1
|
Parsad R, Bagiyal M, Ahlawat S, Arora R, Gera R, Chhabra P, Sharma U. Unraveling the genetic and physiological potential of donkeys: insights from genomics, proteomics, and metabolomics approaches. Mamm Genome 2025; 36:10-24. [PMID: 39510983 DOI: 10.1007/s00335-024-10083-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/03/2024] [Indexed: 11/15/2024]
Abstract
Donkeys (Equus asinus) have played a vital role in agriculture, transportation, and companionship, particularly in developing regions where they are indispensable working animals. The domestication of donkeys marked a significant turning point in human history, as they became essential for transportation, agriculture, and trade, especially in arid and semi-arid areas where their resilience and endurance were highly valued. In modern society, donkeys are indispensable due to their diversified applications, including meat, dairy, medicine, and functional bioproducts, supporting economic, cultural, and medical industries. Despite their critical importance, research on donkeys has historically been overshadowed with studies on horses. However, recent advancements in high-throughput sequencing and bioinformatics have significantly deepened our understanding of the molecular landscape of donkey genome, uncovering their unique adaptations, genetic diversity, and potential therapeutic applications. Microsatellite and mitochondrial DNA (mtDNA) markers have proven effective in assessing the genetic diversity of donkeys across various regions of the world. Additionally, significant strides have been made in characterizing differentially abundant genes, proteins, and metabolic profiles in donkey milk, meat, and skin, and in identifying specific genes/proteins/metabolites associated with sperm quality, motility, and reproduction. Advanced genomic technologies, such as genome-wide association studies and the identification of selection signatures, have also been instrumental in delineating genomic regions associated with phenotypic and adaptive traits. This review integrates data from diverse studies, including those on genetic diversity, transcriptomics, whole genome sequencing, protein analysis, and metabolic profiling, to provide a comprehensive overview of donkey biology. It underscores the unique characteristics of donkeys and emphasizes the importance of continued research to improve their genetic management, conservation, and agricultural use, ensuring their ongoing contribution to human societies.
Collapse
Affiliation(s)
- Ram Parsad
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Meena Bagiyal
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India.
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Ritika Gera
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Pooja Chhabra
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Upasna Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| |
Collapse
|
2
|
Rambaldi Migliore N, Bigi D, Milanesi M, Zambonelli P, Negrini R, Morabito S, Verini-Supplizi A, Liotta L, Chegdani F, Agha S, Salim B, Beja-Pereira A, Torroni A, Ajmone‐Marsan P, Achilli A, Colli L. Mitochondrial DNA control-region and coding-region data highlight geographically structured diversity and post-domestication population dynamics in worldwide donkeys. PLoS One 2024; 19:e0307511. [PMID: 39197009 PMCID: PMC11356394 DOI: 10.1371/journal.pone.0307511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/05/2024] [Indexed: 08/30/2024] Open
Abstract
Donkeys (Equus asinus) have been used extensively in agriculture and transportations since their domestication, ca. 5000-7000 years ago, but the increased mechanization of the last century has largely spoiled their role as burden animals, particularly in developed countries. Consequently, donkey breeds and population sizes have been declining for decades, and the diversity contributed by autochthonous gene pools has been eroded. Here, we examined coding-region data extracted from 164 complete mitogenomes and 1392 donkey mitochondrial DNA (mtDNA) control-region sequences to (i) assess worldwide diversity, (ii) evaluate geographical patterns of variation, and (iii) provide a new nomenclature of mtDNA haplogroups. The topology of the Maximum Parsimony tree confirmed the two previously identified major clades, i.e. Clades 1 and 2, but also highlighted the occurrence of a deep-diverging lineage within Clade 2 that left a marginal trace in modern donkeys. Thanks to the identification of stable and highly diagnostic coding-region mutational motifs, the two lineages were renamed as haplogroup A and haplogroup B, respectively, to harmonize clade nomenclature with the standard currently adopted for other livestock species. Control-region diversity and population expansion metrics varied considerably between geographical areas but confirmed North-eastern Africa as the likely domestication center. The patterns of geographical distribution of variation analyzed through phylogenetic networks and AMOVA confirmed the co-occurrence of both haplogroups in all sampled populations, while differences at the regional level point to the joint effects of demography, past human migrations and trade following the spread of donkeys out of the domestication center. Despite the strong decline that donkey populations have undergone for decades in many areas of the world, the sizeable mtDNA variability we scored, and the possible identification of a new early radiating lineage further stress the need for an extensive and large-scale characterization of donkey nuclear genome diversity to identify hotspots of variation and aid the conservation of local breeds worldwide.
Collapse
Affiliation(s)
- Nicola Rambaldi Migliore
- Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, University of Pavia, Via A. Ferrata, Pavia, Italy
| | - Daniele Bigi
- Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), Alma Mater Studiorum Università di Bologna, Viale Giuseppe Fanin, Bologna, Italy
| | - Marco Milanesi
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del S. Cuore, via Emilia Parmense, Piacenza, Italy
| | - Paolo Zambonelli
- Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), Alma Mater Studiorum Università di Bologna, Viale Giuseppe Fanin, Bologna, Italy
| | - Riccardo Negrini
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del S. Cuore, via Emilia Parmense, Piacenza, Italy
| | - Simone Morabito
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del S. Cuore, via Emilia Parmense, Piacenza, Italy
| | | | - Luigi Liotta
- Department of Veterinary Sciences, University of Messina, V.le Palatucci, Messina, Italy
| | - Fatima Chegdani
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del S. Cuore, via Emilia Parmense, Piacenza, Italy
| | - Saif Agha
- Animal Production Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Bashir Salim
- Department of Parasitology, Faculty of Veterinary Medicine, University of Khartoum, Khartoum-North, Sudan
- Camel Research Center, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Albano Beja-Pereira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- DGAOT, Faculty of Sciences, Universidade do Porto, Rua Campo Alegre, Porto, Portugal
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, University of Pavia, Via A. Ferrata, Pavia, Italy
| | - Paolo Ajmone‐Marsan
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del S. Cuore, via Emilia Parmense, Piacenza, Italy
- CREI Romeo and Enrica Invernizzi Research Center on Sustainable Dairy Production, Università Cattolica del S. Cuore, Piacenza (PC), Italy
| | - Alessandro Achilli
- Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, University of Pavia, Via A. Ferrata, Pavia, Italy
| | - Licia Colli
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del S. Cuore, via Emilia Parmense, Piacenza, Italy
- BioDNA Centro di Ricerca Sulla Biodiversità e sul DNA Antico, Università Cattolica del S. Cuore, Piacenza (PC), Italy
| |
Collapse
|
3
|
Özkan M, Gürün K, Yüncü E, Vural KB, Atağ G, Akbaba A, Fidan FR, Sağlıcan E, Altınışık EN, Koptekin D, Pawłowska K, Hodder I, Adcock SE, Arbuckle BS, Steadman SR, McMahon G, Erdal YS, Bilgin CC, Togan İ, Geigl EM, Götherström A, Grange T, Özer F, Somel M. The first complete genome of the extinct European wild ass (Equus hemionus hydruntinus). Mol Ecol 2024; 33:e17440. [PMID: 38946459 DOI: 10.1111/mec.17440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 05/17/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
We present palaeogenomes of three morphologically unidentified Anatolian equids dating to the first millennium BCE, sequenced to a coverage of 0.6-6.4×. Mitochondrial DNA haplotypes of the Anatolian individuals clustered with those of Equus hydruntinus (or Equus hemionus hydruntinus), the extinct European wild ass, secular name 'hydruntine'. Further, the Anatolian wild ass whole genome profiles fell outside the genomic diversity of other extant and past Asiatic wild ass (E. hemionus) lineages. These observations suggest that the three Anatolian wild asses represent hydruntines, making them the latest recorded survivors of this lineage, about a millennium later than the latest observations in the zooarchaeological record. Our mitogenomic and genomic analyses indicate that E. h. hydruntinus was a clade belonging to ancient and present-day E. hemionus lineages that radiated possibly between 0.6 and 0.8 Mya. We also find evidence consistent with recent gene flow between hydruntines and Middle Eastern wild asses. Analyses of genome-wide heterozygosity and runs of homozygosity suggest that the Anatolian wild ass population may have lost genetic diversity by the mid-first millennium BCE, a possible sign of its eventual demise.
Collapse
Affiliation(s)
- Mustafa Özkan
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Kanat Gürün
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Eren Yüncü
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Kıvılcım Başak Vural
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Gözde Atağ
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Ali Akbaba
- Department of Anthropology, Ankara University, Ankara, Turkey
- Alparslan University, Muş, Turkey
| | - Fatma Rabia Fidan
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
| | - Ekin Sağlıcan
- Department of Health Informatics, Middle East Technical University, Ankara, Turkey
| | - Ezgi N Altınışık
- Department of Anthropology, Human_G Laboratory, Hacettepe University, Ankara, Turkey
| | - Dilek Koptekin
- Department of Health Informatics, Middle East Technical University, Ankara, Turkey
| | - Kamilla Pawłowska
- Department of Palaeoenvironmental Research, Adam Mickiewicz University, Poznań, Poland
| | - Ian Hodder
- Department of Anthropology, Stanford University, Stanford, California, USA
| | - Sarah E Adcock
- Institute for the Study of the Ancient World, New York University, New York, New York, USA
| | - Benjamin S Arbuckle
- Department of Anthropology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sharon R Steadman
- Department of Sociology/Anthropology, SUNY Cortland, Cortland, New York, USA
| | - Gregory McMahon
- Classics, Humanities and Italian Studies Department, University of New Hampshire, Durham, New Hampshire, USA
| | - Yılmaz Selim Erdal
- Department of Anthropology, Human_G Laboratory, Hacettepe University, Ankara, Turkey
| | - C Can Bilgin
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - İnci Togan
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Eva-Maria Geigl
- Institut Jacques Monod, CNRS, Université de Paris, Paris, France
| | - Anders Götherström
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Thierry Grange
- Institut Jacques Monod, CNRS, Université de Paris, Paris, France
| | - Füsun Özer
- Department of Health Informatics, Middle East Technical University, Ankara, Turkey
| | - Mehmet Somel
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
4
|
Brannan EO, Hartley GA, O’Neill RJ. Mechanisms of Rapid Karyotype Evolution in Mammals. Genes (Basel) 2023; 15:62. [PMID: 38254952 PMCID: PMC10815390 DOI: 10.3390/genes15010062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Chromosome reshuffling events are often a foundational mechanism by which speciation can occur, giving rise to highly derivative karyotypes even amongst closely related species. Yet, the features that distinguish lineages prone to such rapid chromosome evolution from those that maintain stable karyotypes across evolutionary time are still to be defined. In this review, we summarize lineages prone to rapid karyotypic evolution in the context of Simpson's rates of evolution-tachytelic, horotelic, and bradytelic-and outline the mechanisms proposed to contribute to chromosome rearrangements, their fixation, and their potential impact on speciation events. Furthermore, we discuss relevant genomic features that underpin chromosome variation, including patterns of fusions/fissions, centromere positioning, and epigenetic marks such as DNA methylation. Finally, in the era of telomere-to-telomere genomics, we discuss the value of gapless genome resources to the future of research focused on the plasticity of highly rearranged karyotypes.
Collapse
Affiliation(s)
- Emry O. Brannan
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (E.O.B.); (G.A.H.)
| | - Gabrielle A. Hartley
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (E.O.B.); (G.A.H.)
| | - Rachel J. O’Neill
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (E.O.B.); (G.A.H.)
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
5
|
Sun Y, Wang Y, Li Y, Li H, Wang C, Zhang Q. Comparative transcriptome and proteome analyses of the longissimus dorsi muscle for explaining the difference between donkey meat and other meats. Anim Biotechnol 2023; 34:3085-3098. [PMID: 36271875 DOI: 10.1080/10495398.2022.2134883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Domestic donkeys (Equus asinus) have been maintained mainly for service purposes in the past. Nowadays, there is an increasing interest in donkey milk and meat production in several countries, including China. Donkey meat is highly consumed because of its nutritional value and unique flavor. However, genomic studies on donkey meat are limited. Therefore, in this study, we aimed to examine the molecular difference of longissimus dorsi muscles of donkey, cow, and goat. RNA sequencing and Proteome sequencing technology were used to analyze the transcriptome and proteome of the longissimus dorsi muscle of donkey, cow, and goat. A total of 1338 and 1780 differentially expressed genes (DEGs) were identified in donkey meat compared with that in cow and goat meat, respectively. Most of the DEGs were involved in biological processes, including small GTPase-mediated signal transduction, protein ubiquitination, protein glycosylation, and MAP kinase tyrosine/serine/threonine phosphatase activity. Additionally, 764 and 1024 differentially expressed proteins (DEPs) were identified in cow vs. donkey, and goat vs. donkey, respectively; these DEPs were mainly involved in metabolism. Genetic variation and regulatory factors can combine as a database to provide more valuable molecular information for further analysis.
Collapse
Affiliation(s)
- Yan Sun
- Shandong Provincial Key Laboratory of Animal Biotochnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Yonghui Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Yuhua Li
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Haijing Li
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd, Liaocheng, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Qin Zhang
- Shandong Provincial Key Laboratory of Animal Biotochnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
6
|
Chen J, Zhang S, Liu S, Dong J, Cao Y, Sun Y. Single nucleotide polymorphisms (SNPs) and indels identified from whole-genome re-sequencing of four Chinese donkey breeds. Anim Biotechnol 2023; 34:1828-1839. [PMID: 35382683 DOI: 10.1080/10495398.2022.2053145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
This paper represents the fundamental report of the survey of genome-wide changes of four Chinese indigenous donkey breeds, Dezhou (DZ), Guangling (GL), North China (NC), and Shandong Little donkey (SDL), and the findings will prove usefully for identification of biomarkers that perhaps predict or characterize the growth and coat color patterns. Three genomic regions in CYP3A12, TUBGCP5, and GSTA1 genes, were identified as putative selective sweeps in all researched donkey populations. The loci of candidate genes that may have contributed to the phenotypes in body size (ACSL4, MSI2, ADRA1B, and CDKL5) and coat color patterns (KITLG and TBX3) in donkey populations would be found in underlying strong selection signatures when compared between large and small donkey types, and between different coat colors. The results of the phylogenetic analysis, FST, and principal component analysis (PCA) supported that each population cannot clearly deviate from each other, showing no obvious population structure. We can conclude from the population history that the formation processes between DZS and NC, GL, and SDL are completely different. The genetic variants discovered here provide a rich resource to help identify potential genomic markers and their associated molecular mechanisms that impact economically important traits for Chinese donkey breeding programs.
Collapse
Affiliation(s)
- Jianxing Chen
- College of Chemistry and Life Science, Chifeng University, Chifeng, China
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Shuer Zhang
- Shandong Animal Husbandry General Station, Jinan, China
| | - Shuqin Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Jianbao Dong
- Department of Veterinary Medical Science, Shandong Vocational Animal Science and Veterinary College, Weifang, China
| | - Yanhang Cao
- Modern Animal Husbandry Development Service Center of Dongying, Dongying, China
| | - Yujiang Sun
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
- Vocational College of Dongying, Dongying, China
| |
Collapse
|
7
|
Ren X, Liu Y, Zhao Y, Li B, Bai D, Bou G, Zhang X, Du M, Wang X, Bou T, Shen Y, Dugarjaviin M. Analysis of the Whole-Genome Sequences from an Equus Parent-Offspring Trio Provides Insight into the Genomic Incompatibilities in the Hybrid Mule. Genes (Basel) 2022; 13:genes13122188. [PMID: 36553455 PMCID: PMC9778318 DOI: 10.3390/genes13122188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Interspecific hybridization often shows negative effects on hybrids. However, only a few multicellular species, limited to a handful of plants and animals, have shown partial genetic mechanisms by which hybridization leads to low fitness in hybrids. Here, to explore the outcome of combining the two genomes of a horse and donkey, we analyzed the whole-genome sequences from an Equus parent-offspring trio using Illumina platforms. We generated 41.39× and 46.21× coverage sequences for the horse and mule, respectively. For the donkey, a 40.38× coverage sequence was generated and stored in our laboratory. Approximately 24.86 million alleles were discovered that varied from the reference genome. Single nucleotide polymorphisms were used as polymorphic markers for assigning alleles to their parental genomic inheritance. We identified 25,703 Mendelian inheritance error single nucleotide polymorphisms in the mule genome that were not inherited from the parents through Mendelian inheritance. A total of 555 de novo single nucleotide polymorphisms were also identified. The rate of de novo single nucleotide polymorphisms was 2.21 × 10-7 in the mule from the Equus parent-offspring trio. This rate is obviously higher than the natural mutation rate for Equus, which is also consistent with the previous hypothesis that interracial crosses may have a high mutation rate. The genes associated with these single nucleotide polymorphisms are mainly involved in immune processes, DNA repair, and cancer processes. The results of the analysis of three genomes from an Equus parent-offspring trio improved our knowledge of the consequences of the integration of parental genomes in mules.
Collapse
|
8
|
Wang Y, Hua X, Shi X, Wang C. Origin, Evolution, and Research Development of Donkeys. Genes (Basel) 2022; 13:1945. [PMID: 36360182 PMCID: PMC9689456 DOI: 10.3390/genes13111945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 08/11/2023] Open
Abstract
Lack of archaeological and whole-genome diversity data has restricted current knowledge of the evolutionary history of donkeys. With the advancement of science and technology, the discovery of archaeological evidence, the development of molecular genetics, and the improvement of whole-genome sequencing technology, the in-depth understanding of the origin and domestication of donkeys has been enhanced, however. Given the lack of systematic research, the present study carefully screened and collected multiple academic papers and books, journals, and literature on donkeys over the past 15 years. The origin and domestication of donkeys are reviewed in this paper from the aspects of basic information, cultural origin, bioarcheology, mitochondrial and chromosomal microsatellite sequences, and whole-genome sequence comparison. It also highlights and reviews genome assembly technology, by assembling the genome of an individual organism and comparing it with related sample genomes, which can be used to produce more accurate results through big data statistics, analysis, and computational correlation models. Background: The donkey industry in the world and especially in China is developing rapidly, and donkey farming is transforming gradually from the family farming model to large-scale, intensive, and integrated industrial operations, which could ensure the stability of product quality and quantity. However, theoretical research on donkey breeding and its technical development lags far behind that of other livestock, thereby limiting its industrial development. This review provides holistic information for the donkey industry and researchers, that could promote theoretical research, genomic selection (GS), and reproductive management of the donkey population.
Collapse
|
9
|
Auzino B, Miranda G, Henry C, Krupova Z, Martini M, Salari F, Cosenza G, Ciampolini R, Martin P. Top-Down proteomics based on LC-MS combined with cDNA sequencing to characterize multiple proteoforms of Amiata donkey milk proteins. Food Res Int 2022; 160:111611. [DOI: 10.1016/j.foodres.2022.111611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/08/2022] [Accepted: 06/29/2022] [Indexed: 11/24/2022]
|
10
|
Cai D, Zhu S, Gong M, Zhang N, Wen J, Liang Q, Sun W, Shao X, Guo Y, Cai Y, Zheng Z, Zhang W, Hu S, Wang X, Tian H, Li Y, Liu W, Yang M, Yang J, Wu D, Orlando L, Jiang Y. Radiocarbon and genomic evidence for the survival of Equus Sussemionus until the late Holocene. eLife 2022; 11:73346. [PMID: 35543411 PMCID: PMC9142152 DOI: 10.7554/elife.73346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 05/11/2022] [Indexed: 12/02/2022] Open
Abstract
The exceptionally rich fossil record available for the equid family has provided textbook examples of macroevolutionary changes. Horses, asses, and zebras represent three extant subgenera of Equus lineage, while the Sussemionus subgenus is another remarkable Equus lineage ranging from North America to Ethiopia in the Pleistocene. We sequenced 26 archaeological specimens from Northern China in the Holocene that could be assigned morphologically and genetically to Equus ovodovi, a species representative of Sussemionus. We present the first high-quality complete genome of the Sussemionus lineage, which was sequenced to 13.4× depth of coverage. Radiocarbon dating demonstrates that this lineage survived until ~3500 years ago, despite continued demographic collapse during the Last Glacial Maximum and the great human expansion in East Asia. We also confirmed the Equus phylogenetic tree and found that Sussemionus diverged from the ancestor of non-caballine equids ~2.3–2.7 million years ago and possibly remained affected by secondary gene flow post-divergence. We found that the small genetic diversity, rather than enhanced inbreeding, limited the species’ chances of survival. Our work adds to the growing literature illustrating how ancient DNA can inform on extinction dynamics and the long-term resilience of species surviving in cryptic population pockets.
Collapse
Affiliation(s)
- Dawei Cai
- Bioarchaeology Laboratory, Jilin University, Changchun, China
| | - Siqi Zhu
- Bioarchaeology Laboratory, Jilin University, Changchun, China
| | - Mian Gong
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Naifan Zhang
- Bioarchaeology Laboratory, Jilin University, Changchuin, China
| | - Jia Wen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qiyao Liang
- Bioarchaeology Laboratory, Jilin University, Changchun, China
| | - Weilu Sun
- Bioarchaeology Laboratory, Jilin University, Changchun, China
| | - Xinyue Shao
- Bioarchaeology Laboratory, Jilin University, Changchun, China
| | - Yaqi Guo
- Bioarchaeology Laboratory, Jilin University, Changchun, China
| | - Yudong Cai
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhuqing Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Wei Zhang
- Heilongjiang Provincial Institute of Cultural Relics and Archaeology, Harbin, China
| | - Songmei Hu
- Shaanxi Provincial Institute of Archaeology, Xi'an, China
| | - Xiaoyang Wang
- Ningxia Institute of Cultural Relics and Archaeology, Yinchuan, China
| | - He Tian
- Heilongjiang Provincial Institute of Cultural Relics and Archaeology, Harbin, China
| | - Youqian Li
- Heilongjiang Provincial Institute of Cultural Relics and Archaeology, Harbin, China
| | - Wei Liu
- Heilongjiang Provincial Institute of Cultural Relics and Archaeology, Harbin, China
| | - Miaomiao Yang
- Shaanxi Provincial Institute of Archaeology, Xi'an, China
| | - Jian Yang
- Ningxia Institute of Cultural Relics and Archaeology, Yinchuan, China
| | - Duo Wu
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China
| | - Ludovic Orlando
- 7Centre d'Anthropobiologie et de Génomique de Toulouse, Université Paul Sabatier, CNRS UMR 5288, Toulouse, France
| | - Yu Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
11
|
Bennett EA, Weber J, Bendhafer W, Champlot S, Peters J, Schwartz GM, Grange T, Geigl EM. The genetic identity of the earliest human-made hybrid animals, the kungas of Syro-Mesopotamia. SCIENCE ADVANCES 2022; 8:eabm0218. [PMID: 35030024 PMCID: PMC8759742 DOI: 10.1126/sciadv.abm0218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Before the introduction of domestic horses in Mesopotamia in the late third millennium BCE, contemporary cuneiform tablets and seals document intentional breeding of highly valued equids called kungas for use in diplomacy, ceremony, and warfare. Their precise zoological classification, however, has never been conclusively determined. Morphometric analysis of equids uncovered in rich Early Bronze Age burials at Umm el-Marra, Syria, placed them beyond the ranges reported for other known equid species. We sequenced the genomes of one of these ~4500-year-old equids, together with an ~11,000-year-old Syrian wild ass (hemippe) from Göbekli Tepe and two of the last surviving hemippes. We conclude that kungas were F1 hybrids between female domestic donkeys and male hemippes, thus documenting the earliest evidence of hybrid animal breeding.
Collapse
Affiliation(s)
- E. Andrew Bennett
- Institut Jacques Monod, Université de Paris, CNRS, 75013 Paris, France
| | - Jill Weber
- Near East Section, The University Museum of Archaeology and Anthropology, Philadelphia, PA 19103, USA
| | - Wejden Bendhafer
- Institut Jacques Monod, Université de Paris, CNRS, 75013 Paris, France
| | - Sophie Champlot
- Institut Jacques Monod, Université de Paris, CNRS, 75013 Paris, France
| | - Joris Peters
- ArchaeoBioCenter, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, LMU Munich, 80539 Munich, Germany
- SNSB, Bavarian State Collection of Palaeoanatomy, 80333 Munich, Germany
| | - Glenn M. Schwartz
- Department of Near Eastern Studies, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Thierry Grange
- Institut Jacques Monod, Université de Paris, CNRS, 75013 Paris, France
| | - Eva-Maria Geigl
- Institut Jacques Monod, Université de Paris, CNRS, 75013 Paris, France
| |
Collapse
|
12
|
Li S, Zhao G, Han H, Li Y, Li J, Wang J, Cao G, Li X. Genome collinearity analysis illuminates the evolution of donkey chromosome 1 and horse chromosome 5 in perissodactyls: A comparative study. BMC Genomics 2021; 22:665. [PMID: 34521340 PMCID: PMC8442440 DOI: 10.1186/s12864-021-07984-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 09/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It is important to resolve the evolutionary history of species genomes as it has affected both genome organization and chromosomal architecture. The rapid innovation in sequencing technologies and the improvement in assembly algorithms have enabled the creation of highly contiguous genomes. DNA Zoo, a global organization dedicated to animal conservation, offers more than 150 chromosome-length genome assemblies. This database has great potential in the comparative genomics field. RESULTS Using the donkey (Equus asinus asinus, EAS) genome provided by DNA Zoo as an example, the scaffold N50 length and Benchmarking Universal Single-Copy Ortholog score reached 95.5 Mb and 91.6%, respectively. We identified the cytogenetic nomenclature, corrected the direction of the chromosome-length sequence of the donkey genome, analyzed the genome-wide chromosomal rearrangements between the donkey and horse, and illustrated the evolution of the donkey chromosome 1 and horse chromosome 5 in perissodactyls. CONCLUSIONS The donkey genome provided by DNA Zoo has relatively good continuity and integrity. Sequence-based comparative genomic analyses are useful for chromosome evolution research. Several previously published chromosome painting results can be used to identify the cytogenetic nomenclature and correct the direction of the chromosome-length sequence of new assemblies. Compared with the horse genome, the donkey chromosomes 1, 4, 20, and X have several obvious inversions, consistent with the results of previous studies. A 4.8 Mb inverted structure was first discovered in the donkey chromosome 25 and plains zebra chromosome 11. We speculate that the inverted structure and the tandem fusion of horse chromosome 31 and 4 are common features of non-caballine equids, which supports the correctness of the existing Equus phylogeny to an extent.
Collapse
Affiliation(s)
- Shaohua Li
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, China
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, 011517, China
| | - Gaoping Zhao
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, 011517, China
| | - Hongmei Han
- Department of Physical Education, Hohhot Minzu College, Hohhot, 010051, China
| | - Yunxia Li
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, 011517, China
| | - Jun Li
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, 011517, China
| | - Jinfeng Wang
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Guifang Cao
- College of Veterinary Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Xihe Li
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, 011517, China.
| |
Collapse
|
13
|
Shen J, Yu J, Dai X, Li M, Wang G, Chen N, Chen H, Lei C, Dang R. Genomic analyses reveal distinct genetic architectures and selective pressures in Chinese donkeys. J Genet Genomics 2021; 48:737-745. [PMID: 34373218 DOI: 10.1016/j.jgg.2021.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 12/28/2022]
Abstract
Donkey (Equus asinus) is an important livestock animal in China because of its draft and medicinal value. After a long period of natural and artificial selection, the variety and phenotype of donkeys have become abundant. We clarified the genetic and demographic characteristics of Chinese domestic donkeys and the selection pressures by analyzing 78 whole genomes from 12 breeds. According to population structure, most Chinese domestic donkeys showed a dominant ancestral type. However, the Chinese donkeys still represented a significant geographical distribution trend. In the selective sweep, gene annotation, functional enrichment, and differential expression analyses between large and small donkey groups, we identified selective signals, including NCAPG and LCORL, which are related to rapid growth and large body size. Our findings elucidate the evolutionary history and formation of different donkey breeds and provide theoretical insights into the genetic mechanism underlying breed characteristics and molecular breeding programs of donkey clades.
Collapse
Affiliation(s)
- Jiafei Shen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuelei Dai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mei Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ningbo Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruihua Dang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
14
|
Chebii VJ, Mpolya EA, Muchadeyi FC, Domelevo Entfellner JB. Genomics of Adaptations in Ungulates. Animals (Basel) 2021; 11:1617. [PMID: 34072591 PMCID: PMC8230064 DOI: 10.3390/ani11061617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 11/16/2022] Open
Abstract
Ungulates are a group of hoofed animals that have long interacted with humans as essential sources of food, labor, clothing, and transportation. These consist of domesticated, feral, and wild species raised in a wide range of habitats and biomes. Given the diverse and extreme environments inhabited by ungulates, unique adaptive traits are fundamental for fitness. The documentation of genes that underlie their genomic signatures of selection is crucial in this regard. The increasing availability of advanced sequencing technologies has seen the rapid growth of ungulate genomic resources, which offers an exceptional opportunity to understand their adaptive evolution. Here, we summarize the current knowledge on evolutionary genetic signatures underlying the adaptations of ungulates to different habitats.
Collapse
Affiliation(s)
- Vivien J. Chebii
- School of Life Science and Bioengineering, Nelson Mandela Africa Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania;
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709, Nairobi 00100, Kenya;
| | - Emmanuel A. Mpolya
- School of Life Science and Bioengineering, Nelson Mandela Africa Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania;
| | - Farai C. Muchadeyi
- Agricultural Research Council Biotechnology Platform (ARC-BTP), Private Bag X5, Onderstepoort 0110, South Africa;
| | - Jean-Baka Domelevo Entfellner
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709, Nairobi 00100, Kenya;
| |
Collapse
|
15
|
Wang X, Bou G, Zhang X, Tao L, Shen Y, Na R, Liu G, Ren H, Ren X, Song L, Su S, Bai D, Zhao Y, Li B, Dugarjaviin M. A Fast PCR Test for the Simultaneous Identification of Species and Gender in Horses, Donkeys, Mules and Hinnies. J Equine Vet Sci 2021; 102:103458. [PMID: 34119210 DOI: 10.1016/j.jevs.2021.103458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 11/30/2022]
Abstract
Having considered that the current methods are costly and time-consuming, we designed an only 3 pairs primer-based PCR test to accurately identify the species and gender in horses, donkeys, mules and hinnies. Through a thorough sequence comparison between horse and donkey's highly similar genomes, and a vast amount of preliminary confirmation, we found that three fragments, CNGB3 gene on an autosome, displacement loop region on mitochondrial DNA and SRY genes on chromosome Y, within these equine DNA, are enough to enable us achieving our goal. The PCR test described here would be an economical, fast and accurate alternative for the most commonly-used methods, polymerase chain reaction-restriction fragment length polymorphism, microsatellite assay, and sequencing.
Collapse
Affiliation(s)
- Xisheng Wang
- College of animal science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, China
| | - Gerelchimeg Bou
- College of animal science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, China
| | - Xinzhuang Zhang
- College of animal science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, China
| | - Li Tao
- College of animal science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, China
| | - Yingchao Shen
- College of animal science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, China
| | - Riga Na
- College of animal science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, China
| | - Guiqin Liu
- College of animal science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, China; College of Agronomy, Liaocheng University, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center, Liaocheng, Shandong Province, China
| | - Hong Ren
- College of animal science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, China; Vocational and Technical College, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiujuan Ren
- College of animal science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, China
| | - Lianjie Song
- College of animal science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, China
| | - Shaofeng Su
- College of animal science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, China
| | - Dongyi Bai
- College of animal science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, China
| | - Yiping Zhao
- College of animal science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, China
| | - Bei Li
- College of animal science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, China
| | - Manglai Dugarjaviin
- College of animal science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, China.
| |
Collapse
|
16
|
Zhou Z, Fan Y, Wang G, Lai Z, Gao Y, Wu F, Lei C, Dang R. Detection of Selection Signatures Underlying Production and Adaptive Traits Based on Whole-Genome Sequencing of Six Donkey Populations. Animals (Basel) 2020; 10:ani10101823. [PMID: 33036357 PMCID: PMC7600737 DOI: 10.3390/ani10101823] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 12/28/2022] Open
Abstract
Simple Summary After a long period of artificial selection, the donkey now presents a variety of body types and production performance values. In this experiment, we performed selective signal scanning on the second-generation resequencing data of six different varieties. The regions and candidate genes related to artificial selection were identified to provide reference for future breeding. Abstract Donkeys (Equus asinus) are an important farm animal. After long-term natural and artificial selection, donkeys now exhibit a variety of body sizes and production performance values. In this study, six donkey breeds, representing different regions and phenotypes, were used for second-generation resequencing. The sequencing results revealed more than seven million single nucleotide variants (SNVs), with an average of more than four million SNVs per species. We combined two methods, Z-transformed heterozygosity (ZHp) and unbiased estimates of pairwise fixation index (di) values, to analyze the signatures of selection. We mapped 11 selected regions and identified genes associated with coat color, body size, motion capacity, and high-altitude adaptation. These candidate genes included staining (ASIP and KITLG), body type (ACSL4, BCOR, CDKL5, LCOR, NCAPG, and TBX3), exercise (GABPA), and adaptation to low-oxygen environments (GLDC and HBB). We also analyzed the SNVs of the breed-specific genes for their potential functions and found that there are three varieties in the conserved regions with breed-specific mutation sites. Our results provide data to support the establishment of the donkey SNV chip and reference information for the utilization of the genetic resources of Chinese domestic donkeys.
Collapse
|
17
|
Klumplerova M, Splichalova P, Oppelt J, Futas J, Kohutova A, Musilova P, Kubickova S, Vodicka R, Orlando L, Horin P. Genetic diversity, evolution and selection in the major histocompatibility complex DRB and DQB loci in the family Equidae. BMC Genomics 2020; 21:677. [PMID: 32998693 PMCID: PMC7525986 DOI: 10.1186/s12864-020-07089-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/21/2020] [Indexed: 02/08/2023] Open
Abstract
Background The mammalian Major Histocompatibility Complex (MHC) is a genetic region containing highly polymorphic genes with immunological functions. MHC class I and class II genes encode antigen-presenting molecules expressed on the cell surface. The MHC class II sub-region contains genes expressed in antigen presenting cells. The antigen binding site is encoded by the second exon of genes encoding antigen presenting molecules. The exon 2 sequences of these MHC genes have evolved under the selective pressure of pathogens. Interspecific differences can be observed in the class II sub-region. The family Equidae includes a variety of domesticated, and free-ranging species inhabiting a range of habitats exposed to different pathogens and represents a model for studying this important part of the immunogenome. While equine MHC class II DRA and DQA loci have received attention, the genetic diversity and effects of selection on DRB and DQB loci have been largely overlooked. This study aimed to provide the first in-depth analysis of the MHC class II DRB and DQB loci in the Equidae family. Results Three DRB and two DQB genes were identified in the genomes of all equids. The genes DRB2, DRB3 and DQB3 showed high sequence conservation, while polymorphisms were more frequent at DRB1 and DQB1 across all species analyzed. DQB2 was not found in the genome of the Asiatic asses Equus hemionus kulan and E. h. onager. The bioinformatic analysis of non-zero-coverage-bases of DRB and DQB genes in 14 equine individual genomes revealed differences among individual genes. Evidence for recombination was found for DRB1, DRB2, DQB1 and DQB2 genes. Trans-species allele sharing was identified in all genes except DRB1. Site-specific selection analysis predicted genes evolving under positive selection both at DRB and DQB loci. No selected amino acid sites were identified in DQB3. Conclusions The organization of the MHC class II sub-region of equids is similar across all species of the family. Genomic sequences, along with phylogenetic trees suggesting effects of selection as well as trans-species polymorphism support the contention that pathogen-driven positive selection has shaped the MHC class II DRB/DQB sub-regions in the Equidae.
Collapse
Affiliation(s)
- Marie Klumplerova
- Department of Animal Genetics, Veterinary and Pharmaceutical University, Brno, Czech Republic.,Ceitec VFU, RG Animal Immunogenomics, Brno, Czech Republic
| | - Petra Splichalova
- Department of Animal Genetics, Veterinary and Pharmaceutical University, Brno, Czech Republic.,Ceitec VFU, RG Animal Immunogenomics, Brno, Czech Republic
| | - Jan Oppelt
- Ceitec VFU, RG Animal Immunogenomics, Brno, Czech Republic.,Ceitec MU, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.,National Centre for Biomolecular research, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Jan Futas
- Department of Animal Genetics, Veterinary and Pharmaceutical University, Brno, Czech Republic.,Ceitec VFU, RG Animal Immunogenomics, Brno, Czech Republic
| | - Aneta Kohutova
- Department of Animal Genetics, Veterinary and Pharmaceutical University, Brno, Czech Republic.,Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Petra Musilova
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, Brno, Czech Republic.,Ceitec VRI, RG Animal Cytogenomics, Brno, Czech Republic
| | - Svatava Kubickova
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, Brno, Czech Republic.,Ceitec VRI, RG Animal Cytogenomics, Brno, Czech Republic
| | - Roman Vodicka
- Zoo Prague, U Trojského zámku 120/3, 171 00, Praha 7, Czech Republic
| | - Ludovic Orlando
- Laboratoire d'Anthropobiologie Moléculaire et d'Imagerie de Synthèse, CNRS UMR 5288, Université de Toulouse, Université Paul Sabatier, 31000, Toulouse, France.,Centre for GeoGenetics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350K, Copenhagen, Denmark
| | - Petr Horin
- Department of Animal Genetics, Veterinary and Pharmaceutical University, Brno, Czech Republic. .,Ceitec VFU, RG Animal Immunogenomics, Brno, Czech Republic.
| |
Collapse
|
18
|
Tian F, Wang J, Li Y, Yang C, Zhang R, Wang X, Ju Z, Jiang Q, Huang J, Wang C, Chen J, Sun Y. Integrated analysis of mRNA and miRNA in testis and cauda epididymidis reveals candidate molecular markers associated with reproduction in Dezhou donkey. Livest Sci 2020. [DOI: 10.1016/j.livsci.2019.103885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Mandáková T, Hloušková P, Koch MA, Lysak MA. Genome Evolution in Arabideae Was Marked by Frequent Centromere Repositioning. THE PLANT CELL 2020; 32:650-665. [PMID: 31919297 PMCID: PMC7054033 DOI: 10.1105/tpc.19.00557] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/02/2019] [Accepted: 01/09/2020] [Indexed: 05/04/2023]
Abstract
Centromere position may change despite conserved chromosomal collinearity. Centromere repositioning and evolutionary new centromeres (ENCs) were frequently encountered during vertebrate genome evolution but only rarely observed in plants. The largest crucifer tribe, Arabideae (∼550 species; Brassicaceae, the mustard family), diversified into several well-defined subclades in the virtual absence of chromosome number variation. Bacterial artificial chromosome-based comparative chromosome painting uncovered a constancy of genome structures among 10 analyzed genomes representing seven Arabideae subclades classified as four genera: Arabis, Aubrieta, Draba, and Pseudoturritis Interestingly, the intra-tribal diversification was marked by a high frequency of ENCs on five of the eight homoeologous chromosomes in the crown-group genera, but not in the most ancestral Pseudoturritis genome. From the 32 documented ENCs, at least 26 originated independently, including 4 ENCs recurrently formed at the same position in not closely related species. While chromosomal localization of ENCs does not reflect the phylogenetic position of the Arabideae subclades, centromere seeding was usually confined to long chromosome arms, transforming acrocentric chromosomes to (sub)metacentric chromosomes. Centromere repositioning is proposed as the key mechanism differentiating overall conserved homoeologous chromosomes across the crown-group Arabideae subclades. The evolutionary significance of centromere repositioning is discussed in the context of possible adaptive effects on recombination and epigenetic regulation of gene expression.
Collapse
Affiliation(s)
- Terezie Mandáková
- Central European Institute of Technology (CEITEC) and Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Petra Hloušková
- Central European Institute of Technology (CEITEC) and Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Marcus A Koch
- Centre for Organismal Studies (COS) Heidelberg, Biodiversity and Plant Systematics/Botanical Garden and Herbarium (HEID), Heidelberg University, Heidelberg, Germany
| | - Martin A Lysak
- Central European Institute of Technology (CEITEC) and Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
20
|
Brosnahan MM. Genetics, Evolution, and Physiology of Donkeys and Mules. Vet Clin North Am Equine Pract 2019; 35:457-467. [PMID: 31672199 DOI: 10.1016/j.cveq.2019.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The genus Equus is made up of donkeys, horses, and zebras. Despite significant variation in chromosome number across these species, interspecies breeding results in healthy, although infertile, hybrid offspring. Most notable among these are the horse-donkey hybrids, the mule and hinny. Donkeys presently are used for everything from companion animals to beasts of burden. Although closely related from an evolutionary standpoint, differences in anatomy and physiology preclude the assumption that they can be treated identically to the domestic horse. Veterinarians should be aware of these differences and adjust their practice accordingly.
Collapse
Affiliation(s)
- Margaret M Brosnahan
- College of Veterinary Medicine, Midwestern University, 19555 North 59th Avenue, Cactus Wren Hall 336-P, Glendale, AZ 85308, USA.
| |
Collapse
|
21
|
The nucleosomes that mark centromere location on chromosomes old and new. Essays Biochem 2019; 63:15-27. [DOI: 10.1042/ebc20180060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/07/2019] [Accepted: 03/13/2019] [Indexed: 01/02/2023]
Abstract
Abstract
Proper segregation of chromosomes is an essential component of cell division. The centromere is the locus at which the kinetochore—the proteinaceous complex that ties chromosomes to microtubules—forms during mitosis and meiosis. Thus, the centromere is critical for equal segregation of chromosomes. The centromere is characterized by both protein and DNA elements: the histone H3 variant CENP-A epigenetically defines the location of the centromere while centromeric DNA sequences are neither necessary nor sufficient for centromere function. Paradoxically, the DNA sequences play a critical role in new centromere formation. In this essay, we discuss the contribution of both epigenetics and genetics at the centromere. Understanding these contributions is vital to efforts to control centromere formation on synthetic/artificial chromosomes and centromere strength on natural ones.
Collapse
|
22
|
Nergadze SG, Piras FM, Gamba R, Corbo M, Cerutti F, McCarter JGW, Cappelletti E, Gozzo F, Harman RM, Antczak DF, Miller D, Scharfe M, Pavesi G, Raimondi E, Sullivan KF, Giulotto E. Birth, evolution, and transmission of satellite-free mammalian centromeric domains. Genome Res 2018; 28:789-799. [PMID: 29712753 PMCID: PMC5991519 DOI: 10.1101/gr.231159.117] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 04/13/2018] [Indexed: 11/25/2022]
Abstract
Mammalian centromeres are associated with highly repetitive DNA (satellite DNA), which has so far hindered molecular analysis of this chromatin domain. Centromeres are epigenetically specified, and binding of the CENPA protein is their main determinant. In previous work, we described the first example of a natural satellite-free centromere on Equus caballus Chromosome 11. Here, we investigated the satellite-free centromeres of Equus asinus by using ChIP-seq with anti-CENPA antibodies. We identified an extraordinarily high number of centromeres lacking satellite DNA (16 of 31). All of them lay in LINE- and AT-rich regions. A subset of these centromeres is associated with DNA amplification. The location of CENPA binding domains can vary in different individuals, giving rise to epialleles. The analysis of epiallele transmission in hybrids (three mules and one hinny) showed that centromeric domains are inherited as Mendelian traits, but their position can slide in one generation. Conversely, centromere location is stable during mitotic propagation of cultured cells. Our results demonstrate that the presence of more than half of centromeres void of satellite DNA is compatible with genome stability and species survival. The presence of amplified DNA at some centromeres suggests that these arrays may represent an intermediate stage toward satellite DNA formation during evolution. The fact that CENPA binding domains can move within relatively restricted regions (a few hundred kilobases) suggests that the centromeric function is physically limited by epigenetic boundaries.
Collapse
Affiliation(s)
- Solomon G Nergadze
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, 27100 Pavia, Italy
| | - Francesca M Piras
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, 27100 Pavia, Italy
| | - Riccardo Gamba
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, 27100 Pavia, Italy
| | - Marco Corbo
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, 27100 Pavia, Italy
| | - Federico Cerutti
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, 27100 Pavia, Italy
| | - Joseph G W McCarter
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, H91 TK33, Ireland
| | - Eleonora Cappelletti
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, 27100 Pavia, Italy
| | - Francesco Gozzo
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, 27100 Pavia, Italy
| | - Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14850, USA
| | - Douglas F Antczak
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14850, USA
| | - Donald Miller
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14850, USA
| | - Maren Scharfe
- Genomanalytik (GMAK), Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany
| | - Giulio Pavesi
- Department of Biosciences, University of Milano, 20122 Milano, Italy
| | - Elena Raimondi
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, 27100 Pavia, Italy
| | - Kevin F Sullivan
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, H91 TK33, Ireland
| | - Elena Giulotto
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
23
|
Renaud G, Petersen B, Seguin-Orlando A, Bertelsen MF, Waller A, Newton R, Paillot R, Bryant N, Vaudin M, Librado P, Orlando L. Improved de novo genomic assembly for the domestic donkey. SCIENCE ADVANCES 2018; 4:eaaq0392. [PMID: 29740610 PMCID: PMC5938232 DOI: 10.1126/sciadv.aaq0392] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/14/2018] [Indexed: 06/01/2023]
Abstract
Donkeys and horses share a common ancestor dating back to about 4 million years ago. Although a high-quality genome assembly at the chromosomal level is available for the horse, current assemblies available for the donkey are limited to moderately sized scaffolds. The absence of a better-quality assembly for the donkey has hampered studies involving the characterization of patterns of genetic variation at the genome-wide scale. These range from the application of genomic tools to selective breeding and conservation to the more fundamental characterization of the genomic loci underlying speciation and domestication. We present a new high-quality donkey genome assembly obtained using the Chicago HiRise assembly technology, providing scaffolds of subchromosomal size. We make use of this new assembly to obtain more accurate measures of heterozygosity for equine species other than the horse, both genome-wide and locally, and to detect runs of homozygosity potentially pertaining to positive selection in domestic donkeys. Finally, this new assembly allowed us to identify fine-scale chromosomal rearrangements between the horse and the donkey that likely played an active role in their divergence and, ultimately, speciation.
Collapse
Affiliation(s)
- Gabriel Renaud
- Centre for GeoGenetics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350K Copenhagen, Denmark
| | - Bent Petersen
- DTU Bioinformatics, Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Denmark
- Centre of Excellence for Omics-Driven Computational Biodiscovery, Faculty of Applied Sciences, Asian Institute of Medicine, Science and Technology, Kedah, Malaysia
| | - Andaine Seguin-Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350K Copenhagen, Denmark
- National High-Throughput DNA Sequencing Center, Copenhagen, Denmark
- Laboratoire d’Anthropobiologie Moléculaire et d’Imagerie de Synthése UMR 5288, Université de Toulouse, CNRS, Université Paul Sabatier, 31000 Toulouse, France
| | - Mads Frost Bertelsen
- Center for Zoo and Wild Animal Health, Copenhagen Zoo, 2000 Frederiksberg, Denmark
| | - Andrew Waller
- Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, UK
| | - Richard Newton
- Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, UK
| | - Romain Paillot
- Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, UK
| | - Neil Bryant
- Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, UK
| | - Mark Vaudin
- Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, UK
| | - Pablo Librado
- Centre for GeoGenetics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350K Copenhagen, Denmark
- Laboratoire d’Anthropobiologie Moléculaire et d’Imagerie de Synthése UMR 5288, Université de Toulouse, CNRS, Université Paul Sabatier, 31000 Toulouse, France
| | - Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350K Copenhagen, Denmark
- Laboratoire d’Anthropobiologie Moléculaire et d’Imagerie de Synthése UMR 5288, Université de Toulouse, CNRS, Université Paul Sabatier, 31000 Toulouse, France
| |
Collapse
|
24
|
Differential Infection Patterns and Recent Evolutionary Origins of Equine Hepaciviruses in Donkeys. J Virol 2016; 91:JVI.01711-16. [PMID: 27795428 DOI: 10.1128/jvi.01711-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/13/2016] [Indexed: 12/13/2022] Open
Abstract
The hepatitis C virus (HCV) is a major human pathogen. Genetically related viruses in animals suggest a zoonotic origin of HCV. The closest relative of HCV is found in horses (termed equine hepacivirus [EqHV]). However, low EqHV genetic diversity implies relatively recent acquisition of EqHV by horses, making a derivation of HCV from EqHV unlikely. To unravel the EqHV evolutionary history within equid sister species, we analyzed 829 donkeys and 53 mules sampled in nine European, Asian, African, and American countries by molecular and serologic tools for EqHV infection. Antibodies were found in 278 animals (31.5%), and viral RNA was found in 3 animals (0.3%), all of which were simultaneously seropositive. A low RNA prevalence in spite of high seroprevalence suggests a predominance of acute infection, a possible difference from the mostly chronic hepacivirus infection pattern seen in horses and humans. Limitation of transmission due to short courses of infection may explain the existence of entirely seronegative groups of animals. Donkey and horse EqHV strains were paraphyletic and 97.5 to 98.2% identical in their translated polyprotein sequences, making virus/host cospeciation unlikely. Evolutionary reconstructions supported host switches of EqHV between horses and donkeys without the involvement of adaptive evolution. Global admixture of donkey and horse hepaciviruses was compatible with anthropogenic alterations of EqHV ecology. In summary, our findings do not support EqHV as the origin of the significantly more diversified HCV. Identification of a host system with predominantly acute hepacivirus infection may enable new insights into the chronic infection pattern associated with HCV. IMPORTANCE The evolutionary origins of the human hepatitis C virus (HCV) are unclear. The closest animal-associated relative of HCV occurs in horses (equine hepacivirus [EqHV]). The low EqHV genetic diversity implies a relatively recent acquisition of EqHV by horses, limiting the time span for potential horse-to-human infections in the past. Horses are genetically related to donkeys, and EqHV may have cospeciated with these host species. Here, we investigated a large panel of donkeys from various countries using serologic and molecular tools. We found EqHV to be globally widespread in donkeys and identify potential differences in EqHV infection patterns, with donkeys potentially showing enhanced EqHV clearance compared to horses. We provide strong evidence against EqHV cospeciation and for its capability to switch hosts among equines. Differential hepacivirus infection patterns in horses and donkeys may enable new insights into the chronic infection pattern associated with HCV.
Collapse
|
25
|
Burrack LS, Hutton HF, Matter KJ, Clancey SA, Liachko I, Plemmons AE, Saha A, Power EA, Turman B, Thevandavakkam MA, Ay F, Dunham MJ, Berman J. Neocentromeres Provide Chromosome Segregation Accuracy and Centromere Clustering to Multiple Loci along a Candida albicans Chromosome. PLoS Genet 2016; 12:e1006317. [PMID: 27662467 PMCID: PMC5035033 DOI: 10.1371/journal.pgen.1006317] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/23/2016] [Indexed: 02/07/2023] Open
Abstract
Assembly of kinetochore complexes, involving greater than one hundred proteins, is essential for chromosome segregation and genome stability. Neocentromeres, or new centromeres, occur when kinetochores assemble de novo, at DNA loci not previously associated with kinetochore proteins, and they restore chromosome segregation to chromosomes lacking a functional centromere. Neocentromeres have been observed in a number of diseases and may play an evolutionary role in adaptation or speciation. However, the consequences of neocentromere formation on chromosome missegregation rates, gene expression, and three-dimensional (3D) nuclear structure are not well understood. Here, we used Candida albicans, an organism with small, epigenetically-inherited centromeres, as a model system to study the functions of twenty different neocentromere loci along a single chromosome, chromosome 5. Comparison of neocentromere properties relative to native centromere functions revealed that all twenty neocentromeres mediated chromosome segregation, albeit to different degrees. Some neocentromeres also caused reduced levels of transcription from genes found within the neocentromere region. Furthermore, like native centromeres, neocentromeres clustered in 3D with active/functional centromeres, indicating that formation of a new centromere mediates the reorganization of 3D nuclear architecture. This demonstrates that centromere clustering depends on epigenetically defined function and not on the primary DNA sequence, and that neocentromere function is independent of its distance from the native centromere position. Together, the results show that a neocentromere can form at many loci along a chromosome and can support the assembly of a functional kinetochore that exhibits native centromere functions including chromosome segregation accuracy and centromere clustering within the nucleus. The accurate segregation of chromosomes during cell division is essential for maintaining genome integrity. The centromere is the DNA region on each chromosome where assembly of a large protein complex, the kinetochore, is required to maintain proper chromosome segregation. In addition, active centromeres exhibit a specific three-dimensional organization within the nucleus: the centromeres associate with one another in a clustered manner. Neocentromeres, or new centromeres, appear at new places along the chromosome when a native centromere becomes non-functional. We used a yeast model, Candida albicans, and isolated twenty instances in which neocentromeres had formed at different positions. All of these neocentromeres were able to direct chromosome segregation, but some had increased error rates. Like native centromeres, these neocentromeres cluster in the nucleus with the other active centromeres. This implies that formation of a neocentromere leads to reorganization of the three-dimensional structure of the nucleus so that different regions of the chromosome are in closer contact to regions of other chromosomes. Recent work suggests that approximately 3% of cancers may contain chromosomes with neocentromeres. Our observations that many neocentromeres have increased error rates provides insight into genome instability in cancer cells. Changes in chromosome copy number may benefit the cancer cells by increasing numbers of oncogenes and/or drug resistance genes, but may also sensitize the cells to chemotherapy approaches that target chromosome segregation mechanisms.
Collapse
Affiliation(s)
- Laura S. Burrack
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Biology, Grinnell College, Grinnell, Iowa, United States of America
- Department of Biology, Gustavus Adolphus College, Saint Peter, Minnesota, United States of America
- * E-mail: (LSB); (JB)
| | - Hannah F. Hutton
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Kathleen J. Matter
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Shelly Applen Clancey
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ivan Liachko
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | | | - Amrita Saha
- Department of Biology, Grinnell College, Grinnell, Iowa, United States of America
| | - Erica A. Power
- Department of Biology, Gustavus Adolphus College, Saint Peter, Minnesota, United States of America
| | - Breanna Turman
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | | | - Ferhat Ay
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Maitreya J. Dunham
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Judith Berman
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
- * E-mail: (LSB); (JB)
| |
Collapse
|