villous tissues of RSA patients. Mechanically, down-regulation of IGF2BP3 may induce RSA by promoting GPX4-mediated ferroptosis and inhibiting trophoblast invasion and migration. Our study may provide new targets and research directions for the pathogenesis of RSA.
Collapse
Affiliation(s)
- Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Yuwei Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China; Department of Gynaecology and Reproductive Medicine, University Medical Centre Utrecht, Heidelberglaan 100, Utrecht 3584 CX, the Netherlands
| | - Zhimin Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Jie Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Ruiqi Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Jing Chen
- Caidian District People's Hospital of Wuhan, Wuhan, Hubei 430100, People's Republic of China
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Sisi Mao
- The First Clinical College of Wuhan University, Wuhan, Hubei 430100, People's Republic of China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China.
| | - Min Hu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China.
| |
Collapse
|
3
|
Chen YH, van Zon S, Adams A, Schmidt-Arras D, Laurence ADJ, Uhlig HH. The Human GP130 Cytokine Receptor and Its Expression-an Atlas and Functional Taxonomy of Genetic Variants. J Clin Immunol 2023; 44:30. [PMID: 38133879 PMCID: PMC10746620 DOI: 10.1007/s10875-023-01603-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/30/2023] [Indexed: 12/23/2023]
Abstract
Genetic variants in IL6ST encoding the shared cytokine receptor for the IL-6 cytokine family GP130 have been associated with a diverse number of clinical phenotypes and disorders. We provide a molecular classification for 59 reported rare IL6ST pathogenic or likely pathogenic variants and additional polymorphisms. Based on loss- or gain-of-function, cytokine selectivity, mono- and biallelic associations, and variable cellular mosaicism, we grade six classes of IL6ST variants and explore the potential for additional variants. We classify variants according to the American College of Medical Genetics and Genomics criteria. Loss-of-function variants with (i) biallelic complete loss of GP130 function that presents with extended Stüve-Wiedemann Syndrome; (ii) autosomal recessive hyper-IgE syndrome (HIES) caused by biallelic; and (iii) autosomal dominant HIES caused by monoallelic IL6ST variants both causing selective IL-6 and IL-11 cytokine loss-of-function defects; (iv) a biallelic cytokine-specific variant that exclusively impairs IL-11 signaling, associated with craniosynostosis and tooth abnormalities; (v) somatic monoallelic mosaic constitutively active gain-of-function variants in hepatocytes that present with inflammatory hepatocellular adenoma; and (vi) mosaic constitutively active gain-of-function variants in hematopoietic and non-hematopoietic cells that are associated with an immune dysregulation syndrome. In addition to Mendelian IL6ST coding variants, there are common non-coding cis-acting variants that modify gene expression, which are associated with an increased risk of complex immune-mediated disorders and trans-acting variants that affect GP130 protein function. Our taxonomy highlights IL6ST as a gene with particularly strong functional and phenotypic diversity due to the combinatorial biology of the IL-6 cytokine family and predicts additional genotype-phenotype associations.
Collapse
Affiliation(s)
- Yin-Huai Chen
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Sarah van Zon
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Alex Adams
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Dirk Schmidt-Arras
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | | | - Holm H Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK.
- Biomedical Research Centre, University of Oxford, Oxford, UK.
- Department of Paediatrics, University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Ansariniya H, Hadinedoushan H, Zare F, Idali F, Shabani M, Mosaffa N. Study the effect of recombinant leukemia inhibitory factor on maintenance of pregnancy and frequency of regulatory T cells in abortion-prone mice. Int Immunopharmacol 2023; 124:110908. [PMID: 37713786 DOI: 10.1016/j.intimp.2023.110908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
Recurrent spontaneous abortion (RSA) can have a significant impact on a woman's quality of life. Understanding the mechanisms behind abortion is crucial for developing potential treatments. Among various models of abortion, the CBA/J(♀) × DBA/2J(♂) model stands out as the most extensively studied. This model reveals the influence of an altered immune system on resorption during pregnancy. The leukemia inhibitory factor (LIF) holds considerable importance as a secretory glycoprotein essential for successful implantation. Regulatory T cells (Tregs) have been found to produce high levels of LIF in both mice and humans. LIF plays a vital role in the development of Tregs by upregulating the expression of the Foxp3 transcription factor while downregulating the expression of RORγt. To investigate the impact of recombinant LIF (rLIF) on pregnancy maintenance and Treg cell frequency in abortion-prone (AP) mice, a specific recombinant protein was used in this study. The AP group consisted of CBA/J(♀) × DBA/2J(♂) mice, while the control group comprised CBA/J(♀) × BALB/c(♂) mice. Intraperitoneal injections of rLIF were administered to the AP group on the third day of pregnancy, and its effects on Treg cell frequency and pregnancy maintenance were examined during this period. Following rLIF injections on the fourteenth day of pregnancy, the expression of Foxp3 significantly increased in AP mice (p = 0.02,0.008). Additionally, AP mice injected with rLIF demonstrated a significant reduction in resorption rate (p = 0.01) and a notable increase in birth rate (p = 0.01,0.0005). These findings provide new insights into the potential benefits of LIF in treating RSA patients.
Collapse
Affiliation(s)
- Hossein Ansariniya
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Hadinedoushan
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fateme Zare
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farah Idali
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Evin, Tehran, Iran
| | - Mahdi Shabani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Andrews MG, Siebert C, Wang L, White ML, Ross J, Morales R, Donnay M, Bamfonga G, Mukhtar T, McKinney AA, Gemenes K, Wang S, Bi Q, Crouch EE, Parikshak N, Panagiotakos G, Huang E, Bhaduri A, Kriegstein AR. LIF signaling regulates outer radial glial to interneuron fate during human cortical development. Cell Stem Cell 2023; 30:1382-1391.e5. [PMID: 37673072 PMCID: PMC10591955 DOI: 10.1016/j.stem.2023.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/16/2023] [Accepted: 08/14/2023] [Indexed: 09/08/2023]
Abstract
Radial glial (RG) development is essential for cerebral cortex growth and organization. In humans, the outer radial glia (oRG) subtype is expanded and gives rise to diverse neurons and glia. However, the mechanisms regulating oRG differentiation are unclear. oRG cells express leukemia-inhibitory factor (LIF) receptors during neurogenesis, and consistent with a role in stem cell self-renewal, LIF perturbation impacts oRG proliferation in cortical tissue and organoids. Surprisingly, LIF treatment also increases the production of inhibitory interneurons (INs) in cortical cultures. Comparative transcriptomic analysis identifies that the enhanced IN population resembles INs produced in the caudal ganglionic eminence. To evaluate whether INs could arise from oRGs, we isolated primary oRG cells and cultured them with LIF. We observed the production of INs from oRG cells and an increase in IN abundance following LIF treatment. Our observations suggest that LIF signaling regulates the capacity of oRG cells to generate INs.
Collapse
Affiliation(s)
- Madeline G Andrews
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA 94143, USA; School of Biological and Health Systems Engineering, Arizona State University (ASU), Tempe, AZ 85281, USA.
| | - Clara Siebert
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA 94143, USA
| | - Li Wang
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA 94143, USA
| | - Matthew L White
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA 94143, USA
| | - Jayden Ross
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA 94143, USA
| | - Raul Morales
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA 94143, USA
| | - Megan Donnay
- School of Biological and Health Systems Engineering, Arizona State University (ASU), Tempe, AZ 85281, USA
| | - Gradi Bamfonga
- School of Biological and Health Systems Engineering, Arizona State University (ASU), Tempe, AZ 85281, USA
| | - Tanzila Mukhtar
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA 94143, USA
| | - Arpana Arjun McKinney
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA 94143, USA; Department of Biochemistry and Biophysics, UCSF, San Francisco, CA 94143, USA; Departments of Psychiatry and Neuroscience, Black Family Stem Cell Institute, Seaver Autism Center for Research and Treatment, Alper Center for Neural Development and Regeneration, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kaila Gemenes
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA 94143, USA; School of Biological and Health Systems Engineering, Arizona State University (ASU), Tempe, AZ 85281, USA
| | - Shaohui Wang
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA 94143, USA
| | - Qiuli Bi
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA 94143, USA
| | - Elizabeth E Crouch
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA 94143, USA; Department of Pediatrics, UCSF, San Francisco, CA 94143, USA
| | - Neelroop Parikshak
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA 94143, USA
| | - Georgia Panagiotakos
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA 94143, USA; Department of Biochemistry and Biophysics, UCSF, San Francisco, CA 94143, USA; Departments of Psychiatry and Neuroscience, Black Family Stem Cell Institute, Seaver Autism Center for Research and Treatment, Alper Center for Neural Development and Regeneration, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric Huang
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA 94143, USA
| | - Aparna Bhaduri
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA 94143, USA; Department of Biological Chemistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Arnold R Kriegstein
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA 94143, USA.
| |
Collapse
|
6
|
Ali R, Ahmed Khan T, Gul H, Rehman R. An interplay of Progesterone, Leukemia Inhibitor Factor and Interleukin-6 in the window of implantation; Impact on fertility. Cytokine 2023; 170:156332. [PMID: 37586287 DOI: 10.1016/j.cyto.2023.156332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/29/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND The process of implantation is crucial for the initiation of conception and hence fertility. In addition to a number of factors, it is regulated by a cross talk of gonadotrophins [Luteinizing Hormone (LH), Follicle Stimulatory Hormone (FSH)], ovarian steroids [Estrogen (Et), Progesterone (Pt)] and cytokines [Leukemia inhibitory factor (LIF) and Interleukin 6 (IL6)]. These biomarkers are chief players of implantation. OBJECTIVE We aimed to explore the role of gonadotrophins (LH, FSH, LH/FSH ratio), ovarian steroids (Et, Pt) and cytokines (LIF, IL6) in the implantation process. This aim was achieved by comparing these hormones and cytokines in the fertile and infertile groups [Polycystic ovaries (PCOs), endometriosis, unexplained infertility (Uex-IF)] and finding their association in all study groups. METHODS A case control study conducted from October 2020-March 2023. A total of 135 infertile women (with PCOs, Uex-IF, and endometriosis) and 177 fertile women (matched for age and BMI) were selected. Levels of 'Et', 'Pt', 'LIF' and, 'IL6' were estimated using Enzyme Linked Immunosorbent Assay (ELISA). LH and FSH values were obtained from hospital desk records. The Independent Student'st-test was used to compare fertile and infertile groups. One-way ANOVA test was used to compare more than two groups, and Pearson's chi-square (χ2) test was employed to compare percentages of variables. Pearson correlation analysis was performed to assess the associations and correlations. A p value < 0.05 was considered statistically significant. RESULTS Significantly higher levels of LIF and IL6 were observed in fertile women compared to infertile women. Pt levels were significantly greater in the fertile group than in the infertile group. The FSH/LH ratio was significantly higher in the fertile group. Among infertile women, PCOs (71%) and Uex-IF (91%) exhibited lower Pt levels than the fertile controls (p < 0.01), but these levels remained within the reference range (RR). Among the fertile group (81%), levels of LIF within the RR were significantly higher compared to those with Uex-IF (49%) and females with endometriosis (37%). Moreover, the highest number of participants (57%) with Uex-IF exhibited IL6 levels significantly below the RR in comparison to the fertile group and infertile groups (PCOS and endometriosis). However, lower levels of IL6 were observed in women with Uex-IF. In the control group, LIF exhibited a significant positive correlation with IL6 (r = 0.370), Pt (r = 0.496), Et (r = 0.403), and LH (r = 0.428). Among women with PCOs, LIF showed a significant positive correlation with IL6 (r = 0.443), Pt (r = 0.607), and LH (r = 0.472). In cases of Uex-IF, LIF demonstrated a significant positive correlation with IL6 (r = 0.727). Females with endometriosis displayed a significant positive correlation between LIF and IL6 (r = 0.535) as well as Pt (r = 0.605). In fertile women, a positive correlation was observed between LH and IL6 (r = 0.197, p = 0.009), LIF (r = 0.428, p = 0.000), Pt (r = 0.238, p = 0.001), and Et (r = 0.356, p = 0.000). Furthermore, a positive correlation was found between LH and LIF (r = 0.472, p = 0.000) in women with PCOs. CONCLUSION Elevated levels of Pt were found to increase the production of LIF in fertile females. However, infertile females with PCOs and Uex-IF exhibited deficient levels of Pt, supporting its role as a biomarker for successful implantation in infertile women. These females showed decreased levels of gonadotropins as well as reduced LH/FSH ratio and diminished secretion of receptivity marker LIF, in addition to reduced Pt secretion. This suggests that reduced gonadotropin levels contribute to a lower LH/FSH ratio, resulting in decreased Pt secretion and ultimately leading to low levels of LIF, thereby causing impaired implantation in women with PCOs and Uex-IF. The exploration of low levels of LIF in patients with endometriosis requires further investigation. The significantly low levels of IL6 in the Uex-IF group elucidate the role of this cytokine in association with decreased Pt and LIF synthesis within this group.
Collapse
Affiliation(s)
- Rabiya Ali
- Department of Physiology, Karachi Institute of Medical Sciences (KIMS), CMH, Malir Cantt, Karachi, Pakistan; Department of Physiology, University of Karachi, Karachi, Pakistan.
| | | | - Hina Gul
- Department of Community Health Sciences, United Medical and Dental College, Karachi, Pakistan.
| | - Rehana Rehman
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan.
| |
Collapse
|
7
|
Rabbani A, Babaei M, Gharib M. Automated segmentation and morphological characterization of placental intervillous space based on a single labeled image. Micron 2023; 169:103448. [PMID: 36965271 DOI: 10.1016/j.micron.2023.103448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
In this study, a novel method of data augmentation has been presented for the segmentation of placental histological images when the labeled data are scarce. This method generates new realizations of the placenta intervillous morphology while maintaining the general textures and orientations. As a result, a diversified artificial dataset of images is generated that can be used for training deep learning segmentation models. We have observed that on average the presented method of data augmentation led to a 42% decrease in the binary cross-entropy loss of the validation dataset compared to the common approach in the literature. Additionally, the morphology of the intervillous space is studied under the effect of the proposed image reconstruction technique, and the diversity of the artificially generated population is quantified. We have demonstrated that the proposed method results in a more accurate morphological characterization of the placental intervillous space with an average feature relative error of 6.5%, which is significantly lower than the 11.5% error observed with conventional augmentation techniques. Due to the high resemblance of the generated images to the real ones, applications of the proposed method may not be limited to placental histological images, and it is recommended that other types of tissue be investigated in future studies.
Collapse
Affiliation(s)
- Arash Rabbani
- School of Computing, University of Leeds, Leeds, UK.
| | - Masoud Babaei
- School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK
| | - Masoumeh Gharib
- Department of Pathology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Miresmaeili SM, Fesahat F, Kazemi N, Ansariniya H, Zare F. Possible Role of Leukemia Inhibitory Factor and Inflammatory Cytokines in The Recurrent Spontaneous Abortion: A Case-Control Study. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2023; 17:140-144. [PMID: 36906832 PMCID: PMC10009511 DOI: 10.22074/ijfs.2022.548425.1258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Indexed: 03/13/2023]
Abstract
BACKGROUND Despite of long-lasting efforts, in more than 50% of cases, the etiology of recurrent spontaneous abortion (RSA) remains unknown. Leukemia inhibitory factor (LIF) has an essential role in the reproductive process, such as modulating inflammatory responses. This study aimed to evaluate the relationship between the LIF gene expression as well as serum levels of inflammatory cytokines and occurrence of RSA in infertile women with a history of RSA. MATERIALS AND METHODS In this case-control study, the relative gene expression levels of LIF, concentrations of tumor necrosis factor-alpha (TNF-α), and interleukin (IL)-17 were measured in peripheral blood and serum of women with a history of RSA (N=40) compared with non-pregnant and fertile women as the control group (N=40) using quantitative real-time polymerase chain reaction and the enzyme-linked immunosorbent assay, respectively. RESULTS The mean age of patients and controls was 30.1 ± 4.28 and 30.03 ± 4.23, respectively. Patients had a history of at least 2 and at most 6 abortions. The mRNA levels of LIF were significantly lower in the women with RSA in comparison with the healthy participant (P=0.003). Regarding cytokine levels, no significant difference was seen between the two groups (P≥0.05). There was no correlation - between the LIF mRNA levels and TNF-α and IL-17 serum concentrations. The U-Mann-Whitney test and the Pearson correlation coefficient were applied to comparison variables between groups as well as a correlation between LIF mRNA and cytokine levels in serum. CONCLUSION Despite a significant reduction in the LIF gene mRNA level in patients with RSA, it was not associated with increases in inflammatory cytokines. Dysfunction in the production of LIF protein may be involved in the onset of RSA disorder.
Collapse
Affiliation(s)
| | - Farzaneh Fesahat
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Negar Kazemi
- Department of Biology, Science and Arts University, Yazd, Iran
| | - Hossein Ansariniya
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fateme Zare
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
9
|
Feng R, Qin X, Li Q, Olugbenga Adeniran S, Huang F, Li Y, Zhao Q, Zheng P. Progesterone regulates inflammation and receptivity of cells via the NF-κB and LIF/STAT3 pathways. Theriogenology 2022; 186:50-59. [DOI: 10.1016/j.theriogenology.2022.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/06/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022]
|
10
|
McCoski SR, Cockrum RR, Ealy AD. Short Communication: Maternal obesity alters ovine endometrial gene expression during peri-implantation development. J Anim Sci 2022; 100:skac090. [PMID: 35772750 PMCID: PMC9246656 DOI: 10.1093/jas/skac090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Exposure to maternal obesity in utero is associated with marked developmental effects in offspring that may not be evident until adulthood. Mechanisms regulating the programming effects of maternal obesity on fetal development have been reported, but little is known about how maternal obesity affects the earliest periods of embryonic development. This work explored how obesity influences endometrial gene expression during the peri-implantation period using a sheep model. Ewes were assigned randomly to diets that produced an obese state or maintained a lean state. After 4 mo, obese and lean ewes were bred and then euthanized at day 14 post-breeding. The uterus was excised, conceptuses were flushed, and endometrial tissue was collected. Isolated RNA from endometrial tissues (n = 6 ewes/treatment) were sequenced using an Illumina-based platform. Reads were mapped to the Ovis aries genome (Oar_4.0). Differential gene expression was determined, and results were filtered (false discovery rate ≤ 0.05 and ≥2-fold change, ≥0.2 reads/kilobase/million reads). Differentially expressed genes (DEGs) were identified (n = 699), with 171 downregulated and 498 upregulated in obese vs. lean endometrium, respectively. The most pronounced gene ontology categories identified were cellular process, metabolic process, and biological regulation. Enrichments were detected within the DEGs for genes involved with immune system processes, negative regulation of apoptosis, cell growth, and cell adhesion. A literature search revealed that 125 DEGs were associated with either the trophoblast lineage or the placenta. Genes within this grouping were involved with wingless/integrated signaling, angiogenesis, and integrin signaling. In summary, these data indicate that the peri-implantation endometrium is responsive to maternal obesity. Transcript profile analyses suggest that the endometrial immune response, adhesion, and angiogenesis may be especially susceptible to obesity. Thus, alterations in uterine transcript profiles during early embryogenesis may be a mechanism responsible for developmental programming following maternal obesity exposure in utero.
Collapse
Affiliation(s)
- Sarah R McCoski
- Department of Animal and Range Sciences, Montana State University, Bozeman, MT, USA
| | | | - Alan D Ealy
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
11
|
Jamwal S, Ansari S, Malakar D, Kaushik JK, Kumar S, Mohanty AK. Production of biologically active recombinant buffalo leukemia inhibitory factor (BuLIF) in Escherichia Coli. J Genet Eng Biotechnol 2022; 20:47. [PMID: 35294648 PMCID: PMC8927517 DOI: 10.1186/s43141-022-00328-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/11/2022] [Indexed: 12/27/2022]
Abstract
Background Leukemia inhibitory factor (LIF) is a multifunctional cytokine which plays multiple roles in different biological processes such as implantation, bone remodeling, and hematopoiesis. The buESCs are difficult to culture due to lack of proper understanding of the culture conditions. LIF is one of the important factors which maintain the pluripotency in embryonic stem cells and commercial LIF from murine and human origin is used in the establishment of buffalo embryonic stem cells (buESCs). The LIF from a foreign origin is not able to maintain pluripotency and proliferation in buESCs for a long term which is contributed by difference in the binding sites on LIF; therefore, culture medium supplemented with buffalo-specific LIF may enhance the efficiency of buESCs by improving the environment of culture conditions. The high cost of LIF is another major drawback which restricts buESCs research, thus limits the scope of buffalo stem cell use. Various methods have been developed to produce human and murine LIF in prokaryotic system. However, Buffalo leukemia inhibitory factor (BuLIF) has not been yet produced in prokaryotic system. Here, we describe a simple strategy for the expression and purification of biologically active BuLIF in Escherichia coli (E. coli). Results The BuLIF cDNA from buffalo (Bubalus bubalis) was cloned into pET22b(+) and expressed in E. coli Lemo-21(DE3). The expression of BuLIF was directed into periplasmic space of E. coli which resulted in the formation of soluble recombinant protein. One step immobilized metal affinity chromatography (IMAC chromatography) was performed for purification of BuLIF with ≥ 95% of homogeneity. The recombinant protein was confirmed by western blot and identified by mass spectroscopy. The biological activity of recombinant BuLIF was determined on murine myeloid leukemic cells (M1 cells) by MTT proliferation assay. The addition of BuLIF increased the reduction of MTT by stimulated M1 cells in a dose-dependent manner. The BuLIF induced the formation of macrophage like structures from M1 cells where they engulfed fluorescent latex beads. The recombinant BuLIF successfully maintained pluripotency in buffalo embryonic stem cells (buESCs) and were positive for stem cells markers such as Oct-4, Sox-2, Nanog, and alkaline phosphatase activity. Conclusions The present study demonstrated a simple method for the production of bioactive BuLIF in E. coli through single step purification. BuLIF effectively maintained buffalo embryonic stem cells pluripotency. Thus, this purified BuLIF can be used in stem cell study, biomedical, and agricultural research. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-022-00328-1.
Collapse
Affiliation(s)
- Shradha Jamwal
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Shama Ansari
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Dhruba Malakar
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Jai Kumar Kaushik
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Sudarshan Kumar
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India.
| | - Ashok Kumar Mohanty
- Indian Council of Agricultural Research-Indian Veterinary Research Institute, Mukteshwar, India.
| |
Collapse
|
12
|
Mehri N, Jamshidizad A, Ghanei Z, Karkhane AA, Shamsara M. Optimizing the Expression and Solubilization of an E. coli-Produced Leukemia Inhibitory Factor for Anti-LIF Antibody Production and Use Thereof for Contraception in Mice. Mol Biotechnol 2021; 63:1169-1182. [PMID: 34272681 DOI: 10.1007/s12033-021-00369-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/08/2021] [Indexed: 12/01/2022]
Abstract
Leukemia inhibitory factor (LIF) is an essential cytokine for blastocyst implantation. This study evaluated the effect of LIF inhibition on the blockage of embryo implantation. A truncated mouse LIF (tmLIF) was designed and expressed in E. coli. The protein expression was optimized using different culture media and inducers. To block pregnancy, the mice were immunized by the purified protein via maternal injection of the protein or in utero injection of the anti-LIF serum. The expression of implantation-relevant genes was quantified in the uterine tissue. The results showed that the protein was expressed in aggregated form in E. coli. The highest yield of protein was produced in the M9 medium. The insoluble protein was completely dissociated by SDS and 2-ME combination, but not by urea. The maternal immunization reduced the number of offspring, but not significantly. Instead, in utero injection of the anti-LIF serum prevented the blastocyst implantation. Gene expression analyses showed decrease of Jam2, Msx1and HB-EGF genes and increase of Muc1 gene as the result of intrauterine administration of the anti-LIF serums. In conclusion, SDS-mediated solubilization of inclusion bodies was compatible with in vivo studies. The intrauterine administration of anti-LIF serum could prevent mouse pregnancy. This indicates that in utero application of LIF antibodies might be used as a contraceptive.
Collapse
Affiliation(s)
- Nahid Mehri
- Animal Biotechnology Group, Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Abbas Jamshidizad
- Animal Biotechnology Group, Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Zahra Ghanei
- Animal Biotechnology Group, Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ali-Asghar Karkhane
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mehdi Shamsara
- Animal Biotechnology Group, Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| |
Collapse
|
13
|
Zhang Q, Tian P, Xu H. MicroRNA-155-5p regulates survival of human decidua stromal cells through NF-κB in recurrent miscarriage. Reprod Biol 2021; 21:100510. [PMID: 33993032 DOI: 10.1016/j.repbio.2021.100510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/08/2021] [Accepted: 04/29/2021] [Indexed: 01/10/2023]
Abstract
Recurrent miscarriage (RM) occurs in approximately 1% of all couples trying to conceive. Most of the research about recurrent miscarriage mainly focuses on immunology. However, the roles of microRNAs plays (miRNAs) in RM remain elusive. Here, the function of miR-155-5p in regulating survival of human decidua stromal cells through NF-κB signaling was explored in RM. The quantitative real-time polymerase chain reaction (qRT-PCR) results showed that miR-155-5p was downregulated in both decidua tissues and serum from RM patients. While, the ELISA assay revealed that the overexpression of miR-155-5p reduced the inflammatory cytokines secretion including IL-6, IFN-γ, TNF-α and IL-10 in decidua stromal cells. The results of cell counting Kit8 (CCK-8) and immunofluorescence experiments suggested that transfection of miR-155-5p into decidua stromal cells can promote the growth and proliferation of cells. In addition, overexpression of miR-155-5p can also inhibit the apoptosis of decidua stromal cells. The western blot assay results demonstrated that the miR-155-5p exerted effect mainly through activating NF-κB signaling pathway in RM. In conclusion, the miRNA-155-5p can not only promote the growth and proliferation but also inhibit the apoptosis of decidua stromal cells depending on inhibiting NF-κB signaling pathway in recurrent miscarriage.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Gynaecology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan City, Hubei Province, 430014, China
| | - Ping Tian
- Department of Gynaecology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan City, Hubei Province, 430014, China
| | - Hui Xu
- Department of Obstetrics, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan City, Hubei Province, 430014, China.
| |
Collapse
|
14
|
He L, Ye X, Gao M, Yang J, Ma J, Xiao F, Wei H. Down-regulation of GLT25D1 inhibited collagen secretion and involved in liver fibrogenesis. Gene 2019; 729:144233. [PMID: 31759980 DOI: 10.1016/j.gene.2019.144233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 07/28/2019] [Accepted: 10/27/2019] [Indexed: 02/06/2023]
Abstract
Collagen β (1-O) galactosyltransferase 1 (GLT25D1) has been reported to transfer galactose to hydroxylysine residues via β (1-O) linkages in collagen. However, the role of Glt25d1 in liver fibrogenesis is still unknow. Recently, we generated a Glt25d1 knockout mouse to elucidate the role of Glt25d1 in vivo. However, we found that complete deletion of the Glt25d1 gene resulted in embryonic lethality at E11.5. Histopathological analysis revealed that dysplasia in Glt25d1-/- labyrinth with defects of the vascular network. Immunohistochemical showed that the decrease in proliferation of Glt25d1-/- liver and the developing central nervous system (CNS). The role of Glt25d1 in liver fibrogenesis was explored by Glt25d1+/- mice. Glt25d1+/- mice and wild-type (WT) mice were injected intraperitoneally with the same dose of CCl4. The higher level of serum alanine aminotransferase was observed in Glt25d1+/- mice. Reverse transcription-quantitative polymerase chainreaction demonstrated that the mRNA expression levels of the inflammatory cytokines such as, Tnf-α, Cxcl-1 and Mcp-1, showed a significantly increase in CCl4-treated Glt25d1+/- mice. Collagen-I, collagen-III and α-SMA transcripts accumulation was markedly increased in the Glt25d1+/- mice. However, Masson's trichrome staining revealed a trend to decrease in the ECM proteins deposition of Glt25d1+/- liver. Immunohistochemistry and Western blots revealed that the protein expression of Collagen-III was reduced and a trend to a decrease in collagen-I was observed in the Glt25d1+/- liver compared with those of WT mice. Our results demonstrate that Glt25d1 knockout results in embryonic lethality and down-regulation of Glt25d1 may inhibit collagen secretion during liver fibrogenesis.
Collapse
Affiliation(s)
- Lingling He
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
| | - Xiaohui Ye
- Beijing Huaxin Hospital, The First Affiliated Hospital of Tsinghua Uinversity, Beijing, China.
| | - Meixin Gao
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
| | - Junru Yang
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
| | - Jiali Ma
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
| | - Fan Xiao
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
| | - Hongshan Wei
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
15
|
Yano A. IL-10-Producing Potential Treg Precursor in Placenta. Kurume Med J 2019; 65:169-176. [PMID: 31723081 DOI: 10.2739/kurumemedj.ms654008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The maternal immune system needs to be tolerant of allogeneic fetal tissue for reproductive success. The regulatory immune cell network plays an essential role in maintaining maternal tolerance to the fetus. We herein demonstrate in a green fluorescent protein (GFP)/IL-10 reporter mouse system that unique IL-10-expressing cells exist presumably in chorionic villi within the placenta. Flow cytometric analysis revealed that these IL-10- expressing cells exhibit a unique CD19 negative, CD3 negative, and B220 positive phenotype. Interestingly, these cells were enriched during in vitro culture, but well-known stimuli for T cells and B cells failed to enhance their growth, suggesting that the CD19- CD3- B220+ cells were self renewing. Unexpectedly, in an adoptive cell trans fer experiment, IL-10 production was detected in Sca-1+ CD4+ CD25+ regulatory T cells (Treg). To our knowledge, this is the first report to identify IL-10-producing CD19- CD3- B220+ cells in the fetus. These cells may rep resent a potential progenitor of Sca-1+ Treg or pluripotent precursor cells for immune tolerance.
Collapse
Affiliation(s)
- Arisa Yano
- Department of Immunology, Kurume University of School of Medicine
| |
Collapse
|
16
|
Lv BY, Sun HY, Li Q, Zhang HL, Pan CS, Yan L, Fan JY, Li D, Han JY. The ameliorating effects of Bushen Tiaoxue Granules and Kunling Wan on impaired angiogenesis and endometrial receptivity in rats following controlled ovarian hyperstimulation. Microcirculation 2019; 27:e12581. [PMID: 31313405 DOI: 10.1111/micc.12581] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/23/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To investigate the effects of Bushen Tiaoxue Granules and Kunling Wan, the two Chinese medicines, on vascular dysfunction and the impairment of endometrial receptivity caused by controlled ovarian hyperstimulation and its underlying mechanism. METHODS Female Sprague Dawley rats with regular estrous cycle were enrolled and given Bushen Tiaoxue Granules or Kunling Wan by gavage for 12 days, and then, controlled ovarian hyperstimulation model was induced. We assessed endometrial microvessels, endometrial blood flow, levels of estradiol and progesterone in serum, vascular endothelial growth factor A upstream molecules estrogen and progesterone receptors in the endometrium, and pregnancy outcome. RESULTS Pre-treatment of Bushen Tiaoxue Granules or Kunling Wan increases endometrial blood flow of controlled ovarian hyperstimulation rats, up-regulates vascular endothelial growth factor A and microvessels, improves the endometrial morphology of controlled ovarian hyperstimulation rats during implantation, decreases the super physiological concentration of estradiol and progesterone in serum, and increases the expression of vascular endothelial growth factor A upstream molecules estrogen and progesterone receptors in the endometrium. In addition, Bushen Tiaoxue Granules or Kunling Wan elevates the lysophosphatidic acid receptor 3 that participates in vascularization and increases the expression of leukemia inhibitory factor through up-regulating the expression of p53 in the endometrium, ultimately affecting pregnancy outcome. CONCLUSION This study demonstrated Bushen Tiaoxue Granules or Kunling Wan as a potential strategy for prevention of impairment in angiogenesis and endometrial receptivity induced by controlled ovarian hyperstimulation.
Collapse
Affiliation(s)
- Bo-Yang Lv
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Hao-Yu Sun
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Quan Li
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Hao-Lin Zhang
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Dong Li
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| |
Collapse
|
17
|
Pillai VV, Siqueira LG, Das M, Kei TG, Tu LN, Herren AW, Phinney BS, Cheong SH, Hansen PJ, Selvaraj V. Physiological profile of undifferentiated bovine blastocyst-derived trophoblasts. Biol Open 2019; 8:bio037937. [PMID: 30952696 PMCID: PMC6550082 DOI: 10.1242/bio.037937] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/29/2019] [Indexed: 12/27/2022] Open
Abstract
Trophectoderm of blastocysts mediate early events in fetal-maternal communication, enabling implantation and establishment of a functional placenta. Inadequate or impaired developmental events linked to trophoblasts directly impact early embryo survival and successful implantation during a crucial period that corresponds with high incidence of pregnancy losses in dairy cows. As yet, the molecular basis of bovine trophectoderm development and signaling towards initiation of implantation remains poorly understood. In this study, we developed methods for culturing undifferentiated bovine blastocyst-derived trophoblasts and used both transcriptomics and proteomics in early colonies to categorize and elucidate their functional characteristics. A total of 9270 transcripts and 1418 proteins were identified and analyzed based on absolute abundance. We profiled an extensive list of growth factors, cytokines and other relevant factors that can effectively influence paracrine communication in the uterine microenvironment. Functional categorization and analysis revealed novel information on structural organization, extracellular matrix composition, cell junction and adhesion components, transcription networks, and metabolic preferences. Our data showcase the fundamental physiology of bovine trophectoderm and indicate hallmarks of the self-renewing undifferentiated state akin to trophoblast stem cells described in other species. Functional features uncovered are essential for understanding early events in bovine pregnancy towards initiation of implantation.
Collapse
Affiliation(s)
- Viju Vijayan Pillai
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Luiz G Siqueira
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
- Brazilian Agricultural Research Corporation - Embrapa Gado de Leite, Juiz de Fora, Minas Gerais 36038-330, Brazil
| | - Moubani Das
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Tiffany G Kei
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Lan N Tu
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Anthony W Herren
- Genome Center, Proteomics Core Facility, University of California, Davis, CA 95616, USA
| | - Brett S Phinney
- Genome Center, Proteomics Core Facility, University of California, Davis, CA 95616, USA
| | - Soon Hon Cheong
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Peter J Hansen
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
18
|
Tsukada T, Shimada H, Sakata-Haga H, Iizuka H, Hatta T. Molecular mechanisms underlying the models of neurodevelopmental disorders in maternal immune activation relevant to the placenta. Congenit Anom (Kyoto) 2019; 59:81-87. [PMID: 30592100 DOI: 10.1111/cga.12323] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/29/2018] [Accepted: 12/24/2018] [Indexed: 12/28/2022]
Abstract
The rapid rise in the prevalence of autism spectrum disorders (ASD) and other psychiatric disorders displaying similar traits has increased the need to elucidate their molecular mechanisms. Epidemiological studies have shown that maternal infection during mid-pregnancy is associated with increased risk of neurodevelopmental disorders such as ASD in offspring. Using maternal infection models, researchers have gathered evidence relevant to such disorders. A comprehensive summary of the changes in the brain structure, function, and behavior in offspring induced by maternal immune activation (MIA) has been reported. However, the molecular mechanisms underlying the association between MIA and improper brain development, which ultimately lead to neurodevelopmental disorders, have not been fully reviewed. This paper summarizes the currently known molecular mechanisms associated with the MIA model, with a special focus on the role of the placenta in fetal brain development.
Collapse
Affiliation(s)
- Tsuyoshi Tsukada
- Department of Anatomy, Kanazawa Medical University, Uchinada, Japan.,Department of Neurosurgery, Kanazawa Medical University, Uchinada, Japan
| | - Hiroki Shimada
- Department of Anatomy, Kanazawa Medical University, Uchinada, Japan.,Department of Medical Science, Kanazawa Medical University, Uchinada, Japan
| | | | - Hideaki Iizuka
- Department of Neurosurgery, Kanazawa Medical University, Uchinada, Japan
| | - Toshihisa Hatta
- Department of Anatomy, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
19
|
Ding J, Cheng Y, Zhang Y, Liao S, Yin T, Yang J. The miR‐27a‐3p/USP25 axis participates in the pathogenesis of recurrent miscarriage by inhibiting trophoblast migration and invasion. J Cell Physiol 2019; 234:19951-19963. [PMID: 30953360 DOI: 10.1002/jcp.28593] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Jinli Ding
- Reproductive Medical Center Renmin Hospital of Wuhan University Wuhan China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development Wuhan China
| | - Yanxiang Cheng
- Department of Gynecology and Obstetrics Renmin Hospital of Wuhan University Wuhan China
| | - Yi Zhang
- Reproductive Medical Center Renmin Hospital of Wuhan University Wuhan China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development Wuhan China
| | - Shujie Liao
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Tailang Yin
- Reproductive Medical Center Renmin Hospital of Wuhan University Wuhan China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development Wuhan China
| | - Jing Yang
- Reproductive Medical Center Renmin Hospital of Wuhan University Wuhan China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development Wuhan China
| |
Collapse
|
20
|
Winship A, Menkhorst E, Van Sinderen M, Dimitriadis E. Interleukin 11 blockade during mid to late gestation does not affect maternal blood pressure, pregnancy viability or subsequent fertility in mice. Reprod Biomed Online 2018; 36:250-258. [DOI: 10.1016/j.rbmo.2017.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 12/02/2017] [Accepted: 12/06/2017] [Indexed: 12/28/2022]
|
21
|
Gu Y, Shi Y, Yang Q, Gu WW, He YP, Zheng HJ, Zhang X, Wang JM, Wang J. miR-3074-5p Promotes the Apoptosis but Inhibits the Invasiveness of Human Extravillous Trophoblast-Derived HTR8/SVneo Cells In Vitro. Reprod Sci 2017; 25:690-699. [PMID: 28826362 DOI: 10.1177/1933719117725823] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE The objective of this study was to observe the effects of the overexpression of miR-3074-5p in human trophoblast cells in vitro. DESIGN Experimental in vitro study in HTR8/SVneo cells. METHODS HTR8/SVneo cells were transfected with miR-3074-5p mimic. The cell apoptosis and invasion were measured via flow cytometry and transwell assay, respectively. The expression levels of P53, Cyclin Dependent Kinase Inhibitor 1B (P27), BCL-2, BCL2 associated X (BAX), and BCL2 like 14 (BCL-G) in HTR8/SVneo cells were determined by Western blot. The alterations in gene expression profile of HTR8/SVneo cells were evaluated by complementary DNA microarray assay, and the differential expressions of dihydrolipoamide S-succinyltransferase (DLST), growth-associated protein 43 (GAP43), runt-related transcription factor 2 (RUNX2), and C-C type chemokine receptor 3 (CCR3) were validated by Western blot. Biofunctions of these differentially expressed genes were enriched by Gene Ontology analysis. RESULTS The overexpression of miR-3074-5p in HTR8/SVneo cells promoted cell apoptosis but inhibited cell invasion, being accompanied by the significantly elevated expressions of P27, BCL-2, and BCL-G. Meanwhile, an increased expression of P27 and P57 was also detected in a small sample size of placental villi of recurrent miscarriage (RM) patients. Totally, 411 genes and 397 genes were screened out, respectively, to be downregulated or upregulated at least by 2-folds in miR-3074-5p overexpressed HTR8/SVneo cells. These differentially expressed genes were involved in several important functions related to pregnancy. Subsequently, the reduced expressions of DLST and GAP43 proteins, as well as the increased expressions of CCR3 and RUNX2 proteins, were validated in miR-3074-5p overexpressed HTR8/SVneo cells. CONCLUSION These data suggested a potential contribution of miR-3074-5p in the pathogenesis of RM by disturbing the normal activities of trophoblast cells.
Collapse
Affiliation(s)
- Yan Gu
- 1 The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yan Shi
- 2 Key Laboratory of Reproduction Regulation of NHFPC, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, China
| | - Qian Yang
- 3 School of Pharmacy, Fudan University, Shanghai, China
| | - Wen-Wen Gu
- 2 Key Laboratory of Reproduction Regulation of NHFPC, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, China
| | - Ya-Ping He
- 2 Key Laboratory of Reproduction Regulation of NHFPC, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, China
| | - Hua-Jun Zheng
- 2 Key Laboratory of Reproduction Regulation of NHFPC, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, China
| | - Xuan Zhang
- 2 Key Laboratory of Reproduction Regulation of NHFPC, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, China
| | - Jian-Mei Wang
- 1 The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jian Wang
- 2 Key Laboratory of Reproduction Regulation of NHFPC, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, China.,3 School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Alfer J, Happel L, Dittrich R, Beckmann MW, Hartmann A, Gaumann A, Buck VU, Classen-Linke I. Insufficient Angiogenesis: Cause of Abnormally Thin Endometrium in Subfertile Patients? Geburtshilfe Frauenheilkd 2017; 77:756-764. [PMID: 28729745 DOI: 10.1055/s-0043-111899] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/21/2017] [Accepted: 05/22/2017] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION This study investigated subfertile patients with abnormally thin endometrium after infertility treatment. As they had adequate serum concentrations of hormones, an endometrial factor for subfertility was suspected. METHODS To elucidate the cause of subfertility, endometrial biopsies were taken in each patient in the late proliferative and mid-secretory phases of one menstrual cycle. Endometrial biopsies from women with normal menstrual cycles and confirmed fertility who were undergoing hysterectomy for benign uterine disease were used as positive controls. The tissue samples were investigated for steroid hormone receptor expression and for the proliferation marker Ki-67. Immunohistochemistry was performed with antibodies against the marker molecules for endometrial receptivity - β 3 integrin, VEGF, LIF, and CD56 (large granular lymphocytes, LGLs). RESULTS The steroid hormone receptors for estrogen (E2) and progesterone (P) were expressed normally (at the first biopsy) and were down-regulated (at the second biopsy) within the cycle. Strikingly, all of the marker molecules investigated showed negative or weak and inadequate expression in the mid-secretory phase. Numbers of LGLs remained as low as in the proliferative phase. In contrast, fertile patients were found to express these marker molecules distinctly in the mid-secretory phase. CONCLUSIONS It may be hypothesized that a severe deficiency of these angiogenesis-related marker molecules leads to defective development of the endometrium, which remains thin. Deficient angiogenetic development may thus provide an explanation for the endometrial factor that causes infertility. Further investigations will need to focus on identifying the regulating factors that act between steroid receptor activation and the expression of these marker molecules.
Collapse
Affiliation(s)
- Joachim Alfer
- Institute of Pathology, Kaufbeuren-Ravensburg, Ravensburg, Germany
| | - Lars Happel
- Institute of Reproductive Medicine, IVF-Saar, Saarbrücken, Germany
| | - Ralf Dittrich
- Department of Obstetrics and Gynecology, Erlangen University Hospital Friedrich-Alexander Universität, Erlangen-Nürnberg, Germany
| | - Matthias W Beckmann
- Department of Obstetrics and Gynecology, Erlangen University Hospital Friedrich-Alexander Universität, Erlangen-Nürnberg, Germany
| | - Arndt Hartmann
- Department of Pathology, Erlangen University Hospital Friedrich-Alexander Universität, Erlangen-Nürnberg, Germany
| | - Andreas Gaumann
- Institute of Pathology, Kaufbeuren-Ravensburg, Ravensburg, Germany
| | - Volker U Buck
- Institute of Molecular and Cellular Anatomy, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Irmgard Classen-Linke
- Institute of Molecular and Cellular Anatomy, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
23
|
Heat shock protein-27 (HSP27) regulates STAT3 and eIF4G levels in first trimester human placenta. J Mol Histol 2016; 47:555-563. [DOI: 10.1007/s10735-016-9699-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/27/2016] [Indexed: 12/31/2022]
|
24
|
Phosphoinositide 3-Kinase (PI3K) Subunit p110δ Is Essential for Trophoblast Cell Differentiation and Placental Development in Mouse. Sci Rep 2016; 6:28201. [PMID: 27306493 PMCID: PMC4910077 DOI: 10.1038/srep28201] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 05/31/2016] [Indexed: 12/24/2022] Open
Abstract
Maternal PI3K p110δ has been implicated in smaller litter sizes in mice, but its underlying mechanism remains unclear. The placenta is an indispensable chimeric organ that supports mammalian embryonic development. Using a mouse model of genetic inactivation of PI3K p110δ (p110δD910A/D910A), we show that fetuses carried by p110δD910A/D910A females were growth retarded and showed increased mortality in utero mainly during placentation. The placentas in p110δD910A/D910A females were anomalously anemic, exhibited thinner spongiotrophoblast layer and looser labyrinth zone, which indicate defective placental vasculogenesis. In addition, p110δ was detected in primary trophoblast giant cells (P-TGC) at early placentation. Maternal PI3K p110δ inactivation affected normal TGCs generation and expansion, impeded the branching of chorioallantoic placenta but enhanced the expression of matrix metalloproteinases (MMP-2, MMP-12). Poor vasculature support for the developing fetoplacental unit resulted in fetal death or gross growth retardation. These data, taken together, provide the first in vivo evidence that p110δ may play an important role in placental vascularization through manipulating trophoblast giant cell.
Collapse
|