1
|
Perumalsamy N, Sharma R, Subramanian M, Nagarajan SA. Hard Ticks as Vectors: The Emerging Threat of Tick-Borne Diseases in India. Pathogens 2024; 13:556. [PMID: 39057783 PMCID: PMC11279560 DOI: 10.3390/pathogens13070556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 07/28/2024] Open
Abstract
Hard ticks (Ixodidae) play a critical role in transmitting various tick-borne diseases (TBDs), posing significant global threats to human and animal health. Climatic factors influence the abundance, diversity, and vectorial capacity of tick vectors. It is imperative to have a comprehensive understanding of hard ticks, pathogens, eco-epidemiology, and the impact of climatic changes on the transmission dynamics of TBDs. The distribution and life cycle patterns of hard ticks are influenced by diverse ecological factors that, in turn, can be impacted by changes in climate, leading to the expansion of the tick vector's range and geographical distribution. Vector competence, a pivotal aspect of vectorial capacity, involves the tick's ability to acquire, maintain, and transmit pathogens. Hard ticks, by efficiently feeding on diverse hosts and manipulating their immunity through their saliva, emerge as competent vectors for various pathogens, such as viruses, parasites and bacteria. This ability significantly influences the success of pathogen transmission. Further exploration of genetic diversity, population structure, and hybrid tick vectors is crucial, as they play a substantial role in influencing vector competence and complicating the dynamics of TBDs. This comprehensive review deals with important TBDs in India and delves into a profound understanding of hard ticks as vectors, their biology, and the factors influencing their vector competence. Given that TBDs continue to pose a substantial threat to global health, the review emphasizes the urgency of investigating tick control strategies and advancing vaccine development. Special attention is given to the pivotal role of population genetics in comprehending the genetic diversity of tick populations and providing essential insights into their adaptability to environmental changes.
Collapse
Affiliation(s)
| | | | | | - Shriram Ananganallur Nagarajan
- Division of Vector Biology and Control, Indian Council of Medical Research—Vector Control Research Centre (ICMR-VCRC), Puducherry 605006, India; (N.P.); (R.S.); (M.S.)
| |
Collapse
|
2
|
Lin S, Wang X, Sallapalli BT, Hage A, Chang P, He J, Best SM, Zhang Y. Langat virus inhibits the gp130/JAK/STAT signaling by reducing the gp130 protein level. J Med Virol 2024; 96:e29522. [PMID: 38533889 DOI: 10.1002/jmv.29522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/08/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024]
Abstract
The tick-borne encephalitis virus (TBEV) serocomplex includes several medically important flavivirus members endemic to Europe, Asia, and North America, which can induce severe neuroinvasive or viscerotropic diseases with unclear mechanisms of pathogenesis. Langat virus (LGTV) shares a high sequence identity with TBEV but exhibits lower pathogenic potential in humans and serves as a model for virus-host interactions. In this study, we demonstrated that LGTV infection inhibits the activation of gp130/JAK/STAT (Janus kinases (JAK) and signal transducer and activator of transcription (STAT)) signaling, which plays a pivotal role in numerous biological processes. Our data show that the LGTV-infected cells had significantly lower phosphorylated STAT3 (pSTAT3) protein upon oncostatin M (OSM) stimulation than the mock-infected control. LGTV infection blocked the nuclear translocation of STAT3 without a significant effect on total STAT3 protein level. LGTV inhibited JAK1 activation and reduced gp130 protein expression in infected cells, with the viral NS5 protein mediating this effect. TBEV infection also reduces gp130 level. On the other hand, pretreatment of Vero cells with OSM significantly reduces LGTV replication, and STAT1/STAT2 knockdown had little effect on OSM-mediated antiviral effect, which suggests it is independent of STAT1/STAT2 and, instead, it is potentially mediated by STAT3 signlaing. These findings shed light on the LGTV and TBEV-cell interactions, offering insights for the future development of antiviral therapeutics and improved vaccines.
Collapse
Affiliation(s)
- Shaoli Lin
- Molecular Virology Laboratory, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Xiaochun Wang
- Molecular Virology Laboratory, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Bhargava Teja Sallapalli
- Molecular Virology Laboratory, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Adam Hage
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Peixi Chang
- Molecular Virology Laboratory, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Jia He
- Molecular Virology Laboratory, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Sonja M Best
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Yanjin Zhang
- Molecular Virology Laboratory, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| |
Collapse
|
3
|
Müller I, Althof N, Hoffmann B, Klaus C, Schilling-Loeffler K, Falkenhagen A, Johne R. Comparison of Extraction Methods for the Detection of Tick-Borne Encephalitis Virus RNA in Goat Raw Milk and Cream Cheese. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:32-42. [PMID: 36127560 PMCID: PMC9488872 DOI: 10.1007/s12560-022-09535-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Infection with the tick-borne encephalitis virus (TBEV) can cause meningitis, meningoencephalitis and myelitis in humans. TBEV is an enveloped RNA virus of the family Flaviviridae, which is mostly transmitted via tick bites. However, transmission by consumption of virus-contaminated goat raw milk and goat raw milk products has also been described. Only a few methods have been reported for the detection of TBEV in food so far. Here, we compare different virus extraction methods for goat raw milk and goat raw milk cream cheese and subsequent detection of TBEV-RNA by RT-qPCR. Langat virus (LGTV), a naturally attenuated TBEV strain, was used for artificial contamination experiments. Mengovirus and the human coronavirus 229E were compared to assess their suitability to serve as internal process controls. Out of three tested extraction protocols for raw milk, sample centrifugation followed by direct RNA extraction from the aqueous interphase yielded the best results, with a recovery rate (RR) of 31.8 ± 4.9% for LGTV and a detection limit of 6.7 × 103 LGTV genome copies/ml. Out of two methods for cream cheese, treatment of the samples with TRI Reagent® and chloroform prior to RNA extraction showed the best RR of 4.7 ± 1.6% for LGTV and a detection limit of 9.4 × 104 LGTV genome copies/g. RRs of Mengovirus and LGTV were similar for both methods; therefore, Mengovirus is suggested as internal process control virus. The developed methods may be useful for screening or surveillance studies, as well as in outbreak investigations.
Collapse
Affiliation(s)
- Irene Müller
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Nadine Althof
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Bernd Hoffmann
- Institute for Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Christine Klaus
- Institute for Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Naumburger Str. 96a, 07743, Jena, Germany
| | | | - Alexander Falkenhagen
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Reimar Johne
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany.
| |
Collapse
|
4
|
Ahmed W, Rajendran KV, Neelakanta G, Sultana H. An Experimental Murine Model to Study Acquisition Dynamics of Tick-Borne Langat Virus in Ixodes scapularis. Front Microbiol 2022; 13:849313. [PMID: 35495703 PMCID: PMC9048798 DOI: 10.3389/fmicb.2022.849313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/22/2022] [Indexed: 11/05/2022] Open
Abstract
Ixodes scapularis ticks acquire several pathogens from reservoir animals and transmit them to humans. Development of an animal model to study acquisition/transmission dynamics of these pathogens into and from ticks, respectively, is challenging due to the fact that in nature ticks feed for a longer duration and on multiple vertebrate hosts. To understand the complex nature of pathogen acquisition/transmission, it is essential to set up a successful tick blood feeding method on a suitable vertebrate host. In this study, we provide evidence that murine model can be successfully used to study acquisition dynamics of Langat virus (LGTV), a member of tick-borne flaviviruses. Mice were inoculated intraperitoneally with LGTV that showed detectable viral loads in blood, skin, and other tissues including the brain. Both larval and nymphal ticks that were allowed to feed on the murine host successfully acquired LGTV loads. Also, we found that after molting, LGTV was transstadially transmitted from larval to nymphal stage. In addition, we noted that LGTV down-regulated IsSMase expression in all groups of ticks possibly for its survival in its vector host. Taken together, we provide evidence for the use of murine model to not only study acquisition dynamics of LGTV but also to study changes in tick gene expression during acquisition of arboviruses into ticks.
Collapse
|
5
|
Teoh BT, Chin KL, Samsudin NI, Loong SK, Sam SS, Tan KK, Khor CS, Abd-Jamil J, Zainal N, Wilder-Smith A, Zandi K, AbuBakar S. A reverse transcription loop-mediated isothermal amplification for broad coverage detection of Asian and African Zika virus lineages. BMC Infect Dis 2020; 20:947. [PMID: 33308203 PMCID: PMC7731766 DOI: 10.1186/s12879-020-05585-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/04/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Early detection of Zika virus (ZIKV) infection during the viremia and viruria facilitates proper patient management and mosquito control measurement to prevent disease spread. Therefore, a cost-effective nucleic acid detection method for the diagnosis of ZIKV infection, especially in resource-deficient settings, is highly required. METHODS In the present study, a single-tube reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for the detection of both the Asian and African-lineage ZIKV. The detection limit, strain coverage and cross-reactivity of the ZIKV RT-LAMP assay was evaluated. The sensitivity and specificity of the RT-LAMP were also evaluated using a total of 24 simulated clinical samples. The ZIKV quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay was used as the reference assay. RESULTS The detection limit of the RT-LAMP assay was 3.73 ZIKV RNA copies (probit analysis, P ≤ 0.05). The RT-LAMP assay detected the ZIKV genomes of both the Asian and African lineages without cross-reacting with other arthropod-borne viruses. The sensitivity and specificity of the RT-LAMP assay were 90% (95% CI = 59.6-98.2) and 100% (95% CI = 78.5-100.0), respectively. The RT-LAMP assay detected ZIKV genome in 9 of 24 (37.5%) of the simulated clinical samples compared to 10 of 24 (41.7%) by qRT-PCR assay with a high level of concordance (κ = 0.913, P < 0.001). CONCLUSION The RT-LAMP assay is applicable for the broad coverage detection of both the Asian and African ZIKV strains in resource-deficient settings.
Collapse
Affiliation(s)
- Boon-Teong Teoh
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia.
| | - Kim-Ling Chin
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia.,Institute for Advanced Studies (IAS), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Nur-Izyan Samsudin
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Shih-Keng Loong
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sing-Sin Sam
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Kim-Kee Tan
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Chee-Sieng Khor
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Juraina Abd-Jamil
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Nurhafiza Zainal
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Annelies Wilder-Smith
- Department of Public Health and Clinical Medicine, Epidemiology and Global Health, Umeå University, Umeå, Sweden.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Republic of Singapore
| | - Keivan Zandi
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.,Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia. .,Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
6
|
Shimoda H, Hayasaka D, Yoshii K, Yokoyama M, Suzuki K, Kodera Y, Takeda T, Mizuno J, Noguchi K, Yonemitsu K, Minami S, Kuwata R, Takano A, Maeda K. Detection of a novel tick-borne flavivirus and its serological surveillance. Ticks Tick Borne Dis 2019; 10:742-748. [PMID: 30902589 DOI: 10.1016/j.ttbdis.2019.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 03/10/2019] [Accepted: 03/11/2019] [Indexed: 10/27/2022]
Abstract
Tick-borne encephalitis virus (TBEV), a flavivirus that causes severe neurological symptoms in humans, has been found in Hokkaido, Japan. In the present study, we detected sequences from a novel tick-borne flavivirus, designated Yamaguchi virus (YGV), in liver and serum samples obtained from a wild boar in the Yamaguchi prefecture, Japan. Phylogenetic analysis revealed that YGV belongs to the TBEV complex and is closely related to Langat virus (LGTV). YGV was also detected by specific RT-PCR from 20 in 378 pools of ticks (2923 ticks) collected in Yamaguchi and Wakayama prefectures and from seven in 46 wild boar captured in Wakayama. The major ticks infected with YGV belong to the genus Haemaphysalis. Unfortunately, YGV could not be isolated from any samples from the RT-PCR positive wild boar or ticks. Therefore, ELISA for detection of antibodies against YGV was established using LGTV, and surveillance was performed among wild boar in 10 different prefectures on Honshu Island, the main island of Japan. The results showed that the seroprevalence of tick-borne flavivirus infection in the Wakayama and Hyogo prefectures of western Japan was significantly higher than that in the other prefectures, while antibodies against tick-borne flavivirus were not detected in any wild boar in the Tochigi prefecture in the eastern part of Japan. In addition, wild raccoons or masked palm civets in the Hyogo prefecture did not possess detectable antibodies against tick-borne flaviviruses. In conclusion, YGV appears to be maintained primarily among wild boar and ticks in the western part of Japan. YGV is the second flavivirus (after Japanese encephalitis virus) shown to be circulating on Honshu Island in Japan.
Collapse
Affiliation(s)
- Hiroshi Shimoda
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Daisuke Hayasaka
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Kentaro Yoshii
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku Kita-18 Nishi-9, Sapporo, Hokkaido, 060-0818, Japan
| | - Mayumi Yokoyama
- Institute of Natural and Environmental Science, University of Hyogo, 940 Sawano, Aogaki-cho, Tamba, Hyogo, 669-3842, Japan
| | - Kazuo Suzuki
- Hikiiwa Park Center, 1629 Inari-cho, Tanabe, Wakayama, 646-0051, Japan
| | - Yuuji Kodera
- Center for Weed and Wildlife Management, Utsunomiya University, 350 Mine-machi, Utsunomioya, Tochigi, 321-8505, Japan
| | - Tsutomu Takeda
- Center for Weed and Wildlife Management, Utsunomiya University, 350 Mine-machi, Utsunomioya, Tochigi, 321-8505, Japan; Natural Parks Foundation Nikko National Park, Yumoto, Nikko, Tochigi, 321-1662, Japan
| | - Junko Mizuno
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Keita Noguchi
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Kenzo Yonemitsu
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Shohei Minami
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Ryusei Kuwata
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Ai Takano
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Ken Maeda
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
7
|
Michlmayr D, Bardina SV, Rodriguez CA, Pletnev AG, Lim JK. Dual Function of Ccr5 during Langat Virus Encephalitis: Reduction in Neutrophil-Mediated Central Nervous System Inflammation and Increase in T Cell-Mediated Viral Clearance. THE JOURNAL OF IMMUNOLOGY 2016; 196:4622-31. [PMID: 27183602 DOI: 10.4049/jimmunol.1502452] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/29/2016] [Indexed: 12/30/2022]
Abstract
Tick-borne encephalitis virus (TBEV) is a vector-transmitted flavivirus that causes potentially fatal neurologic infection. There are thousands of cases reported annually, and despite the availability of an effective vaccine, the incidence of TBEV is increasing worldwide. Importantly, up to 30% of affected individuals develop long-term neurologic sequelae. We investigated the role of chemokine receptor Ccr5 in a mouse model of TBEV infection using the naturally attenuated tick-borne flavivirus Langat virus (LGTV). Ccr5-deficient mice presented with an increase in viral replication within the CNS and decreased survival during LGTV encephalitis compared with wild-type controls. This enhanced susceptibility was due to the temporal lag in lymphocyte migration into the CNS. Adoptive transfer of wild-type T cells, but not Ccr5-deficient T cells, significantly improved survival outcome in LGTV-infected Ccr5-deficient mice. Concomitantly, a significant increase in neutrophil migration into the CNS in LGTV-infected Ccr5(-/-) mice was documented at the late stage of infection. Ab-mediated depletion of neutrophils in Ccr5(-/-) mice resulted in a significant improvement in mortality, a decrease in viral load, and a decrease in overall tissue damage in the CNS compared with isotype control-treated mice. Ccr5 is crucial in directing T cells toward the LGTV-infected brain, as well as in suppressing neutrophil-mediated inflammation within the CNS.
Collapse
Affiliation(s)
- Daniela Michlmayr
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and
| | - Susana V Bardina
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and
| | - Carlos A Rodriguez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and
| | - Alexander G Pletnev
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and
| |
Collapse
|
8
|
Tong Y, Wang G, Zhang Q, Tian F, Liu X, Zhao J, Zhang H, Chen W. Systematic understanding of the potential manganese-adsorption components of a screened Lactobacillus plantarum CCFM436. RSC Adv 2016. [DOI: 10.1039/c6ra23877g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Manganese (Mn) is a toxic heavy metal that has a variety of adverse effects on human health under excess exposure.
Collapse
Affiliation(s)
- Yanjun Tong
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- People's Republic of China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- People's Republic of China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- People's Republic of China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- People's Republic of China
| | - Xiaoming Liu
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- People's Republic of China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- People's Republic of China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- People's Republic of China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- People's Republic of China
| |
Collapse
|