1
|
Eldar D, Albert S, Tatyana A, Galina S, Albert R, Yana M. Optogenetic approaches for neural tissue regeneration: A review of basic optogenetic principles and target cells for therapy. Neural Regen Res 2026; 21:521-533. [PMID: 39995064 DOI: 10.4103/nrr.nrr-d-24-00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/17/2024] [Indexed: 02/26/2025] Open
Abstract
Optogenetics has revolutionized the field of neuroscience by enabling precise control of neural activity through light-sensitive proteins known as opsins. This review article discusses the fundamental principles of optogenetics, including the activation of both excitatory and inhibitory opsins, as well as the development of optogenetic models that utilize recombinant viral vectors. A considerable portion of the article addresses the limitations of optogenetic tools and explores strategies to overcome these challenges. These strategies include the use of adeno-associated viruses, cell-specific promoters, modified opsins, and methodologies such as bioluminescent optogenetics. The application of viral recombinant vectors, particularly adeno-associated viruses, is emerging as a promising avenue for clinical use in delivering opsins to target cells. This trend indicates the potential for creating tools that offer greater flexibility and accuracy in opsin delivery. The adaptations of these viral vectors provide advantages in optogenetic studies by allowing for the restricted expression of opsins through cell-specific promoters and various viral serotypes. The article also examines different cellular targets for optogenetics, including neurons, astrocytes, microglia, and Schwann cells. Utilizing specific promoters for opsin expression in these cells is essential for achieving precise and efficient stimulation. Research has demonstrated that optogenetic stimulation of both neurons and glial cells-particularly the distinct phenotypes of microglia, astrocytes, and Schwann cells-can have therapeutic effects in neurological diseases. Glial cells are increasingly recognized as important targets for the treatment of these disorders. Furthermore, the article emphasizes the emerging field of bioluminescent optogenetics, which combines optogenetic principles with bioluminescent proteins to visualize and manipulate neural activity in real time. By integrating molecular genetics techniques with bioluminescence, researchers have developed methods to monitor neuronal activity efficiently and less invasively, enhancing our understanding of central nervous system function and the mechanisms of plasticity in neurological disorders beyond traditional neurobiological methods. Evidence has shown that optogenetic modulation can enhance motor axon regeneration, achieve complete sensory reinnervation, and accelerate the recovery of neuromuscular function. This approach also induces complex patterns of coordinated motor neuron activity and promotes neural reorganization. Optogenetic approaches hold immense potential for therapeutic interventions in the central nervous system. They enable precise control of neural circuits and may offer new treatments for neurological disorders, particularly spinal cord injuries, peripheral nerve injuries, and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Davletshin Eldar
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Sufianov Albert
- Department of Neurosurgery, Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
- Research and Educational Institute of Neurosurgery, Peoples' Friendship University of Russia (RUDN), Moscow, Russia
| | - Ageeva Tatyana
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Sufianova Galina
- Department of Pharmacology, Tyumen State Medical University, Tyumen, Russia
| | - Rizvanov Albert
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, Kazan, Russia
| | - Mukhamedshina Yana
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, Kazan, Russia
- Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan, Russia
| |
Collapse
|
2
|
Lambert GG, Crespo EL, Murphy J, Boassa D, Luong S, Celinskis D, Venn S, Nguyen DK, Hu J, Sprecher B, Tree MO, Orcutt R, Heydari D, Bell AB, Torreblanca-Zanca A, Hakimi A, Lipscombe D, Moore CI, Hochgeschwender U, Shaner NC. CaBLAM! A high-contrast bioluminescent Ca 2+ indicator derived from an engineered Oplophorus gracilirostris luciferase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.06.25.546478. [PMID: 37425712 PMCID: PMC10327125 DOI: 10.1101/2023.06.25.546478] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Ca2+ plays many critical roles in cell physiology and biochemistry, leading researchers to develop a number of fluorescent small molecule dyes and genetically encodable probes that optically report changes in Ca2+ concentrations in living cells. Though such fluorescence-based genetically encoded Ca2+ indicators (GECIs) have become a mainstay of modern Ca2+ sensing and imaging, bioluminescence-based GECIs-probes that generate light through oxidation of a small-molecule by a luciferase or photoprotein-have several distinct advantages over their fluorescent counterparts. Bioluminescent tags do not photobleach, do not suffer from nonspecific autofluorescent background, and do not lead to phototoxicity since they do not require the extremely bright extrinsic excitation light typically required for fluorescence imaging, especially with 2-photon microscopy. Current BL GECIs perform poorly relative to fluorescent GECIs, producing small changes in bioluminescence intensity due to high baseline signal at resting Ca2+ concentrations and suboptimal Ca2+ affinities. Here, we describe the development of a new bioluminescent GECI, "CaBLAM," which displays much higher contrast (dynamic range) than previously described bioluminescent GECIs and has a Ca2+ affinity suitable for capturing physiological changes in cytosolic Ca2+ concentration. Derived from a new variant of Oplophorus gracilirostris luciferase with superior in vitro properties and a highly favorable scaffold for insertion of sensor domains, CaBLAM allows for single-cell and subcellular resolution imaging of Ca2+ dynamics at high frame rates in cultured neurons and in vivo. CaBLAM marks a significant milestone in the GECI timeline, enabling Ca2+ recordings with high spatial and temporal resolution without perturbing cells with intense excitation light.
Collapse
Affiliation(s)
- Gerard G. Lambert
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA USA
| | | | - Jeremy Murphy
- Carney Institute for Brain Sciences, Department of Neuroscience, Brown University, Providence, RI USA
| | - Daniela Boassa
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA USA
| | - Selena Luong
- University of California San Diego, La Jolla, CA USA
| | - Dmitrijs Celinskis
- Carney Institute for Brain Sciences, Department of Neuroscience, Brown University, Providence, RI USA
| | - Stephanie Venn
- College of Medicine, Central Michigan University, Mt. Pleasant, MI USA
| | | | - Junru Hu
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA USA
| | - Brittany Sprecher
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA USA
| | - Maya O. Tree
- College of Medicine, Central Michigan University, Mt. Pleasant, MI USA
| | - Richard Orcutt
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA USA
| | - Daniel Heydari
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA USA
| | - Aidan B. Bell
- University of California San Diego, La Jolla, CA USA
| | | | | | - Diane Lipscombe
- College of Medicine, Central Michigan University, Mt. Pleasant, MI USA
| | - Christopher I. Moore
- Carney Institute for Brain Sciences, Department of Neuroscience, Brown University, Providence, RI USA
| | | | - Nathan C. Shaner
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA USA
| |
Collapse
|
3
|
Vogt A, Paulat R, Parthier D, Just V, Szczepek M, Scheerer P, Xu Q, Möglich A, Schmitz D, Rost BR, Wenger N. Simultaneous spectral illumination of microplates for high-throughput optogenetics and photobiology. Biol Chem 2024; 405:751-763. [PMID: 39303162 DOI: 10.1515/hsz-2023-0205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/03/2024] [Indexed: 09/22/2024]
Abstract
The biophysical characterization and engineering of optogenetic tools and photobiological systems has been hampered by the lack of efficient methods for spectral illumination of microplates for high-throughput analysis of action spectra. Current methods to determine action spectra only allow the sequential spectral illumination of individual wells. Here we present the open-source RainbowCap-system, which combines LEDs and optical filters in a standard 96-well microplate format for simultaneous and spectrally defined illumination. The RainbowCap provides equal photon flux for each wavelength, with the output of the LEDs narrowed by optical bandpass filters. We validated the RainbowCap for photoactivatable G protein-coupled receptors (opto-GPCRs) and enzymes for the control of intracellular downstream signaling. The simultaneous, spectrally defined illumination provides minimal interruption during time-series measurements, while resolving 10 nm differences in the action spectra of optogenetic proteins under identical experimental conditions. The RainbowCap is also suitable for studying the spectral dependence of light-regulated gene expression in bacteria, which requires illumination over several hours. In summary, the RainbowCap provides high-throughput spectral illumination of microplates, while its modular, customizable design allows easy adaptation to a wide range of optogenetic and photobiological applications.
Collapse
Affiliation(s)
- Arend Vogt
- Department of Neurology with Experimental Neurology, Translational Neuromodulation Group, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
| | - Raik Paulat
- Department of Neurology with Experimental Neurology, Translational Neuromodulation Group, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
- Faculty of Energy and Information, HTW-Berlin University for Applied Sciences, D-10318 Berlin, Germany
| | - Daniel Parthier
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
| | - Verena Just
- Department of Neurology with Experimental Neurology, Translational Neuromodulation Group, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
- Faculty of Energy and Information, HTW-Berlin University for Applied Sciences, D-10318 Berlin, Germany
| | - Michal Szczepek
- Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
| | - Patrick Scheerer
- Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
| | - Qianzhao Xu
- Department of Biochemistry, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Andreas Möglich
- Department of Biochemistry, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Dietmar Schmitz
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
- 638588 German Center for Neurodegenerative Diseases (DZNE) , D-10117 Berlin, Germany
| | - Benjamin R Rost
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
- 638588 German Center for Neurodegenerative Diseases (DZNE) , D-10117 Berlin, Germany
| | - Nikolaus Wenger
- Department of Neurology with Experimental Neurology, Translational Neuromodulation Group, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
| |
Collapse
|
4
|
Michetti C, Benfenati F. Homeostatic regulation of brain activity: from endogenous mechanisms to homeostatic nanomachines. Am J Physiol Cell Physiol 2024; 327:C1384-C1399. [PMID: 39401424 DOI: 10.1152/ajpcell.00470.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 11/12/2024]
Abstract
After the initial concepts of the constancy of the internal milieu or homeostasis, put forward by Claude Bernard and Walter Cannon, homeostasis emerged as a mechanism to control oscillations of biologically meaningful variables within narrow physiological ranges. This is a primary need in the central nervous system that is continuously subjected to a multitude of stimuli from the internal and external environments that affect its function and structure, allowing to adapt the individual to the ever-changing daily conditions. Preserving physiological levels of activity despite disturbances that could either depress neural computation or excessively stimulate neural activity is fundamental, and failure of these homeostatic mechanisms can lead to brain diseases. In this review, we cover the role and main mechanisms of homeostatic plasticity involving the regulation of excitability and synaptic strength from the single neuron to the network level. We analyze the relationships between homeostatic and Hebbian plasticity and the conditions under which the preservation of the excitatory/inhibitory balance fails, triggering epileptogenesis and eventually epilepsy. Several therapeutic strategies to cure epilepsy have been designed to strengthen homeostasis when endogenous homeostatic plasticity mechanisms have become insufficient or ineffective to contrast hyperactivity. We describe "on demand" gene therapy strategies, including optogenetics, chemogenetics, and chemo-optogenetics, and particularly focus on new closed loop sensor-actuator strategies mimicking homeostatic plasticity that can be endogenously expressed to strengthen the homeostatic defenses against brain diseases.
Collapse
Affiliation(s)
- Caterina Michetti
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
5
|
Murphy EF, Means A, Li C, Baez H, Gomez-Ramirez M. Strength of activation and temporal dynamics of bioluminescent-optogenetics in response to systemic injections of the luciferin. Neuroimage 2024; 301:120882. [PMID: 39362505 DOI: 10.1016/j.neuroimage.2024.120882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024] Open
Abstract
BioLuminescent OptoGenetics ("BL-OG") is a chemogenetic method that can evoke optogenetic reactions in the brain non-invasively. In BL-OG, an enzyme that catalyzes a light producing reaction (i.e., a luciferase) is tethered to an optogenetic element that is activated in response to bioluminescent light. Bioluminescence is generated by injecting a chemical substrate (luciferin, e.g., h-Coelenterazine; h-CTZ) that is catalyzed by the luciferase. By directly injecting the luciferin into the brain, we show that bioluminescent light is proportional to spiking activity, and this relationship scales as a function of luciferin dosage. Here, we build on these previous observations by characterizing the temporal dynamics and dose response curves of bioluminescence generated by luminopsins (LMOs), a proxy of BL-OG effects, to intravenous (IV) injections of the luciferin. We imaged bioluminescence through a thinned skull of mice running on a wheel, while delivering h-CTZ via the tail vein with different dosage concentrations and injection rates. The data reveal a systematic relationship between strength of bioluminescence and h-CTZ dosage, with higher concentration generating stronger bioluminescence. We also found that bioluminescent activity occurs rapidly (< 60 s after IV injection) regardless of concentration dosage. However, as expected, the onset time of bioluminescence is delayed as the injection rate decreases. Notably, the strength and time decay of bioluminescence is invariant to the injection rate of h-CTZ. Taken together, these data show that BL-OG effects are highly consistent across injection parameters of h-CTZ, highlighting the reliability of BL-OG as a minimally invasive neuromodulation method.
Collapse
Affiliation(s)
- Emily F Murphy
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14642, USA
| | - Aniya Means
- The Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Chen Li
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14642, USA
| | - Hector Baez
- Center for Visual Science, University of Rochester, Rochester NY 14642, USA
| | - Manuel Gomez-Ramirez
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14642, USA; The Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Center for Visual Science, University of Rochester, Rochester NY 14642, USA.
| |
Collapse
|
6
|
Kim H, Jung SO, Lee S, Lee Y. Bioluminescent Systems for Theranostic Applications. Int J Mol Sci 2024; 25:7563. [PMID: 39062805 PMCID: PMC11277111 DOI: 10.3390/ijms25147563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Bioluminescence, the light produced by biochemical reactions involving luciferases in living organisms, has been extensively investigated for various applications. It has attracted particular interest as an internal light source for theranostic applications due to its safe and efficient characteristics that overcome the limited penetration of conventional external light sources. Recent advancements in protein engineering technologies and protein delivery platforms have expanded the application of bioluminescence to a wide range of theranostic areas, including bioimaging, biosensing, photodynamic therapy, and optogenetics. This comprehensive review presents the fundamental concepts of bioluminescence and explores its recent applications across diverse fields. Moreover, it discusses future research directions based on the current status of bioluminescent systems for further expansion of their potential.
Collapse
Affiliation(s)
- Hyemin Kim
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (S.O.J.); (S.L.); (Y.L.)
| | | | | | | |
Collapse
|
7
|
Merolla A, Michetti C, Moschetta M, Vacca F, Ciano L, Emionite L, Astigiano S, Romei A, Horenkamp S, Berglund K, Gross RE, Cesca F, Colombo E, Benfenati F. A pH-sensitive closed-loop nanomachine to control hyperexcitability at the single neuron level. Nat Commun 2024; 15:5609. [PMID: 38965228 PMCID: PMC11224301 DOI: 10.1038/s41467-024-49941-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 06/20/2024] [Indexed: 07/06/2024] Open
Abstract
Epilepsy affects 1% of the general population and 30% of patients are resistant to antiepileptic drugs. Although optogenetics is an efficient antiepileptic strategy, the difficulty of illuminating deep brain areas poses translational challenges. Thus, the search of alternative light sources is strongly needed. Here, we develop pH-sensitive inhibitory luminopsin (pHIL), a closed-loop chemo-optogenetic nanomachine composed of a luciferase-based light generator, a fluorescent sensor of intracellular pH (E2GFP), and an optogenetic actuator (halorhodopsin) for silencing neuronal activity. Stimulated by coelenterazine, pHIL experiences bioluminescence resonance energy transfer between luciferase and E2GFP which, under conditions of acidic pH, activates halorhodopsin. In primary neurons, pHIL senses the intracellular pH drop associated with hyperactivity and optogenetically aborts paroxysmal activity elicited by the administration of convulsants. The expression of pHIL in hippocampal pyramidal neurons is effective in decreasing duration and increasing latency of pilocarpine-induced tonic-clonic seizures upon in vivo coelenterazine administration, without affecting higher brain functions. The same treatment is effective in markedly decreasing seizure manifestations in a murine model of genetic epilepsy. The results indicate that pHIL represents a potentially promising closed-loop chemo-optogenetic strategy to treat drug-refractory epilepsy.
Collapse
Affiliation(s)
- Assunta Merolla
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Caterina Michetti
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Matteo Moschetta
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesca Vacca
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - Lorenzo Ciano
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | | | | | - Alessandra Romei
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - Simone Horenkamp
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - Ken Berglund
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.
- Department of Life Sciences, University of Trieste, Trieste, Italy.
| | - Elisabetta Colombo
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.
- IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
8
|
Slaviero AN, Gorantla N, Simkins J, Crespo EL, Ikefuama EC, Tree MO, Prakash M, Björefeldt A, Barnett LM, Lambert GG, Lipscombe D, Moore CI, Shaner NC, Hochgeschwender U. Engineering luminopsins with improved coupling efficiencies. NEUROPHOTONICS 2024; 11:024208. [PMID: 38559366 PMCID: PMC10980360 DOI: 10.1117/1.nph.11.2.024208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
Significance Luminopsins (LMOs) are bioluminescent-optogenetic tools with a luciferase fused to an opsin that allow bimodal control of neurons by providing both optogenetic and chemogenetic access. Determining which design features contribute to the efficacy of LMOs will be beneficial for further improving LMOs for use in research. Aim We investigated the relative impact of luciferase brightness, opsin sensitivity, pairing of emission and absorption wavelength, and arrangement of moieties on the function of LMOs. Approach We quantified efficacy of LMOs through whole cell patch clamp recordings in HEK293 cells by determining coupling efficiency, the percentage of maximum LED induced photocurrent achieved with bioluminescent activation of an opsin. We confirmed key results by multielectrode array recordings in primary neurons. Results Luciferase brightness and opsin sensitivity had the most impact on the efficacy of LMOs, and N-terminal fusions of luciferases to opsins performed better than C-terminal and multi-terminal fusions. Precise paring of luciferase emission and opsin absorption spectra appeared to be less critical. Conclusions Whole cell patch clamp recordings allowed us to quantify the impact of different characteristics of LMOs on their function. Our results suggest that coupling brighter bioluminescent sources to more sensitive opsins will improve LMO function. As bioluminescent activation of opsins is most likely based on Förster resonance energy transfer, the most effective strategy for improving LMOs further will be molecular evolution of luciferase-fluorescent protein-opsin fusions.
Collapse
Affiliation(s)
- Ashley N. Slaviero
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
- Central Michigan University, Biochemistry, Cellular and Molecular Biology Graduate Program, Mount Pleasant, Michigan, United States
| | - Nipun Gorantla
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
| | - Jacob Simkins
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
| | - Emmanuel L. Crespo
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
- Central Michigan University, Biochemistry, Cellular and Molecular Biology Graduate Program, Mount Pleasant, Michigan, United States
| | - Ebenezer C. Ikefuama
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
- Central Michigan University, Neuroscience Graduate Program, Mount Pleasant, Michigan, United States
| | - Maya O. Tree
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
| | - Mansi Prakash
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
| | - Andreas Björefeldt
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
| | - Lauren M. Barnett
- University of California San Diego, Department of Neurosciences, La Jolla, California, United States
| | - Gerard G. Lambert
- University of California San Diego, Department of Neurosciences, La Jolla, California, United States
| | - Diane Lipscombe
- Brown University, Carney Institute for Brain Science, Providence, Rhode Island, United States
| | - Christopher I. Moore
- Brown University, Carney Institute for Brain Science, Providence, Rhode Island, United States
| | - Nathan C. Shaner
- University of California San Diego, Department of Neurosciences, La Jolla, California, United States
| | - Ute Hochgeschwender
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
- Central Michigan University, Biochemistry, Cellular and Molecular Biology Graduate Program, Mount Pleasant, Michigan, United States
- Central Michigan University, Neuroscience Graduate Program, Mount Pleasant, Michigan, United States
| |
Collapse
|
9
|
Porta-de-la-Riva M, Morales-Curiel LF, Carolina Gonzalez A, Krieg M. Bioluminescence as a functional tool for visualizing and controlling neuronal activity in vivo. NEUROPHOTONICS 2024; 11:024203. [PMID: 38348359 PMCID: PMC10861157 DOI: 10.1117/1.nph.11.2.024203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/15/2024]
Abstract
The use of bioluminescence as a reporter for physiology in neuroscience is as old as the discovery of the calcium-dependent photon emission of aequorin. Over the years, luciferases have been largely replaced by fluorescent reporters, but recently, the field has seen a renaissance of bioluminescent probes, catalyzed by unique developments in imaging technology, bioengineering, and biochemistry to produce luciferases with previously unseen colors and intensity. This is not surprising as the advantages of bioluminescence make luciferases very attractive for noninvasive, longitudinal in vivo observations without the need of an excitation light source. Here, we review how the development of dedicated and specific sensor-luciferases afforded, among others, transcranial imaging of calcium and neurotransmitters, or cellular metabolites and physical quantities such as forces and membrane voltage. Further, the increased versatility and light output of luciferases have paved the way for a new field of functional bioluminescence optogenetics, in which the photon emission of the luciferase is coupled to the gating of a photosensor, e.g., a channelrhodopsin and we review how they have been successfully used to engineer synthetic neuronal connections. Finally, we provide a primer to consider important factors in setting up functional bioluminescence experiments, with a particular focus on the genetic model Caenorhabditis elegans, and discuss the leading challenges that the field needs to overcome to regain a competitive advantage over fluorescence modalities. Together, our paper caters to experienced users of bioluminescence as well as novices who would like to experience the advantages of luciferases in their own hand.
Collapse
Affiliation(s)
- Montserrat Porta-de-la-Riva
- ICFO—Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Luis-Felipe Morales-Curiel
- ICFO—Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Adriana Carolina Gonzalez
- ICFO—Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Michael Krieg
- ICFO—Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| |
Collapse
|
10
|
Chen K, Ernst P, Kim S, Si Y, Varadkar T, Ringel MD, Liu X“M, Zhou L. An Innovative Mitochondrial-targeted Gene Therapy for Cancer Treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.24.584499. [PMID: 38585739 PMCID: PMC10996521 DOI: 10.1101/2024.03.24.584499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Targeting cancer cell mitochondria holds great therapeutic promise, yet current strategies to specifically and effectively destroy cancer mitochondria in vivo are limited. Here, we introduce mLumiOpto, an innovative mitochondrial-targeted luminoptogenetics gene therapy designed to directly disrupt the inner mitochondrial membrane (IMM) potential and induce cancer cell death. We synthesize a blue light-gated channelrhodopsin (CoChR) in the IMM and co-express a blue bioluminescence-emitting Nanoluciferase (NLuc) in the cytosol of the same cells. The mLumiOpto genes are selectively delivered to cancer cells in vivo by using adeno-associated virus (AAV) carrying a cancer-specific promoter or cancer-targeted monoclonal antibody-tagged exosome-associated AAV. Induction with NLuc luciferin elicits robust endogenous bioluminescence, which activates mitochondrial CoChR, triggering cancer cell IMM permeability disruption, mitochondrial damage, and subsequent cell death. Importantly, mLumiOpto demonstrates remarkable efficacy in reducing tumor burden and killing tumor cells in glioblastoma or triple-negative breast cancer xenografted mouse models. These findings establish mLumiOpto as a novel and promising therapeutic strategy by targeting cancer cell mitochondria in vivo.
Collapse
Affiliation(s)
- Kai Chen
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Patrick Ernst
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Seulhee Kim
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Yingnan Si
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Tanvi Varadkar
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Matthew D. Ringel
- Department of Molecular Medicine and Therapeutics, The Ohio State University, Columbus, Ohio, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Xiaoguang “Margaret” Liu
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Lufang Zhou
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
11
|
Slaviero A, Gorantla N, Simkins J, Crespo EL, Ikefuama EC, Tree MO, Prakash M, Björefeldt A, Barnett LM, Lambert GG, Lipscombe D, Moore CI, Shaner NC, Hochgeschwender U. Engineering luminopsins with improved coupling efficiencies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568342. [PMID: 38045286 PMCID: PMC10690276 DOI: 10.1101/2023.11.22.568342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Significance Luminopsins (LMOs) are bioluminescent-optogenetic tools with a luciferase fused to an opsin that allow bimodal control of neurons by providing both optogenetic and chemogenetic access. Determining which design features contribute to the efficacy of LMOs will be beneficial for further improving LMOs for use in research. Aim We investigated the relative impact of luciferase brightness, opsin sensitivity, pairing of emission and absorption wavelength, and arrangement of moieties on the function of LMOs. Approach We quantified efficacy of LMOs through whole cell patch clamp recordings in HEK293 cells by determining coupling efficiency, the percentage of maximum LED induced photocurrent achieved with bioluminescent activation of an opsin. We confirmed key results by multielectrode array (MEAs) recordings in primary neurons. Results Luciferase brightness and opsin sensitivity had the most impact on the efficacy of LMOs, and N-terminal fusions of luciferases to opsins performed better than C-terminal and multi-terminal fusions. Precise paring of luciferase emission and opsin absorption spectra appeared to be less critical. Conclusions Whole cell patch clamp recordings allowed us to quantify the impact of different characteristics of LMOs on their function. Our results suggest that coupling brighter bioluminescent sources to more sensitive opsins will improve LMO function. As bioluminescent activation of opsins is most likely based on Förster resonance energy transfer (FRET), the most effective strategy for improving LMOs further will be molecular evolution of luciferase-fluorescent protein-opsin fusions.
Collapse
Affiliation(s)
- Ashley Slaviero
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
- Central Michigan University, Biochemistry, Cellular and Molecular Biology Graduate Program, Mount Pleasant, Michigan, United States
| | - Nipun Gorantla
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
| | - Jacob Simkins
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
| | - Emmanuel L Crespo
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
- Central Michigan University, Biochemistry, Cellular and Molecular Biology Graduate Program, Mount Pleasant, Michigan, United States
| | - Ebenezer C Ikefuama
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
- Central Michigan University, Neuroscience Graduate Program, Mount Pleasant, Michigan, United States
| | - Maya O Tree
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
| | - Mansi Prakash
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
| | - Andreas Björefeldt
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
| | - Lauren M Barnett
- University of California San Diego, Department of Neurosciences, La Jolla, California, United States
| | - Gerard G Lambert
- University of California San Diego, Department of Neurosciences, La Jolla, California, United States
| | - Diane Lipscombe
- Brown University, Carney Institute for Brain Science, Providence, Rhode Island, United States
| | - Christopher I Moore
- Brown University, Carney Institute for Brain Science, Providence, Rhode Island, United States
| | - Nathan C Shaner
- University of California San Diego, Department of Neurosciences, La Jolla, California, United States
| | - Ute Hochgeschwender
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
- Central Michigan University, Biochemistry, Cellular and Molecular Biology Graduate Program, Mount Pleasant, Michigan, United States
- Central Michigan University, Neuroscience Graduate Program, Mount Pleasant, Michigan, United States
| |
Collapse
|
12
|
Crespo EL, Pal A, Prakash M, Silvagnoli AD, Zaidi Z, Gomez-Ramirez M, Tree MO, Shaner NC, Lipscombe D, Moore C, Hochgeschwender U. A Bioluminescent Activity Dependent (BLADe) Platform for Converting Neuronal Activity to Photoreceptor Activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.25.546469. [PMID: 37425742 PMCID: PMC10327117 DOI: 10.1101/2023.06.25.546469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
We developed a platform that utilizes a calcium-dependent luciferase to convert neuronal activity into activation of light sensing domains within the same cell. The platform is based on a Gaussia luciferase variant with high light emission split by calmodulin-M13 sequences that depends on influx of calcium ions (Ca2+) for functional reconstitution. In the presence of its luciferin, coelenterazine (CTZ), Ca2+ influx results in light emission that drives activation of photoreceptors, including optogenetic channels and LOV domains. Critical features of the converter luciferase are light emission low enough to not activate photoreceptors under baseline condition and high enough to activate photosensing elements in the presence of Ca2+ and luciferin. We demonstrate performance of this activity-dependent sensor and integrator for changing membrane potential and driving transcription in individual and populations of neurons in vitro and in vivo.
Collapse
Affiliation(s)
- Emmanuel L. Crespo
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859, USA
- Biochemistry, Cell and Molecular Biology Graduate Program, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Akash Pal
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859, USA
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Mansi Prakash
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Alexander D. Silvagnoli
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859, USA
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Zohair Zaidi
- Duke University, Undergraduate Neuroscience Program, Durham, NC 27710
| | | | - Maya O. Tree
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Nathan C. Shaner
- University of California, San Diego, School of Medicine, Department of Neuroscience, 9500 Gilman Drive La Jolla, CA 92093-0662, USA
| | - Diane Lipscombe
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
- Carney Institute for Brain Science, Brown University, Providence, RI 02906, USA
| | - Christopher Moore
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
- Carney Institute for Brain Science, Brown University, Providence, RI 02906, USA
| | - Ute Hochgeschwender
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859, USA
- Biochemistry, Cell and Molecular Biology Graduate Program, Central Michigan University, Mount Pleasant, MI 48859, USA
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA
| |
Collapse
|
13
|
Jiang T, Song J, Zhang Y. Coelenterazine-Type Bioluminescence-Induced Optical Probes for Sensing and Controlling Biological Processes. Int J Mol Sci 2023; 24:ijms24065074. [PMID: 36982148 PMCID: PMC10049153 DOI: 10.3390/ijms24065074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
Bioluminescence-based probes have long been used to quantify and visualize biological processes in vitro and in vivo. Over the past years, we have witnessed the trend of bioluminescence-driven optogenetic systems. Typically, bioluminescence emitted from coelenterazine-type luciferin–luciferase reactions activate light-sensitive proteins, which induce downstream events. The development of coelenterazine-type bioluminescence-induced photosensory domain-based probes has been applied in the imaging, sensing, and control of cellular activities, signaling pathways, and synthetic genetic circuits in vitro and in vivo. This strategy can not only shed light on the mechanisms of diseases, but also promote interrelated therapy development. Here, this review provides an overview of these optical probes for sensing and controlling biological processes, highlights their applications and optimizations, and discusses the possible future directions.
Collapse
Affiliation(s)
- Tianyu Jiang
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518000, China
- Correspondence: (T.J.); (Y.Z.)
| | - Jingwen Song
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Correspondence: (T.J.); (Y.Z.)
| |
Collapse
|
14
|
Improved Locomotor Recovery in a Rat Model of Spinal Cord Injury by BioLuminescent-OptoGenetic (BL-OG) Stimulation with an Enhanced Luminopsin. Int J Mol Sci 2022; 23:ijms232112994. [PMID: 36361784 PMCID: PMC9656028 DOI: 10.3390/ijms232112994] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 11/27/2022] Open
Abstract
Irrespective of the many strategies focused on dealing with spinal cord injury (SCI), there is still no way to restore motor function efficiently or an adequate regenerative therapy. One promising method that could potentially prove highly beneficial for rehabilitation in patients is to re-engage specific neuronal populations of the spinal cord following SCI. Targeted activation may maintain and strengthen existing neuronal connections and/or facilitate the reorganization and development of new connections. BioLuminescent-OptoGenetics (BL-OG) presents an avenue to non-invasively and specifically stimulate neurons; genetically targeted neurons express luminopsins (LMOs), light-emitting luciferases tethered to light-sensitive channelrhodopsins that are activated by adding the luciferase substrate coelenterazine (CTZ). This approach employs ion channels for current conduction while activating the channels through treatment with the small molecule CTZ, thus allowing non-invasive stimulation of all targeted neurons. We previously showed the efficacy of this approach for improving locomotor recovery following severe spinal cord contusion injury in rats expressing the excitatory luminopsin 3 (LMO3) under control of a pan-neuronal and motor-neuron-specific promoter with CTZ applied through a lateral ventricle cannula. The goal of the present study was to test a new generation of LMOs based on opsins with higher light sensitivity which will allow for peripheral delivery of the CTZ. In this construct, the slow-burn Gaussia luciferase variant (sbGLuc) is fused to the opsin CheRiff, creating LMO3.2. Taking advantage of the high light sensitivity of this opsin, we stimulated transduced lumbar neurons after thoracic SCI by intraperitoneal application of CTZ, allowing for a less invasive treatment. The efficacy of this non-invasive BioLuminescent-OptoGenetic approach was confirmed by improved locomotor function. This study demonstrates that peripheral delivery of the luciferin CTZ can be used to activate LMOs expressed in spinal cord neurons that employ an opsin with increased light sensitivity.
Collapse
|
15
|
Mazraeh D, Di Ventura B. Synthetic microbiology applications powered by light. Curr Opin Microbiol 2022; 68:102158. [PMID: 35660240 DOI: 10.1016/j.mib.2022.102158] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022]
Abstract
Synthetic biology is a field of research in which molecular parts (mostly nucleic acids and proteins) are de novo created or modified and then used either alone or in combination to achieve new functions that can help solve the problems of our modern society. In synthetic microbiology, microbes are employed rather than other organisms or cell-free systems. Optogenetics, a relatively recently established technology that relies on the use of genetically encoded photosensitive proteins to control biological processes with high spatiotemporal precision, offers the possibility to empower synthetic (micro)biology applications due to the many positive features that light has as an external trigger. In this review, we describe recent synthetic microbiology applications that made use of optogenetics after briefly introducing the molecular mechanism behind some of the most employed optogenetic tools. We highlight the power and versatility of this technique, which opens up new horizons for both research and industry.
Collapse
Affiliation(s)
- Daniel Mazraeh
- Signaling Research Centres BIOSS and CIBSS, and Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Barbara Di Ventura
- Signaling Research Centres BIOSS and CIBSS, and Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
16
|
Petersen ED, Sharkey ED, Pal A, Shafau LO, Zenchak-Petersen J, Peña AJ, Aggarwal A, Prakash M, Hochgeschwender U. Restoring Function After Severe Spinal Cord Injury Through BioLuminescent-OptoGenetics. Front Neurol 2022; 12:792643. [PMID: 35126293 PMCID: PMC8811305 DOI: 10.3389/fneur.2021.792643] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/09/2021] [Indexed: 02/02/2023] Open
Abstract
The ability to manipulate specific neuronal populations of the spinal cord following spinal cord injury (SCI) could prove highly beneficial for rehabilitation in patients through maintaining and strengthening still existing neuronal connections and/or facilitating the formation of new connections. A non-invasive and highly specific approach to neuronal stimulation is bioluminescent-optogenetics (BL-OG), where genetically expressed light emitting luciferases are tethered to light sensitive channelrhodopsins (luminopsins, LMO); neurons are activated by the addition of the luciferase substrate coelenterazine (CTZ). This approach utilizes ion channels for current conduction while activating the channels through the application of a small chemical compound, thus allowing non-invasive stimulation and recruitment of all targeted neurons. Rats were transduced in the lumbar spinal cord with AAV2/9 to express the excitatory LMO3 under control of a pan-neuronal or motor neuron-specific promoter. A day after contusion injury of the thoracic spine, rats received either CTZ or vehicle every other day for 2 weeks. Activation of either neuron population below the level of injury significantly improved locomotor recovery lasting beyond the treatment window. Utilizing histological and gene expression methods we identified neuronal plasticity as a likely mechanism underlying the functional recovery. These findings provide a foundation for a rational approach to spinal cord injury rehabilitation, thereby advancing approaches for functional recovery after SCI.SummaryBioluminescent optogenetic activation of spinal neurons results in accelerated and enhanced locomotor recovery after spinal cord injury in rats.
Collapse
Affiliation(s)
- Eric D. Petersen
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
| | - Erik D. Sharkey
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
| | - Akash Pal
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
| | - Lateef O. Shafau
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
| | | | - Alex J. Peña
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
| | - Anu Aggarwal
- Electrical and Computer Engineering, University of Illinois Urbana Champaign, Urbana, IL, United States
| | - Mansi Prakash
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
| | - Ute Hochgeschwender
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
- *Correspondence: Ute Hochgeschwender
| |
Collapse
|
17
|
Jiang S, Wu X, Rommelfanger NJ, Ou Z, Hong G. Shedding light on neurons: optical approaches for neuromodulation. Natl Sci Rev 2022; 9:nwac007. [PMID: 36196122 PMCID: PMC9522429 DOI: 10.1093/nsr/nwac007] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/17/2021] [Accepted: 12/29/2021] [Indexed: 11/14/2022] Open
Abstract
Today's optical neuromodulation techniques are rapidly evolving, benefiting from advances in photonics, genetics and materials science. In this review, we provide an up-to-date overview of the latest optical approaches for neuromodulation. We begin with the physical principles and constraints underlying the interaction between light and neural tissue. We then present advances in optical neurotechnologies in seven modules: conventional optical fibers, multifunctional fibers, optical waveguides, light-emitting diodes, upconversion nanoparticles, optical neuromodulation based on the secondary effects of light, and unconventional light sources facilitated by ultrasound and magnetic fields. We conclude our review with an outlook on new methods and mechanisms that afford optical neuromodulation with minimal invasiveness and footprint.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| | - Xiang Wu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| | - Nicholas J Rommelfanger
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA
| | - Zihao Ou
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| | - Guosong Hong
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
18
|
Selective control of synaptically-connected circuit elements by all-optical synapses. Commun Biol 2022; 5:33. [PMID: 35017641 PMCID: PMC8752598 DOI: 10.1038/s42003-021-02981-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 12/15/2021] [Indexed: 12/29/2022] Open
Abstract
Understanding percepts, engrams and actions requires methods for selectively modulating synaptic communication between specific subsets of interconnected cells. Here, we develop an approach to control synaptically connected elements using bioluminescent light: Luciferase-generated light, originating from a presynaptic axon terminal, modulates an opsin in its postsynaptic target. Vesicular-localized luciferase is released into the synaptic cleft in response to presynaptic activity, creating a real-time Optical Synapse. Light production is under experimenter-control by introduction of the small molecule luciferin. Signal transmission across this optical synapse is temporally defined by the presence of both the luciferin and presynaptic activity. We validate synaptic Interluminescence by multi-electrode recording in cultured neurons and in mice in vivo. Interluminescence represents a powerful approach to achieve synapse-specific and activity-dependent circuit control in vivo.
Collapse
|
19
|
Stern MA, Skelton H, Fernandez AM, Gutekunst CAN, Berglund K, Gross RE. Bioluminescence-Optogenetics: A Practical Guide. Methods Mol Biol 2022; 2525:333-346. [PMID: 35836081 DOI: 10.1007/978-1-0716-2473-9_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Manipulation of neural activity in genetically predefined populations of neurons through genetic techniques is an essential tool in the field of neuroscience as well as a potential avenue in treating a vast assortment of neurological and psychiatric diseases. Here, we describe an emerging methodology of molecular neuromodulation termed bioluminescence-optogenetics (BL-OG) where BL is harnessed to activate bacterial light-driven channels and pumps expressed in neurons to control their activity. BL-OG is realized through opsin-luciferase fusion proteins called luminopsins (LMOs). In this chapter, we will provide a practical guide for applying BL-OG and LMOs in vitro using a cell line and primary cells in culture. In the following chapter, we will turn our focus towards BL-OG applications in ex vivo and in vivo rodent models of the nervous system.
Collapse
Affiliation(s)
- Matthew A Stern
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Henry Skelton
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | - Ken Berglund
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA.
| | - Robert E Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
20
|
Stern MA, Skelton H, Fernandez AM, Gutekunst CAN, Gross RE, Berglund K. Applications of Bioluminescence-Optogenetics in Rodent Models. Methods Mol Biol 2022; 2525:347-363. [PMID: 35836082 DOI: 10.1007/978-1-0716-2473-9_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the preceding chapter, we introduced bioluminescence-optogenetics (BL-OG) and luminopsin fusion proteins (LMOs), an emerging method of molecular neuromodulation. In addition to reviewing the fundamental principles of BL-OG, we provided a discussion of its application in vitro, including with cell lines and primary cells in culture in vitro. BL-OG is mediated by an easily diffusible molecule, luciferin, and when applied systemically in rodents, the substrate can spread throughout the body, including the brain, achieving powerful molecular neuromodulation with convenience even in awake and behaving animals. In this chapter, we provide a practical guide for BL-OG and LMO applications in rodent models of the nervous system, both ex vivo and in vivo.
Collapse
Affiliation(s)
- Matthew A Stern
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Henry Skelton
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | - Robert E Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Ken Berglund
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
21
|
Selective postnatal excitation of neocortical pyramidal neurons results in distinctive behavioral and circuit deficits in adulthood. iScience 2021; 24:102157. [PMID: 33665575 PMCID: PMC7907816 DOI: 10.1016/j.isci.2021.102157] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 10/03/2020] [Accepted: 02/03/2021] [Indexed: 01/08/2023] Open
Abstract
In genetic and pharmacological models of neurodevelopmental disorders, and human data, neural activity is altered within the developing neocortical network. This commonality begs the question of whether early enhancement in excitation might be a common driver, across etiologies, of characteristic behaviors. We tested this concept by chemogenetically driving cortical pyramidal neurons during postnatal days 4–14. Hyperexcitation of Emx1-, but not dopamine transporter-, parvalbumin-, or Dlx5/6-expressing neurons, led to decreased social interaction and increased grooming activity in adult animals. In vivo optogenetic interrogation in adults revealed decreased baseline but increased stimulus-evoked firing rates of pyramidal neurons and impaired recruitment of inhibitory neurons. Slice recordings in adults from prefrontal cortex layer 5 pyramidal neurons revealed decreased intrinsic excitability and increased synaptic E/I ratio. Together these results support the prediction that enhanced pyramidal firing during development, in otherwise normal cortex, can selectively drive altered adult circuit function and maladaptive changes in behavior. BL-OG allows chemogenetic activation and optogenetic interrogation in the same animal Developmental hyperexcitation in normal mice leads to neurodevelopmental disorders In these mice adult neurons show reduced baseline activity and increased excitability Reduced activity-triggered coherence and altered oscillations in cortex and striatum
Collapse
|
22
|
Berglund K, Stern MA, Gross RE. Bioluminescence-Optogenetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:281-293. [PMID: 33398820 DOI: 10.1007/978-981-15-8763-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
In this chapter, we introduce a relatively new, emerging method for molecular neuromodulation-bioluminescence-optogenetics. Bioluminescence-optogenetics is mediated by luminopsin fusion proteins-light-sensing opsins fused to light-emitting luciferases. We describe their structures and working mechanisms and discuss their unique benefits over conventional optogenetics and chemogenetics. We also summarize applications of bioluminescence-optogenetics in various neurological disease models in rodents.
Collapse
Affiliation(s)
- Ken Berglund
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA.
| | - Matthew A Stern
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
23
|
Li T, Chen X, Qian Y, Shao J, Li X, Liu S, Zhu L, Zhao Y, Ye H, Yang Y. A synthetic BRET-based optogenetic device for pulsatile transgene expression enabling glucose homeostasis in mice. Nat Commun 2021; 12:615. [PMID: 33504786 PMCID: PMC7840992 DOI: 10.1038/s41467-021-20913-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/21/2020] [Indexed: 12/26/2022] Open
Abstract
Pulsing cellular dynamics in genetic circuits have been shown to provide critical capabilities to cells in stress response, signaling and development. Despite the fascinating discoveries made in the past few years, the mechanisms and functional capabilities of most pulsing systems remain unclear, and one of the critical challenges is the lack of a technology that allows pulsatile regulation of transgene expression both in vitro and in vivo. Here, we describe the development of a synthetic BRET-based transgene expression (LuminON) system based on a luminescent transcription factor, termed luminGAVPO, by fusing NanoLuc luciferase to the light-switchable transcription factor GAVPO. luminGAVPO allows pulsatile and quantitative activation of transgene expression via both chemogenetic and optogenetic approaches in mammalian cells and mice. Both the pulse amplitude and duration of transgene expression are highly tunable via adjustment of the amount of furimazine. We further demonstrated LuminON-mediated blood-glucose homeostasis in type 1 diabetic mice. We believe that the BRET-based LuminON system with the pulsatile dynamics of transgene expression provides a highly sensitive tool for precise manipulation in biological systems that has strong potential for application in diverse basic biological studies and gene- and cell-based precision therapies in the future.
Collapse
Affiliation(s)
- Ting Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Xianjun Chen
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yajie Qian
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Jiawei Shao
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Xie Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Shuning Liu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Linyong Zhu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Haifeng Ye
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China.
| | - Yi Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China.
- School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
24
|
Sureda-Vives M, Sarkisyan KS. Bioluminescence-Driven Optogenetics. Life (Basel) 2020; 10:E318. [PMID: 33260589 PMCID: PMC7760859 DOI: 10.3390/life10120318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 02/04/2023] Open
Abstract
Bioluminescence-based technologies are among the most commonly used methods to quantify and visualise physiology at the cellular and organismal levels. However, the potential of bioluminescence beyond reporter technologies remains largely unexplored. Here, we provide an overview of the emerging approaches employing bioluminescence as a biological light source that triggers physiological events and controls cell behaviour and discuss its possible future application in synthetic biology.
Collapse
Affiliation(s)
- Macià Sureda-Vives
- Synthetic Biology Group, MRC London Institute of Medical Sciences, London W12 0NN, UK;
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Karen S. Sarkisyan
- Synthetic Biology Group, MRC London Institute of Medical Sciences, London W12 0NN, UK;
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
25
|
Giuliani G, Merolla A, Paolino M, Reale A, Saletti M, Blancafort L, Cappelli A, Benfenati F, Cesca F. Stability Studies of New Caged bis-deoxy-coelenterazine Derivatives and Their Potential Use as Cellular pH Probes. Photochem Photobiol 2020; 97:343-352. [PMID: 33095933 DOI: 10.1111/php.13347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/16/2020] [Indexed: 11/28/2022]
Abstract
The synthesis of new bis-deoxy-coelenterazine (1) derivatives bearing ester protective groups (acetate, propionate and butyrate esters) was accomplished. Moreover, their hydrolytic stability at room temperature was evaluated in dimethylsulfoxide (DMSO) as solvent, using the nuclear magnetic resonance (NMR) spectra of the key products at different time intervals. The results showed an increasing hydrolysis rate according to longest aliphatic chain, with a half-life of 24 days of the more stable acetate derivative (4a). Furthermore, the analysis of the experimental data revealed the greater stability of the enol tautomer in this aprotic polar solvent. This result was confirmed by theoretical calculations using the density functional theory (DFT) approach, which gave us the opportunity to propose a detailed decomposition mechanism. Additionally, the derivatives obtained were tested by bioluminescence luciferase assays to evaluate their potential use as extracellular pH-sensitive reporter substrates of luciferase. The biological data support the idea that further structural modifications of these molecules may open promising perspectives in this field of research.
Collapse
Affiliation(s)
- Germano Giuliani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Assunta Merolla
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - Marco Paolino
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Annalisa Reale
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Mario Saletti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Lluís Blancafort
- Departament de Química, Facultat de Ciències, Institut de Química Computacional i Catàlisi (IQCC), Universitat de Girona, Girona, Spain
| | - Andrea Cappelli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.,IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
26
|
Pal A, Tian L. Imaging voltage and brain chemistry with genetically encoded sensors and modulators. Curr Opin Chem Biol 2020; 57:166-176. [PMID: 32823064 DOI: 10.1016/j.cbpa.2020.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 01/21/2023]
Abstract
Neurons and glia are functionally organized into circuits and higher-order structures that allow the precise information processing required for complex behaviors. To better understand the structure and function of the brain, we must understand synaptic connectivity, action potential generation and propagation, as well as well-orchestrated molecular signaling. Recently, dramatically improved sensors for voltage, intracellular calcium, and neurotransmitters/modulators, combined with advanced microscopy provide new opportunities for in vivo dissection of cellular and circuit activity in awake, behaving animals. This review focuses on the current trends in genetically encoded sensors for molecules and cellular events and their potential applicability to the study of nervous system in health and disease.
Collapse
Affiliation(s)
- Akash Pal
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
27
|
Prakash M, Medendorp WE, Hochgeschwender U. Defining parameters of specificity for bioluminescent optogenetic activation of neurons using in vitro multi electrode arrays (MEA). J Neurosci Res 2020; 98:437-447. [PMID: 30152529 PMCID: PMC6395573 DOI: 10.1002/jnr.24313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 12/20/2022]
Abstract
In Bioluminescent Optogenetics (BL-OG) a biological, rather than a physical, light source is used to activate light-sensing opsins, such as channelrhodopsins or pumps. This is commonly achieved by utilizing a luminopsin (LMO), a fusion protein of a light-emitting luciferase tethered to a light-sensing opsin. Light of the wavelength matching the activation peak of the opsin is emitted by the luciferase upon application of its small molecule luciferin, resulting in activation of the fused opsin and subsequent effects on membrane potential. Using optimized protocols for culturing, transforming, and testing primary neurons in multi electrode arrays, we systematically defined parameters under which changes in neuronal activity are specific to bioluminescent activation of opsins, rather than due to off-target effects of either the luciferin or its solvent on neurons directly, or on opsins directly. We further tested if there is a direct effect of bioluminescence on neurons. Critical for assuring specific BL-OG effects are testing the concentration and formulation of the luciferin against proper controls, including testing effects of vehicle on LMO expressing and of luciferin on nonLMO expressing targets.
Collapse
Affiliation(s)
- Mansi Prakash
- Neuroscience Program, Central Michigan University, Mt. Pleasant, MI, 48859, USA
- College of Medicine, Central Michigan University, Mt. Pleasant, MI, 48859, USA
| | | | - Ute Hochgeschwender
- Neuroscience Program, Central Michigan University, Mt. Pleasant, MI, 48859, USA
- College of Medicine, Central Michigan University, Mt. Pleasant, MI, 48859, USA
| |
Collapse
|
28
|
Parag-Sharma K, O’Banion CP, Henry EC, Musicant AM, Cleveland JL, Lawrence DS, Amelio AL. Engineered BRET-Based Biologic Light Sources Enable Spatiotemporal Control over Diverse Optogenetic Systems. ACS Synth Biol 2020; 9:1-9. [PMID: 31834783 PMCID: PMC7875091 DOI: 10.1021/acssynbio.9b00277] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Light-inducible optogenetic systems offer precise spatiotemporal control over a myriad of biologic processes. Unfortunately, current systems are inherently limited by their dependence on external light sources for their activation. Further, the utility of laser/LED-based illumination strategies are often constrained by the need for invasive surgical procedures to deliver such devices and local heat production, photobleaching and phototoxicity that compromises cell and tissue viability. To overcome these limitations, we developed a novel BRET-activated optogenetics (BEACON) system that employs biologic light to control optogenetic tools. BEACON is driven by self-illuminating bioluminescent-fluorescent proteins that generate "spectrally tuned" biologic light via bioluminescence resonance energy transfer (BRET). Notably, BEACON robustly activates a variety of commonly used optogenetic systems in a spatially restricted fashion, and at physiologically relevant time scales, to levels that are achieved by conventional laser/LED light sources.
Collapse
Affiliation(s)
- Kshitij Parag-Sharma
- Graduate Curriculum in Cell Biology and Physiology, Biological and Biomedical Sciences Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Colin P. O’Banion
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458, United States
| | - Erin C. Henry
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Division of Oral and Craniofacial Health Sciences, UNC Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Adele M. Musicant
- Graduate Curriculum in Genetics and Molecular Biology, Biological and Biomedical Sciences Graduate Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - John L. Cleveland
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, United States
| | - David S. Lawrence
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Molecular Therapeutics Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Antonio L. Amelio
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Cancer Cell Biology Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Biomedical Research Imaging Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
29
|
Zhang JY, Tung JK, Wang Z, Yu SP, Gross RE, Wei L, Berglund K. Improved trafficking and expression of luminopsins for more efficient optical and pharmacological control of neuronal activity. J Neurosci Res 2019; 98:481-490. [PMID: 31670406 DOI: 10.1002/jnr.24546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 09/25/2019] [Accepted: 10/11/2019] [Indexed: 01/08/2023]
Abstract
Luminopsins (LMOs) are chimeric proteins consisting of a luciferase fused to an opsin that provide control of neuronal activity, allowing for less cumbersome and less invasive optogenetic manipulation. It was previously shown that both an external light source and the luciferase substrate, coelenterazine (CTZ), could modulate activity of LMO-expressing neurons, although the magnitudes of the photoresponses remained subpar. In this study, we created an enhanced iteration of the excitatory luminopsin LMO3, termed eLMO3, that has improved membrane targeting due to the insertion of a Golgi trafficking signal sequence. In cortical neurons in culture, the expression of eLMO3 resulted in significant reductions in the formation of intracellular aggregates, as well as in a significant increase in total photocurrents. Furthermore, we corroborated the findings with injections of adeno-associated viral vectors into the deep layers of the somatosensory cortex (the barrel cortex) of male mice. We observed greatly reduced numbers of intracellular puncta in eLMO3-expressing cortical neurons compared to those expressing the original LMO3. Finally, we quantified CTZ-driven behavior, namely whisker-touching behavior, in male mice with LMO3 expression in the barrel cortex. After CTZ administration, mice with eLMO3 displayed significantly longer whisker responses than mice with LMO3. In summary, we have engineered the superior LMO by resolving membrane trafficking defects, and we demonstrated improved membrane targeting, greater photocurrents, and greater functional responses to stimulate with CTZ.
Collapse
Affiliation(s)
- James Y Zhang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jack K Tung
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Zuhui Wang
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ken Berglund
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
30
|
Gomez-Ramirez M, More AI, Friedman NG, Hochgeschwender U, Moore CI. The BioLuminescent-OptoGenetic in vivo response to coelenterazine is proportional, sensitive, and specific in neocortex. J Neurosci Res 2019; 98:471-480. [PMID: 31544973 DOI: 10.1002/jnr.24498] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/11/2019] [Accepted: 07/03/2019] [Indexed: 12/20/2022]
Abstract
BioLuminescent (BL) light production can modulate neural activity and behavior through co-expressed OptoGenetic (OG) elements, an approach termed "BL-OG." Yet, the relationship between BL-OG effects and bioluminescent photon emission has not been characterized in vivo. Further, the degree to which BL-OG effects strictly depend on optogenetic mechanisms driven by bioluminescent photons is unknown. Crucial to every neuromodulation method is whether the activator shows a dynamic concentration range driving robust, selective, and nontoxic effects. We systematically tested the effects of four key components of the BL-OG mechanism (luciferin, oxidized luciferin, luciferin vehicle, and bioluminescence), and compared these against effects induced by the Luminopsin-3 (LMO3) BL-OG molecule, a fusion of slow burn Gaussia luciferase (sbGLuc) and Volvox ChannelRhodopsin-1 (VChR1). We performed combined bioluminescence imaging and electrophysiological recordings while injecting specific doses of Coelenterazine (substrate for sbGluc), Coelenteramide (CTM, the oxidized product of CTZ), or CTZ vehicle. CTZ robustly drove activity in mice expressing LMO3, with photon production proportional to firing rate. In contrast, low and moderate doses of CTZ, CTM, or vehicle did not modulate activity in mice that did not express LMO3. We also failed to find bioluminescence effects on neural activity in mice expressing an optogenetically nonsensitive LMO3 variant. We observed weak responses to the highest dose of CTZ in control mice, but these effects were significantly smaller than those observed in the LMO3 group. These results show that in neocortex in vivo, there is a large CTZ range wherein BL-OG effects are specific to its active chemogenetic mechanism.
Collapse
Affiliation(s)
| | - Alexander I More
- Department of Neuroscience, Brown University, Providence, Rhode Island
| | - Nina G Friedman
- Department of Neuroscience, Brown University, Providence, Rhode Island
| | - Ute Hochgeschwender
- College of Medicine and Neuroscience Program, Central Michigan University, Mount Pleasant, Michigan
| | | |
Collapse
|
31
|
Optochemogenetic Stimulation of Transplanted iPS-NPCs Enhances Neuronal Repair and Functional Recovery after Ischemic Stroke. J Neurosci 2019; 39:6571-6594. [PMID: 31263065 DOI: 10.1523/jneurosci.2010-18.2019] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 02/23/2019] [Accepted: 06/11/2019] [Indexed: 12/21/2022] Open
Abstract
Cell transplantation therapy provides a regenerative strategy for neural repair. We tested the hypothesis that selective excitation of transplanted induced pluripotent stem cell-derived neural progenitor cells (iPS-NPCs) could recapitulate an activity-enriched microenvironment that confers regenerative benefits for the treatment of stroke. Mouse iPS-NPCs were transduced with a novel optochemogenetics fusion protein, luminopsin 3 (LMO3), which consisted of a bioluminescent luciferase, Gaussia luciferase, and an opsin, Volvox Channelrhodopsin 1. These LMO3-iPS-NPCs can be activated by either photostimulation using light or by the luciferase substrate coelenterazine (CTZ). In vitro stimulations of LMO3-iPS-NPCs increased expression of synapsin-1, postsynaptic density 95, brain derived neurotrophic factor (BDNF), and stromal cell-derived factor 1 and promoted neurite outgrowth. After transplantation into the ischemic cortex of mice, LMO3-iPS-NPCs differentiated into mature neurons. Synapse formation between implanted and host neurons was identified using immunogold electron microscopy and patch-clamp recordings. Stimulation of transplanted cells with daily intranasal administration of CTZ enhanced axonal myelination, synaptic transmission, improved thalamocortical connectivity, and functional recovery. Patch-clamp and multielectrode array recordings in brain slices showed that CTZ or light stimulation facilitated synaptic transmission and induced neuroplasticity mimicking the LTP of EPSPs. Stroke mice received the combined LMO3-iPS-NPC/CTZ treatment, but not cell or CTZ alone, showed enhanced neural network connections in the peri-infarct region, promoted optimal functional recoveries after stroke in male and female, young and aged mice. Thus, excitation of transplanted cells via the noninvasive optochemogenetics treatment provides a novel integrative cell therapy with comprehensive regenerative benefits after stroke.SIGNIFICANCE STATEMENT Neural network reconnection is critical for repairing damaged brain. Strategies that promote this repair are expected to improve functional outcomes. This study pioneers the generation and application of an optochemogenetics approach in stem cell transplantation therapy after stroke for optimal neural repair and functional recovery. Using induced pluripotent stem cell-derived neural progenitor cells (iPS-NPCs) expressing the novel optochemogenetic probe luminopsin (LMO3), and intranasally delivered luciferase substrate coelenterazine, we show enhanced regenerative properties of LMO3-iPS-NPCs in vitro and after transplantation into the ischemic brain of different genders and ages. The noninvasive repeated coelenterazine stimulation of transplanted cells is feasible for clinical applications. The synergetic effects of the combinatorial cell therapy may have significant impacts on regenerative approach for treatments of CNS injuries.
Collapse
|
32
|
Ward PJ, English AW. Optical Stimulation and Electrophysiological Analysis of Regenerating Peripheral Axons. Bio Protoc 2019; 9:e3281. [PMID: 31404384 PMCID: PMC6688771 DOI: 10.21769/bioprotoc.3281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/27/2019] [Accepted: 05/23/2019] [Indexed: 12/20/2022] Open
Abstract
Although axons in the peripheral nervous system can regenerate, functional recovery after nerve injuries is poor. Activity-based therapies, such as exercise and electrical stimulation, enhance the regeneration of cut peripheral axons. Despite their effectiveness, clinical application of these experimental techniques has been limited. At least part of the basis for this translational barrier has been a lack of information as to the precise mechanism of activity-based therapies on peripheral axon regeneration. To evaluate the requirements for neuron-type specific activation to promote regeneration using these therapies, in the current protocol, we employed optogenetics. Utilizing the advantages of transgenic mouse lines we targeted opsin expression to different neuron types. Using fiber optics we activated those neurons with high temporal specificity as a model of activity-based intervention after nerve injury and to measure functional recovery achieved after such a treatment.
Collapse
Affiliation(s)
- Patricia J. Ward
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Arthur W. English
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
33
|
Bhuckory S, Kays JC, Dennis AM. In Vivo Biosensing Using Resonance Energy Transfer. BIOSENSORS 2019; 9:E76. [PMID: 31163706 PMCID: PMC6628364 DOI: 10.3390/bios9020076] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/20/2019] [Accepted: 05/27/2019] [Indexed: 01/05/2023]
Abstract
Solution-phase and intracellular biosensing has substantially enhanced our understanding of molecular processes foundational to biology and pathology. Optical methods are favored because of the low cost of probes and instrumentation. While chromatographic methods are helpful, fluorescent biosensing further increases sensitivity and can be more effective in complex media. Resonance energy transfer (RET)-based sensors have been developed to use fluorescence, bioluminescence, or chemiluminescence (FRET, BRET, or CRET, respectively) as an energy donor, yielding changes in emission spectra, lifetime, or intensity in response to a molecular or environmental change. These methods hold great promise for expanding our understanding of molecular processes not just in solution and in vitro studies, but also in vivo, generating information about complex activities in a natural, organismal setting. In this review, we focus on dyes, fluorescent proteins, and nanoparticles used as energy transfer-based optical transducers in vivo in mice; there are examples of optical sensing using FRET, BRET, and in this mammalian model system. After a description of the energy transfer mechanisms and their contribution to in vivo imaging, we give a short perspective of RET-based in vivo sensors and the importance of imaging in the infrared for reduced tissue autofluorescence and improved sensitivity.
Collapse
Affiliation(s)
- Shashi Bhuckory
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| | - Joshua C Kays
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| | - Allison M Dennis
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
- Division of Materials Science and Engineering, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
34
|
Berglund K, Fernandez AM, Gutekunst CAN, Hochgeschwender U, Gross RE. Step-function luminopsins for bimodal prolonged neuromodulation. J Neurosci Res 2019; 98:422-436. [PMID: 30957296 DOI: 10.1002/jnr.24424] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 02/26/2019] [Accepted: 03/14/2019] [Indexed: 11/09/2022]
Abstract
Although molecular tools for controlling neuronal activity by light have vastly expanded, there are still unmet needs which require development and refinement. For example, light delivery into the brain is still a major practical challenge that hinders potential translation of optogenetics in human patients. In addition, it would be advantageous to manipulate neuronal activity acutely and precisely as well as chronically and non-invasively, using the same genetic construct in animal models. We have previously addressed these challenges by employing bioluminescence and have created a new line of opto-chemogenetic probes termed luminopsins by fusing light-sensing opsins with light-emitting luciferases. In this report, we incorporated Chlamydomonas channelrhodopsin 2 with step-function mutations as the opsin moiety in the new luminopsin fusion protein termed step-function luminopsin (SFLMO). Bioluminescence-induced photocurrent lasted longer than the bioluminescence signal due to very slow deactivation of the mutated channel. In addition, bioluminescence was able to activate most of the channels on the cell surface due to the extremely high light sensitivity of the channel. This efficient channel activation was partly mediated by radiationless bioluminescence resonance energy transfer due to the proximity of luciferase and opsin. To test the utility of SFLMOs in vivo, we transduced the substantia nigra unilaterally via a viral vector in male rats. Injection of the luciferase substrate as well as conventional photostimulation via fiber optics elicited circling behaviors. Thus, SFLMOs expand the current approaches for manipulation of neuronal activity in the brain and add more versatility and practicality to optogenetics in freely behaving animals.
Collapse
Affiliation(s)
- Ken Berglund
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia
| | | | | | - Ute Hochgeschwender
- Neuroscience Program and College of Medicine, Central Michigan University, Mt Pleasant, Michigan
| | - Robert E Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
35
|
Song D, Yang Q, Lang Y, Wen Z, Xie Z, Zheng D, Yan T, Deng Y, Nakanishi H, Quan Z, Qing H. Manipulation of hippocampal CA3 firing via luminopsins modulates spatial and episodic short-term memory, especially working memory, but not long-term memory. Neurobiol Learn Mem 2018; 155:435-445. [PMID: 30243851 DOI: 10.1016/j.nlm.2018.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 09/09/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022]
Abstract
The CA3 subregion of the hippocampus is important for rapid encoding, storage and retrieval of associative memories. Lesions and pharmacological inhibitions of hippocampal CA3 suggest that it is essential for different memories. However, how CA3 functions in spatial and episodic memory in different time scales (i.e. short-term versus long term) without permanent lesions has not been systematically investigated yet. Taking advantage of the chemogenetic access to opsins, this study used luminopsins, fusion proteins of luciferase and optogenetic elements, to manipulate neuronal activity in CA3 during memory tasks over a range of spatial and temporal scales. In this study, we found that excitation or inhibition of CA3 neurons had no significant effects on long-term spatial or episodic memory, but had remarkable effects on spatial working memory, spatial short-term memory as well as episodic short-term memory. In addition, stimulation of CA3 neurons altered the expression levels of NR2A. Intracerebral injection of receptor inhibitors further confirmed that NR2A is crucial to spatial working memory, which is consistent with the luminopsins experiments. These findings indicate that CA3 maintains a specific role on spatial and episodic memory over a short period of time.
Collapse
Affiliation(s)
- Da Song
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Qinghu Yang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; College of Life Sciences & Research Center for Resource Peptide Drugs, Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources, Yanan University, Yanan 716000, China
| | - Yiran Lang
- Beijing Advanced Innovation Center for Intelligent Robots and System, Beijing Institute of Technology, Beijing 100081, China
| | - Zhaosen Wen
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhen Xie
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Da Zheng
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Tianyi Yan
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yujun Deng
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hiroshi Nakanishi
- Laboratory of Oral Aging Science, Faculty of Dental Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Zhenzhen Quan
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Hong Qing
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
36
|
Christenson Wick Z, Krook-Magnuson E. Specificity, Versatility, and Continual Development: The Power of Optogenetics for Epilepsy Research. Front Cell Neurosci 2018; 12:151. [PMID: 29962936 PMCID: PMC6010559 DOI: 10.3389/fncel.2018.00151] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/15/2018] [Indexed: 12/19/2022] Open
Abstract
Optogenetics is a powerful and rapidly expanding set of techniques that use genetically encoded light sensitive proteins such as opsins. Through the selective expression of these exogenous light-sensitive proteins, researchers gain the ability to modulate neuronal activity, intracellular signaling pathways, or gene expression with spatial, directional, temporal, and cell-type specificity. Optogenetics provides a versatile toolbox and has significantly advanced a variety of neuroscience fields. In this review, using recent epilepsy research as a focal point, we highlight how the specificity, versatility, and continual development of new optogenetic related tools advances our understanding of neuronal circuits and neurological disorders. We additionally provide a brief overview of some currently available optogenetic tools including for the selective expression of opsins.
Collapse
Affiliation(s)
- Zoé Christenson Wick
- Graduate Program in Neuroscience and Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | | |
Collapse
|
37
|
Danzer SC. Finding Your Inner Light: Using Bioluminescence to Control Seizures. Epilepsy Curr 2018; 18:182-183. [PMID: 29950944 PMCID: PMC6017686 DOI: 10.5698/1535-7597.18.3.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
|
38
|
Zenchak JR, Palmateer B, Dorka N, Brown TM, Wagner LM, Medendorp WE, Petersen ED, Prakash M, Hochgeschwender U. Bioluminescence-driven optogenetic activation of transplanted neural precursor cells improves motor deficits in a Parkinson's disease mouse model. J Neurosci Res 2018; 98:458-468. [PMID: 29577367 DOI: 10.1002/jnr.24237] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 02/21/2018] [Accepted: 03/08/2018] [Indexed: 12/21/2022]
Abstract
The need to develop efficient therapies for neurodegenerative diseases is urgent, especially given the increasing percentages of the population living longer, with increasing chances of being afflicted with conditions like Parkinson's disease (PD). A promising curative approach toward PD and other neurodegenerative diseases is the transplantation of stem cells to halt and potentially reverse neuronal degeneration. However, stem cell therapy does not consistently lead to improvement for patients. Using remote stimulation to optogenetically activate transplanted cells, we attempted to improve behavioral outcomes of stem cell transplantation. We generated a neuronal precursor cell line expressing luminopsin 3 (LMO3), a luciferase-channelrhodopsin fusion protein, which responds to the luciferase substrate coelenterazine (CTZ) with emission of blue light that in turn activates the opsin. Neuronal precursor cells were injected bilaterally into the striatum of homozygous aphakia mice, which carry a spontaneous mutation leading to lack of dopaminergic neurons and symptoms of PD. Following transplantation, the cells were stimulated over a period of 10 days by intraventricular injections of CTZ. Mice receiving CTZ demonstrated significantly improved motor skills in a rotarod test compared to mice receiving vehicle. Thus, bioluminescent optogenetic stimulation of transplanted neuronal precursor cells shows promising effects in improving locomotor behavior in the aphakia PD mouse model and encourages further studies to elucidate the mechanisms and long-term outcomes of these beneficial effects.
Collapse
Affiliation(s)
- Jessica R Zenchak
- Neuroscience Program, Central Michigan University, Mt. Pleasant, Michigan.,College of Medicine, Central Michigan University, Mt. Pleasant, Michigan
| | - Brandon Palmateer
- Neuroscience Program, Central Michigan University, Mt. Pleasant, Michigan
| | - Nicolai Dorka
- Neuroscience Program, Central Michigan University, Mt. Pleasant, Michigan
| | - Tariq M Brown
- Neuroscience Program, Central Michigan University, Mt. Pleasant, Michigan
| | - Lina-Marie Wagner
- Neuroscience Program, Central Michigan University, Mt. Pleasant, Michigan
| | | | - Eric D Petersen
- Neuroscience Program, Central Michigan University, Mt. Pleasant, Michigan
| | - Mansi Prakash
- Neuroscience Program, Central Michigan University, Mt. Pleasant, Michigan.,College of Medicine, Central Michigan University, Mt. Pleasant, Michigan
| | - Ute Hochgeschwender
- Neuroscience Program, Central Michigan University, Mt. Pleasant, Michigan.,College of Medicine, Central Michigan University, Mt. Pleasant, Michigan
| |
Collapse
|
39
|
Tung JK, Shiu FH, Ding K, Gross RE. Chemically activated luminopsins allow optogenetic inhibition of distributed nodes in an epileptic network for non-invasive and multi-site suppression of seizure activity. Neurobiol Dis 2018; 109:1-10. [PMID: 28923596 PMCID: PMC5696076 DOI: 10.1016/j.nbd.2017.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 09/05/2017] [Accepted: 09/14/2017] [Indexed: 01/06/2023] Open
Abstract
Although optogenetic techniques have proven to be invaluable for manipulating and understanding complex neural dynamics over the past decade, they still face practical and translational challenges in targeting networks involving multiple, large, or difficult-to-illuminate areas of the brain. We utilized inhibitory luminopsins to simultaneously inhibit the dentate gyrus and anterior nucleus of the thalamus of the rat brain in a hardware-independent and cell-type specific manner. This approach was more effective at suppressing behavioral seizures than inhibition of the individual structures in a rat model of epilepsy. In addition to elucidating mechanisms of seizure suppression never directly demonstrated before, this work also illustrates how precise multi-focal control of pathological circuits can be advantageous for the treatment and understanding of disorders involving broad neural circuits such as epilepsy.
Collapse
Affiliation(s)
- Jack K Tung
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States; Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Fu Hung Shiu
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Kevin Ding
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Robert E Gross
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States; Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
40
|
Park SY, Song SH, Palmateer B, Pal A, Petersen ED, Shall GP, Welchko RM, Ibata K, Miyawaki A, Augustine GJ, Hochgeschwender U. Novel luciferase-opsin combinations for improved luminopsins. J Neurosci Res 2017; 98:410-421. [PMID: 28862809 DOI: 10.1002/jnr.24152] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 11/06/2022]
Abstract
Previous work has demonstrated that fusion of a luciferase to an opsin, to create a luminescent opsin or luminopsin, provides a genetically encoded means of manipulating neuronal activity via both chemogenetic and optogenetic approaches. Here we have expanded and refined the versatility of luminopsin tools by fusing an alternative luciferase variant with high light emission, Gaussia luciferase mutant GLucM23, to depolarizing and hyperpolarizing channelrhodopsins with increased light sensitivity. The combination of GLucM23 with Volvox channelrhodopsin-1 produced LMO4, while combining GLucM23 with the anion channelrhodopsin iChloC yielded iLMO4. We found efficient activation of these channelrhodopsins in the presence of the luciferase substrate, as indicated by responses measured in both single neurons and in neuronal populations of mice and rats, as well as by changes in male rat behavior during amphetamine-induced rotations. We conclude that these new luminopsins will be useful for bimodal opto- and chemogenetic analyses of brain function.
Collapse
Affiliation(s)
- Sung Young Park
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Sang-Ho Song
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.,Institute of Molecular and Cell Biology, Singapore
| | - Brandon Palmateer
- Neuroscience Program, Central Michigan University, Mt. Pleasant, Michigan.,College of Medicine, Central Michigan University, Mt. Pleasant, Michigan
| | - Akash Pal
- Neuroscience Program, Central Michigan University, Mt. Pleasant, Michigan.,College of Medicine, Central Michigan University, Mt. Pleasant, Michigan
| | - Eric D Petersen
- Neuroscience Program, Central Michigan University, Mt. Pleasant, Michigan.,College of Medicine, Central Michigan University, Mt. Pleasant, Michigan
| | - Gabrielle P Shall
- Neuroscience Program, Central Michigan University, Mt. Pleasant, Michigan
| | - Ryan M Welchko
- Neuroscience Program, Central Michigan University, Mt. Pleasant, Michigan
| | - Keiji Ibata
- Laboratory for Cell Function Dynamics, Brain Science Institute, Riken, Saitama, Japan.,School of Medicine, Keio University, Tokyo, Japan
| | - Atsushi Miyawaki
- Laboratory for Cell Function Dynamics, Brain Science Institute, Riken, Saitama, Japan
| | - George J Augustine
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, Republic of Korea.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.,Institute of Molecular and Cell Biology, Singapore
| | - Ute Hochgeschwender
- Neuroscience Program, Central Michigan University, Mt. Pleasant, Michigan.,College of Medicine, Central Michigan University, Mt. Pleasant, Michigan
| |
Collapse
|
41
|
Jaiswal PB, Tung JK, Gross RE, English AW. Motoneuron activity is required for enhancements in functional recovery after peripheral nerve injury in exercised female mice. J Neurosci Res 2017; 98:448-457. [PMID: 28771790 DOI: 10.1002/jnr.24109] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/05/2017] [Accepted: 06/13/2017] [Indexed: 01/11/2023]
Abstract
Inhibitory luminopsins (iLMO2) integrate opto- and chemo-genetic approaches and allow for cell-type specific inhibition of neuronal activity. When exposed to a Renilla luciferase substrate, Coelenterazine (CTZ), iLMO2 generates bioluminescence-mediated activation of its amino-terminal halorhodopsin, resulting in neuronal inhibition. Moderate daily exercise in the form of interval treadmill-training (IT) applied following a peripheral nerve injury results in enhanced motor axon regeneration and muscle fiber reinnervation in female mice. We hypothesized that iLMO2 mediated inhibition of motoneuron activity during IT would block this enhancement. Unilateral intramuscular injections of Cre-dependent AAV2/9-EF1a-DIO-iLMO2 (∼8.5 x 1013 vg/ml) were made into the gastrocnemius and tibialis anterior muscles of young female ChAT-IRES-Cre mice, thereby limiting iLMO2 expression specifically to their motoneurons. Four to six weeks were allowed for retrograde viral transduction after which a unilateral sciatic nerve transection (Tx) and repair was performed. Animals were randomized into four groups: IT only, IT + CTZ, CTZ only, and untreated (UT). Three weeks post Tx-repair, the maximal amplitude direct muscle responses (M-max) in both muscles in the IT only group were significantly greater than in UT mice, consistent with the enhancing effects of this exercise regimen. Inhibiting motoneuron activity during exercise by a single injection of CTZ, administered 30 minutes prior to exercise, completely blocked the enhancing effect of exercise. Similar treatments with CTZ in mice without iLMO2 had no effect on regeneration. Neuronal activity is required for successful enhancement of motor axon regeneration by exercise.
Collapse
Affiliation(s)
- Poonam B Jaiswal
- Department of Cell Biology and Emory University, Atlanta, GA, USA
| | - Jack K Tung
- Department of Neurosurgery, Emory University, Atlanta, GA, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University, Atlanta, GA, USA
| | - Arthur W English
- Department of Cell Biology and Emory University, Atlanta, GA, USA
| |
Collapse
|
42
|
Shirai F, Hayashi-Takagi A. Optogenetics: Applications in psychiatric research. Psychiatry Clin Neurosci 2017; 71:363-372. [PMID: 28233379 DOI: 10.1111/pcn.12516] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 02/20/2017] [Accepted: 02/20/2017] [Indexed: 01/01/2023]
Abstract
Recently, optogenetic techniques have emerged as a method to optically manipulate molecular and cellular events in target cells both in vitro and in vivo. Optogenetics results from the fruitful combination of optics and genetic engineering, maximizing the advantages of each discipline. These advantages are optical control through the manipulation of wavelength and light intensity on the millisecond timescale, and specific gene expression and gene product trafficking with subcellular precision. This kind of fine-tuning cannot be achieved using traditional methods. Therefore, optogenetic techniques have brought a revolution to neuroscience. In this review, we provide a concise summary of the history and recent advances of optogenetics, focusing in particular on applications for psychiatric research.
Collapse
Affiliation(s)
- Fukutoshi Shirai
- Laboratory of Medical Neuroscience, Institute for Molecular and Cellular Regulation, Gunma University, Maebachi, Japan
| | - Akiko Hayashi-Takagi
- Laboratory of Medical Neuroscience, Institute for Molecular and Cellular Regulation, Gunma University, Maebachi, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
43
|
Eleftheriou C, Cesca F, Maragliano L, Benfenati F, Maya-Vetencourt JF. Optogenetic Modulation of Intracellular Signalling and Transcription: Focus on Neuronal Plasticity. J Exp Neurosci 2017; 11:1179069517703354. [PMID: 28579827 PMCID: PMC5415353 DOI: 10.1177/1179069517703354] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/02/2017] [Indexed: 12/17/2022] Open
Abstract
Several fields in neuroscience have been revolutionized by the advent of optogenetics, a technique that offers the possibility to modulate neuronal physiology in response to light stimulation. This innovative and far-reaching tool provided unprecedented spatial and temporal resolution to explore the activity of neural circuits underlying cognition and behaviour. With an exponential growth in the discovery and synthesis of new photosensitive actuators capable of modulating neuronal networks function, other fields in biology are experiencing a similar re-evolution. Here, we review the various optogenetic toolboxes developed to influence cellular physiology as well as the diverse ways in which these can be engineered to precisely modulate intracellular signalling and transcription. We also explore the processes required to successfully express and stimulate these photo-actuators in vivo before discussing how such tools can enlighten our understanding of neuronal plasticity at the systems level.
Collapse
Affiliation(s)
- Cyril Eleftheriou
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - Luca Maragliano
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.,Department of Experimental Medicine, University of Genova, Genova, Italy
| | | |
Collapse
|
44
|
Endo M, Ozawa T. Strategies for development of optogenetic systems and their applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2017. [DOI: 10.1016/j.jphotochemrev.2016.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
45
|
Zare-Shahabadi A, Ataei A, Rezaei N. Proteins brighten the brain. Life Sci 2016; 167:1-5. [DOI: 10.1016/j.lfs.2016.10.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 10/09/2016] [Accepted: 10/21/2016] [Indexed: 01/04/2023]
|
46
|
Tung JK, Berglund K, Gross RE. Optogenetic Approaches for Controlling Seizure Activity. Brain Stimul 2016; 9:801-810. [PMID: 27496002 PMCID: PMC5143193 DOI: 10.1016/j.brs.2016.06.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 06/21/2016] [Accepted: 06/28/2016] [Indexed: 01/01/2023] Open
Abstract
Optogenetics, a technique that utilizes light-sensitive ion channels or pumps to activate or inhibit neurons, has allowed scientists unprecedented precision and control for manipulating neuronal activity. With the clinical need to develop more precise and effective therapies for patients with drug-resistant epilepsy, these tools have recently been explored as a novel treatment for halting seizure activity in various animal models. In this review, we provide a detailed and current summary of these optogenetic approaches and provide a perspective on their future clinical application as a potential neuromodulatory therapy.
Collapse
Affiliation(s)
- Jack K Tung
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA; Department of Neurosurgery, Emory University, Atlanta, GA
| | - Ken Berglund
- Department of Neurosurgery, Emory University, Atlanta, GA
| | - Robert E Gross
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA; Department of Neurosurgery, Emory University, Atlanta, GA.
| |
Collapse
|
47
|
Montgomery KL, Iyer SM, Christensen AJ, Deisseroth K, Delp SL. Beyond the brain: Optogenetic control in the spinal cord and peripheral nervous system. Sci Transl Med 2016; 8:337rv5. [DOI: 10.1126/scitranslmed.aad7577] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 04/18/2016] [Indexed: 12/12/2022]
|
48
|
Tung JK, Berglund K, Gutekunst CA, Hochgeschwender U, Gross RE. Bioluminescence imaging in live cells and animals. NEUROPHOTONICS 2016; 3:025001. [PMID: 27226972 PMCID: PMC4874058 DOI: 10.1117/1.nph.3.2.025001] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/23/2016] [Indexed: 05/13/2023]
Abstract
The use of bioluminescent reporters in neuroscience research continues to grow at a rapid pace as their applications and unique advantages over conventional fluorescent reporters become more appreciated. Here, we describe practical methods and principles for detecting and imaging bioluminescence from live cells and animals. We systematically tested various components of our conventional fluorescence microscope to optimize it for long-term bioluminescence imaging. High-resolution bioluminescence images from live neurons were obtained with our microscope setup, which could be continuously captured for several hours with no signs of phototoxicity. Bioluminescence from the mouse brain was also imaged noninvasively through the intact skull with a conventional luminescence imager. These methods demonstrate how bioluminescence can be routinely detected and measured from live cells and animals in a cost-effective way with common reagents and equipment.
Collapse
Affiliation(s)
- Jack K. Tung
- Georgia Institute of Technology, Coulter Department of Biomedical Engineering, 313 Ferst Drive, Room 2127, Atlanta, Georgia 30332, United States
- Emory University, Department of Neurosurgery, 101 Woodruff Circle, WMRB Rm 6337, Atlanta, Georgia 30322, United States
| | - Ken Berglund
- Emory University, Department of Neurosurgery, 101 Woodruff Circle, WMRB Rm 6337, Atlanta, Georgia 30322, United States
| | - Claire-Anne Gutekunst
- Emory University, Department of Neurosurgery, 101 Woodruff Circle, WMRB Rm 6337, Atlanta, Georgia 30322, United States
| | - Ute Hochgeschwender
- Central Michigan University, College of Medicine and Neuroscience Program, Department of Neuroscience, 1280 S. East Campus Street, Mt. Pleasant, Michigan 48859, United States
| | - Robert E. Gross
- Georgia Institute of Technology, Coulter Department of Biomedical Engineering, 313 Ferst Drive, Room 2127, Atlanta, Georgia 30332, United States
- Emory University, Department of Neurosurgery, 101 Woodruff Circle, WMRB Rm 6337, Atlanta, Georgia 30322, United States
- Address all correspondence to: Robert E. Gross, E-mail:
| |
Collapse
|
49
|
Luminopsins integrate opto- and chemogenetics by using physical and biological light sources for opsin activation. Proc Natl Acad Sci U S A 2016; 113:E358-67. [PMID: 26733686 DOI: 10.1073/pnas.1510899113] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Luminopsins are fusion proteins of luciferase and opsin that allow interrogation of neuronal circuits at different temporal and spatial resolutions by choosing either extrinsic physical or intrinsic biological light for its activation. Building on previous development of fusions of wild-type Gaussia luciferase with channelrhodopsin, here we expanded the utility of luminopsins by fusing bright Gaussia luciferase variants with either channelrhodopsin to excite neurons (luminescent opsin, LMO) or a proton pump to inhibit neurons (inhibitory LMO, iLMO). These improved LMOs could reliably activate or silence neurons in vitro and in vivo. Expression of the improved LMO in hippocampal circuits not only enabled mapping of synaptic activation of CA1 neurons with fine spatiotemporal resolution but also could drive rhythmic circuit excitation over a large spatiotemporal scale. Furthermore, virus-mediated expression of either LMO or iLMO in the substantia nigra in vivo produced not only the expected bidirectional control of single unit activity but also opposing effects on circling behavior in response to systemic injection of a luciferase substrate. Thus, although preserving the ability to be activated by external light sources, LMOs expand the use of optogenetics by making the same opsins accessible to noninvasive, chemogenetic control, thereby allowing the same probe to manipulate neuronal activity over a range of spatial and temporal scales.
Collapse
|