1
|
Asadi N, Navapour L, Mogharrab N, Yousefi E, Khademvatan S, Taheri-Anganeh M. Designing of a Multi-Epitope Antigen for Toxocariasis Diagnosis: An in Silico Approach. Acta Parasitol 2025; 70:85. [PMID: 40198410 DOI: 10.1007/s11686-025-01027-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/24/2025] [Indexed: 04/10/2025]
Abstract
BACKGROUND Toxoariasis is recognized as one of the most widespread diseases affecting both animals and humans, exhibiting a global distribution. In light of the public health challenges it poses, particularly for children infected with Toxocara canis, the development of effective diagnostic tests or vaccines is of paramount importance. Serological methods are routinely employed to detect specific anti-Toxocara antibodies in infected individuals. This bioinformatics study aims to formulate a multi-epitope protein for Toxocara canis, leveraging various immunoinformatics web servers to enhance the accuracy of serodiagnosis. METHODS The identification of linear and conformational B-cell epitopes for the antigens TES-26, TES-30, and TES-120 was conducted using the ABCpred and BepiPred servers. Various web servers were employed to evaluate antigenicity, solubility, and physicochemical properties, as well as to examine secondary and tertiary structures, enhance the three-dimensional model, and confirm the findings. RESULTS This process led to the identification of conformational B-cell epitopes, aimed at exploring possible protein-antibody interactions. CONCLUSION Ultimately, further experimental investigations are essential for this multi-epitope construct before it can be incorporated into commercial serodiagnosis kits.
Collapse
Affiliation(s)
- Negar Asadi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Navapour
- Biophysics and Computational Biology Laboratory (BCBL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Navid Mogharrab
- Biophysics and Computational Biology Laboratory (BCBL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Elham Yousefi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Medical Parasitology and Mycology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shahram Khademvatan
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Medical Parasitology and Mycology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
2
|
Dziedziech A, Krupa E, Persson KEM, Paul R, Bonnet S. Tick exposure biomarkers: A One Health approach to new tick surveillance tools. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2024; 6:100212. [PMID: 39286798 PMCID: PMC11404153 DOI: 10.1016/j.crpvbd.2024.100212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024]
Abstract
The spread of tick-borne disease (TBD) is escalating globally, driven by climate change and socio-economic shifts, underlining the urgency to improve surveillance, diagnostics, and control strategies. Ticks can transmit a range of pathogens increasing the risk of transmission of human and veterinary diseases such as Lyme disease, tick-borne encephalitis, theileriosis, anaplasmosis, or Crimean-Congo hemorrhagic fever. Surveillance methods play a crucial role in monitoring the spread of tick-borne pathogens (TBP). However, there are shortcomings in the current surveillance methods regarding risks related to ticks. Human-tick encounters offer a novel metric for disease risk assessment, integrating human behavior into traditional surveillance models. However, to more reliably measure tick exposure, a molecular marker is needed. The identification of antibodies against arthropod salivary proteins as biomarkers for vector exposure represents a promising avenue for enhancing existing diagnostic and surveillance metrics. Here we explore how the use of tick saliva biomarkers targeting recombinant proteins and synthetic peptides could significantly improve the assessment of TBD transmission risk and the effectiveness of vector control measures. With focused efforts on creating a biomarker against tick exposure suitable for humans and domestic animals alike, tick surveillance, diagnosis and control would be more achievable and aid in reducing the mounting threat of TBP through a One Health lens.
Collapse
Affiliation(s)
- Alexis Dziedziech
- Institut Pasteur, Université Paris Cité, CNRS UMR 2000, INRAE USC 1510, Ecology and Emergence of Arthropod-borne Pathogens Unit, F-75015, Paris, France
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Eva Krupa
- Institut Pasteur, Université Paris Cité, CNRS UMR 2000, INRAE USC 1510, Ecology and Emergence of Arthropod-borne Pathogens Unit, F-75015, Paris, France
| | - Kristina E M Persson
- Department of Laboratory Medicine, Lund University, Lund, Sweden
- Clinical Chemistry and Pharmacology, Laboratory Medicine, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Richard Paul
- Institut Pasteur, Université Paris Cité, CNRS UMR 2000, INRAE USC 1510, Ecology and Emergence of Arthropod-borne Pathogens Unit, F-75015, Paris, France
| | - Sarah Bonnet
- Institut Pasteur, Université Paris Cité, CNRS UMR 2000, INRAE USC 1510, Ecology and Emergence of Arthropod-borne Pathogens Unit, F-75015, Paris, France
| |
Collapse
|
3
|
Zheng P, Liao B, Yang J, Cheng H, Cheng ZJ, Huang H, Luo W, Sun Y, Zhu Q, Deng Y, Yang L, Zhou Y, Wu W, Wu S, Cai W, Li Y, Mo X, Tan X, Li L, Ma H, Sun B. Utilizing Protein-Peptide Hybrid Microarray for Time-Resolved Diagnosis and Prognosis of COVID-19. Microorganisms 2023; 11:2436. [PMID: 37894092 PMCID: PMC10609375 DOI: 10.3390/microorganisms11102436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
The COVID-19 pandemic has highlighted the urgent need for accurate, rapid, and cost-effective diagnostic methods to identify and track the disease. Traditional diagnostic methods, such as PCR and serological assays, have limitations in terms of sensitivity, specificity, and timeliness. To investigate the potential of using protein-peptide hybrid microarray (PPHM) technology to track the dynamic changes of antibodies in the serum of COVID-19 patients and evaluate the prognosis of patients over time. A discovery cohort of 20 patients with COVID-19 was assembled, and PPHM technology was used to track the dynamic changes of antibodies in the serum of these patients. The results were analyzed to classify the patients into different disease severity groups, and to predict the disease progression and prognosis of the patients. PPHM technology was found to be highly effective in detecting the dynamic changes of antibodies in the serum of COVID-19 patients. Four polypeptide antibodies were found to be particularly useful for reflecting the actual status of the patient's recovery process and for accurately predicting the disease progression and prognosis of the patients. The findings of this study emphasize the multi-dimensional space of peptides to analyze the high-volume signals in the serum samples of COVID-19 patients and monitor the prognosis of patients over time. PPHM technology has the potential to be a powerful tool for tracking the dynamic changes of antibodies in the serum of COVID-19 patients and for improving the diagnosis and prognosis of the disease.
Collapse
Affiliation(s)
- Peiyan Zheng
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (P.Z.); (Z.J.C.); (H.H.); (W.L.); (S.W.)
| | - Baolin Liao
- Guangzhou Institute of Clinical Medicine of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China; (B.L.); (W.C.); (Y.L.); (X.M.); (X.T.); (L.L.)
| | - Jiao Yang
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; (J.Y.); (H.C.); (Y.S.); (Y.D.); (L.Y.); (Y.Z.); (W.W.)
| | - Hu Cheng
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; (J.Y.); (H.C.); (Y.S.); (Y.D.); (L.Y.); (Y.Z.); (W.W.)
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Zhangkai J. Cheng
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (P.Z.); (Z.J.C.); (H.H.); (W.L.); (S.W.)
| | - Huimin Huang
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (P.Z.); (Z.J.C.); (H.H.); (W.L.); (S.W.)
| | - Wenting Luo
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (P.Z.); (Z.J.C.); (H.H.); (W.L.); (S.W.)
| | - Yiyue Sun
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; (J.Y.); (H.C.); (Y.S.); (Y.D.); (L.Y.); (Y.Z.); (W.W.)
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences, Guangzhou 510530, China;
| | - Yi Deng
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; (J.Y.); (H.C.); (Y.S.); (Y.D.); (L.Y.); (Y.Z.); (W.W.)
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Lan Yang
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; (J.Y.); (H.C.); (Y.S.); (Y.D.); (L.Y.); (Y.Z.); (W.W.)
| | - Yuxi Zhou
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; (J.Y.); (H.C.); (Y.S.); (Y.D.); (L.Y.); (Y.Z.); (W.W.)
| | - Wenya Wu
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; (J.Y.); (H.C.); (Y.S.); (Y.D.); (L.Y.); (Y.Z.); (W.W.)
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Shanhui Wu
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (P.Z.); (Z.J.C.); (H.H.); (W.L.); (S.W.)
| | - Weiping Cai
- Guangzhou Institute of Clinical Medicine of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China; (B.L.); (W.C.); (Y.L.); (X.M.); (X.T.); (L.L.)
| | - Yueping Li
- Guangzhou Institute of Clinical Medicine of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China; (B.L.); (W.C.); (Y.L.); (X.M.); (X.T.); (L.L.)
| | - Xiaoneng Mo
- Guangzhou Institute of Clinical Medicine of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China; (B.L.); (W.C.); (Y.L.); (X.M.); (X.T.); (L.L.)
| | - Xinghua Tan
- Guangzhou Institute of Clinical Medicine of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China; (B.L.); (W.C.); (Y.L.); (X.M.); (X.T.); (L.L.)
| | - Linghua Li
- Guangzhou Institute of Clinical Medicine of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China; (B.L.); (W.C.); (Y.L.); (X.M.); (X.T.); (L.L.)
| | - Hongwei Ma
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; (J.Y.); (H.C.); (Y.S.); (Y.D.); (L.Y.); (Y.Z.); (W.W.)
| | - Baoqing Sun
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (P.Z.); (Z.J.C.); (H.H.); (W.L.); (S.W.)
| |
Collapse
|
4
|
Xu W, Chen H, Li Y, Cheng H, Deng Y, Zheng P, Li J, Yang L, He S, Ma D, Zhu Q, Gu D, Han J, Sun B, Ma H. Removing Negative Impacts from Inevitable Nonreproducible and Nonspecific Antibody-Probe Interactions in Viral Serology. Anal Chem 2023; 95:1867-1879. [PMID: 36606691 DOI: 10.1021/acs.analchem.2c03637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Serological assays are indispensable tools in public health. Presently deployed serological assays, however, largely overlook research progress made in the last two decades that jeopardizes the conceptual foundation of these assays, i.e., antibody (Ab) specificity. Challenges to traditional understanding of Ab specificity include Ab polyspecificity and most recently nonreproducible Ab-probe interactions (NRIs). Here, using SARS-CoV-2 and four common livestock viruses as a test bed, we developed a new serological platform that integrates recent understanding about Ab specificity. We first demonstrate that the response rate (RR) from a large-sized serum pool (∼100) is not affected by NRIs or by nonspecific Ab-probe interactions (NSIs), so RR can be incorporated into the diagnostic probe selection process. We subsequently used multiple probes (configured as a "protein peptide hybrid microarray", PPHM) to generate a digital microarray index (DMI) and finally demonstrated that DMI-based analysis yields an extremely robust probabilistic trend that enables accurate diagnosis of viral infection that overcomes multiple negative impacts exerted by NSI/NRI. Thus, our study with SARS-CoV-2 confirms that the PPHM-RR-DMI platform enables very rapid development of serological assays that outperform traditional assays (for both sensitivity and specificity) and supports that the platform is extendable to other viruses.
Collapse
Affiliation(s)
- Wenwen Xu
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Hao Chen
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yiting Li
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Hu Cheng
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Nano Science and Technology Institute, University of science and technology of China, Suzhou 215123, China
| | - Yi Deng
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Nano Science and Technology Institute, University of science and technology of China, Suzhou 215123, China
| | - Peiyan Zheng
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Jingzhi Li
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Lan Yang
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Shiping He
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Dongli Ma
- Shenzhen Engineering Laboratory for High-throughput Gene Sequencing of Pathogens, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Dayong Gu
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Jun Han
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Baoqing Sun
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Hongwei Ma
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
5
|
Movahedpour A, Mostafavi-Pour Z, Sarkari B, Taheri-Anganeh M, Nezafat N, Savardashtaki A, Ghasemi Y. Designing a Multi-Epitope Antigen for Serodiagnosis of Strongyloides stercoralis Based on L3Nie.01 and IgG Immunoreactive Epitopes. Avicenna J Med Biotechnol 2022; 14:114-124. [PMID: 35633984 PMCID: PMC9077661 DOI: 10.18502/ajmb.v14i2.8886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/30/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Serological diagnosis of Strongyloides stercoralis (S. stercoralis) is fre-quently challenging because of cross-reactivity with other parasitic nematodes. Therefore, it is necessary to introduce novel serological tests with high performance to properly diagnose this neglected parasitic infection. The purpose of the current study was to design a multi-epitope construct for the diagnosis of S. stercoralis. METHODS For the purpose of this study, first, highly antigenic segments and potential immunodominant epitopes of S. stercoralis were identified from two antigenic proteins, and then all of the selected parts were linked by an appropriate linker. Next, the physicochemical features of the designed construct were analyzed. Then, tertiary structures of the construct were built and evaluated to find out the best one. Lastly, the amino acid sequence was reverse-translated and optimized for over-expression in Escherchia coli (E. coli). RESULTS The bioinformatic evaluation indicated that the designed protein construct could be hydrophilic, thermostable, and acidic and the estimated half-life was more than 10 hr in E. coli. CONCLUSION According to the results of the study, the designed construct could be used as an efficient antigen in the ELISA system for serological diagnosis of human strong-yloidiasis.
Collapse
Affiliation(s)
- Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zohreh Mostafavi-Pour
- Recombinant Protein Laboratory, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahador Sarkari
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Pan J, Yang L, Wu W, Li J, Cheng H, Li Y, Xu W, Xue Q, Zhou Y, Peng D, Qiu J, Ma H. Previously Unrecognized Nonreproducible Antibody-Probe Interactions. Anal Chem 2022; 94:1974-1982. [PMID: 35044162 DOI: 10.1021/acs.analchem.1c03264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Antibody-antigen (Ab-Ag) interactions are canonically described by a model that exclusively accommodates noninteraction (0) or reproducible interaction (RI) states, yet this model is inadequate to explain often-encountered nonreproducible signals. Here, by monitoring diverse experimental systems using a peptide-protein hybrid microarray, we observed that Ab-probe interactions comprise a substantial proportion of nonreproducible antibody-based results. This enabled our discovery and capacity to reliably identify nonreproducible Ab-probe interactions (NRIs), as well as our development of a powerful explanatory model ("0-NRI-RI-Hook four-state model") that is mAb concentration-dependent, regardless of specificity, which ultimately shows that both nonspecific interactions and NRIs are not predictable yet certain to happen. Our discoveries challenge the centrality of Ab-Ag interaction specificity data in serology and immunology.
Collapse
Affiliation(s)
- Jiaojiao Pan
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Lan Yang
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Wenya Wu
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Jingzhi Li
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Hu Cheng
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Yiting Li
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Wenwen Xu
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Qinghong Xue
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Youxin Zhou
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Jiwan Qiu
- Qyuns Therapeutics, Taizhou 225316, China
| | - Hongwei Ma
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
7
|
Gu S, Liu Z, Lin L, Zhong S, Ma Y, Li X, Ye G, Wen C, Li Y, Tang L. Identification and Mapping of HBsAg Loss-Related B-Cell Linear Epitopes in Chronic HBV Patients by Peptide Array. Front Immunol 2021; 12:767000. [PMID: 34721439 PMCID: PMC8554339 DOI: 10.3389/fimmu.2021.767000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/29/2021] [Indexed: 01/05/2023] Open
Abstract
Identification of immunogenic targets against hepatitis B virus (HBV)-encoded proteins will provide crucial advances in developing potential antibody therapies. In this study, 63 treatment-naïve patients with chronic HBV infection and 46 patients who achieved hepatitis B surface antigen loss (sAg loss) following antiviral treatment were recruited. Moreover, six patients who transitioned from the hepatitis B e antigen-positive chronic infection phase (eAg+CInf) to the hepatitis phase (eAg+CHep) were enrolled from real-life clinical practice. Additionally, telbivudine-treated eAg+CHep patients and relapsers or responders from an off-treatment cohort were longitudinally studied. The frequencies and function of B cells were assessed by flow cytometry. We devised a peptide array composed of 15-mer overlapping peptides of HBV-encoded surface (S), core (C), and polymerase (P) proteins and performed a screening on B-cell linear epitopes with sera. Naïve B cells and plasmablasts were increased, whereas total memory, activated memory (AM), and atypical memory (AtM) B cells were reduced in sAg- patients compared with sAg+ patients. Importantly, longitudinal observations found that AtM B cells were associated with successful treatment withdrawal. Interestingly, we identified six S-specific dominant epitopes (S33, S34, S45, S76, S78, and S89) and one C-specific dominant epitope (C37) that reacted with the majority of sera from sAg- patients. Of note, more B-cell linear epitopes were detected in CHep patients with alanine aminotransferase (ALT) flares than in nonflare CInf patients, and five B-cell linear epitopes (S4, S5, S10, S11, and S68) were overwhelmingly recognized by ALT flare patients. The recognition rates of epitopes on C and P proteins were significantly increased in CHep patients relative to CInf patients. Strikingly, a statistically significant elevation in the number of positive epitopes was observed when ALT nonflare patients shifted into the flare phase. Moreover, S76 identified at baseline was confirmed to be associated with a complete response after 48 weeks of telbivudine therapy. Taken together, we identified several functional cure-related B-cell linear epitopes of chronic HBV infection, and these epitopes may serve as vaccine candidates to elicit neutralizing antibodies to treat HBV infection.
Collapse
Affiliation(s)
- Shuqin Gu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhipeng Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Lin
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shihong Zhong
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanchen Ma
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyi Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guofu Ye
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chunhua Wen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongyin Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Libo Tang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Stability Assessment of Four Chimeric Proteins for Human Chagas Disease Immunodiagnosis. BIOSENSORS-BASEL 2021; 11:bios11080289. [PMID: 34436091 PMCID: PMC8391164 DOI: 10.3390/bios11080289] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/24/2022]
Abstract
The performance of an immunoassay relies on antigen-antibody interaction; hence, antigen chemical stability and structural integrity are paramount for an efficient assay. We conducted a functional, thermostability and long-term stability analysis of different chimeric antigens (IBMP), in order to assess effects of adverse conditions on four antigens employed in ELISA to diagnose Chagas disease. ELISA-based immunoassays have served as a model for biosensors development, as both assess molecular interactions. To evaluate thermostability, samples were heated and cooled to verify heat-induced denaturation reversibility. In relation to storage stability, the antigens were analyzed at 25 °C at different moments. Long-term stability tests were performed using eight sets of microplates sensitized. Antigens were structurally analyzed through circular dichroism (CD), dynamic light scattering, SDS-PAGE, and functionally evaluated by ELISA. Data suggest that IBMP antigens are stable, over adverse conditions and for over a year. Daily analysis revealed minor changes in the molecular structure. Functionally, IBMP-8.2 and IBMP-8.3 antigens showed reactivity towards anti-T. cruzi antibodies, even after 72 h at 25 °C. Long-term stability tests showed that all antigens were comparable to the control group and all antigens demonstrated stability for one year. Data suggest that the antigens maintained their function and structural characteristics even in adverse conditions, making them a sturdy and reliable candidate to be employed in future in vitro diagnostic tests applicable to different models of POC devices, such as modern biosensors in development.
Collapse
|
9
|
Alghamdi MF, Redwan EM. Advances in the diagnosis of autoimmune diseases based on citrullinated peptides/proteins. Expert Rev Mol Diagn 2021; 21:685-702. [PMID: 34024239 DOI: 10.1080/14737159.2021.1933946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: Autoimmune diseases are still one of the hard obstacles associated with humanity. There are many exogenous and endogenous etiological factors behind autoimmune diseases, which may be combined or dispersed to stimulate the autoimmune responses. Protein citrullination represents one of these factors. Harnessing specific citrullinated proteins/peptides could early predict and/or diagnose some of the autoimmune diseases. Many generations of diagnostic tools based on citrullinated peptides with comparable specificity/sensitivity are available worldwide.Areas covered: In this review, we discuss the deimination reaction behind the citrullination of most known autoantigens targeted, different generations of diagnostic tools based on citrullinated probes with specificity/sensitivity of each as well as newly developed assays. Furthermore, the most advanced molecular analytical tools to detect the citrullinated residues in the biological fluid and their performance are also evaluated, providing new avenues to early detect autoimmune diseases with high accuracy.Expert opinion: With the current specificity/sensitivity tools available for autoimmune disease detection, emphasis must be placed on developing more advance and effective, early, rapid, and simple diagnostic devices for autoimmune disease monitoring (similar to a portable device for sugar test at home). The molecular analytical devices with dual and/or multiplexe functions should be more simplified and invested in clinical laboratories.
Collapse
Affiliation(s)
- Mohammed F Alghamdi
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Laboratory Department, University Medical Services Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Elrashdy M Redwan
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria, Egypt
| |
Collapse
|
10
|
Wang Q, Sun Z, Li J, Qin T, Ma H, Chen S, Peng D, Liu X. Identification of a universal antigen epitope of influenza A virus using peptide microarray. BMC Vet Res 2021; 17:22. [PMID: 33413356 PMCID: PMC7792037 DOI: 10.1186/s12917-020-02725-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 12/15/2020] [Indexed: 02/08/2023] Open
Abstract
Background Hemagglutinin is a major surface protein in influenza A virus (IAV), and HA2 is relative conserved among different IAVs. It will be meaningful to identify broad-spectrum epitopes based on the HA2 protein. Results Overlapping peptides of the HA2 protein of the H5N1 IAV A/Mallard/Huadong/S/2005 were synthesized and loaded on modified silica gel film to form a microarray, and antisera against different subtypes of IAVs were used to screen universal epitopes. The selected epitope was further confirmed by western blotting using anti-peptide immune serum and viruses rescued with amino acid substitution. The results showed that 485-FYHKCDNECME-495 of the H5 14th peptide in HA2 had broad-spectrum binding activity with antisera against H1, H3, H4, H5, H6, H7, H8, H9, and H10 subtype IAV. Substitution of amino acids (K or D) in rescued viruses resulted in decreased serum binding, indicating that they were critical residues for serum binding activity. In Immune Epitope Database, some epitopes containing 14–4 peptide were confirmed as MHC-II-restricted CD4 T cell epitope and had effects on releasing IL-2 or IFN. Conclusion The identified epitope should be a novel universal target for detection and vaccine design and its ability to generate immune protection needs further exploration. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-020-02725-5.
Collapse
Affiliation(s)
- Qiuxia Wang
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Zhihao Sun
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Jingzhi Li
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215000, People's Republic of China
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Hongwei Ma
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215000, People's Republic of China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China. .,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China. .,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, 225009, Jiangsu, People's Republic of China. .,Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou, Jiangsu, 225009, People's Republic of China.
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China. .,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China. .,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, 225009, Jiangsu, People's Republic of China. .,Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou, Jiangsu, 225009, People's Republic of China.
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China.,Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou, Jiangsu, 225009, People's Republic of China
| |
Collapse
|
11
|
Wang J, Dong R, Zou P, Chen Y, Li N, Wang Y, Zhang T, Pan X. Identification of a Novel Linear B Cell Epitope on the Sao Protein of Streptococcus suis Serotype 2. Front Immunol 2020; 11:1492. [PMID: 32765516 PMCID: PMC7381117 DOI: 10.3389/fimmu.2020.01492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/08/2020] [Indexed: 12/02/2022] Open
Abstract
Surface antigen one (Sao) protein is a bacterial surface protein identified in the important zoonotic pathogen Streptococcus suis serotype 2 (S. suis 2) during an extensive search for functional proteins. The Sao protein is anchored to the bacterial cell wall by the LPVTG motif and is widely distributed in many S. suis serotypes. In this paper, we present the immunodominant epitope peptide of the Sao protein that is recognized by BALB/c antibodies against the Sao protein: 355SEKQMPSVVNENAVTPEKQMTNKENDNIET384 (location Sao355−384). To determine the core epitope recognized by antibodies, we prepared truncation peptide libraries. Analyses of the immunoreactivity of truncation peptides with anti-Sao355−384 serum revealed that the most immunoreactive sequence was 355SEKQMPSVVNENAVTPEK372 (location Sao355−372). Moreover, we observed that this core epitope also showed good specificity based on the ratio of reactivity with serum from S. suis–positive patients compared to serum from S. suis–negative patients. Our results point to the potential of using the Sao355−372 peptide in diagnostic assays to determine S. suis infection in humans.
Collapse
Affiliation(s)
- Jing Wang
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Ruirui Dong
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Ping Zou
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Yuejuan Chen
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Na Li
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Yao Wang
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Ting Zhang
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Xiuzhen Pan
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics, Nanjing, China
| |
Collapse
|
12
|
In Silico Design and Validation of OvMANE1, a Chimeric Antigen for Human Onchocerciasis Diagnosis. Pathogens 2020; 9:pathogens9060495. [PMID: 32580355 PMCID: PMC7350323 DOI: 10.3390/pathogens9060495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 02/06/2023] Open
Abstract
The public health goal of onchocerciasis in Africa has advanced from control to elimination. In this light, accurate diagnosis is necessary to determine treatment endpoints and confirm elimination, as well as to conduct surveillance for the identification of any possible recrudescence of the disease. Currently, the monitoring of onchocerciasis elimination relies on the Ov-16 test. However, this test is unable to discriminate between past and active infections. Furthermore, about 15-25% of infected persons are reported to be negative for the Ov-16 test, giving a misleading sense of security to false-negative individuals who might continue to serve as reservoirs for infections. Therefore, we opted to design and validate a more sensitive and specific chimeric antigen (OvMANE1) for onchocerciasis diagnosis, using previously reported immunodominant peptides of O. volvulus, the parasite responsible for the disease. In silico analysis of OvMANE1 predicted it to be more antigenic than its individual peptides. We observed that OvMANE1 reacts specifically and differentially with sera from O. volvulus infected and non-infected individuals, as well as with sera from communities of different levels of endemicity. Moreover, we found that total IgG, unlike IgG4 subclass, positively responded to OvMANE1, strongly suggesting its complementarity to the Ov-16 diagnostic tool, which detects Ov-16 IgG4 antibodies. Overall, OvMANE1 exhibited the potential to be utilized in the development of specific diagnostic tools-based on both antibody capture and antigen capture reactions-which are indispensable to monitor the progress of onchocerciasis elimination programs.
Collapse
|
13
|
Epitope-Containing Short Peptides Capture Distinct IgG Serodynamics That Enable Differentiating Infected from Vaccinated Animals for Live-Attenuated Vaccines. J Virol 2020; 94:JVI.01573-19. [PMID: 31896600 PMCID: PMC7158722 DOI: 10.1128/jvi.01573-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/16/2019] [Indexed: 12/25/2022] Open
Abstract
Differentiating infected from vaccinated animals (DIVA) strategies have been central enabling techniques in several successful viral disease elimination programs. However, owing to their long and uncertain development process, no DIVA-compatible vaccines are available for many important diseases. We report herein a new DIVA strategy based on hybrid protein-peptide microarrays which can theoretically work with any vaccine. Leading from our findings from peste des petits ruminants (PPR) virus, we found 4 epitope-containing short peptides (ECSPs) which have distinct IgG serodynamics: anti-ECSP IgGs only exist for 10 to 60 days postvaccination (dpv), while anti-protein IgGs remained at high levels for >1,000 dpv. These data enabled the design of a DIVA diagnostic microarray containing 4 ECSPs and 3 proteins, which, unlike competitive enzyme-linked immunosorbent assay (cELISA) and virus neutralization tests (VNTs), enables ongoing monitoring of serological differences between vaccinated individuals and individuals exposed to the pathogen. For 25 goats after 60 dpv, 13 were detected with positive anti-ECSP IgGs, indicating recent infections in vaccinated goat herds. These DIVA diagnostic microarrays will almost certainly facilitate eradication programs for (re)emerging pathogens and zoonoses.IMPORTANCE Outbreaks of infectious diseases caused by viruses, such as pseudorabies (PR), foot-and-mouth disease (FMD), and PPR viruses, led to economic losses reaching billions of dollars. Both PR and FMD were eliminated in several countries via large-scale vaccination programs using DIVA-compatible vaccines, which lack the gE protein and nonstructural proteins, respectively. However, there are still extensive challenges facing the development and deployment of DIVA-compatible vaccines because they are time-consuming and full of uncertainty. Further, the negative marker strategy used for DIVA-compatible vaccines is no longer functional for live-attenuated vaccines. To avoid these disadvantageous scenarios, a new strategy is desired. Here, we made the exciting discovery that different IgG serodynamics can be monitored when using protein-based assays versus arrays comprising ECSPs. This DIVA microarray strategy should, in theory, work for any vaccine.
Collapse
|
14
|
Rahman KS, Kaltenboeck B. Multi-peptide ELISAs overcome cross-reactivity and inadequate sensitivity of conventional Chlamydia pneumoniae serology. Sci Rep 2019; 9:15078. [PMID: 31636331 PMCID: PMC6803651 DOI: 10.1038/s41598-019-51501-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022] Open
Abstract
Cross-reactivity of classical chlamydial antigens compromises Chlamydia (C.) pneumoniae serology. By testing with 185 human antisera, we expanded 18 previously discovered C. pneumoniae-specific B-cell epitopes to 48 peptide antigens from 12 C. pneumoniae immunodominant proteins. For specific detection of antibodies against C. pneumoniae, we developed novel ELISAs with strongly reactive individual peptide antigens and mixtures of these peptides. By comparison to a composite reference standard (CRS) for anti-C. pneumoniae antibody status of human sera, the top-performing CpnMixF12 peptide assay showed 91% sensitivity at 95% specificity, significantly higher than 4 commercial anti-C. pneumoniae IgG ELISAs (36-12% sensitivity at 95% specificity). Human C. pneumoniae (Cpn) and C. trachomatis (Ctr) seroreactivity was 54% biased towards co-positivity in commercial Cpn and Ctr ELISAs, but unbiased in Cpn and Ctr peptide antibody assays, suggesting severe cross-reactivity of commercial ELISAs. Using hyperimmune mouse sera against each of 11 Chlamydia spp., we confirm that commercial Cpn and Ctr ELISA antigens are cross-reactive among all Chlamydia spp., but Cpn and Ctr peptide antigens react only with antisera against the cognate chlamydial species. With simultaneously high specificity and sensitivity, and convenient use for non-specialized laboratories, these ELISAs have the potential to improve serodiagnosis of C. pneumoniae infection.
Collapse
Affiliation(s)
- Kh Shamsur Rahman
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.
| | - Bernhard Kaltenboeck
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| |
Collapse
|
15
|
Wu H, Deng Z, Wang H, Li X, Sun T, Tao Z, Yao L, Jin Y, Wang X, Yang L, Ma H, Huang Y, Zhou Y, Du Z. MGMT autoantibodies as a potential prediction of recurrence and treatment response biomarker for glioma patients. Cancer Med 2019; 8:4359-4369. [PMID: 31210005 PMCID: PMC6675704 DOI: 10.1002/cam4.2346] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/31/2019] [Accepted: 06/01/2019] [Indexed: 12/11/2022] Open
Abstract
Background Cancer‐specific autoantibodies found in serum of cancer patients have been characterized as potential predictors of the high risk of recurrence and treatment response. The objective of this study is to investigate the clinical utility of serum O‐6‐methylguanine‐DNA methyltransferase (MGMT) autoantibodies as novel biomarkers for prediction of recurrence and treatment response for glioma through MGMT peptides microarray. Methods A total of 201 serum samples of glioma patients with various WHO grade and 311 serum samples of healthy donors were examined for the detection of MGMT autoantibodies by peptides microarray. The clinical value of MGMT autoantibodies was studied through univariable and multivariable analyses. Results Autoantibodies to MGMT peptides were detected in sera from glioma patients and five highly responsive autoantibodies to peptides were identified in the glioma group. The positive rate of MGMT autoantibody to 20 peptides in glioma groups is compared with healthy individuals, the positive rate of MGMT‐02 (45%), MGMT‐04 (27%), MGMT‐07 (21%), MGMT‐10 (13%), and MGMT‐18 (24%) were significantly elevated in patients with glioma. MGMT autoantibody and its protein expression exhibited a significant correlation. The levels of MGMT autoantibodies decreased on the 30th day after operation, reaching preoperative levels, similar to those when tumor recurrence developed. Univariable and multivariable analyses revealed that the only preoperative autoantibodies to MGMT‐02 peptide were independently correlated with recurrence‐free survival. Preoperative seropositive patients were more likely than seronegative patients to have shorter recurrence times and to be resistant to chemoradiotherapy or chemotherapy with temozolomide. Conclusion Monitoring the levels of preoperative serum autoantibodies to MGMT‐02 peptide was useful for predicting patients at high risk of recurrence and treatment response.
Collapse
Affiliation(s)
- Haibin Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu
| | - Zhitong Deng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu
| | - Hao Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu
| | - Xuetao Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu
| | - Ting Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu
| | - Zhennan Tao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu
| | - Lin Yao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu
| | - Yanping Jin
- Nano-Bio-Chem Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu
| | - Xiaoying Wang
- Nano-Bio-Chem Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu
| | - Lan Yang
- Nano-Bio-Chem Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu
| | - Hongwei Ma
- Nano-Bio-Chem Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu
| | - Yulun Huang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu
| | - Youxin Zhou
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu
| | - Ziwei Du
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu
| |
Collapse
|
16
|
Zhang H, Song Z, Yu H, Zhang X, Xu S, Li Z, Li J, Xu H, Yuan Z, Ma H, Yi Z, Hu Y. Genome-wide linear B-cell epitopes of enterovirus 71 in a hand, foot and mouth disease (HFMD) population. J Clin Virol 2018; 105:41-48. [PMID: 29886372 DOI: 10.1016/j.jcv.2018.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND Enteroviruses cause hand, foot and mouth disease (HFMD). The host B-cells recognize the viral proteins and provoke humoral responses. Deciphering the B-cell responses to the viral epitopes helps diagnosis and vaccine development. OBJECTIVES The objective of the present study was to investigate for the first time the landscape of genome-wide linear B-cell epitopes of enterovirus 71 in HFMD population. STUDY DESIGN The peptides encompassing the entire coding region of EV71 were chemically synthesized and displayed on a microarray. The peptide microarray was used to screen serum samples from an HFMD population, including EV71-, CAV10-, CAV16- and CAV6-infected patients. We identified the dominant epitope-containing-peptides (DECPs) that react with the sera of more than 20% of the HFMD population and the common DECPs that cross-react with the sera from other enteroviruses-infected population. RESULTS Ten DECPs reacting with IgM and 9 DECPs reacting with IgG antibodies were identified, of which, 6 IgM and 5 IgG common DECPs cross-reacted with the sera from other enteroviruses. Some DECPs preferentially reacted with IgG or IgM antibodies and some epitope-antibody interactions correlated with the severity of HFMD. CONCLUSIONS We uncovered the DECPs and the common DECPs among a group of enteroviruses in HFMD population and found that some epitope-antibody reactions were associated with the outcome of HFMD. These data may guide developing vaccines against the enteroviruses and help the diagnosis and prognosis of HFMD.
Collapse
Affiliation(s)
- Huiying Zhang
- Department of pathogen diagnosis and biosafety, Shanghai public health clinical center, Fudan University, Shanghai, 201508, PR China.
| | - Zhigang Song
- Department of pathogen diagnosis and biosafety, Shanghai public health clinical center, Fudan University, Shanghai, 201508, PR China.
| | - Huiju Yu
- Department of pediatrics infectious disease, Xinhua hospital affiliated to Shanghai Jiao Tong University School of medicine, Shanghai, 201508, PR China.
| | - Xiaoling Zhang
- Department of pathogen diagnosis and biosafety, Shanghai public health clinical center, Fudan University, Shanghai, 201508, PR China.
| | - Shanshan Xu
- Department of pediatrics infectious disease, Xinhua hospital affiliated to Shanghai Jiao Tong University School of medicine, Shanghai, 201508, PR China.
| | - Zhong Li
- Nano-Bio-Med department, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China.
| | - Jingzhi Li
- Nano-Bio-Med department, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China.
| | - Hongke Xu
- Nano-Bio-Med department, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China.
| | - Zhenghong Yuan
- Key Laboratory of medical molecular virology and department of medical microbiology, School of basic medical sciences, Shanghai medical college of Fudan University, Shanghai, 20003, PR China.
| | - Hongwei Ma
- Nano-Bio-Med department, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China.
| | - Zhigang Yi
- Department of pathogen diagnosis and biosafety, Shanghai public health clinical center, Fudan University, Shanghai, 201508, PR China; Key Laboratory of medical molecular virology and department of medical microbiology, School of basic medical sciences, Shanghai medical college of Fudan University, Shanghai, 20003, PR China.
| | - Yunwen Hu
- Department of pathogen diagnosis and biosafety, Shanghai public health clinical center, Fudan University, Shanghai, 201508, PR China.
| |
Collapse
|
17
|
A novel synthetic peptide microarray assay detects Chlamydia species-specific antibodies in animal and human sera. Sci Rep 2018; 8:4701. [PMID: 29549361 PMCID: PMC5856796 DOI: 10.1038/s41598-018-23118-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/05/2018] [Indexed: 12/22/2022] Open
Abstract
Serological analysis of Chlamydia (C.) spp. infections is still mainly based on micro-immunofluorescence and ELISA. To overcome the limitations of conventional serology, we have designed a novel microarray carrying 52 synthetic peptides representing B-cell epitopes from immunodominant proteins of all 11 chlamydial species. The new assay has been validated using monospecific mouse hyperimmune sera. Subsequently, serum samples from cattle, sheep and humans with a known history of chlamydial infection were examined. For instance, the specific humoral response of sheep to treatment with a C. abortus vaccine has been visualized against a background of C. pecorum carriership. In samples from humans, dual infection with C. trachomatis and C. pneumoniae could be demonstrated. The experiments revealed that the peptide microarray assay was capable of simultaneously identifying specific antibodies to each Chlamydia spp. The actual assay represents an open platform test that can be complemented through future advances in Chlamydia proteome research. The concept of the highly parallel multi-antigen microarray proven in this study has the potential to enhance our understanding of antibody responses by defining not only a single quantitative response, but also the pattern of this response. The added value of using peptide antigens will consist in unprecedented serodiagnostic specificity.
Collapse
|
18
|
Hajissa K, Zakaria R, Suppian R, Mohamed Z. An evaluation of a recombinant multiepitope based antigen for detection of Toxoplasma gondii specific antibodies. BMC Infect Dis 2017; 17:807. [PMID: 29284420 PMCID: PMC5747131 DOI: 10.1186/s12879-017-2920-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 12/14/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The inefficiency of the current tachyzoite antigen-based serological assays for the serodiagnosis of Toxoplasma gondii infection mandates the need for acquirement of reliable and standard diagnostic reagents. Recently, epitope-based antigens have emerged as an alternative diagnostic marker for the achievement of highly sensitive and specific capture antigens. In this study, the diagnostic utility of a recombinant multiepitope antigen (USM.TOXO1) for the serodiagnosis of human toxoplasmosis was evaluated. METHODS An indirect enzyme-linked immunosorbent assay (ELISA) was developed to evaluate the usefulness of USM.TOXO1 antigen for the detection of IgG antibodies against Toxoplasma gondii in human sera. Whereas the reactivity of the developed antigen against IgM antibody was evaluated by western blot and Dot enzyme immunoassay (dot-EIA) analysis. RESULTS The diagnostic performance of the new antigens in IgG ELISA was achieved at the maximum values of 85.43% and 81.25% for diagnostic sensitivity and specificity respectively. The USM.TOXO1 was also proven to be reactive with anti- T. gondii IgM antibody. CONCLUSIONS This finding makes the USM.TOXO1 antigen an attractive candidate for improving the toxoplasmosis serodiagnosis and demonstrates that multiepitope antigens could be a potential and promising diagnostic marker for the development of high sensitive and accurate assays.
Collapse
Affiliation(s)
- Khalid Hajissa
- Department of Zoology, Faculty of Science and Technology, Omdurman Islamic University, B.O.Box, 382, Omdurman, Sudan
| | - Robaiza Zakaria
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Rapeah Suppian
- Biomedicine Program, School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Zeehaida Mohamed
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
19
|
Gourlay L, Peri C, Bolognesi M, Colombo G. Structure and Computation in Immunoreagent Design: From Diagnostics to Vaccines. Trends Biotechnol 2017; 35:1208-1220. [PMID: 28739221 DOI: 10.1016/j.tibtech.2017.06.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 11/26/2022]
Abstract
Novel immunological tools for efficient diagnosis and treatment of emerging infections are urgently required. Advances in the diagnostic and vaccine development fields are continuously progressing, with reverse vaccinology and structural vaccinology (SV) methods for antigen identification and structure-based antigen (re)design playing increasingly relevant roles. SV, in particular, is predicted to be the front-runner in the future development of diagnostics and vaccines targeting challenging diseases such as AIDS and cancer. We review state-of-the-art methodologies for structure-based epitope identification and antigen design, with specific applicative examples. We highlight the implications of such methods for the engineering of biomolecules with improved immunological properties, potential diagnostic and/or therapeutic uses, and discuss the perspectives of structure-based rational design for the production of advanced immunoreagents.
Collapse
Affiliation(s)
- Louise Gourlay
- Dipartimento di Bioscienze, Università di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Claudio Peri
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Via Mario Bianco, 9, 20131, Milan, Italy
| | - Martino Bolognesi
- Dipartimento di Bioscienze, Università di Milano, Via Celoria 26, 20133, Milan, Italy; Centro di Ricerca Pediatrica Romeo ed Enrica Invernizzi, Università di Milano, Milan, Italy.
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Via Mario Bianco, 9, 20131, Milan, Italy.
| |
Collapse
|
20
|
Zhao X, Zhou Z, Chen Y, Chen W, Ma H, Pu J. Role of antibodies to human papillomavirus 16 in prostate cancer: A seroscreening by peptide microarray. Tumour Biol 2017; 39:1010428317698371. [PMID: 28618964 DOI: 10.1177/1010428317698371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Evidence is accumulating in estimating the potential role of human papillomavirus infection in prostate carcinogenesis. However, the results remain inconclusive. We measured the serostatus of antibodies to one of the high-risk human papillomaviruses, human papillomavirus 16, with a newly developed peptide microarray. Serum samples were collected from 75 untreated prostate cancer patients, along with 80 control subjects. We identified 12 peptides with significant differences in prostate cancer samples from all 241 peptides derived from human papillomavirus 16. Our results showed human papillomavirus 16 infection in 64.0% of prostate cancer serum samples, which is significantly different compared with the controls ( p < 0.01) because only 17.5% of the control serum was considered seropositive. The area under the receiver operator characteristic curve was 0.793 (95% confidence interval 0.721-0.864), indicating that the new microarray technique may have diagnostic value. The results showed an association between serological evidence for human papillomavirus 16 infection and risk of prostate cancer. The different serostatus of antibodies in the two subgroups indicated that human papillomavirus 16 infection might occur and play a potential role of progression in a minority of prostate cancer.
Collapse
Affiliation(s)
- Xiaojun Zhao
- 1 Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Zheng Zhou
- 1 Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Ye Chen
- 1 Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Wen Chen
- 2 Suzhou SJ Biomaterials Co., Ltd, Suzhou, P.R. China
| | - Hongwei Ma
- 3 Nano-Bio-Chem Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, P.R. China
| | - Jinxian Pu
- 1 Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| |
Collapse
|
21
|
Peri C, Gori A, Gagni P, Sola L, Girelli D, Sottotetti S, Cariani L, Chiari M, Cretich M, Colombo G. Evolving serodiagnostics by rationally designed peptide arrays: the Burkholderia paradigm in Cystic Fibrosis. Sci Rep 2016; 6:32873. [PMID: 27615705 PMCID: PMC5018727 DOI: 10.1038/srep32873] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/16/2016] [Indexed: 01/05/2023] Open
Abstract
Efficient diagnosis of emerging and novel bacterial infections is fundamental to guide decisions on therapeutic treatments. Here, we engineered a novel rational strategy to design peptide microarray platforms, which combines structural and genomic analyses to predict the binding interfaces between diverse protein antigens and antibodies against Burkholderia cepacia complex infections present in the sera of Cystic Fibrosis (CF) patients. The predicted binding interfaces on the antigens are synthesized in the form of isolated peptides and chemically optimized for controlled orientation on the surface. Our platform displays multiple Burkholderia-related epitopes and is shown to diagnose infected individuals even in presence of superinfections caused by other prevalent CF pathogens, with limited cost and time requirements. Moreover, our data point out that the specific patterns determined by combined probe responses might provide a characterization of Burkholderia infections even at the subtype level (genomovars). The method is general and immediately applicable to other bacteria.
Collapse
Affiliation(s)
- Claudio Peri
- Istituto di Chimica del Riconoscimento Molecolare, ICRM, CNR. Via Mario Bianco 9, 20131, Milano (Italy)
| | - Alessandro Gori
- Istituto di Chimica del Riconoscimento Molecolare, ICRM, CNR. Via Mario Bianco 9, 20131, Milano (Italy)
| | - Paola Gagni
- Istituto di Chimica del Riconoscimento Molecolare, ICRM, CNR. Via Mario Bianco 9, 20131, Milano (Italy)
| | - Laura Sola
- Istituto di Chimica del Riconoscimento Molecolare, ICRM, CNR. Via Mario Bianco 9, 20131, Milano (Italy)
| | - Daniela Girelli
- Cystic Fibrosis Microbiology Laboratory, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, via San Barnaba 8, 20122, Milano (Italy)
| | - Samantha Sottotetti
- Cystic Fibrosis Microbiology Laboratory, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, via San Barnaba 8, 20122, Milano (Italy)
| | - Lisa Cariani
- Cystic Fibrosis Microbiology Laboratory, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, via San Barnaba 8, 20122, Milano (Italy)
| | - Marcella Chiari
- Istituto di Chimica del Riconoscimento Molecolare, ICRM, CNR. Via Mario Bianco 9, 20131, Milano (Italy)
| | - Marina Cretich
- Istituto di Chimica del Riconoscimento Molecolare, ICRM, CNR. Via Mario Bianco 9, 20131, Milano (Italy)
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, ICRM, CNR. Via Mario Bianco 9, 20131, Milano (Italy)
| |
Collapse
|