1
|
Evaluation of the α-casein (CSN1S1) locus as a potential target for a site-specific transgene integration. Sci Rep 2022; 12:7983. [PMID: 35568783 PMCID: PMC9107462 DOI: 10.1038/s41598-022-12071-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 04/29/2022] [Indexed: 11/25/2022] Open
Abstract
Transgenic animals are an important tool in biotechnology, including the production of recombinant proteins in the milk. Traditionally, expression constructs are based on hybrid vectors bearing mammary gland specific regulatory elements from the α-casein (Csn1s1), β-casein (Csn2), whey acidic protein (WAP), or β-lactoglobulin (BLG) genes. Overexpression from the randomly integrated vectors typically provides high levels of expression, but has drawbacks due to unpredictable genome localization. CRISPR-Cas9 targeted transgene integration into the endogenous casein locus could alleviate the need for extensive animal screening to achieve high and reproducible expression levels. We decided to evaluate such a “precise” integration approach, placing the human granulocyte–macrophage colony-stimulating factor (hGMCSF) gene under control of the mouse endogenous alpha-S1-casein (Csn1s1) promoter. We designed two types of transgene integrations: a knock-in in the second exon of the Csn1s1 (INS-GM) and a full-size Csn1s1 replacement with hGMCSF (REP-GM) which was never tested before. The INS-GM approach demonstrated low transgene expression and milk protein levels (0.4% of Csn2 transcripts; 2–11 µg/ml hGMCSF). This was probably caused by the absence of the 3’-polyadenylation signal in the hGMCSF transgene. REP-GM animals displayed high transgene expression, reaching and slightly exceeding the level of the endogenous Csn1s1 (30–40% of Csn2 transcripts), but yielded less hGMCSF protein than expected (0.2–0.5 mg/ml vs 25 mg/ml of Csn1s1), indicating that translation of the protein is not optimal. Homozygous inserts leading to the Csn1s1 knock-out did not have any long standing effects on the animals’ health. Thus, in our experimental design, site-specific transgene integration into the casein locus did not provide any significant advantage over the overexpression approach.
Collapse
|
3
|
Hryhorowicz M, Lipiński D, Hryhorowicz S, Nowak-Terpiłowska A, Ryczek N, Zeyland J. Application of Genetically Engineered Pigs in Biomedical Research. Genes (Basel) 2020; 11:genes11060670. [PMID: 32575461 PMCID: PMC7349405 DOI: 10.3390/genes11060670] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023] Open
Abstract
Progress in genetic engineering over the past few decades has made it possible to develop methods that have led to the production of transgenic animals. The development of transgenesis has created new directions in research and possibilities for its practical application. Generating transgenic animal species is not only aimed towards accelerating traditional breeding programs and improving animal health and the quality of animal products for consumption but can also be used in biomedicine. Animal studies are conducted to develop models used in gene function and regulation research and the genetic determinants of certain human diseases. Another direction of research, described in this review, focuses on the use of transgenic animals as a source of high-quality biopharmaceuticals, such as recombinant proteins. The further aspect discussed is the use of genetically modified animals as a source of cells, tissues, and organs for transplantation into human recipients, i.e., xenotransplantation. Numerous studies have shown that the pig (Sus scrofa domestica) is the most suitable species both as a research model for human diseases and as an optimal organ donor for xenotransplantation. Short pregnancy, short generation interval, and high litter size make the production of transgenic pigs less time-consuming in comparison with other livestock species This review describes genetically modified pigs used for biomedical research and the future challenges and perspectives for the use of the swine animal models.
Collapse
Affiliation(s)
- Magdalena Hryhorowicz
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (D.L.); (A.N.-T.); (N.R.); (J.Z.)
- Correspondence:
| | - Daniel Lipiński
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (D.L.); (A.N.-T.); (N.R.); (J.Z.)
| | - Szymon Hryhorowicz
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland;
| | - Agnieszka Nowak-Terpiłowska
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (D.L.); (A.N.-T.); (N.R.); (J.Z.)
| | - Natalia Ryczek
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (D.L.); (A.N.-T.); (N.R.); (J.Z.)
| | - Joanna Zeyland
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (D.L.); (A.N.-T.); (N.R.); (J.Z.)
| |
Collapse
|
5
|
Cao C, Zhang Y, Jia Q, Wang X, Zheng Q, Zhang H, Song R, Li Y, Luo A, Hong Q, Qin G, Yao J, Zhang N, Wang Y, Wang H, Zhou Q, Zhao J. An exonic splicing enhancer mutation in DUOX2 causes aberrant alternative splicing and severe congenital hypothyroidism in Bama pigs. Dis Model Mech 2019; 12:12/1/dmm036616. [PMID: 30651277 PMCID: PMC6361156 DOI: 10.1242/dmm.036616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/03/2018] [Indexed: 12/12/2022] Open
Abstract
Pigs share many similarities with humans in terms of anatomy, physiology and genetics, and have long been recognized as important experimental animals in biomedical research. Using an N-ethyl-N-nitrosourea (ENU) mutagenesis screen, we previously identified a large number of pig mutants, which could be further established as human disease models. However, the identification of causative mutations in large animals with great heterogeneity remains a challenging endeavor. Here, we select one pig mutant, showing congenital nude skin and thyroid deficiency in a recessive inheritance pattern. We were able to efficiently map the causative mutation using family-based genome-wide association studies combined with whole-exome sequencing and a small sample size. A loss-of-function variant (c.1226 A>G) that resulted in a highly conserved amino acid substitution (D409G) was identified in the DUOX2 gene. This mutation, located within an exonic splicing enhancer motif, caused aberrant splicing of DUOX2 transcripts and resulted in lower H2O2 production, which might cause a severe defect in thyroid hormone production. Our findings suggest that exome sequencing is an efficient way to map causative mutations and that DUOX2D409G/D409G mutant pigs could be a potential large animal model for human congenital hypothyroidism. Summary: Here, we show that an exonic splicing enhancer variant in DUOX2 (c.1226 A>G) causes aberrant splicing of DUOX2 transcripts, resulting in lower H2O2 production, to cause severe congenital hypothyroidism in Bama pigs.
Collapse
Affiliation(s)
- Chunwei Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qitao Jia
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiantao Zheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyong Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruigao Song
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongshun Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,College of Life Science, Qufu Normal University, Qufu 273165, China
| | - Ailing Luo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianlong Hong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guosong Qin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Yao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanfang Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianguo Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China .,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Yen CH, Yang TS, Lin YS, Lee MH, Yu KC, Huang CL, Hsieh HH, Tu CF. A galactopoiesis accordant yield of functional recombinant human factor IX from homozygous transgenic pigs requires a large amount of vitamin K supplementation. Transgenic Res 2016; 25:545-51. [PMID: 27160182 DOI: 10.1007/s11248-016-9948-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 03/04/2016] [Indexed: 11/26/2022]
Abstract
Transgenic pigs failed to accord milk yield curve to lactate rhFIX-a vitamin K (VK) dependent protein even fed with VK enriched to 8 times higher than nutritional requirement. A further higher VK supplementation may be required. Homozygous transgenic sows (n = 4, 200 kg) at their 3rd nursing were divided into control and treatment groups and respectively received VK enriched and further menadione (soluble VK) supplemented diet (220 mg/kg VK enriched diet) for 33 days. At next lactation, control sows than received treatment and previous treated were fed on control diet. Results revealed that menadione treatment increased milk bioactivity of rhFIX from the 7th day of 73 to the 21st day of 153 IU/mL; it gradually decreased to 96 IU/mL on 35th day of lactation. Under control feeding, bioactivity remained relatively unchanged. However, milk rhFIX concentration and ratio of activated rhFIX responded little to the treatment. The menadione-induced bioactivity curve agrees with the known lactation pattern of sow means rhFIX secretion is still galactopoietic but requires high VK intake to show. The ineffectual VK spend on lactational carboxylation might be common in other mammary VK dependent expression system but can be effectively overcome by a high supplementation of menadione with a 5-folds improvement in quality.
Collapse
Affiliation(s)
- Chon-Ho Yen
- Division of Animal Technology, Animal Technology Laboratories, Agriculture Technology Research Institute, No.1, Ln. 51, Dahu Rd., Xiangshan Dist., Hsinchu, 30093, Taiwan, ROC
| | - Tien-Shuh Yang
- Department of Biotechnology and Animal Science, National Ilan University, 1, Set. 1, Shen-Lung Rd, Ilan, 26041, Taiwan, ROC
| | - Yin-Shen Lin
- Division of Animal Technology, Animal Technology Laboratories, Agriculture Technology Research Institute, No.1, Ln. 51, Dahu Rd., Xiangshan Dist., Hsinchu, 30093, Taiwan, ROC
| | - Meng-Hwan Lee
- Division of Animal Technology, Animal Technology Laboratories, Agriculture Technology Research Institute, No.1, Ln. 51, Dahu Rd., Xiangshan Dist., Hsinchu, 30093, Taiwan, ROC
| | - Kuo-Cheng Yu
- Division of Animal Technology, Animal Technology Laboratories, Agriculture Technology Research Institute, No.1, Ln. 51, Dahu Rd., Xiangshan Dist., Hsinchu, 30093, Taiwan, ROC
| | - Chung-Lin Huang
- Division of Animal Technology, Animal Technology Laboratories, Agriculture Technology Research Institute, No.1, Ln. 51, Dahu Rd., Xiangshan Dist., Hsinchu, 30093, Taiwan, ROC
| | - How-Hong Hsieh
- Department of Animal Science, National Pingtung University of Science and Technology, No. 1, Sheufu Road, Neipu, Pingtung, 912, Taiwan, ROC
| | - Ching-Fu Tu
- Division of Animal Technology, Animal Technology Laboratories, Agriculture Technology Research Institute, No.1, Ln. 51, Dahu Rd., Xiangshan Dist., Hsinchu, 30093, Taiwan, ROC.
| |
Collapse
|