1
|
Hanna DA, Chen B, Shah YM, Khalimonchuk O, Cunniff B, Banerjee R. H 2S remodels mitochondrial ultrastructure and destabilizes respiratory supercomplexes. J Biol Chem 2025; 301:108433. [PMID: 40120684 PMCID: PMC12022479 DOI: 10.1016/j.jbc.2025.108433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/27/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025] Open
Abstract
Mitochondrial form and function are intimately interconnected, responding to cellular stresses and changes in energy demand. Hydrogen sulfide, a product of amino acid metabolism, has dual roles as an electron transport chain substrate and complex IV (CIV) inhibitor, leading to a reductive shift, which has pleiotropic metabolic consequences. Luminal sulfide concentration in the colon is high due to microbial activity, and in this study, we demonstrate that chronic sulfide exposure of colonocyte-derived cells leads to lower Mic60 and Mic19 expression that is correlated with a profound loss of cristae and lower mitochondrial networking. Sulfide-induced depolarization of the inner mitochondrial membrane activates Oma1-dependent cleavage of Opa1 and is associated with a profound loss of CI and CIV activities associated with respirasomes. Our study reveals a potential role for sulfide as an endogenous modulator of mitochondrial dynamics and suggests that this regulation is corrupted in hereditary or acquired diseases associated with elevated sulfide.
Collapse
Affiliation(s)
- David A Hanna
- Department of Biological Chemistry, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Brandon Chen
- Department of Molecular and Integrative Physiology, Michigan Medicine, Ann Arbor, Michigan, USA; Department of Cellular and Molecular Biology Program, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, Michigan Medicine, Ann Arbor, Michigan, USA; Department of internal Medicine (Division of Gastroenterology), Michigan Medicine, Ann Arbor, Michigan, USA
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Brian Cunniff
- Department of Pathology and Laboratory Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, USA
| | - Ruma Banerjee
- Department of Biological Chemistry, Michigan Medicine, Ann Arbor, Michigan, USA.
| |
Collapse
|
2
|
Hanna DA, Chen B, Shah YM, Khalimonchuk O, Cunniff B, Banerjee R. H 2 S remodels mitochondrial ultrastructure and destabilizes respiratory supercomplexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.621162. [PMID: 39553932 PMCID: PMC11565962 DOI: 10.1101/2024.10.30.621162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Mitochondrial form and function are intimately interconnected, responding to cellular stresses and changes in energy demand. Hydrogen sulfide, a product of amino acid metabolism, has dual roles as an electron transport chain substrate and complex IV (CIV) inhibitor, leading to a reductive shift, which has pleiotropic metabolic consequences. Luminal sulfide concentration in colon is high due to microbial activity, and in this study, we demonstrate that chronic sulfide exposure of colonocyte-derived cells leads to lower Mic60 and Mic19 expression that is correlated with a profound loss of cristae and lower mitochondrial networking. Sulfide-induced depolarization of the inner mitochondrial membrane activates Oma1-dependent cleavage of Opa1 and is associated with a profound loss of CI and CIV activities associated with respirasomes. Our study reveals a potential role for sulfide as an endogenous modulator of mitochondrial dynamics and suggests that this regulation is corrupted in hereditary or acquired diseases associated with elevated sulfide. Significance Statement Hydrogen sulfide is a product of host as well as gut microbial metabolism and has the dual capacity for activating respiration as a substrate, and inhibiting it at the level of complex IV. In this study, we report that chronic albeit low-level sulfide exposure elicits profound changes in mitochondrial architecture in cultured human cells. Disruption of mitochondrial networks is reversed upon removal of sulfide from the growth chamber atmosphere. Sulfide-dependent depolarization of the inner mitochondrial membrane is associated with loss of cristae and respiratory supercomplexes. Our study reveals the potential for sulfide to be an endogenous regulator of mitochondrial ultrastructure and function via modulation of electron flux and for this process to be corrupted in sulfide dysregulated diseases.
Collapse
|
3
|
Tam S, Umashankar B, Rahman MK, Choucair H, Rawling T, Murray M. The Novel Anticancer Aryl-Ureido Fatty Acid CTU Increases Reactive Oxygen Species Production That Impairs Mitochondrial Fusion Mechanisms and Promotes MDA-MB-231 Cell Death. Int J Mol Sci 2024; 25:10577. [PMID: 39408906 PMCID: PMC11476390 DOI: 10.3390/ijms251910577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/24/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Cancer cell mitochondria are functionally different from those in normal cells and could be targeted to develop novel anticancer agents. The aryl-ureido fatty acid CTU (16({[4-chloro-3-(trifluoromethyl)phenyl]-carbamoyl}amino)hexadecanoic acid) is the prototype of a new class of targeted agents that enhance the production of reactive oxygen species (ROS) that disrupt the outer mitochondrial membrane (OMM) and kill cancer cells. However, the mechanism by which CTU disrupts the inner mitochondrial membrane (IMM) and activates apoptosis is not clear. Here, we show that CTU-mediated ROS selectively dysregulated the OMA1/OPA1 fusion regulatory system located in the IMM. The essential role of ROS was confirmed in experiments with the lipid peroxyl scavenger α-tocopherol, which prevented the dysregulation of OMA1/OPA1 and CTU-mediated MDA-MB-231 cell killing. The disruption of OMA1/OPA1 and IMM fusion by CTU-mediated ROS accounted for the release of cytochrome c from the mitochondria and the activation of apoptosis. Taken together, these findings demonstrate that CTU depolarises the mitochondrial membrane, activates ROS production, and disrupts both the IMM and OMM, which releases cytochrome c and activates apoptosis. Mitochondrial-targeting agents like CTU offer a novel approach to the development of new therapeutics with anticancer activity.
Collapse
Affiliation(s)
- Stanton Tam
- Pharmacogenomics and Drug Development Group, Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (S.T.); (B.U.); (M.K.R.); (H.C.)
| | - Balasubrahmanyam Umashankar
- Pharmacogenomics and Drug Development Group, Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (S.T.); (B.U.); (M.K.R.); (H.C.)
| | - Md Khalilur Rahman
- Pharmacogenomics and Drug Development Group, Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (S.T.); (B.U.); (M.K.R.); (H.C.)
| | - Hassan Choucair
- Pharmacogenomics and Drug Development Group, Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (S.T.); (B.U.); (M.K.R.); (H.C.)
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Michael Murray
- Pharmacogenomics and Drug Development Group, Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (S.T.); (B.U.); (M.K.R.); (H.C.)
| |
Collapse
|
4
|
Eldeeb MH, Camacho Lopez LJ, Fontanesi F. Mitochondrial respiratory supercomplexes of the yeast Saccharomyces cerevisiae. IUBMB Life 2024; 76:485-504. [PMID: 38529880 DOI: 10.1002/iub.2817] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/28/2024] [Indexed: 03/27/2024]
Abstract
The functional and structural relationship among the individual components of the mitochondrial respiratory chain constitutes a central aspect of our understanding of aerobic catabolism. This interplay has been a subject of intense debate for over 50 years. It is well established that individual respiratory enzymes associate into higher-order structures known as respiratory supercomplexes, which represent the evolutionarily conserved organizing principle of the mitochondrial respiratory chain. In the yeast Saccharomyces cerevisiae, supercomplexes are formed by a complex III homodimer flanked by one or two complex IV monomers, and their high-resolution structures have been recently elucidated. Despite the wealth of structural information, several proposed supercomplex functions remain speculative and our understanding of their physiological relevance is still limited. Recent advances in the field were made possible by the construction of yeast strains where the association of complex III and IV into supercomplexes is impeded, leading to diminished respiratory capacity and compromised cellular competitive fitness. Here, we discuss the experimental evidence and hypotheses relative to the functional roles of yeast respiratory supercomplexes. Moreover, we review the current models of yeast complex III and IV assembly in the context of supercomplex formation and highlight the data scattered throughout the literature suggesting the existence of cross talk between their biogenetic processes.
Collapse
Affiliation(s)
- Mazzen H Eldeeb
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Lizeth J Camacho Lopez
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
5
|
Purohit G, Ghosh P, Khalimonchuk O. Mitochondrial metallopeptidase OMA1 in cancer. Adv Cancer Res 2024; 162:75-97. [PMID: 39069370 DOI: 10.1016/bs.acr.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Our understanding of the roles that mitochondria play in cellular physiology has evolved drastically-from a mere cellular energy supplier to a crucial regulator of metabolic and signaling processes, particularly in the context of development and progression of human diseases such as cancers. The present review examines the role of OMA1, a conserved, redox-sensitive metallopeptidase in cancer biology. OMA1's involvement in mitochondrial quality control, redox activity, and stress responses underscores its potential as a novel target in cancer diagnosis and treatment. However, our incomplete understanding of OMA1's regulation and structural detail presents ongoing challenges to target OMA1 for therapeutic purposes. Further exploration of OMA1 holds promise in uncovering novel insights into cancer mechanisms and therapeutic strategies. In this chapter, we briefly summarize our current knowledge about OMA1, its redox-regulation, and emerging role in certain cancers.
Collapse
Affiliation(s)
- Gunjan Purohit
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Polash Ghosh
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States; Nebraska Redox Biology Center, Lincoln, NE, United States; Fred & Pamela Buffett Cancer Center, Omaha, NE, United States.
| |
Collapse
|
6
|
Filice M, Gattuso A, Imbrogno S, Mazza R, Amelio D, Caferro A, Agnisola C, Icardo JM, Cerra MC. Functional, structural, and molecular remodelling of the goldfish (Carassius auratus) heart under moderate hypoxia. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:667-685. [PMID: 38198074 PMCID: PMC11021278 DOI: 10.1007/s10695-024-01297-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/01/2024] [Indexed: 01/11/2024]
Abstract
The goldfish (Carassius auratus) is known for its physiologic ability to survive even long periods of oxygen limitation (hypoxia), adapting the cardiac performance to the requirements of peripheral tissue perfusion. We here investigated the effects of short-term moderate hypoxia on the heart, focusing on ventricular adaptation, in terms of hemodynamics and structural traits. Functional evaluations revealed that animals exposed to 4 days of environmental hypoxia increased the hemodynamic performance evaluated on ex vivo cardiac preparations. This was associated with a thicker and more vascularized ventricular compact layer and a reduced luminal lacunary space. Compared to normoxic animals, ventricular cardiomyocytes of goldfish exposed to hypoxia showed an extended mitochondrial compartment and a modulation of proteins involved in mitochondria dynamics. The enhanced expression of the pro-fission markers DRP1 and OMA1, and the modulation of the short and long forms of OPA1, suggested a hypoxia-related mitochondria fission. Our data propose that under hypoxia, the goldfish heart undergoes a structural remodelling associated with a potentiated cardiac activity. The energy demand for the highly performant myocardium is supported by an increased number of mitochondria, likely occurring through fission events.
Collapse
Affiliation(s)
- Mariacristina Filice
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Alfonsina Gattuso
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Sandra Imbrogno
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy.
| | - Rosa Mazza
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Daniela Amelio
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Alessia Caferro
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Claudio Agnisola
- Department of Biological Sciences, University of Naples Federico II, Naples, Italy
| | - José Manuel Icardo
- Department of Anatomy and Cell Biology, University of Cantabria, Santander, Spain
| | - Maria Carmela Cerra
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| |
Collapse
|
7
|
Blount BA, Lu X, Driessen MR, Jovicevic D, Sanchez MI, Ciurkot K, Zhao Y, Lauer S, McKiernan RM, Gowers GOF, Sweeney F, Fanfani V, Lobzaev E, Palacios-Flores K, Walker RS, Hesketh A, Cai J, Oliver SG, Cai Y, Stracquadanio G, Mitchell LA, Bader JS, Boeke JD, Ellis T. Synthetic yeast chromosome XI design provides a testbed for the study of extrachromosomal circular DNA dynamics. CELL GENOMICS 2023; 3:100418. [PMID: 38020971 PMCID: PMC10667340 DOI: 10.1016/j.xgen.2023.100418] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 07/13/2023] [Accepted: 09/08/2023] [Indexed: 12/01/2023]
Abstract
We describe construction of the synthetic yeast chromosome XI (synXI) and reveal the effects of redesign at non-coding DNA elements. The 660-kb synthetic yeast genome project (Sc2.0) chromosome was assembled from synthesized DNA fragments before CRISPR-based methods were used in a process of bug discovery, redesign, and chromosome repair, including precise compaction of 200 kb of repeat sequence. Repaired defects were related to poor centromere function and mitochondrial health and were associated with modifications to non-coding regions. As part of the Sc2.0 design, loxPsym sequences for Cre-mediated recombination are inserted between most genes. Using the GAP1 locus from chromosome XI, we show that these sites can facilitate induced extrachromosomal circular DNA (eccDNA) formation, allowing direct study of the effects and propagation of these important molecules. Construction and characterization of synXI contributes to our understanding of non-coding DNA elements, provides a useful tool for eccDNA study, and will inform future synthetic genome design.
Collapse
Affiliation(s)
- Benjamin A. Blount
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
- Department of Bioengineering, Imperial College London, London, UK
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Xinyu Lu
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - Maureen R.M. Driessen
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - Dejana Jovicevic
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - Mateo I. Sanchez
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - Klaudia Ciurkot
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - Yu Zhao
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Stephanie Lauer
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Robert M. McKiernan
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
- Department of Bioengineering, Imperial College London, London, UK
- Department of Life Sciences, Imperial College London, London, UK
| | - Glen-Oliver F. Gowers
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - Fiachra Sweeney
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
- Department of Life Sciences, Imperial College London, London, UK
| | - Viola Fanfani
- School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Evgenii Lobzaev
- School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
- School of Informatics, The University of Edinburgh, Edinburgh, UK
| | - Kim Palacios-Flores
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Querétaro, México
| | - Roy S.K. Walker
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh, UK
| | - Andy Hesketh
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Jitong Cai
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | - Yizhi Cai
- School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | | | - Leslie A. Mitchell
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Joel S. Bader
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jef D. Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA
| | - Tom Ellis
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
8
|
Jacobs HT, Szibor M, Rathkolb B, da Silva-Buttkus P, Aguilar-Pimentel JA, Amarie OV, Becker L, Calzada-Wack J, Dragano N, Garrett L, Gerlini R, Hölter SM, Klein-Rodewald T, Kraiger M, Leuchtenberger S, Marschall S, Östereicher MA, Pfannes K, Sanz-Moreno A, Seisenberger C, Spielmann N, Stoeger C, Wurst W, Fuchs H, Hrabě de Angelis M, Gailus-Durner V. AOX delays the onset of the lethal phenotype in a mouse model of Uqcrh (complex III) disease. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166760. [PMID: 37230398 DOI: 10.1016/j.bbadis.2023.166760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/24/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
The alternative oxidase, AOX, provides a by-pass of the cytochrome segment of the mitochondrial respiratory chain when the chain is unavailable. AOX is absent from mammals, but AOX from Ciona intestinalis is benign when expressed in mice. Although non-protonmotive, so does not contribute directly to ATP production, it has been shown to modify and in some cases rescue phenotypes of respiratory-chain disease models. Here we studied the effect of C. intestinalis AOX on mice engineered to express a disease-equivalent mutant of Uqcrh, encoding the hinge subunit of mitochondrial respiratory complex III, which results in a complex metabolic phenotype beginning at 4-5 weeks, rapidly progressing to lethality within a further 6-7 weeks. AOX expression delayed the onset of this phenotype by several weeks, but provided no long-term benefit. We discuss the significance of this finding in light of the known and hypothesized effects of AOX on metabolism, redox homeostasis, oxidative stress and cell signaling. Although not a panacea, the ability of AOX to mitigate disease onset and progression means it could be useful in treatment.
Collapse
Affiliation(s)
- Howard T Jacobs
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland; Department of Environment and Genetics, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Marten Szibor
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland; Department of Cardiothoracic Surgery, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Friedrich Schiller University of Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Birgit Rathkolb
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany; Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University München, Feodor-Lynen Str. 25, 81377 Munich, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Patricia da Silva-Buttkus
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Juan Antonio Aguilar-Pimentel
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Oana V Amarie
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Lore Becker
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Julia Calzada-Wack
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Nathalia Dragano
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Lillian Garrett
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Raffaele Gerlini
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Sabine M Hölter
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Tanja Klein-Rodewald
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Markus Kraiger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Stefanie Leuchtenberger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Susan Marschall
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Manuela A Östereicher
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Kristina Pfannes
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Adrián Sanz-Moreno
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Claudia Seisenberger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Nadine Spielmann
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Claudia Stoeger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; Chair of Developmental Genetics, TUM School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany; Deutsches Institut für Neurodegenerative Erkrankungen (DZNE) Site Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany; Chair of Experimental Genetics, TUM School of Life Sciences, Technische Universität München, Alte Akademie 8, 85354 Freising, Germany.
| | - Valérie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| |
Collapse
|
9
|
Musicco C, Signorile A, Pesce V, Loguercio Polosa P, Cormio A. Mitochondria Deregulations in Cancer Offer Several Potential Targets of Therapeutic Interventions. Int J Mol Sci 2023; 24:10420. [PMID: 37445598 DOI: 10.3390/ijms241310420] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
Mitochondria play a key role in cancer and their involvement is not limited to the production of ATP only. Mitochondria also produce reactive oxygen species and building blocks to sustain rapid cell proliferation; thus, the deregulation of mitochondrial function is associated with cancer disease development and progression. In cancer cells, a metabolic reprogramming takes place through a different modulation of the mitochondrial metabolic pathways, including oxidative phosphorylation, fatty acid oxidation, the Krebs cycle, glutamine and heme metabolism. Alterations of mitochondrial homeostasis, in particular, of mitochondrial biogenesis, mitophagy, dynamics, redox balance, and protein homeostasis, were also observed in cancer cells. The use of drugs acting on mitochondrial destabilization may represent a promising therapeutic approach in tumors in which mitochondrial respiration is the predominant energy source. In this review, we summarize the main mitochondrial features and metabolic pathways altered in cancer cells, moreover, we present the best known drugs that, by acting on mitochondrial homeostasis and metabolic pathways, may induce mitochondrial alterations and cancer cell death. In addition, new strategies that induce mitochondrial damage, such as photodynamic, photothermal and chemodynamic therapies, and the development of nanoformulations that specifically target drugs in mitochondria are also described. Thus, mitochondria-targeted drugs may open new frontiers to a tailored and personalized cancer therapy.
Collapse
Affiliation(s)
- Clara Musicco
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), CNR, 70126 Bari, Italy
| | - Anna Signorile
- Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Vito Pesce
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Paola Loguercio Polosa
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Antonella Cormio
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
10
|
Miallot R, Millet V, Groult Y, Modelska A, Crescence L, Roulland S, Henri S, Malissen B, Brouilly N, Panicot-Dubois L, Vincentelli R, Sulzenbacher G, Finetti P, Dutour A, Blay JY, Bertucci F, Galland F, Naquet P. An OMA1 redox site controls mitochondrial homeostasis, sarcoma growth, and immunogenicity. Life Sci Alliance 2023; 6:e202201767. [PMID: 37024121 PMCID: PMC10078952 DOI: 10.26508/lsa.202201767] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Aggressive tumors often display mitochondrial dysfunction. Upon oxidative stress, mitochondria undergo fission through OMA1-mediated cleavage of the fusion effector OPA1. In yeast, a redox-sensing switch participates in OMA1 activation. 3D modeling of OMA1 comforted the notion that cysteine 403 might participate in a similar sensor in mammalian cells. Using prime editing, we developed a mouse sarcoma cell line in which OMA1 cysteine 403 was mutated in alanine. Mutant cells showed impaired mitochondrial responses to stress including ATP production, reduced fission, resistance to apoptosis, and enhanced mitochondrial DNA release. This mutation prevented tumor development in immunocompetent, but not nude or cDC1 dendritic cell-deficient, mice. These cells prime CD8+ lymphocytes that accumulate in mutant tumors, whereas their depletion delays tumor control. Thus, OMA1 inactivation increased the development of anti-tumor immunity. Patients with complex genomic soft tissue sarcoma showed variations in the level of OMA1 and OPA1 transcripts. High expression of OPA1 in primary tumors was associated with shorter metastasis-free survival after surgery, and low expression of OPA1, with anti-tumor immune signatures. Targeting OMA1 activity may enhance sarcoma immunogenicity.
Collapse
Affiliation(s)
- Richard Miallot
- Aix-Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Virginie Millet
- Aix-Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Yann Groult
- Aix-Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Angelika Modelska
- Aix-Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Lydie Crescence
- Aix Marseille Université, INSERM 1263, INRAE 1260, Plateforme d'Imagerie Vasculaire et de Microscopie Intravitale, C2VN, Marseille, France
| | - Sandrine Roulland
- Aix-Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Sandrine Henri
- Aix-Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Bernard Malissen
- Aix-Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
- Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | | | - Laurence Panicot-Dubois
- Aix Marseille Université, INSERM 1263, INRAE 1260, Plateforme d'Imagerie Vasculaire et de Microscopie Intravitale, C2VN, Marseille, France
| | - Renaud Vincentelli
- Aix-Marseille Université, CNRS, Architecture et Fonction des Macromolécules Biologiques, Marseille, France
| | - Gerlind Sulzenbacher
- Aix-Marseille Université, CNRS, Architecture et Fonction des Macromolécules Biologiques, Marseille, France
| | - Pascal Finetti
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Marseille, France
| | - Aurélie Dutour
- Childhood Cancers and Cell Death Laboratory, Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRS, Lyon, France
| | - Jean-Yves Blay
- Childhood Cancers and Cell Death Laboratory, Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRS, Lyon, France
- Department of Medicine, Centre Léon Bérard, UNICANCER & University Lyon I, Lyon, France
| | - François Bertucci
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Marseille, France
| | - Franck Galland
- Aix-Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Philippe Naquet
- Aix-Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| |
Collapse
|
11
|
Khalimonchuk O, Becker DF. Molecular Determinants of Mitochondrial Shape and Function and Their Role in Glaucoma. Antioxid Redox Signal 2023; 38:896-919. [PMID: 36301938 PMCID: PMC10171965 DOI: 10.1089/ars.2022.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/07/2022] [Accepted: 10/22/2022] [Indexed: 01/12/2023]
Abstract
Significance: Cells depend on well-functioning mitochondria for essential processes such as energy production, redox signaling, coordination of metabolic pathways, and cofactor biosynthesis. Mitochondrial dysfunction, metabolic decline, and protein stress have been implicated in the etiology of multiple late-onset diseases, including various ataxias, diabetes, sarcopenia, neuromuscular disorders, and neurodegenerative diseases such as parkinsonism, amyotrophic lateral sclerosis, and glaucoma. Recent Advances: New evidence supports that increased energy metabolism protects neuron function during aging. Key energy metabolic enzymes, however, are susceptible to oxidative damage making it imperative that the mitochondrial proteome is protected. More than 40 different enzymes have been identified as important factors for guarding mitochondrial health and maintaining a dynamic pool of mitochondria. Critical Issues: Understanding shared mechanisms of age-related disorders of neurodegenerative diseases such as glaucoma, Alzheimer's disease, and Parkinson's disease is important for developing new therapies. Functional mitochondrial shape and dynamics rely on complex interactions between mitochondrial proteases and membrane proteins. Identifying the sequence of molecular events that lead to mitochondrial dysfunction and metabolic stress is a major challenge. Future Directions: A critical need exists for new strategies that reduce mitochondrial protein stress and promote mitochondrial dynamics in age-related neurological disorders. Discovering how mitochondria-associated degradation is related to proteostatic mechanisms in mitochondrial compartments may reveal new opportunities for therapeutic interventions. Also, little is known about how protein and membrane contacts in the inner and outer mitochondrial membrane are regulated, even though they are pivotal for mitochondrial architecture. Future work will need to delineate the molecular details of these processes.
Collapse
Affiliation(s)
- Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska–Lincoln, Lincoln, Nebraska, USA
- Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska–Lincoln, Lincoln, Nebraska, USA
- Fred & Pamela Buffett Cancer Center, Omaha, Nebraska, USA
| | - Donald F. Becker
- Department of Biochemistry, University of Nebraska–Lincoln, Lincoln, Nebraska, USA
- Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska–Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
12
|
Rivera-Mejías P, Narbona-Pérez ÁJ, Hasberg L, Kroczek L, Bahat A, Lawo S, Folz-Donahue K, Schumacher AL, Ahola S, Mayer FC, Giavalisco P, Nolte H, Lavandero S, Langer T. The mitochondrial protease OMA1 acts as a metabolic safeguard upon nuclear DNA damage. Cell Rep 2023; 42:112332. [PMID: 37002921 DOI: 10.1016/j.celrep.2023.112332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/02/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
The metabolic plasticity of mitochondria ensures cell development, differentiation, and survival. The peptidase OMA1 regulates mitochondrial morphology via OPA1 and stress signaling via DELE1 and orchestrates tumorigenesis and cell survival in a cell- and tissue-specific manner. Here, we use unbiased systems-based approaches to show that OMA1-dependent cell survival depends on metabolic cues. A metabolism-focused CRISPR screen combined with an integrated analysis of human gene expression data found that OMA1 protects against DNA damage. Nucleotide deficiencies induced by chemotherapeutic agents promote p53-dependent apoptosis of cells lacking OMA1. The protective effect of OMA1 does not depend on OMA1 activation or OMA1-mediated OPA1 and DELE1 processing. OMA1-deficient cells show reduced glycolysis and accumulate oxidative phosphorylation (OXPHOS) proteins upon DNA damage. OXPHOS inhibition restores glycolysis and confers resistance against DNA damage. Thus, OMA1 dictates the balance between cell death and survival through the control of glucose metabolism, shedding light on its role in cancerogenesis.
Collapse
Affiliation(s)
- Pablo Rivera-Mejías
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany; Center for Advanced Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago 8380492, Chile
| | | | - Lidwina Hasberg
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Lara Kroczek
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Amir Bahat
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Steffen Lawo
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Kat Folz-Donahue
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | | | - Sofia Ahola
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | | | | | - Hendrik Nolte
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Sergio Lavandero
- Center for Advanced Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago 8380492, Chile; Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8573, USA
| | - Thomas Langer
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
13
|
Zhang J, Qiao W, Luo Y. Mitochondrial quality control proteases and their modulation for cancer therapy. Med Res Rev 2023; 43:399-436. [PMID: 36208112 DOI: 10.1002/med.21929] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 09/04/2022] [Accepted: 09/26/2022] [Indexed: 02/05/2023]
Abstract
Mitochondria, the main provider of energy in eukaryotic cells, contains more than 1000 different proteins and is closely related to the development of cells. However, damaged proteins impair mitochondrial function, further contributing to several human diseases. Evidence shows mitochondrial proteases are critically important for protein maintenance. Most importantly, quality control enzymes exert a crucial role in the modulation of mitochondrial functions by degrading misfolded, aged, or superfluous proteins. Interestingly, cancer cells thrive under stress conditions that damage proteins, so targeting mitochondrial quality control proteases serves as a novel regulator for cancer cells. Not only that, mitochondrial quality control proteases have been shown to affect mitochondrial dynamics by regulating the morphology of optic atrophy 1 (OPA1), which is closely related to the occurrence and progression of cancer. In this review, we introduce mitochondrial quality control proteases as promising targets and related modulators in cancer therapy with a focus on caseinolytic protease P (ClpP), Lon protease (LonP1), high-temperature requirement protein A2 (HrtA2), and OMA-1. Further, we summarize our current knowledge of the advances in clinical trials for modulators of mitochondrial quality control proteases. Overall, the content proposed above serves to suggest directions for the development of novel antitumor drugs.
Collapse
Affiliation(s)
- Jiangnan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Wenliang Qiao
- Lung Cancer Center, Laboratory of Lung Cancer, Western China Hospital of Sichuan University, Chengdu, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Does Disruption of Optic Atrophy-1 (OPA1) Contribute to Cell Death in HL-1 Cardiomyocytes Subjected to Lethal Ischemia-Reperfusion Injury? Cells 2022; 11:cells11193083. [PMID: 36231044 PMCID: PMC9564372 DOI: 10.3390/cells11193083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Disruption of mitochondrial structure/function is well-recognized to be a determinant of cell death in cardiomyocytes subjected to lethal episodes of ischemia-reperfusion (IR). However, the precise mitochondrial event(s) that precipitate lethal IR injury remain incompletely resolved. Using the in vitro HL-1 cardiomyocyte model, our aims were to establish whether: (1) proteolytic processing of optic atrophy protein-1 (OPA1), the inner mitochondrial membrane protein responsible for maintaining cristae junction integrity, plays a causal, mechanistic role in determining cardiomyocyte fate in cells subjected to lethal IR injury; and (2) preservation of OPA1 may contribute to the well-documented cardioprotection achieved with ischemic preconditioning (IPC) and remote ischemic conditioning. We report that HL-1 cells subjected to 2.5 h of simulated ischemia displayed increased activity of OMA1 (the metalloprotease responsible for proteolytic processing of OPA1) during the initial 45 min following reoxygenation. This was accompanied by processing of mitochondrial OPA1 (i.e., cleavage to yield short-OPA1 peptides) and release of short-OPA1 into the cytosol. However, siRNA-mediated knockdown of OPA1 content did not exacerbate lethal IR injury, and did not attenuate the cardioprotection seen with IPC and a remote preconditioning stimulus, achieved by transfer of ‘reperfusate’ medium (TRM-IPC) in this cell culture model. Taken together, our results do not support the concept that maintenance of OPA1 integrity plays a mechanistic role in determining cell fate in the HL-1 cardiomyocyte model of lethal IR injury, or that preservation of OPA1 underlies the cardioprotection seen with ischemic conditioning.
Collapse
|
15
|
Heidorn-Czarna M, Maziak A, Janska H. Protein Processing in Plant Mitochondria Compared to Yeast and Mammals. FRONTIERS IN PLANT SCIENCE 2022; 13:824080. [PMID: 35185991 PMCID: PMC8847149 DOI: 10.3389/fpls.2022.824080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/12/2022] [Indexed: 05/02/2023]
Abstract
Limited proteolysis, called protein processing, is an essential post-translational mechanism that controls protein localization, activity, and in consequence, function. This process is prevalent for mitochondrial proteins, mainly synthesized as precursor proteins with N-terminal sequences (presequences) that act as targeting signals and are removed upon import into the organelle. Mitochondria have a distinct and highly conserved proteolytic system that includes proteases with sole function in presequence processing and proteases, which show diverse mitochondrial functions with limited proteolysis as an additional one. In virtually all mitochondria, the primary processing of N-terminal signals is catalyzed by the well-characterized mitochondrial processing peptidase (MPP). Subsequently, a second proteolytic cleavage occurs, leading to more stabilized residues at the newly formed N-terminus. Lately, mitochondrial proteases, intermediate cleavage peptidase 55 (ICP55) and octapeptidyl protease 1 (OCT1), involved in proteolytic cleavage after MPP and their substrates have been described in the plant, yeast, and mammalian mitochondria. Mitochondrial proteins can also be processed by removing a peptide from their N- or C-terminus as a maturation step during insertion into the membrane or as a regulatory mechanism in maintaining their function. This type of limited proteolysis is characteristic for processing proteases, such as IMP and rhomboid proteases, or the general mitochondrial quality control proteases ATP23, m-AAA, i-AAA, and OMA1. Identification of processing protease substrates and defining their consensus cleavage motifs is now possible with the help of large-scale quantitative mass spectrometry-based N-terminomics, such as combined fractional diagonal chromatography (COFRADIC), charge-based fractional diagonal chromatography (ChaFRADIC), or terminal amine isotopic labeling of substrates (TAILS). This review summarizes the current knowledge on the characterization of mitochondrial processing peptidases and selected N-terminomics techniques used to uncover protease substrates in the plant, yeast, and mammalian mitochondria.
Collapse
|
16
|
do Amaral MA, Paredes LC, Padovani BN, Mendonça-Gomes JM, Montes LF, Câmara NOS, Morales Fénero C. Mitochondrial connections with immune system in Zebrafish. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100019. [PMID: 36420514 PMCID: PMC9680083 DOI: 10.1016/j.fsirep.2021.100019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are organelles commonly associated with adenosine triphosphate (ATP) formation through the oxidative phosphorylation (OXPHOS) process. However, mitochondria are also responsible for functions such as calcium homeostasis, apoptosis, autophagy, and production of reactive oxygen species (ROS) that, in conjunction, can lead to different cell fate decisions. Mitochondrial morphology changes rely on nutrients' availability and the bioenergetics demands of the cells, in a process known as mitochondrial dynamics, which includes both fusion and fission. This organelle senses the microenvironment and can modify the cells to either a pro or anti-inflammatory profile. The zebrafish has been increasingly used to research mitochondrial dynamics and its connection with the immune system since the pathways and molecules involved in these processes are conserved on this fish. Several genetic tools and technologies are currently available to analyze the behavior of mitochondria in zebrafish. However, even though zebrafish presents several similar processes known in mammals, the effect of the mitochondria in the immune system has not been so broadly studied in this model. In this review, we summarize the current knowledge in zebrafish studies regarding mitochondrial function and immuno metabolism.
Collapse
Affiliation(s)
- Mariana Abrantes do Amaral
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Lais Cavalieri Paredes
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Barbara Nunes Padovani
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Juliana Moreira Mendonça-Gomes
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Luan Fávero Montes
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Niels Olsen Saraiva Câmara
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Camila Morales Fénero
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| |
Collapse
|
17
|
Effects of high-intensity interval training on mitochondrial supercomplex assembly and biogenesis, mitophagy, and the AMP-activated protein kinase pathway in the soleus muscle of aged female rats. Exp Gerontol 2021; 158:111648. [PMID: 34861356 DOI: 10.1016/j.exger.2021.111648] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/11/2021] [Accepted: 11/28/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE Exercise helps improve mitochondrial function to combat sarcopenia. Certain parts of the mitochondrial respiratory chain complex can form a higher-order structure called "supercomplex" to reduce the production of reactive oxygen species and improve muscle mass. The effect of exercise on the assembly of the mitochondrial supercomplex is still unclear. The aim of this study was to investigate the effects of long-term high-intensity interval training (HIIT) on mitochondrial biogenesis, mitophagy, and mitochondrial supercomplexes (mitoSCs) assembly in aging soleus muscle. METHODS Female Sprague-Dawley rats (n = 36) were randomly divided into four groups: young sedentary (Y-SED, 8 months old, n = 12), old sedentary (O-SED, 26 months old, n = 12), moderate-intensity continuous training (MICT, from 18 to 26 months old, n = 12), and HIIT (from 18 to 26 months old, n = 12). Rats in the MICT and HIIT groups were subjected to an 8-month training program. Real-time fluorescent quantitative polymerase chain reaction was used to measure the expression of the antioxidative factors, inflammatory factors, and mitochondrial fusion- and division-related genes. Western blotting was used to detect the expression of mitochondrial biogenesis and mitophagy markers and AMP-activated protein kinase (AMPK) pathway proteins. Enzyme-linked immunosorbent assays were used to determine serum irisin contents. Blue native polyacrylamide gel electrophoresis was used to assess the formation of mitochondrial supercomplexes. RESULTS Compared with the Y-SED group, the soleus muscle and mitochondria in the O-SED group showed reduced expression of mitophagy- and mitochondrial biogenesis-related proteins. In the HIIT group, the expression of autophagy-related proteins in the soleus muscle and mitochondria was significantly increased compared with that in the MICT group. Serum irisin and mitochondrial fusion protein levels significantly decreased with age. Superoxide dismutase 2 protein levels and AMPK pathway protein expression were significantly increased in the HIIT group compared with those in the other groups. Additionally, the expression levels of mitoSCs and the mRNA levels of interleukin-15 and optical atrophy 1 increased in the HIIT group compared with that in the MICT group. CONCLUSION Compared with MICT, HIIT activated the AMPK pathway to upregulate mitochondrial biogenesis- and mitophagy-related proteins, and promote the assembly and formation of mitoSCs to improve the mitochondrial function of aging soleus muscles.
Collapse
|
18
|
Geldon S, Fernández-Vizarra E, Tokatlidis K. Redox-Mediated Regulation of Mitochondrial Biogenesis, Dynamics, and Respiratory Chain Assembly in Yeast and Human Cells. Front Cell Dev Biol 2021; 9:720656. [PMID: 34557489 PMCID: PMC8452992 DOI: 10.3389/fcell.2021.720656] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/04/2021] [Indexed: 12/24/2022] Open
Abstract
Mitochondria are double-membrane organelles that contain their own genome, the mitochondrial DNA (mtDNA), and reminiscent of its endosymbiotic origin. Mitochondria are responsible for cellular respiration via the function of the electron oxidative phosphorylation system (OXPHOS), located in the mitochondrial inner membrane and composed of the four electron transport chain (ETC) enzymes (complexes I-IV), and the ATP synthase (complex V). Even though the mtDNA encodes essential OXPHOS components, the large majority of the structural subunits and additional biogenetical factors (more than seventy proteins) are encoded in the nucleus and translated in the cytoplasm. To incorporate these proteins and the rest of the mitochondrial proteome, mitochondria have evolved varied, and sophisticated import machineries that specifically target proteins to the different compartments defined by the two membranes. The intermembrane space (IMS) contains a high number of cysteine-rich proteins, which are mostly imported via the MIA40 oxidative folding system, dependent on the reduction, and oxidation of key Cys residues. Several of these proteins are structural components or assembly factors necessary for the correct maturation and function of the ETC complexes. Interestingly, many of these proteins are involved in the metalation of the active redox centers of complex IV, the terminal oxidase of the mitochondrial ETC. Due to their function in oxygen reduction, mitochondria are the main generators of reactive oxygen species (ROS), on both sides of the inner membrane, i.e., in the matrix and the IMS. ROS generation is important due to their role as signaling molecules, but an excessive production is detrimental due to unwanted oxidation reactions that impact on the function of different types of biomolecules contained in mitochondria. Therefore, the maintenance of the redox balance in the IMS is essential for mitochondrial function. In this review, we will discuss the role that redox regulation plays in the maintenance of IMS homeostasis as well as how mitochondrial ROS generation may be a key regulatory factor for ETC biogenesis, especially for complex IV.
Collapse
Affiliation(s)
| | - Erika Fernández-Vizarra
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
19
|
UbiB proteins regulate cellular CoQ distribution in Saccharomyces cerevisiae. Nat Commun 2021; 12:4769. [PMID: 34362905 PMCID: PMC8346625 DOI: 10.1038/s41467-021-25084-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 07/22/2021] [Indexed: 11/08/2022] Open
Abstract
Beyond its role in mitochondrial bioenergetics, Coenzyme Q (CoQ, ubiquinone) serves as a key membrane-embedded antioxidant throughout the cell. However, how CoQ is mobilized from its site of synthesis on the inner mitochondrial membrane to other sites of action remains a longstanding mystery. Here, using a combination of Saccharomyces cerevisiae genetics, biochemical fractionation, and lipid profiling, we identify two highly conserved but poorly characterized mitochondrial proteins, Ypl109c (Cqd1) and Ylr253w (Cqd2), that reciprocally affect this process. Loss of Cqd1 skews cellular CoQ distribution away from mitochondria, resulting in markedly enhanced resistance to oxidative stress caused by exogenous polyunsaturated fatty acids, whereas loss of Cqd2 promotes the opposite effects. The activities of both proteins rely on their atypical kinase/ATPase domains, which they share with Coq8-an essential auxiliary protein for CoQ biosynthesis. Overall, our results reveal protein machinery central to CoQ trafficking in yeast and lend insights into the broader interplay between mitochondria and the rest of the cell.
Collapse
|
20
|
Mitochondrial Quality Control in Cerebral Ischemia-Reperfusion Injury. Mol Neurobiol 2021; 58:5253-5271. [PMID: 34275087 DOI: 10.1007/s12035-021-02494-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 07/12/2021] [Indexed: 12/27/2022]
Abstract
Ischemic stroke is one of the leading causes of death and also a major cause of adult disability worldwide. Revascularization via reperfusion therapy is currently a standard clinical procedure for patients with ischemic stroke. Although the restoration of blood flow (reperfusion) is critical for the salvage of ischemic tissue, reperfusion can also, paradoxically, exacerbate neuronal damage through a series of cellular alterations. Among the various theories postulated for ischemia/reperfusion (I/R) injury, including the burst generation of reactive oxygen species (ROS), activation of autophagy, and release of apoptotic factors, mitochondrial dysfunction has been proposed to play an essential role in mediating these pathophysiological processes. Therefore, strict regulation of the quality and quantity of mitochondria via mitochondrial quality control is of great importance to avoid the pathological effects of impaired mitochondria on neurons. Furthermore, timely elimination of dysfunctional mitochondria via mitophagy is also crucial to maintain a healthy mitochondrial network, whereas intensive or excessive mitophagy could exacerbate cerebral I/R injury. This review will provide a comprehensive overview of the effect of mitochondrial quality control on cerebral I/R injury and introduce recent advances in the understanding of the possible signaling pathways of mitophagy and potential factors responsible for the double-edged roles of mitophagy in the pathological processes of cerebral I/R injury.
Collapse
|
21
|
Sensing, signaling and surviving mitochondrial stress. Cell Mol Life Sci 2021; 78:5925-5951. [PMID: 34228161 PMCID: PMC8316193 DOI: 10.1007/s00018-021-03887-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022]
Abstract
Mitochondrial fidelity is a key determinant of longevity and was found to be perturbed in a multitude of disease contexts ranging from neurodegeneration to heart failure. Tight homeostatic control of the mitochondrial proteome is a crucial aspect of mitochondrial function, which is severely complicated by the evolutionary origin and resulting peculiarities of the organelle. This is, on one hand, reflected by a range of basal quality control factors such as mitochondria-resident chaperones and proteases, that assist in import and folding of precursors as well as removal of aggregated proteins. On the other hand, stress causes the activation of several additional mechanisms that counteract any damage that may threaten mitochondrial function. Countermeasures depend on the location and intensity of the stress and on a range of factors that are equipped to sense and signal the nature of the encountered perturbation. Defective mitochondrial import activates mechanisms that combat the accumulation of precursors in the cytosol and the import pore. To resolve proteotoxic stress in the organelle interior, mitochondria depend on nuclear transcriptional programs, such as the mitochondrial unfolded protein response and the integrated stress response. If organelle damage is too severe, mitochondria signal for their own destruction in a process termed mitophagy, thereby preventing further harm to the mitochondrial network and allowing the cell to salvage their biological building blocks. Here, we provide an overview of how different types and intensities of stress activate distinct pathways aimed at preserving mitochondrial fidelity.
Collapse
|
22
|
Viana MP, Levytskyy RM, Anand R, Reichert AS, Khalimonchuk O. Protease OMA1 modulates mitochondrial bioenergetics and ultrastructure through dynamic association with MICOS complex. iScience 2021; 24:102119. [PMID: 33644718 PMCID: PMC7892988 DOI: 10.1016/j.isci.2021.102119] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/30/2020] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
Remodeling of mitochondrial ultrastructure is a process that is critical for organelle physiology and apoptosis. Although the key players in this process-mitochondrial contact site and cristae junction organizing system (MICOS) and Optic Atrophy 1 (OPA1)-have been characterized, the mechanisms behind its regulation remain incompletely defined. Here, we found that in addition to its role in mitochondrial division, metallopeptidase OMA1 is required for the maintenance of intermembrane connectivity through dynamic association with MICOS. This association is independent of OPA1, mediated via the MICOS subunit MIC60, and is important for stability of MICOS and the intermembrane contacts. The OMA1-MICOS relay is required for optimal bioenergetic output and apoptosis. Loss of OMA1 affects these activities; remarkably it can be alleviated by MICOS-emulating intermembrane bridge. Thus, OMA1-dependent ultrastructure support is required for mitochondrial architecture and bioenergetics under basal and stress conditions, suggesting a previously unrecognized role for OMA1 in mitochondrial physiology.
Collapse
Affiliation(s)
| | - Roman M. Levytskyy
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Ruchika Anand
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University of Dusseldorf, Dusseldorf 40225, Germany
| | - Andreas S. Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University of Dusseldorf, Dusseldorf 40225, Germany
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
- Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
- Center for Integrated Biomolecular Communication, University of Nebraska, Lincoln, NE 68588, USA
- Fred & Pamela Buffett Cancer Center, Omaha, NE 68198, USA
| |
Collapse
|
23
|
Alavi MV. OMA1-An integral membrane protease? BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2021; 1869:140558. [PMID: 33130089 PMCID: PMC7770061 DOI: 10.1016/j.bbapap.2020.140558] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/11/2020] [Accepted: 10/26/2020] [Indexed: 12/22/2022]
Abstract
OMA1 is a mitochondrial protease. Among its substrates are DELE1, a signaling peptide, which can elicit the integrated stress response, as well as the membrane-shaping dynamin-related GTPase OPA1, which can drive mitochondrial outer membrane permeabilization. OMA1 is dormant under physiological conditions but rapidly activated upon mitochondrial stress, such as loss of membrane potential or excessive reactive oxygen species. Accordingly, OMA1 was found to be activated in a number of disease conditions, including cancer and neurodegeneration. OMA1 has a predicted transmembrane domain and is believed to be tethered to the mitochondrial inner membrane. Yet, its structure has not been resolved and its context-dependent regulation remains obscure. Here, I review the literature with focus on OMA1's biochemistry. I provide a good homology model of OMA1's active site with a root-mean-square deviation of 0.9 Å and a DALI Z-score of 19.8. And I build a case for OMA1 actually being an integral membrane protease based on OMA1's role in the generation of small signaling peptides, its functional overlap with PARL, and OMA1's homology with ZMPSTE24. The refined understanding of this important enzyme can help with the design of tool compounds and development of chemical probes in the future.
Collapse
Affiliation(s)
- Marcel V Alavi
- 712 North Inc., QB3 Incubator at UC Berkeley, 130 Stanley Hall, #3220, Berkeley CA-94720, USA.
| |
Collapse
|
24
|
Svaguša T, Martinić M, Martinić M, Kovačević L, Šepac A, Miličić D, Bulum J, Starčević B, Sirotković-Skerlev M, Seiwerth F, Kulić A, Sedlić F. Mitochondrial unfolded protein response, mitophagy and other mitochondrial quality control mechanisms in heart disease and aged heart. Croat Med J 2020. [PMID: 32378379 PMCID: PMC7230417 DOI: 10.3325/cmj.2020.61.126] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mitochondria are involved in crucial homeostatic processes in the cell: the production of adenosine triphosphate and reactive oxygen species, and the release of pro-apoptotic molecules. Thus, cell survival depends on the maintenance of proper mitochondrial function by mitochondrial quality control. The most important mitochondrial quality control mechanisms are mitochondrial unfolded protein response, mitophagy, biogenesis, and fusion-fission dynamics. This review deals with mitochondrial quality control in heart diseases, especially myocardial infarction and heart failure. Some previous studies have demonstrated that the activation of mitochondrial quality control mechanisms may be beneficial for the heart, while others have shown that it may lead to heart damage. Our aim was to describe the mechanisms by which mitochondrial quality control contributes to heart protection or damage and to provide evidence that may resolve the seemingly contradictory results from the previous studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Filip Sedlić
- Filip Sedlić, Department of Pathophysiology, University of Zagreb School of Medicine, Kišpatićeva 12, 10 000 Zagreb, Croatia,
| |
Collapse
|
25
|
Rivera-Alvarez I, Pérez-Treviño P, Chapoy-Villanueva H, Vela-Guajardo JE, Nieblas B, Garza-González S, García-Rivas G, García N. A single session of physical activity restores the mitochondrial organization disrupted by obesity in skeletal muscle fibers. Life Sci 2020; 256:117965. [PMID: 32544463 DOI: 10.1016/j.lfs.2020.117965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/08/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Several studies have proved that physical activity (PA) regulates energetic metabolism associated with mitochondrial dynamics through AMPK activation in healthy subjects. Obesity, a condition that induces oxidative stress, mitochondrial dysfunction, and low AMPK activity leads to mitochondrial fragmentation. However, few studies describe the effect of PA on mitochondrial dynamics regulation in obesity. AIM The present study aimed to evaluate the effect of a single session of PA on mitochondrial dynamics regulation as well as its effect on mitochondrial function and organization in skeletal muscles of obese rats (Zucker fa/fa). MAIN METHODS Male Zucker lean and Zucker fa/fa rats aged 12 to 13 weeks were divided into sedentary and subjected-to-PA (single session swimming) groups. Gastrocnemius muscle was dissected into isolated fibers, mitochondria, mRNA, and total proteins for their evaluation. KEY FINDINGS The results showed that PA increased the Mfn-2 protein level in the lean and obese groups, whereas Drp1 levels decreased in the obese group. OMA1 protease levels increased in the lean group and decreased in the obese group. Additionally, AMPK analysis parameters (expression, protein level, and activity) did not increase in the obese group. These findings correlated with the partial restoration of mitochondrial function in the obese group, increasing the capacity to maintain the membrane potential after adding calcium as a stressor, and increasing the transversal organization level of the mitochondria analyzed in isolated fibers. SIGNIFICANCE These results support the notion that obese rats subjected to PA maintain mitochondrial function through mitochondrial fusion activation by an AMPK-independent mechanism.
Collapse
Affiliation(s)
- Irais Rivera-Alvarez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, San Pedro Garza Garcia, NL, Mexico
| | - Perla Pérez-Treviño
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, San Pedro Garza Garcia, NL, Mexico
| | - Héctor Chapoy-Villanueva
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, San Pedro Garza Garcia, NL, Mexico
| | - Jorge E Vela-Guajardo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, San Pedro Garza Garcia, NL, Mexico
| | - Bianca Nieblas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, San Pedro Garza Garcia, NL, Mexico
| | - Salvador Garza-González
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, San Pedro Garza Garcia, NL, Mexico
| | - Gerardo García-Rivas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, San Pedro Garza Garcia, NL, Mexico; Centro de Investigación Biomédica, Hospital Zambrano-Hellion, San Pedro Garza García, NL, Mexico
| | - Noemí García
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, San Pedro Garza Garcia, NL, Mexico; Centro de Investigación Biomédica, Hospital Zambrano-Hellion, San Pedro Garza García, NL, Mexico.
| |
Collapse
|
26
|
Azevedo RDS, Falcão KVG, Amaral IPG, Leite ACR, Bezerra RS. Mitochondria as targets for toxicity and metabolism research using zebrafish. Biochim Biophys Acta Gen Subj 2020; 1864:129634. [PMID: 32417171 DOI: 10.1016/j.bbagen.2020.129634] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND The study of mitochondrial functions in zebrafish was initiated before the 1990s and has effectively supported many of the recent scientific advances in the functional studies of mitochondria. SCOPE OF REVIEW This work elaborates various peculiarities and general advances in the study of mitochondria using this animal model. MAJOR CONCLUSIONS The inclusion of zebrafish models in scientific research was initiated with structural studies of mitochondria. Then, toxicological studies involving chemical compounds were undertaken. Currently, there is a decisive tendency to use zebrafish to understand how chemicals impair mitochondrial bioenergetics. Zebrafish modeling has been fruitful for the analysis of ion homeostasis, especially for Ca2+ transport, since zebrafish and mammals have the same set of Ca2+ transporters and mitochondrial membrane microdomains. Based on zebrafish embryo studies, our understanding of ROS generation has also led to new insights. GENERAL SIGNIFICANCE For the study of mitochondria, a new era was begun with the inclusion of zebrafish in bioenergetics research.
Collapse
Affiliation(s)
- Rafael D S Azevedo
- Biochemistry Department, Federal University of Pernambuco - UFPE, Recife, PE, Brazil.
| | - Kivia V G Falcão
- Biochemistry Department, Federal University of Pernambuco - UFPE, Recife, PE, Brazil
| | - Ian P G Amaral
- Biotechnology Center, Federal University of Paraiba - UFPB, João Pessoa, PB, Brazil
| | - Ana C R Leite
- Institute of Chemistry and Biotecnhology, Federal University of Alagoas - UFAL, Maceió, AL, Brazil
| | - Ranilson S Bezerra
- Biochemistry Department, Federal University of Pernambuco - UFPE, Recife, PE, Brazil
| |
Collapse
|
27
|
Lee H, Smith SB, Sheu SS, Yoon Y. The short variant of optic atrophy 1 (OPA1) improves cell survival under oxidative stress. J Biol Chem 2020; 295:6543-6560. [PMID: 32245890 DOI: 10.1074/jbc.ra119.010983] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 03/31/2020] [Indexed: 01/23/2023] Open
Abstract
Optic atrophy 1 (OPA1) is a dynamin protein that mediates mitochondrial fusion at the inner membrane. OPA1 is also necessary for maintaining the cristae and thus essential for supporting cellular energetics. OPA1 exists as membrane-anchored long form (L-OPA1) and short form (S-OPA1) that lacks the transmembrane region and is generated by cleavage of L-OPA1. Mitochondrial dysfunction and cellular stresses activate the inner membrane-associated zinc metallopeptidase OMA1 that cleaves L-OPA1, causing S-OPA1 accumulation. The prevailing notion has been that L-OPA1 is the functional form, whereas S-OPA1 is an inactive cleavage product in mammals, and that stress-induced OPA1 cleavage causes mitochondrial fragmentation and sensitizes cells to death. However, S-OPA1 contains all functional domains of dynamin proteins, suggesting that it has a physiological role. Indeed, we recently demonstrated that S-OPA1 can maintain cristae and energetics through its GTPase activity, despite lacking fusion activity. Here, applying oxidant insult that induces OPA1 cleavage, we show that cells unable to generate S-OPA1 are more sensitive to this stress under obligatory respiratory conditions, leading to necrotic death. These findings indicate that L-OPA1 and S-OPA1 differ in maintaining mitochondrial function. Mechanistically, we found that cells that exclusively express L-OPA1 generate more superoxide and are more sensitive to Ca2+-induced mitochondrial permeability transition, suggesting that S-OPA1, and not L-OPA1, protects against cellular stress. Importantly, silencing of OMA1 expression increased oxidant-induced cell death, indicating that stress-induced OPA1 cleavage supports cell survival. Our findings suggest that S-OPA1 generation by OPA1 cleavage is a survival mechanism in stressed cells.
Collapse
Affiliation(s)
- Hakjoo Lee
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Sylvia B Smith
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia 30912.,Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Shey-Shing Sheu
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Yisang Yoon
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| |
Collapse
|
28
|
Sivanesan S, Chang E, Howell MD, Rajadas J. Amyloid protein aggregates: new clients for mitochondrial energy production in the brain? FEBS J 2020; 287:3386-3395. [DOI: 10.1111/febs.15225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/08/2020] [Accepted: 01/21/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Senthilkumar Sivanesan
- Biomaterials and Advanced Drug Delivery Laboratory Cardiovascular Institute Stanford University School of Medicine Stanford CA USA
| | - Edwin Chang
- Department of Radiology Stanford University School of Medicine Stanford CA USA
| | | | - Jayakumar Rajadas
- Biomaterials and Advanced Drug Delivery Laboratory Cardiovascular Institute Stanford University School of Medicine Stanford CA USA
- Department of Bioengineering and Therapeutic Sciences School of Pharmacy University of California San Francisco San Francisco CA USA
| |
Collapse
|
29
|
Kulek AR, Anzell A, Wider JM, Sanderson TH, Przyklenk K. Mitochondrial Quality Control: Role in Cardiac Models of Lethal Ischemia-Reperfusion Injury. Cells 2020; 9:cells9010214. [PMID: 31952189 PMCID: PMC7016592 DOI: 10.3390/cells9010214] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 02/07/2023] Open
Abstract
The current standard of care for acute myocardial infarction or 'heart attack' is timely restoration of blood flow to the ischemic region of the heart. While reperfusion is essential for the salvage of ischemic myocardium, re-introduction of blood flow paradoxically kills (rather than rescues) a population of previously ischemic cardiomyocytes-a phenomenon referred to as 'lethal myocardial ischemia-reperfusion (IR) injury'. There is long-standing and exhaustive evidence that mitochondria are at the nexus of lethal IR injury. However, during the past decade, the paradigm of mitochondria as mediators of IR-induced cardiomyocyte death has been expanded to include the highly orchestrated process of mitochondrial quality control. Our aims in this review are to: (1) briefly summarize the current understanding of the pathogenesis of IR injury, and (2) incorporating landmark data from a broad spectrum of models (including immortalized cells, primary cardiomyocytes and intact hearts), provide a critical discussion of the emerging concept that mitochondrial dynamics and mitophagy (the components of mitochondrial quality control) may contribute to the pathogenesis of cardiomyocyte death in the setting of ischemia-reperfusion.
Collapse
Affiliation(s)
- Andrew R. Kulek
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.R.K.); (A.A.); (T.H.S.)
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Anthony Anzell
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.R.K.); (A.A.); (T.H.S.)
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Departments of Emergency Medicine and Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Joseph M. Wider
- Departments of Emergency Medicine and Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Thomas H. Sanderson
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.R.K.); (A.A.); (T.H.S.)
- Departments of Emergency Medicine and Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Karin Przyklenk
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.R.K.); (A.A.); (T.H.S.)
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Correspondence: ; Tel.: +1-313-577-9047
| |
Collapse
|
30
|
Raimondi V, Ciccarese F, Ciminale V. Oncogenic pathways and the electron transport chain: a dangeROS liaison. Br J Cancer 2019; 122:168-181. [PMID: 31819197 PMCID: PMC7052168 DOI: 10.1038/s41416-019-0651-y] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023] Open
Abstract
Driver mutations in oncogenic pathways, rewiring of cellular metabolism and altered ROS homoeostasis are intimately connected hallmarks of cancer. Electrons derived from different metabolic processes are channelled into the mitochondrial electron transport chain (ETC) to fuel the oxidative phosphorylation process. Electrons leaking from the ETC can prematurely react with oxygen, resulting in the generation of reactive oxygen species (ROS). Several signalling pathways are affected by ROS, which act as second messengers controlling cell proliferation and survival. On the other hand, oncogenic pathways hijack the ETC, enhancing its ROS-producing capacity by increasing electron flow or by impinging on the structure and organisation of the ETC. In this review, we focus on the ETC as a source of ROS and its modulation by oncogenic pathways, which generates a vicious cycle that resets ROS levels to a higher homoeostatic set point, sustaining the cancer cell phenotype.
Collapse
Affiliation(s)
| | | | - Vincenzo Ciminale
- Veneto Institute of Oncology IOV - IRCCS, Padua, Italy. .,Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy.
| |
Collapse
|
31
|
Prohibitin levels regulate OMA1 activity and turnover in neurons. Cell Death Differ 2019; 27:1896-1906. [PMID: 31819158 DOI: 10.1038/s41418-019-0469-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023] Open
Abstract
The GTPase OPA1 and the AAA-protease OMA1 serve well-established roles in mitochondrial stress responses and mitochondria-initiated cell death. In addition to its role in mitochondrial membrane fusion, cristae structure, and bioenergetic function, OPA1 controls apoptosis by sequestering cytochrome c (cyt c) in mitochondrial cristae. Cleavage of functional long OPA1 (L-OPA1) isoforms by OMA1 inactivates mitochondrial fusion and primes apoptosis. OPA1 cleavage is regulated by the prohibitin (PHB) complex, a heteromeric, ring-shaped mitochondrial inner membrane scaffolding complex composed of PHB1 and PHB2. In neurons, PHB plays a protective role against various stresses, and PHB deletion destabilizes OPA1 causing neurodegeneration. While deletion of OMA1 prevents OPA1 destabilization and attenuates neurodegeneration in PHB2 KO mice, how PHB levels regulate OMA1 is still unknown. Here, we investigate the effects of modulating neuronal PHB levels on OMA1 stability and OPA1 cleavage. We demonstrate that PHB promotes OMA1 turnover, effectively decreasing the pool of OMA1. Further, we show that OMA1 binds to cardiolipin (CL), a major mitochondrial phospholipid. CL binding promotes OMA1 turnover, as we show that deleting the CL-binding domain of OMA1 decreases its turnover rate. Since PHB is known to stabilize CL, these data suggest that PHB modulates OMA1 through CL. Furthermore, we show that PHB decreases cyt c release induced by tBID and attenuates caspase 9 activation in response to hypoxic stress in neurons. Taken together, our results suggest that PHB-mediated CL stabilization regulates stress responses and cell death through OMA1 turnover and cyt c release.
Collapse
|
32
|
Vazquez-Calvo C, Suhm T, Büttner S, Ott M. The basic machineries for mitochondrial protein quality control. Mitochondrion 2019; 50:121-131. [PMID: 31669238 DOI: 10.1016/j.mito.2019.10.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/10/2019] [Accepted: 10/02/2019] [Indexed: 11/16/2022]
Abstract
Mitochondria play pivotal roles in cellular energy metabolism, the synthesis of essential biomolecules and the regulation of cell death and aging. The proper folding, unfolding and degradation of the many proteins active within mitochondria is surveyed by the mitochondrial quality control machineries. Here, we describe the principal components of the mitochondrial quality control system and recent developments in the elucidation of the molecular mechanisms maintaining a functional mitochondrial proteome.
Collapse
Affiliation(s)
- Carmela Vazquez-Calvo
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrheniusväg 16, Stockholm 106 91, Sweden; Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, Stockholm 106 91, Sweden
| | - Tamara Suhm
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrheniusväg 16, Stockholm 106 91, Sweden
| | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, Stockholm 106 91, Sweden; Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, Graz 8010, Austria.
| | - Martin Ott
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrheniusväg 16, Stockholm 106 91, Sweden.
| |
Collapse
|
33
|
Daverey A, Levytskyy RM, Stanke KM, Viana MP, Swenson S, Hayward SL, Narasimhan M, Khalimonchuk O, Kidambi S. Depletion of mitochondrial protease OMA1 alters proliferative properties and promotes metastatic growth of breast cancer cells. Sci Rep 2019; 9:14746. [PMID: 31611601 PMCID: PMC6791882 DOI: 10.1038/s41598-019-49327-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 08/14/2019] [Indexed: 01/27/2023] Open
Abstract
Metastatic competence of cancer cells is influenced by many factors including metabolic alterations and changes in mitochondrial biogenesis and protein homeostasis. While it is generally accepted that mitochondria play important roles in tumorigenesis, the respective molecular events that regulate aberrant cancer cell proliferation remain to be clarified. Therefore, understanding the mechanisms underlying the role of mitochondria in cancer progression has potential implications in the development of new therapeutic strategies. We show that low expression of mitochondrial quality control protease OMA1 correlates with poor overall survival in breast cancer patients. Silencing OMA1 in vitro in patient-derived metastatic breast cancer cells isolated from the metastatic pleural effusion and atypical ductal hyperplasia mammary tumor specimens (21MT-1 and 21PT) enhances the formation of filopodia, increases cell proliferation (Ki67 expression), and induces epithelial-mesenchymal transition (EMT). Mechanistically, loss of OMA1 results in alterations in the mitochondrial protein homeostasis, as reflected by enhanced expression of canonic mitochondrial unfolded protein response genes. These changes significantly increase migratory properties in metastatic breast cancer cells, indicating that OMA1 plays a critical role in suppressing metastatic competence of breast tumors. Interestingly, these results were not observed in OMA1-depleted non-tumorigenic MCF10A mammary epithelial cells. This newly identified reduced activity/levels of OMA1 provides insights into the mechanisms leading to breast cancer development, promoting malignant progression of cancer cells and unfavorable clinical outcomes, which may represent possible prognostic markers and therapeutic targets for breast cancer treatment.
Collapse
Affiliation(s)
- Amita Daverey
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE, United States
| | - Roman M Levytskyy
- Department of Biochemistry, University of Nebraska, Lincoln, NE, United States
| | - Kimberly M Stanke
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE, United States
| | | | - Samantha Swenson
- Department of Biochemistry, University of Nebraska, Lincoln, NE, United States
| | - Stephen L Hayward
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE, United States
| | - Madhusudhanan Narasimhan
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska, Lincoln, NE, United States.
- Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE, United States.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States.
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska, Lincoln, NE, United States.
| | - Srivatsan Kidambi
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE, United States.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States.
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska, Lincoln, NE, United States.
- Nebraska Center for the Prevention of Obesity Diseases, University of Nebraska, Lincoln, NE, United States.
- Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE, United States.
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, United States.
| |
Collapse
|
34
|
Bohovych I, Dietz JV, Swenson S, Zahayko N, Khalimonchuk O. Redox Regulation of the Mitochondrial Quality Control Protease Oma1. Antioxid Redox Signal 2019; 31:429-443. [PMID: 31044600 PMCID: PMC6653804 DOI: 10.1089/ars.2018.7642] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aims: Normal mitochondrial function and integrity are crucial for cellular physiology. Given the paramount role of mitochondrial quality control proteases in these processes, our study focused on investigating mechanisms by which the activity of a key quality control protease Oma1 is regulated under normal conditions and in response to homeostatic insults. Results: Oma1 was found to be a redox-dependent protein that exists in a semi-oxidized state in yeast and mammalian mitochondria. Biochemical and genetic analyses provide evidence that activity and stability of the Oma1 oligomeric complex can be dynamically tuned in a reduction/oxidation-sensitive manner. Mechanistically, these features appear to be mediated by two intermembrane space (IMS)-exposed highly conserved cysteine residues, Cys272 and Cys332. These residues form a disulfide bond, which likely plays a structural role and influences conformational stability and activity of the Oma1 high-mass complex. Finally, in line with these findings, engineered Oma1 substrate is shown to engage with the protease in a redox-sensitive manner. Innovation: This study provides new insights into the function of the Oma1 protease, a central controller of mitochondrial membrane homeostasis and dynamics, and reveals the novel conserved mechanism of the redox-dependent regulation of Oma1. Conclusion: Disulfide bonds formed by IMS-exposed residues Cys272 and Cys332 play an important evolutionarily conserved role in the regulation of Oma1 function. We propose that the redox status of these cysteines may act as a redox-tunable switch to optimize Oma1 proteolytic function for specific cellular conditions or homeostatic challenges.
Collapse
Affiliation(s)
- Iryna Bohovych
- 1 Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Jonathan V Dietz
- 1 Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Samantha Swenson
- 1 Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Nataliya Zahayko
- 1 Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Oleh Khalimonchuk
- 1 Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska.,2 Nebraska Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska.,3 Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, Nebraska.,4 Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
35
|
Abstract
Mitochondria are metabolic hubs that use multiple proteases to maintain proteostasis and to preserve their overall quality. A decline of mitochondrial proteolysis promotes cellular stress and may contribute to the aging process. Mitochondrial proteases have also emerged as tightly regulated enzymes required to support the remarkable mitochondrial plasticity necessary for metabolic adaptation in a number of physiological scenarios. Indeed, the mutation and dysfunction of several mitochondrial proteases can cause specific human diseases with severe metabolic phenotypes. Here, we present an overview of the proteolytic regulation of key mitochondrial functions such as respiration, lipid biosynthesis, and mitochondrial dynamics, all of which are required for metabolic control. We also pay attention to how mitochondrial proteases are acutely regulated in response to cellular stressors or changes in growth conditions, a greater understanding of which may one day uncover their therapeutic potential.
Collapse
|
36
|
Alavi MV. Targeted OMA1 therapies for cancer. Int J Cancer 2019; 145:2330-2341. [PMID: 30714136 DOI: 10.1002/ijc.32177] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/20/2019] [Accepted: 01/23/2019] [Indexed: 12/12/2022]
Abstract
The mitochondrial inner membrane proteins OMA1 and OPA1 belong to the BAX/BAK1-dependent apoptotic signaling pathway, which can be regulated by tumor protein p53 and the prohibitins PHB and PHB2 in the context of neoplastic disease. For the most part these proteins have been studied separate from each other. Here, I argue that the OMA1 mechanism of action represents the missing link between p53 and cytochrome c release. The mitochondrial fusion protein OPA1 is cleaved by OMA1 in a stress-dependent manner generating S-OPA1. Excessive S-OPA1 can facilitate outer membrane permeabilization upon BAX/BAK1 activation through its membrane shaping properties. p53 helps outer membrane permeabilization in a 2-step process. First, cytosolic p53 activates BAX/BAK1 at the mitochondrial surface. Then, in a second step, p53 binds to prohibitin thereby releasing the restraint on OMA1. This activates OMA1, which cleaves OPA1 and promotes cytochrome c release. Clearly, OMA1 and OPA1 are not root causes for cancer. Yet many cancer cells rely on this pathway for survival, which can explain why loss of p53 function promotes tumor growth and confers resistance to chemotherapies.
Collapse
|
37
|
Nan J, Nan C, Ye J, Qian L, Geng Y, Xing D, Rahman MSU, Huang M. EGCG protects cardiomyocytes against hypoxia-reperfusion injury through inhibition of OMA1 activation. J Cell Sci 2019; 132:jcs.220871. [PMID: 30518622 DOI: 10.1242/jcs.220871] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/27/2018] [Indexed: 12/21/2022] Open
Abstract
Mitochondria are important for energy production and cardiomyocyte homeostasis. OMA1, a metalloendopeptidase, initiates the proteolytic process of the fusion-allowing protein OPA1, to deteriorate mitochondrial structure and function. In this study, mouse embryonic fibroblasts (MEFs) and neonatal mouse cardiomyocytes (NMCMs) subjected to hypoxia-reperfusion injury (HRI) and/or H2O2 were used to mimic oxidative stress in the heart following ischemia-reperfusion injury (IRI). In vitro experiments demonstrated that HRI or stimulation with H2O2 induced self-cleavage of OMA1 and the subsequent conversion of OPA1 from its long form to its short form, leading to mitochondrial fragmentation, cytochrome c release and apoptosis. By using Molecular Operating Environment (MOE) software to simulate the binding interaction of 2295 phytochemicals against OMA1, epigallocatechin gallate (EGCG) and betanin were selected as candidates of OMA1 inhibitor. We found that EGCG directly interacted with OMA1 and potently inhibited self-cleavage of OMA1, leading to attenuated OPA1 cleavage. This study, therefore, suggests to use OMA1 inhibition induced by EGCG to treat cardiac IRI.
Collapse
Affiliation(s)
- Jinliang Nan
- Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Cunjin Nan
- Department of Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Jian Ye
- Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Lu Qian
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Ya Geng
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dawei Xing
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Muhammad Saif Ur Rahman
- Clinical Research Center, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Mingyuan Huang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| |
Collapse
|
38
|
Lee H, Yoon Y. Mitochondrial Membrane Dynamics-Functional Positioning of OPA1. Antioxidants (Basel) 2018; 7:antiox7120186. [PMID: 30544804 PMCID: PMC6316456 DOI: 10.3390/antiox7120186] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 12/21/2022] Open
Abstract
The maintenance of mitochondrial energetics requires the proper regulation of mitochondrial morphology, and vice versa. Mitochondrial dynamins control mitochondrial morphology by mediating fission and fusion. One of them, optic atrophy 1 (OPA1), is the mitochondrial inner membrane remodeling protein. OPA1 has a dual role in maintaining mitochondrial morphology and energetics through mediating inner membrane fusion and maintaining the cristae structure. OPA1 is expressed in multiple variant forms through alternative splicing and post-translational proteolytic cleavage, but the functional differences between these variants have not been completely understood. Recent studies generated new information regarding the role of OPA1 cleavage. In this review, we will first provide a brief overview of mitochondrial membrane dynamics by describing fission and fusion that are mediated by mitochondrial dynamins. The second part describes OPA1-mediated fusion and energetic maintenance, the role of OPA1 cleavage, and a new development in OPA1 function, in which we will provide new insight for what OPA1 does and what proteolytic cleavage of OPA1 is for.
Collapse
Affiliation(s)
- Hakjoo Lee
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - Yisang Yoon
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
39
|
Germany EM, Zahayko N, Huebsch ML, Fox JL, Prahlad V, Khalimonchuk O. The AAA ATPase Afg1 preserves mitochondrial fidelity and cellular health by maintaining mitochondrial matrix proteostasis. J Cell Sci 2018; 131:jcs.219956. [PMID: 30301782 DOI: 10.1242/jcs.219956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/01/2018] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial functions are critical for cellular physiology; therefore, several conserved mechanisms are in place to maintain the functional integrity of mitochondria. However, many of the molecular details and components involved in ensuring mitochondrial fidelity remain obscure. Here, we identify a novel role for the conserved mitochondrial AAA ATPase Afg1 in mediating mitochondrial protein homeostasis during aging and in response to various cellular challenges. Saccharomyces cerevisiae cells lacking functional Afg1 are hypersensitive to oxidative insults, unable to tolerate protein misfolding in the matrix compartment and exhibit progressive mitochondrial failure as they age. Loss of the Afg1 ortholog LACE-1 in Caenorhabditis elegans is associated with reduced lifespan, impeded oxidative stress tolerance, impaired mitochondrial proteostasis in the motor neuron circuitry and altered behavioral plasticity. Our results indicate that Afg1 is a novel protein quality control factor, which plays an important evolutionarily conserved role in mitochondrial surveillance, and cellular and organismal health.
Collapse
Affiliation(s)
- Edward M Germany
- Department of Biochemistry, Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
| | - Nataliya Zahayko
- Department of Biochemistry, Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
| | - Mason L Huebsch
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC 29424, USA
| | - Jennifer L Fox
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC 29424, USA
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain Initiative, University of Iowa, Iowa City, IA 52242, USA
| | - Oleh Khalimonchuk
- Department of Biochemistry, Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA .,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
40
|
Perks KL, Ferreira N, Richman TR, Ermer JA, Kuznetsova I, Shearwood AMJ, Lee RG, Viola HM, Johnstone VPA, Matthews V, Hool LC, Rackham O, Filipovska A. Adult-onset obesity is triggered by impaired mitochondrial gene expression. SCIENCE ADVANCES 2017; 3:e1700677. [PMID: 28835921 PMCID: PMC5559209 DOI: 10.1126/sciadv.1700677] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/21/2017] [Indexed: 05/25/2023]
Abstract
Mitochondrial gene expression is essential for energy production; however, an understanding of how it can influence physiology and metabolism is lacking. Several proteins from the pentatricopeptide repeat (PPR) family are essential for the regulation of mitochondrial gene expression, but the functions of the remaining members of this family are poorly understood. We created knockout mice to investigate the role of the PPR domain 1 (PTCD1) protein and show that loss of PTCD1 is embryonic lethal, whereas haploinsufficient, heterozygous mice develop age-induced obesity. The molecular defects and metabolic consequences of mitochondrial protein haploinsufficiency in vivo have not been investigated previously. We show that PTCD1 haploinsufficiency results in increased RNA metabolism, in response to decreased protein synthesis and impaired RNA processing that affect the biogenesis of the respiratory chain, causing mild uncoupling and changes in mitochondrial morphology. We demonstrate that with age, these effects lead to adult-onset obesity that results in liver steatosis and cardiac hypertrophy in response to tissue-specific differential regulation of the mammalian target of rapamycin pathways. Our findings indicate that changes in mitochondrial gene expression have long-term consequences on energy metabolism, providing evidence that haploinsufficiency of PTCD1 can be a major predisposing factor for the development of metabolic syndrome.
Collapse
Affiliation(s)
- Kara L. Perks
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Nicola Ferreira
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Tara R. Richman
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Judith A. Ermer
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Irina Kuznetsova
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Anne-Marie J. Shearwood
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Richard G. Lee
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Helena M. Viola
- School of Human Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Victoria P. A. Johnstone
- School of Human Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Vance Matthews
- School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Livia C. Hool
- School of Human Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, University of Western Australia, Nedlands, Western Australia 6009, Australia
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, University of Western Australia, Nedlands, Western Australia 6009, Australia
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
41
|
Bhuiyan NH, van Wijk KJ. Functions and substrates of plastoglobule-localized metallopeptidase PGM48. PLANT SIGNALING & BEHAVIOR 2017; 12:e1331197. [PMID: 28534654 PMCID: PMC5566252 DOI: 10.1080/15592324.2017.1331197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plastoglobules (PGs) in chloroplasts are monolayer lipid-protein particles attached to thylakoids. The size and number of PGs per chloroplast respond dynamically to abiotic environmental stresses and developmental transitions. During senescence, the thylakoid membranes and its constituents are dismantled in controlled fashion. Leaf senescence coincides with a dramatic increase in the size of PGs, which is consistent with a functional role of PG in remobilization of thylakoid membrane components. In a recent publication, 1 we showed that PG-localized metallopeptidase PGM48 promotes natural senescence. In plants, PGM48 has homologs in mitochondria and the endomembrane system, but PGM48 evolved specifically in photosynthetic organisms. Extensive analysis of Arabidopsis transgenic lines either under- or overexpressing PGM48, showed that PGM48 is a positive regulator of senescence, and we proposed that PG-localized carotenoid cleavage enzyme 4 (CCD4) is a potential substrate of PGM48. Here, we discuss PGM48 function and how it may accelerate natural senescence.
Collapse
Affiliation(s)
| | - Klaas J. van Wijk
- Department of Plant Biology, Cornell University, Ithaca, NY, USA
- CONTACT Klaas J. van Wijk Plant Biology, Cornell University, Emerson Hall 332, Ithaca, NY 14853, USA
| |
Collapse
|
42
|
Lee H, Smith SB, Yoon Y. The short variant of the mitochondrial dynamin OPA1 maintains mitochondrial energetics and cristae structure. J Biol Chem 2017; 292:7115-7130. [PMID: 28298442 DOI: 10.1074/jbc.m116.762567] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 03/15/2017] [Indexed: 01/06/2023] Open
Abstract
The protein optic atrophy 1 (OPA1) is a dynamin-related protein associated with the inner mitochondrial membrane and functions in mitochondrial inner membrane fusion and cristae maintenance. Inner membrane-anchored long OPA1 (L-OPA1) undergoes proteolytic cleavage resulting in short OPA1 (S-OPA1). It is often thought that S-OPA1 is a functionally insignificant proteolytic product of L-OPA1 because the accumulation of S-OPA1 due to L-OPA1 cleavage is observed in mitochondrial fragmentation and dysfunction. However, cells contain a mixture of both L- and S-OPA1 in normal conditions, suggesting the functional significance of maintaining both OPA1 forms, but the differential roles of L- and S-OPA1 in mitochondrial fusion and energetics are ill-defined. Here, we examined mitochondrial fusion and energetic activities in cells possessing L-OPA1 alone, S-OPA1 alone, or both L- and S-OPA1. Using a mitochondrial fusion assay, we established that L-OPA1 confers fusion competence, whereas S-OPA1 does not. Remarkably, we found that S-OPA1 alone without L-OPA1 can maintain oxidative phosphorylation function as judged by growth in oxidative phosphorylation-requiring media, respiration measurements, and levels of the respiratory complexes. Most strikingly, S-OPA1 alone maintained normal mitochondrial cristae structure, which has been commonly assumed to be the function of OPA1 oligomers containing both L- and S-OPA1. Furthermore, we found that the GTPase activity of OPA1 is critical for maintaining cristae tightness and thus energetic competency. Our results demonstrate that, contrary to conventional notion, S-OPA1 is fully competent for maintaining mitochondrial energetics and cristae structure.
Collapse
Affiliation(s)
| | - Sylvia B Smith
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | | |
Collapse
|
43
|
Migdal I, Skibior-Blaszczyk R, Heidorn-Czarna M, Kolodziejczak M, Garbiec A, Janska H. AtOMA1 Affects the OXPHOS System and Plant Growth in Contrast to Other Newly Identified ATP-Independent Proteases in Arabidopsis Mitochondria. FRONTIERS IN PLANT SCIENCE 2017; 8:1543. [PMID: 28936218 PMCID: PMC5594102 DOI: 10.3389/fpls.2017.01543] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/23/2017] [Indexed: 05/17/2023]
Abstract
Compared with yeast, our knowledge on members of the ATP-independent plant mitochondrial proteolytic machinery is rather poor. In the present study, using confocal microscopy and immunoblotting, we proved that homologs of yeast Oma1, Atp23, Imp1, Imp2, and Oct1 proteases are localized in Arabidopsis mitochondria. We characterized these components of the ATP-independent proteolytic system as well as the earlier identified protease, AtICP55, with an emphasis on their significance in plant growth and functionality in the OXPHOS system. A functional complementation assay demonstrated that out of all the analyzed proteases, only AtOMA1 and AtICP55 could substitute for a lack of their yeast counterparts. We did not observe any significant developmental or morphological changes in plants lacking the studied proteases, either under optimal growth conditions or after exposure to stress, with the only exception being retarded root growth in oma1-1, thus implying that the absence of a single mitochondrial ATP-independent protease is not critical for Arabidopsis growth and development. We did not find any evidence indicating a clear functional complementation of the missing protease by any other protease at the transcript or protein level. Studies on the impact of the analyzed proteases on mitochondrial bioenergetic function revealed that out of all the studied mutants, only oma1-1 showed differences in activities and amounts of OXPHOS proteins. Among all the OXPHOS disorders found in oma1-1, the complex V deficiency is distinctive because it is mainly associated with decreased catalytic activity and not correlated with complex abundance, which has been observed in the case of supercomplex I + III2 and complex I deficiencies. Altogether, our study indicates that despite the presence of highly conservative homologs, the mitochondrial ATP-independent proteolytic system is not functionally conserved in plants as compared with yeast. Our findings also highlight the importance of AtOMA1 in maintenance of proper function of the OXPHOS system as well as in growth and development of Arabidopsis thaliana.
Collapse
Affiliation(s)
- Iwona Migdal
- Institute of Experimental Biology, Faculty of Biological Sciences, University of WroclawWroclaw, Poland
| | - Renata Skibior-Blaszczyk
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of WroclawWroclaw, Poland
| | - Malgorzata Heidorn-Czarna
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of WroclawWroclaw, Poland
| | - Marta Kolodziejczak
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of WroclawWroclaw, Poland
| | - Arnold Garbiec
- Institute of Experimental Biology, Faculty of Biological Sciences, University of WroclawWroclaw, Poland
| | - Hanna Janska
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of WroclawWroclaw, Poland
- *Correspondence: Hanna Janska,
| |
Collapse
|
44
|
Levytskyy RM, Germany EM, Khalimonchuk O. Mitochondrial Quality Control Proteases in Neuronal Welfare. J Neuroimmune Pharmacol 2016; 11:629-644. [PMID: 27137937 PMCID: PMC5093085 DOI: 10.1007/s11481-016-9683-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/27/2016] [Indexed: 01/01/2023]
Abstract
The functional integrity of mitochondria is a critical determinant of neuronal health and compromised mitochondrial function is a commonly recognized factor that underlies a plethora of neurological and neurodegenerative diseases. Metabolic demands of neural cells require high bioenergetic outputs that are often associated with enhanced production of reactive oxygen species. Unopposed accumulation of these respiratory byproducts over time leads to oxidative damage and imbalanced protein homeostasis within mitochondrial subcompartments, which in turn may result in cellular demise. The post-mitotic nature of neurons and their vulnerability to these stress factors necessitate strict protein homeostatic control to prevent such scenarios. A series of evolutionarily conserved proteases is one of the central elements of mitochondrial quality control. These versatile proteolytic enzymes conduct a multitude of activities to preserve normal mitochondrial function during organelle biogenesis, metabolic remodeling and stress. In this review we discuss neuroprotective aspects of mitochondrial quality control proteases and neuropathological manifestations arising from defective proteolysis within the mitochondrion.
Collapse
Affiliation(s)
- Roman M Levytskyy
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Edward M Germany
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
- Nebraska Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| |
Collapse
|
45
|
Bhuiyan NH, Friso G, Rowland E, Majsec K, van Wijk KJ. The Plastoglobule-Localized Metallopeptidase PGM48 Is a Positive Regulator of Senescence in Arabidopsis thaliana. THE PLANT CELL 2016; 28:3020-3037. [PMID: 27895226 PMCID: PMC5240743 DOI: 10.1105/tpc.16.00745] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/08/2016] [Accepted: 11/19/2016] [Indexed: 05/18/2023]
Abstract
Plastoglobuli (PG) are thylakoid-associated monolayer lipid particles with a specific proteome of ∼30 PG core proteins and isoprenoid and neutral lipids. During senescence, PGs increase in size, reflecting their role in dismantling thylakoid membranes. Here, we show that the only PG-localized peptidase PGM48 positively regulates leaf senescence. We discovered that PGM48 is a member of the M48 peptidase family with PGM48 homologs, forming a clade (M48D) only found in photosynthetic organisms. Unlike the M48A, B, and C clades, members of M48D have no transmembrane domains, consistent with their unique subcellular location in the PG. In vitro assays showed Zn-dependent proteolytic activity and substrate cleavage upstream of hydrophobic residues. Overexpression of PGM48 accelerated natural leaf senescence, whereas suppression delayed senescence. Quantitative proteomics of PG from senescing rosettes of PGM48 overexpression lines showed a dramatically reduced level of CAROTENOID CLEAVAGE ENZYME4 (CCD4) and significantly increased levels of the senescence-induced ABC1 KINASE7 (ABC1K7) and PHYTYL ESTER SYNTHASE1 (PES1). Yeast two-hybrid experiments identified PG core proteins ABC1K3, PES1, and CCD4 as PGM48 interactors, whereas several other PG-localized proteins and chlorophyll degradation enzymes did not interact. We discuss mechanisms through which PGM48 could possibly accelerate the senescence process.
Collapse
Affiliation(s)
- Nazmul H Bhuiyan
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Giulia Friso
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Elden Rowland
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Kristina Majsec
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Klaas J van Wijk
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
46
|
Wai T, Saita S, Nolte H, Müller S, König T, Richter-Dennerlein R, Sprenger HG, Madrenas J, Mühlmeister M, Brandt U, Krüger M, Langer T. The membrane scaffold SLP2 anchors a proteolytic hub in mitochondria containing PARL and the i-AAA protease YME1L. EMBO Rep 2016; 17:1844-1856. [PMID: 27737933 DOI: 10.15252/embr.201642698] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/13/2016] [Accepted: 09/15/2016] [Indexed: 02/05/2023] Open
Abstract
The SPFH (stomatin, prohibitin, flotillin, HflC/K) superfamily is composed of scaffold proteins that form ring-like structures and locally specify the protein-lipid composition in a variety of cellular membranes. Stomatin-like protein 2 (SLP2) is a member of this superfamily that localizes to the mitochondrial inner membrane (IM) where it acts as a membrane organizer. Here, we report that SLP2 anchors a large protease complex composed of the rhomboid protease PARL and the i-AAA protease YME1L, which we term the SPY complex (for SLP2-PARL-YME1L). Association with SLP2 in the SPY complex regulates PARL-mediated processing of PTEN-induced kinase PINK1 and the phosphatase PGAM5 in mitochondria. Moreover, SLP2 inhibits the stress-activated peptidase OMA1, which can bind to SLP2 and cleaves PGAM5 in depolarized mitochondria. SLP2 restricts OMA1-mediated processing of the dynamin-like GTPase OPA1 allowing stress-induced mitochondrial hyperfusion under starvation conditions. Together, our results reveal an important role of SLP2 membrane scaffolds for the spatial organization of IM proteases regulating mitochondrial dynamics, quality control, and cell survival.
Collapse
Affiliation(s)
- Timothy Wai
- Institute for Genetics Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), and University of Cologne, Cologne, Germany
| | - Shotaro Saita
- Institute for Genetics Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), and University of Cologne, Cologne, Germany
| | - Hendrik Nolte
- Institute for Genetics Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), and University of Cologne, Cologne, Germany
| | - Sebastian Müller
- Institute for Genetics Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), and University of Cologne, Cologne, Germany
| | - Tim König
- Institute for Genetics Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), and University of Cologne, Cologne, Germany
| | - Ricarda Richter-Dennerlein
- Institute for Genetics Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), and University of Cologne, Cologne, Germany
| | - Hans-Georg Sprenger
- Institute for Genetics Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), and University of Cologne, Cologne, Germany
| | - Joaquin Madrenas
- Microbiome and Disease Tolerance Centre, Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Mareike Mühlmeister
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ulrich Brandt
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marcus Krüger
- Institute for Genetics Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), and University of Cologne, Cologne, Germany
| | - Thomas Langer
- Institute for Genetics Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), and University of Cologne, Cologne, Germany .,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
47
|
Biasutto L, Azzolini M, Szabò I, Zoratti M. The mitochondrial permeability transition pore in AD 2016: An update. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:2515-30. [PMID: 26902508 DOI: 10.1016/j.bbamcr.2016.02.012] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/13/2022]
Abstract
Over the past 30years the mitochondrial permeability transition - the permeabilization of the inner mitochondrial membrane due to the opening of a wide pore - has progressed from being considered a curious artifact induced in isolated mitochondria by Ca(2+) and phosphate to a key cell-death-inducing process in several major pathologies. Its relevance is by now universally acknowledged and a pharmacology targeting the phenomenon is being developed. The molecular nature of the pore remains to this day uncertain, but progress has recently been made with the identification of the FOF1 ATP synthase as the probable proteic substrate. Researchers sharing this conviction are however divided into two camps: these believing that only the ATP synthase dimers or oligomers can form the pore, presumably in the contact region between monomers, and those who consider that the ring-forming c subunits in the FO sector actually constitute the walls of the pore. The latest development is the emergence of a new candidate: Spastic Paraplegia 7 (SPG7), a mitochondrial AAA-type membrane protease which forms a 6-stave barrel. This review summarizes recent developments of research on the pathophysiological relevance and on the molecular nature of the mitochondrial permeability transition pore. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
Collapse
Affiliation(s)
- Lucia Biasutto
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy
| | - Michele Azzolini
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy
| | - Ildikò Szabò
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Department of Biology, Viale G. Colombo 3, 35121 Padova, Italy
| | - Mario Zoratti
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy.
| |
Collapse
|
48
|
Oma1 Links Mitochondrial Protein Quality Control and TOR Signaling To Modulate Physiological Plasticity and Cellular Stress Responses. Mol Cell Biol 2016; 36:2300-12. [PMID: 27325672 DOI: 10.1128/mcb.00156-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/09/2016] [Indexed: 12/17/2022] Open
Abstract
A network of conserved proteases known as the intramitochondrial quality control (IMQC) system is central to mitochondrial protein homeostasis and cellular health. IMQC proteases also appear to participate in establishment of signaling cues for mitochondrion-to-nucleus communication. However, little is known about this process. Here, we show that in Saccharomyces cerevisiae, inactivation of the membrane-bound IMQC protease Oma1 interferes with oxidative-stress responses through enhanced production of reactive oxygen species (ROS) during logarithmic growth and reduced stress signaling via the TORC1-Rim15-Msn2/Msn4 axis. Pharmacological or genetic prevention of ROS accumulation in Oma1-deficient cells restores this defective TOR signaling. Additionally, inactivation of the Oma1 ortholog in the human fungal pathogen Candida albicans also alters TOR signaling and, unexpectedly, leads to increased resistance to neutrophil killing and virulence in the invertebrate animal model Galleria mellonella Our findings reveal a novel and evolutionarily conserved link between IMQC and TOR-mediated signaling that regulates physiological plasticity and pancellular oxidative-stress responses.
Collapse
|
49
|
Wessels HJCT, de Almeida NM, Kartal B, Keltjens JT. Bacterial Electron Transfer Chains Primed by Proteomics. Adv Microb Physiol 2016; 68:219-352. [PMID: 27134025 DOI: 10.1016/bs.ampbs.2016.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Electron transport phosphorylation is the central mechanism for most prokaryotic species to harvest energy released in the respiration of their substrates as ATP. Microorganisms have evolved incredible variations on this principle, most of these we perhaps do not know, considering that only a fraction of the microbial richness is known. Besides these variations, microbial species may show substantial versatility in using respiratory systems. In connection herewith, regulatory mechanisms control the expression of these respiratory enzyme systems and their assembly at the translational and posttranslational levels, to optimally accommodate changes in the supply of their energy substrates. Here, we present an overview of methods and techniques from the field of proteomics to explore bacterial electron transfer chains and their regulation at levels ranging from the whole organism down to the Ångstrom scales of protein structures. From the survey of the literature on this subject, it is concluded that proteomics, indeed, has substantially contributed to our comprehending of bacterial respiratory mechanisms, often in elegant combinations with genetic and biochemical approaches. However, we also note that advanced proteomics offers a wealth of opportunities, which have not been exploited at all, or at best underexploited in hypothesis-driving and hypothesis-driven research on bacterial bioenergetics. Examples obtained from the related area of mitochondrial oxidative phosphorylation research, where the application of advanced proteomics is more common, may illustrate these opportunities.
Collapse
Affiliation(s)
- H J C T Wessels
- Nijmegen Center for Mitochondrial Disorders, Radboud Proteomics Centre, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - N M de Almeida
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - B Kartal
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands; Laboratory of Microbiology, Ghent University, Ghent, Belgium
| | - J T Keltjens
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|
50
|
Rainbolt TK, Lebeau J, Puchades C, Wiseman RL. Reciprocal Degradation of YME1L and OMA1 Adapts Mitochondrial Proteolytic Activity during Stress. Cell Rep 2016; 14:2041-2049. [PMID: 26923599 DOI: 10.1016/j.celrep.2016.02.011] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/21/2015] [Accepted: 01/29/2016] [Indexed: 12/31/2022] Open
Abstract
The mitochondrial inner membrane proteases YME1L and OMA1 are critical regulators of essential mitochondrial functions, including inner membrane proteostasis maintenance and mitochondrial dynamics. Here, we show that YME1L and OMA1 are reciprocally degraded in response to distinct types of cellular stress. OMA1 is degraded through a YME1L-dependent mechanism in response to toxic insults that depolarize the mitochondrial membrane. Alternatively, insults that depolarize mitochondria and deplete cellular ATP stabilize active OMA1 and promote YME1L degradation. We show that the differential degradation of YME1L and OMA1 alters their proteolytic processing of the dynamin-like GTPase OPA1, a critical regulator of mitochondrial inner membrane morphology, which influences the recovery of tubular mitochondria following membrane-depolarization-induced fragmentation. Our results reveal the differential stress-induced degradation of YME1L and OMA1 as a mechanism for sensitively adapting mitochondrial inner membrane protease activity and function in response to distinct types of cellular insults.
Collapse
Affiliation(s)
- T Kelly Rainbolt
- Department of Molecular and Experimental Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Justine Lebeau
- Department of Molecular and Experimental Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Cristina Puchades
- Department of Molecular and Experimental Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - R Luke Wiseman
- Department of Molecular and Experimental Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|