1
|
Cardoso RV, Pereira PR, Freitas CS, De Freitas Silva AV, Midlej V, Conte-Júnior CA, Paschoalin VMF. Nano-Encapsulated Taro Lectin Can Cross an in vitro Blood-Brain Barrier, Induce Apoptosis and Autophagy and Inhibit the Migration of Human U-87 MG Glioblastoma Cells. Int J Nanomedicine 2025; 20:5573-5591. [PMID: 40321803 PMCID: PMC12049682 DOI: 10.2147/ijn.s511506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/12/2025] [Indexed: 05/08/2025] Open
Abstract
Background Tarin, purified from taro (Colocasia esculenta), promotes anticancer effect against glioblastoma cells, a heterogeneous and aggressive primary central nervous system tumor and one of the most challenging tumors for oncotherapy. If able to overcome the blood-brain barrier (BBB), tarin may comprise a natural defense against glioblastomas in a context of the development of novel drugs to control these malignant cell proliferations. Methods The anticancer effects of nano-encapsulated tarin were tested against U-87 MG cells and the molecular mechanisms involved in cell proliferation control were assessed by flow cytometry and transmission electron microscopy (TEM) analyses. The scratch assay was performed to investigate cell migration capacity, while nano-encapsulated tarin transport across the BBB was tested on the hCMEC/D3 endothelial cell line. Results Nano-encapsulated tarin induced autophagy in U-87 MG cells, characterized by the presence of autophagosomes as revealed by TEM and corroborating the flow cytometry analysis employing acridine orange. Additional ultrastructural changes, such as mitochondrial swelling, were also observed. The presence of apoptotic cells and caspase 3/7 activation indicate that nano-encapsulated tarin may also induce cell death through apoptosis. Glioblastoma cell proliferation was arrested in the G2/M cell cycle phase, and cell migration was delayed. Reduced cell proliferation and glioblastoma cell migration inhibition were significant, as tarin was efficiently transported across the BBB during in vitro assays. Conclusion Nano-encapsulated tarin may be effectively employed to inhibit glioblastoma cell proliferation and migration, as this novel formulation can overcome the BBB and induces carcinoma cell apoptosis and autophagy. Furthermore, nano-encapsulated tarin may comprise a novel chemotherapeutic agent against different tumoral lines, as it is able to control glioblastoma tumor proliferation by the same molecular mechanisms previously reported for breast adenocarcinomas. Additional studies should be carried out to clarify if nano-encapsulated tarin has a general effect on distinct carcinoma lines.
Collapse
Affiliation(s)
- Raiane Vieira Cardoso
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Cyntia Silva Freitas
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | |
Collapse
|
2
|
Chen W, Feng H, Mo Y, Pan Z, Ji S, Liang H, Shen XC, Jiang BP. Hyaluronic acid-functionalized ruthenium photothermal nanoenzyme for enhancing osteosarcoma chemotherapy: Cascade targeting and bidirectional modulation of drug resistance. Carbohydr Polym 2025; 349:122945. [PMID: 39643406 DOI: 10.1016/j.carbpol.2024.122945] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/24/2024] [Accepted: 11/03/2024] [Indexed: 12/09/2024]
Abstract
Insufficient drug delivery efficiency in vivo and robust drug resistance are two major factors to induce suboptimal efficacy in chemotherapy of osteosarcoma (OS). To address these challenges, we developed polysaccharide hyaluronic acid (HA)-functionalized ruthenium nanoaggregates (Ru NAs) to enhance the chemotherapy of doxorubicin (DOX) for OS. These NAs, comprising Ru nanoparticles (NPs) and alendronate-modified HA (HA-ALN), effectively load DOX, resulting in DOX@Ru-HA-ALN NAs. The combination of HA and ALN in NAs ensures outstanding cascade targeting towards tumor-invaded bone tissues and CD44-overexpressing tumor cells, maximizing therapeutic efficacy while minimizing off-target effects. Concurrently, the Ru NPs in NAs function as "smart" photoenzymatic agent to not only in situ relieve hypoxia of OS via the catalysis of overexpressed H2O2 to produce O2, but also generate mild photothermal effect under 808-nm laser irradiation. They can bidirectionally overcome drug resistance of DOX via downregulation of resistance-related factors including multi-drug resistant associate protein, P-glycoprotein, heat shock factor 1, etc. The integration of cascade targeting with bidirectional modulation of drug resistance positions Ru-HA-ALN NAs to substantially enhance DOX chemotherapy for OS. Therefore, the present work highlights the potential of polysaccharide-functionalized nanomaterials in advancing tumor chemotherapy by addressing challenges of both delivery efficiency and drug resistance.
Collapse
Affiliation(s)
- Weifeng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Hao Feng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Yinyin Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Zhihui Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Shichen Ji
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China.
| | - Bang-Ping Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China.
| |
Collapse
|
3
|
Miao L, Zhu Y, Chang H, Zhang X. Nanotheranostics in Breast Cancer Bone Metastasis: Advanced Research Progress and Future Perspectives. Pharmaceutics 2024; 16:1491. [PMID: 39771471 PMCID: PMC11676679 DOI: 10.3390/pharmaceutics16121491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/27/2024] [Accepted: 11/14/2024] [Indexed: 01/11/2025] Open
Abstract
Breast cancer is the leading cause of cancer-related morbidity and mortality among women worldwide, with bone being the most common site of all metastatic breast cancer. Bone metastases are often associated with pain and skeletal-related events (SREs), indicating poor prognosis and poor quality of life. Most current therapies for breast cancer bone metastasis primarily serve palliative purposes, focusing on pain management, mitigating the risk of bone-related complications, and inhibiting tumor progression. The emergence of nanodelivery systems offers novel insights and potential solutions for the diagnosis and treatment of breast cancer-related bone metastasis. This article reviews the recent advancements and innovative applications of nanodrug delivery systems in the context of breast cancer bone metastasis and explores future directions in nanotheranostics.
Collapse
Affiliation(s)
- Lin Miao
- Department of Breast Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang 110042, China; (L.M.); (Y.Z.)
- Graduate School, China Medical University, Shenyang 110122, China
| | - Yidan Zhu
- Department of Breast Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang 110042, China; (L.M.); (Y.Z.)
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Hong Chang
- Department of Breast Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang 110042, China; (L.M.); (Y.Z.)
| | - Xinfeng Zhang
- Department of Breast Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang 110042, China; (L.M.); (Y.Z.)
- Graduate School, China Medical University, Shenyang 110122, China
| |
Collapse
|
4
|
Sayed Tabatabaei M, Sayed Tabatabaei FA, Moghimi HR. Drug self-delivery systems: A comprehensive review on small molecule nanodrugs. BIOIMPACTS : BI 2024; 15:30161. [PMID: 40161942 PMCID: PMC11954755 DOI: 10.34172/bi.30161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 04/02/2025]
Abstract
Drug self-delivery systems are nanostructures composed of a drug as the main structural unit, having the ability of intracellular trafficking with no additional carrier. In these systems, the drug itself undertakes the functional and structural roles; thereby, the ancillary role of excipients and carrier-related limitations are circumvented and therapeutic effect is achieved at a much lower dose. Such advantages -which are mainly but not exclusively beneficial in cancer treatment- have recently led to an upsurge of research on these systems. Subsequently, various terminologies were utilized to describe them, referring to the same concept with different words. However, not all the systems developed based on the self-delivery approach are introduced using one of these keywords. Using a scoping strategy, this review aims to encompass the systems that have been developed as yet -inspired by the concept of self-delivery- and classify them in a coherent taxonomy. Two main groups are introduced based on the type of building blocks: small molecule-based nanomedicines and self-assembling hybrid prodrugs. Due to the diversity, covering the whole gamut of topics is beyond the scope of a single article, and, inevitably, the latter is just briefly introduced here, whereas the features of the former group are meticulously presented. Depending on whether the drug is merely a carrier for itself or carries a second drug as cargo, two classes of small molecule-based nanomedicines are defined (i.e., pure nanodrugs and carrier-mimicking systems, respectively), each having sub-branches. After introducing each branch and giving some examples, possible strategies for designing each particular system are visually displayed. The resultant mind map can create a macro view of the taken path and its prospects, give a profound insight into opportunities, spark new ideas, and facilitate overcoming obstacles. Taken together, one can foresee a brilliant future for self-delivery systems as a pioneering candidate for the next generation of drug delivery systems.
Collapse
Affiliation(s)
- Mahsa Sayed Tabatabaei
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hamid Reza Moghimi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Basar E, Mead H, Shum B, Rauter I, Ay C, Skaletz-Rorowski A, Brockmeyer NH. Biological Barriers for Drug Delivery and Development of Innovative Therapeutic Approaches in HIV, Pancreatic Cancer, and Hemophilia A/B. Pharmaceutics 2024; 16:1207. [PMID: 39339243 PMCID: PMC11435036 DOI: 10.3390/pharmaceutics16091207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Biological barriers remain a major obstacle for the development of innovative therapeutics. Depending on a disease's pathophysiology, the involved tissues, cell populations, and cellular components, drugs often have to overcome several biological barriers to reach their target cells and become effective in a specific cellular compartment. Human biological barriers are incredibly diverse and include multiple layers of protection and obstruction. Importantly, biological barriers are not only found at the organ/tissue level, but also include cellular structures such as the outer plasma membrane, the endolysosomal machinery, and the nuclear envelope. Nowadays, clinicians have access to a broad arsenal of therapeutics ranging from chemically synthesized small molecules, biologicals including recombinant proteins (such as monoclonal antibodies and hormones), nucleic-acid-based therapeutics, and antibody-drug conjugates (ADCs), to modern viral-vector-mediated gene therapy. In the past decade, the therapeutic landscape has been changing rapidly, giving rise to a multitude of innovative therapy approaches. In 2018, the FDA approval of patisiran paved the way for small interfering RNAs (siRNAs) to become a novel class of nucleic-acid-based therapeutics, which-upon effective drug delivery to their target cells-allow to elegantly regulate the post-transcriptional gene expression. The recent approvals of valoctocogene roxaparvovec and etranacogene dezaparvovec for the treatment of hemophilia A and B, respectively, mark the breakthrough of viral-vector-based gene therapy as a new tool to cure disease. A multitude of highly innovative medicines and drug delivery methods including mRNA-based cancer vaccines and exosome-targeted therapy is on the verge of entering the market and changing the treatment landscape for a broad range of conditions. In this review, we provide insights into three different disease entities, which are clinically, scientifically, and socioeconomically impactful and have given rise to many technological advancements: acquired immunodeficiency syndrome (AIDS) as a predominant infectious disease, pancreatic carcinoma as one of the most lethal solid cancers, and hemophilia A/B as a hereditary genetic disorder. Our primary objective is to highlight the overarching principles of biological barriers that can be identified across different disease areas. Our second goal is to showcase which therapeutic approaches designed to cross disease-specific biological barriers have been promising in effectively treating disease. In this context, we will exemplify how the right selection of the drug category and delivery vehicle, mode of administration, and therapeutic target(s) can help overcome various biological barriers to prevent, treat, and cure disease.
Collapse
Affiliation(s)
- Emre Basar
- WIR—Walk In Ruhr, Center for Sexual Health & Medicine, Department of Dermatology, Venerology and Allergology, Ruhr-University Bochum, 44787 Bochum, Germany;
| | | | - Bennett Shum
- GenePath LLC, Sydney, NSW 2067, Australia
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of NSW, Sydney, NSW 2052, Australia
| | | | - Cihan Ay
- Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Adriane Skaletz-Rorowski
- WIR—Walk In Ruhr, Center for Sexual Health & Medicine, Department of Dermatology, Venerology and Allergology, Ruhr-University Bochum, 44787 Bochum, Germany;
| | - Norbert H. Brockmeyer
- WIR—Walk In Ruhr, Center for Sexual Health & Medicine, Department of Dermatology, Venerology and Allergology, Ruhr-University Bochum, 44787 Bochum, Germany;
| |
Collapse
|
6
|
Hao X, Jiang B, Wu J, Xiang D, Xiong Z, Li C, Li Z, He S, Tu C, Li Z. Nanomaterials for bone metastasis. J Control Release 2024; 373:640-651. [PMID: 39084467 DOI: 10.1016/j.jconrel.2024.07.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/23/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Bone metastasis, a prevalent occurrence in primary malignant tumors, is often associated with a grim prognosis. The bone microenvironment comprises various coexisting cell types, working together in a coordinated manner. This dynamic microenvironment plays a pivotal role in the initiation and progression of bone metastases. While cancer therapies have made advancements, the available options for addressing bone metastases remain insufficient. The advent of nanotechnology has ushered in a new era for managing and preventing bone metastases because of the physicochemical and adaptable advantages of nanoplatforms. In this review, we make an introduction of the underlying mechanisms and the current clinical therapies of bone metastases, highlighting the advances of intelligent nanosystems that can stimulate vascular regeneration, promote bone regeneration, eliminate tumor cells, minimize bone damage, and expedite bone healing. The innovation surrounding bone-targeting nanoplatforms presents a fresh approach to the theranostics of bone metastases.
Collapse
Affiliation(s)
- Xinyan Hao
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410011, China; Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Buchan Jiang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Junyong Wu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Daxiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zijian Xiong
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Chenbei Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhaoqi Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Shasha He
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Changsha Medical University, Changsha 410219, China.
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Shenzhen Research Institute of Central South University, Guangdong 518063, China; FuRong Laboratory, Changsha 410078, Hunan, China.
| |
Collapse
|
7
|
Kim S, Lee Y, Seu MS, Sim Y, Ryu JH. Enzyme-instructed intramitochondrial polymerization for enhanced anticancer treatment without the development of drug-resistance. J Control Release 2024; 373:189-200. [PMID: 39002798 DOI: 10.1016/j.jconrel.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Intracellular polymerization in living cells motivated chemists to generate polymeric structures with a multitude of possibilities to interact with biomacromolecules. However, out-of-control of the intracellular chemical reactions would be an obstacle restricting its application, providing the toxicity of non-targeted cells. Here, we reported intracellular thioesterase-mediated polymerization for selectively occurring polymerization using disulfide bonds in cancer cells. The acetylated monomers did not form disulfide bonds even under an oxidative environment, but they could polymerize into the polymeric structure after cleavage of acetyl groups only when encountered activity of thioesterase enzyme. Furthermore, acetylated monomers could be self-assembled with doxorubicin, providing doxorubicin loaded micelles for efficient intracellular delivery of drug and monomers. Since thioesterase enzymes were overexpressed in cancer cells specifically, the micelles were disrupted under activity of the enzyme and the polymerization could occur selectively in the cancer mitochondria. The resulting polymeric structures disrupted the mitochondrial membrane, thus activating the cellular death of cancer cells with high selectivity. This strategy selectively targets diverse cancer cells involving drug-resistant cells over normal cells. Moreover, the mitochondria targeting strategy overcomes the development of drug resistance even with repeated treatment. This approach provides a way for selective intracellular polymerization with desirable anticancer treatment.
Collapse
Affiliation(s)
- Sangpil Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yeji Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Min-Seok Seu
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Youjung Sim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
8
|
Shukla RP, Tiwari P, Sardar A, Urandur S, Gautam S, Marwaha D, Tripathi AK, Rai N, Trivedi R, Mishra PR. Alendronate-functionalized porous nano-crystalsomes mitigate osteolysis and consequent inhibition of tumor growth in a tibia-induced metastasis model. J Control Release 2024; 372:331-346. [PMID: 38844176 DOI: 10.1016/j.jconrel.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/10/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Bone is one of the most prevalent sites of metastases in various epithelial malignancies, including breast cancer and this metastasis to bone often leads to severe skeletal complications in women due to its osteolytic nature. To address this, we devised a novel drug delivery approach using an Alendronate (ALN) functionalized self-assembled porous crystalsomes for concurrent targeting of Oleanolic acid (OA) and ALN (ALN + OA@NCs) to bone metastasis. Initially, the conjugation of both PEG-OA and OA-PEG-ALN with ALN and OA was achieved, and this conjugation was then self-assembled into porous crystalsomes (ALN + OA@NCs) by nanoemulsion crystallization. The reconstruction of a 3D single particle using transmission electron microscopy ensured the crystalline porous structure of ALN + OA@NCs, was well aligned with characteristic nanoparticle attributes including size distribution, polydispersity, and zeta potential. Further, ALN + OA@NCs showed enhanced efficacy in comparison to OA@NCs suggesting the cytotoxic roles of ALN towards cancer cells, followed by augmentation ROS generation (40.81%), mitochondrial membrane depolarization (57.20%), and induction of apoptosis (40.43%). We found that ALN + OA@NCs facilitated inhibiting osteoclastogenesis and bone resorption followed by inhibited osteolysis. In vivo activity of ALN + OA@NCs in the 4 T1 cell-induced tibia model rendered a reduced bone loss in the treated mice followed by restoring bone morphometric markers which were further corroborated bone-targeting effects of ALN + OA@NCs to reduce RANKL-stimulated osteoclastogenesis. Further, In vivo intravenous pharmacokinetics showed the improved therapeutic profile of the ALN + OA@NCs in comparison to the free drug, prolonging the levels of the drug in the systemic compartment by reducing the clearance culminating the higher accumulation at the tumor site. Our finding proposed that ALN + OA@NCs can effectively target and treat breast cancer metastasis to bone and its associated complications.
Collapse
Affiliation(s)
- Ravi Prakash Shukla
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Pratiksha Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anirban Sardar
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sandeep Urandur
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Shalini Gautam
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Disha Marwaha
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ashish Kumar Tripathi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Nikhil Rai
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ritu Trivedi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
9
|
GAO HUAN, ZHANG JIE, KLEIJN TONYG, WU ZHAOYONG, LIU BING, MA YUJIN, DING BAOYUE, YIN DONGFENG. Dual ligand-targeted Pluronic P123 polymeric micelles enhance the therapeutic effect of breast cancer with bone metastases. Oncol Res 2024; 32:769-784. [PMID: 38560569 PMCID: PMC10972726 DOI: 10.32604/or.2023.044276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/13/2023] [Indexed: 04/04/2024] Open
Abstract
Bone metastasis secondary to breast cancer negatively impacts patient quality of life and survival. The treatment of bone metastases is challenging since many anticancer drugs are not effectively delivered to the bone to exert a therapeutic effect. To improve the treatment efficacy, we developed Pluronic P123 (P123)-based polymeric micelles dually decorated with alendronate (ALN) and cancer-specific phage protein DMPGTVLP (DP-8) for targeted drug delivery to breast cancer bone metastases. Doxorubicin (DOX) was selected as the anticancer drug and was encapsulated into the hydrophobic core of the micelles with a high drug loading capacity (3.44%). The DOX-loaded polymeric micelles were spherical, 123 nm in diameter on average, and exhibited a narrow size distribution. The in vitro experiments demonstrated that a pH decrease from 7.4 to 5.0 markedly accelerated DOX release. The micelles were well internalized by cultured breast cancer cells and the cell death rate of micelle-treated breast cancer cells was increased compared to that of free DOX-treated cells. Rapid binding of the micelles to hydroxyapatite (HA) microparticles indicated their high affinity for bone. P123-ALN/DP-8@DOX inhibited tumor growth and reduced bone resorption in a 3D cancer bone metastasis model. In vivo experiments using a breast cancer bone metastasis nude model demonstrated increased accumulation of the micelles in the tumor region and considerable antitumor activity with no organ-specific histological damage and minimal systemic toxicity. In conclusion, our study provided strong evidence that these pH-sensitive dual ligand-targeted polymeric micelles may be a successful treatment strategy for breast cancer bone metastasis.
Collapse
Affiliation(s)
- HUAN GAO
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, 314001, China
- Department of Pharmacy, The General Hospital of Xinjiang Military Region, Urumqi, 830000, China
| | - JIE ZHANG
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - TONY G. KLEIJN
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, 314001, China
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, The Netherlands
- Department of Pathology, Laboratory of Experimental Oncology, Erasmus MC, Rotterdam, 3015 GD, The Netherlands
| | - ZHAOYONG WU
- Department of Pharmacy, Jiaxing Maternal and Child Health Care Hospital, Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China
| | - BING LIU
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, 314001, China
- Qinghai Enlu Biotechnology Co., Ltd., Haidong, 810700, China
| | - YUJIN MA
- Qinghai Enlu Biotechnology Co., Ltd., Haidong, 810700, China
| | - BAOYUE DING
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - DONGFENG YIN
- Department of Pharmacy, The General Hospital of Xinjiang Military Region, Urumqi, 830000, China
| |
Collapse
|
10
|
Shen K, Zhang J, Zhao Z, Ma H, Wang Y, Zheng W, Xu J, Li Y, Wang B, Zhang Z, Wu S, Hou L, Chen W. Microparticulated Polygonatum sibiricum polysaccharide shows potent vaccine adjuvant effect. Int J Pharm 2024; 652:123802. [PMID: 38218508 DOI: 10.1016/j.ijpharm.2024.123802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
Adjuvants are necessary for protein vaccines and have been used for nearly 100 years. However, developing safe and effective adjuvants is still urgently needed. Polysaccharides isolated from traditional Chinese medicine are considered novel vaccine adjuvant sources. This study aimed to investigate the adjuvant activity and immune-enhancing mechanisms of the microparticulated Polygonatum sibiricum polysaccharide (MP-PSP) modified by calcium carbonate. PSP demonstrated adjuvant activity, and MP-PSP further showed a higher humoral response compared to PSP. Subsequently, MP-PSP was elucidated to improving the immunity by slowing the rate of antigen release and activating dendritic cells along with interleukin-6 secretion through toll-like receptor 4 signaling, followed by T follicular helper cell and B cell interactions. Moreover, MP-PSP had a good safety profile in vaccinated mice. Thus, MP-PSP may be a promising vaccine adjuvant and warrants further investigation.
Collapse
Affiliation(s)
- Kai Shen
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing 100071, China; Department of Pharmacy, Affiliated Hospital of Nantong University, 20 West Temple Road, Nantong 226001, China
| | - Jinlong Zhang
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing 100071, China
| | - Zhenghao Zhao
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing 100071, China
| | - Hao Ma
- Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China
| | - Yudong Wang
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing 100071, China
| | - Wanru Zheng
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing 100071, China
| | - Jinghan Xu
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing 100071, China
| | - Yao Li
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing 100071, China
| | - Busen Wang
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing 100071, China
| | - Zhe Zhang
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing 100071, China
| | - Shipo Wu
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing 100071, China
| | - Lihua Hou
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing 100071, China.
| | - Wei Chen
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing 100071, China.
| |
Collapse
|
11
|
Yu X, Zhu L. Nanoparticles for the Treatment of Bone Metastasis in Breast Cancer: Recent Advances and Challenges. Int J Nanomedicine 2024; 19:1867-1886. [PMID: 38414525 PMCID: PMC10898486 DOI: 10.2147/ijn.s442768] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/15/2024] [Indexed: 02/29/2024] Open
Abstract
Although the frequency of bone metastases from breast cancer has increased, effective treatment is lacking, prompting the development of nanomedicine, which involves the use of nanotechnology for disease diagnosis and treatment. Nanocarrier drug delivery systems offer several advantages over traditional drug delivery methods, such as higher reliability and biological activity, improved penetration and retention, and precise targeting and delivery. Various nanoparticles that can selectively target tumor cells without causing harm to healthy cells or organs have been synthesized. Recent advances in nanotechnology have enabled the diagnosis and prevention of metastatic diseases as well as the ability to deliver complex molecular "cargo" particles to metastatic regions. Nanoparticles can modulate systemic biodistribution and enable the targeted accumulation of therapeutic agents. Several delivery strategies are used to treat bone metastases, including untargeted delivery, bone-targeted delivery, and cancer cell-targeted delivery. Combining targeted agents with nanoparticles enhances the selective delivery of payloads to breast cancer bone metastatic lesions, providing multiple delivery advantages for treatment. In this review, we describe recent advances in nanoparticle development for treating breast cancer bone metastases.
Collapse
Affiliation(s)
- Xianzhe Yu
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan Province, People's Republic of China
| | - Lingling Zhu
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| |
Collapse
|
12
|
Kaur S, Balakrishnan B, Mallia MB, Keshari R, Hassan PA, Banerjee R. Technetium-99m labeled core shell hyaluronate nanoparticles as tumor responsive, metastatic skeletal lesion targeted combinatorial theranostics. Carbohydr Polym 2023; 312:120840. [PMID: 37059565 DOI: 10.1016/j.carbpol.2023.120840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023]
Abstract
Achieving target specific delivery of chemotherapeutics in metastatic skeletal lesions remains a major challenge. Towards this, a dual drug loaded, radiolabeled multi-trigger responsive nanoparticles having partially oxidized hyaluronate (HADA) conjugated to alendronate shell and palmitic acid core were developed. While the hydrophobic drug, celecoxib was encapsulated in the palmitic acid core, the hydrophilic drug, doxorubicin hydrochloride was linked to the shell via a pH responsive imine linkage. Hydroxyapatite binding studies showed affinity of alendronate conjugated HADA nanoparticles to bones. Enhanced cellular uptake of the nanoparticles was achieved via HADA-CD44 receptor binding. HADA nanoparticles demonstrated trigger responsive release of encapsulated drugs in the presence of hyaluronidase, pH and glucose, present in excess in the tumor microenvironment. Efficacy of the nanoparticles for combination chemotherapy was established by >10-fold reduction in IC50 of drug loaded particles with a combination index of 0.453, as compared to free drugs in MDA-MB-231 cells. The nanoparticles could be radiolabeled with the gamma emitting radioisotope technetium-99m (99mTc) through a simple, 'chelator free', procedure with excellent radiochemical purity (RCP) (>90 %) and in vitro stability. 99mTc-labeled drug loaded nanoparticles reported herein constitutes a promising theranostic agent to target metastatic bone lesions. STATEMENT OF HYPOTHESES: Technetium-99m labeled, alendronate conjugated, dual targeting, tumor responsive, hyaluronate nanoparticle for tumor specific drug release and enhanced therapeutic effect, with real-time in vivo monitoring.
Collapse
Affiliation(s)
- Shahdeep Kaur
- Nanomedicine Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology, Bombay, Mumbai 400076, India
| | - Biji Balakrishnan
- Nanomedicine Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology, Bombay, Mumbai 400076, India; Nanotherapeutics & Biosensor Section, Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.
| | - Madhava B Mallia
- Radiopharmaceutical Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Mumbai 400094, India
| | - Roshan Keshari
- Nanomedicine Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology, Bombay, Mumbai 400076, India
| | - P A Hassan
- Nanotherapeutics & Biosensor Section, Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Mumbai 400094, India
| | - Rinti Banerjee
- Nanomedicine Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology, Bombay, Mumbai 400076, India
| |
Collapse
|
13
|
Wang H, Shao W, Lu X, Gao C, Fang L, Yang X, Zhu P. Synthesis, characterization, and in vitro anti-tumor activity studies of the hyaluronic acid-mangiferin-methotrexate nanodrug targeted delivery system. Int J Biol Macromol 2023; 239:124208. [PMID: 36972827 DOI: 10.1016/j.ijbiomac.2023.124208] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
In this study, to increase the accumulation of MTX in the tumor site and reduce the toxicity to normal tissues by MA, a novel nano-drug delivery system comprised of hyaluronic acid (HA)-mangiferin (MA)-methotrexate (MTX) (HA-MA-MTX) was developed by a self-assembly strategy. The advantage of the nano-drug delivery system is that MTX can be used as a tumor-targeting ligand of the folate receptor (FA), HA can be used as another tumor-targeting ligand of the CD44 receptor, and MA serves as an anti-inflammatory agent. 1HNMR and FT-IR results confirmed that HA, MA, and MTX were well coupled together by the ester bond. DLS and AFM images revealed that the size of HA-MA-MTX nanoparticles was about ~138 nm. In vitro cell experiments proved that HA-MA-MTX nanoparticles have a positive effect on inhibiting K7 cancer cells while having relatively lower toxicity to normal MC3T3-E1 cells than MTX does. All these results indicated that the prepared HA-MA-MTX nanoparticles can be selectively ingested by K7 tumor cells through FA and CD44 receptor-mediated endocytosis, thus inhibiting the growth of tumor tissues and reducing the nonspecific uptake toxicity caused by chemotherapy. Therefore, these self-assembled HA-MA-MTX NPs could be a potential anti-tumor drug delivery system.
Collapse
Affiliation(s)
- Haojue Wang
- Department of Obstetrics and Gynecology, Wuxi Xishan People's Hospital of Jiangsu Province, Wuxi 214105, PR China
| | - Wanfei Shao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Xianyi Lu
- Department of Obstetrics and Gynecology, Wuxi Xishan People's Hospital of Jiangsu Province, Wuxi 214105, PR China
| | - Chunxia Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| | - Ling Fang
- Department of Dermatology, Wuxi Xishan People's Hospital, Wuxi, Jiangsu 214105, China
| | - Xiaojun Yang
- The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou 215006, Jiangsu Province, China.
| | - Peizhi Zhu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| |
Collapse
|
14
|
Wang X, Lu H, Liao B, Li G, Chen L. Facile synthesis of layered double hydroxide nanosheets assembled porous structures for efficient drug delivery. RSC Adv 2023; 13:12059-12064. [PMID: 37082376 PMCID: PMC10111147 DOI: 10.1039/d3ra01000g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/11/2023] [Indexed: 04/22/2023] Open
Abstract
As one of the important types of two-dimensional materials, layered double hydroxides (LDHs) have been widely used in the biomedical field as carriers for drug delivery. In this case, we propose a facile synthetic method for preparing LDH-based self-assembly structures via a metal ions-mediated zeolitic imidazolate framework-8 (ZIF-8) transformation process. The as-made hierarchical porous ZIF-8@LDHs core-shell structures and porous cages of LDHs (PC-LDHs) in drug delivery systems are used to study the loading and release of small molecular weight drugs such as doxorubicin hydrochloride (DOX) and 5-fluorouracil (5-FU). The intrinsic properties and assembly structures of both carriers are investigated in depth for their impact on slow drug release. Finally, PC-LDHs outperform ZIF-8@LDHs core-shell structures in terms of drug delivery performance under various conditions, indicating that LDH nanosheets would play a decisive role in the drug delivery process. In the drug release system, scattered LDH nanosheets with smaller sizes than their assemblies are gradually produced, allowing nanodrugs to enter cancer tissues more easily across biological barriers. This study provides the preliminary preparation for an LDH-based nanomedicine platform in the field of cancer therapy.
Collapse
Affiliation(s)
- Xiaohua Wang
- Department of Pharmaceutical Engineering, Bengbu Medical College Bengbu 233030 China
| | - Haiyue Lu
- Department of Pharmaceutical Engineering, Bengbu Medical College Bengbu 233030 China
| | - Baicheng Liao
- Department of Pharmaceutical Engineering, Bengbu Medical College Bengbu 233030 China
| | - Gen Li
- Department of Pharmaceutical Engineering, Bengbu Medical College Bengbu 233030 China
| | - Liyong Chen
- Department of Pharmaceutical Engineering, Bengbu Medical College Bengbu 233030 China
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College Bengbu 233030 China
| |
Collapse
|
15
|
Lee KK, Raja N, Yun HS, Lee SC, Lee CS. Multifunctional bone substitute using carbon dot and 3D printed calcium-deficient hydroxyapatite scaffolds for osteoclast inhibition and fluorescence imaging. Acta Biomater 2023; 159:382-393. [PMID: 36669550 DOI: 10.1016/j.actbio.2023.01.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Multifunctional bone substitute materials (BSM) have gained considerable attention with the exponential increase in aging populations. The development of hybrid materials for diagnosis and therapy of bone-related diseases and dysfunctions, especially, has been a significant challenge in the biological and the biomedical field, due to the shortage of agents with specificity and selectivity toward bone. In this study, a hybrid material, referred as Alen-CDs@CDHA, fabricated from alendronate-conjugated carbon dots (Alen-CDs) and calcium-deficient hydroxyapatite (CDHA, the mineral component of bones) scaffolds is offered as a novel multifunctional BSM for in vivo osteoclasts deactivation and fluorescence imaging. The fluorescent Alen-CDs were hydrothermally prepared using phytic acid as carbon source, followed by conjugating alendronate, for controlled alendronate release and fluorescent imaging under acidic conditions. As-prepared fluorescent Alen-CDs were consecutively immobilized on surfaces of CDHA scaffolds, exhibiting high affinity by bisphosphonate group, easily fabricated from α-tricalcium phosphate (α-TCP) paste using three-dimensional (3D) printing system. The resultant Alen-CDs@CDHA caused a significant decrease (> 50%) in viability of osteoclasts at 7 days after in vitro treatment. Furthermore, when Alen-CDs@CDHA was implanted in balb/c nude mice for in vivo evaluation, we found Alen-CDs@CDHA to be suitable for bone imaging through fluorescence signals, without necrosis or inflammatory symptoms in the epidermal tissues. Thus, these observations offer new opportunities for a novel and revolutionary use of Alen-CDs@CDHA as highly specific multifunctional BSM for bone diagnosis and imaging, and as bone-specific drug delivery materials, eventually providing anti-osteoclastogenic treatments solution for degenerative bone disorders. STATEMENT OF SIGNIFICANCE: Alen-CDs@CDHA significantly reduced the viability of osteoclasts and fluorescently imaged in vivo after transplantation, releasing drug via pH modulation. The development of fluorescence materials for bone imaging remains still a major challenge in the biomedical field owing to the shortage of selectivity and specificity. The results could lead to improvements in bone treatment strategies, as it could reduce the invasiveness of procedures and the associated negative outcomes, and increase the precision of strategies. Further, we believe that this study will be of interest to the readership of your journal as clearly focuses on the advancement of a biomaterial, where we have engineered a substance to substitute bone and integrate with a living system.
Collapse
Affiliation(s)
- Kyung Kwan Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Biomedical and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Naren Raja
- Department of Advanced Biomaterials Research, Ceramics Materials Division, Korea Institute of Materials Science (KIMS), Changwon 51508, Republic of Korea
| | - Hui-Suk Yun
- Department of Advanced Biomaterials Research, Ceramics Materials Division, Korea Institute of Materials Science (KIMS), Changwon 51508, Republic of Korea; Department of Advanced Materials Engineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Sang Cheon Lee
- Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chang-Soo Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| |
Collapse
|
16
|
Lei C, Song JH, Li S, Zhu YN, Liu MY, Wan MC, Mu Z, Tay FR, Niu LN. Advances in materials-based therapeutic strategies against osteoporosis. Biomaterials 2023; 296:122066. [PMID: 36842238 DOI: 10.1016/j.biomaterials.2023.122066] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023]
Abstract
Osteoporosis is caused by the disruption in homeostasis between bone formation and bone resorption. Conventional management of osteoporosis involves systematic drug administration and hormonal therapy. These treatment strategies have limited curative efficacy and multiple adverse effects. Biomaterials-based therapeutic strategies have recently emerged as promising alternatives for the treatment of osteoporosis. The present review summarizes the current status of biomaterials designed for managing osteoporosis. The advantages of biomaterials-based strategies over conventional systematic drug treatment are presented. Different anti-osteoporotic delivery systems are concisely addressed. These materials include injectable hydrogels and nanoparticles, as well as anti-osteoporotic bone tissue engineering materials. Fabrication techniques such as 3D printing, electrostatic spinning and artificial intelligence are appraised in the context of how the use of these adjunctive techniques may improve treatment efficacy. The limitations of existing biomaterials are critically analyzed, together with deliberation of the future directions in biomaterials-based therapies. The latter include discussion on the use of combination strategies to enhance therapeutic efficacy in the osteoporosis niche.
Collapse
Affiliation(s)
- Chen Lei
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jing-Han Song
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Song Li
- School of Stomatology, Xinjiang Medical University. Urumqi 830011, China
| | - Yi-Na Zhu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ming-Yi Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Mei-Chen Wan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhao Mu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Franklin R Tay
- The Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Li-Na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
17
|
Nimbalkar Y, Gharat SA, Tanna V, Nikam VS, Nabar S, Sawarkar SP. Modification and Functionalization of Polymers for Targeting to Bone Cancer and Bone Regeneration. Crit Rev Biomed Eng 2023; 51:21-58. [PMID: 37560878 DOI: 10.1615/critrevbiomedeng.2023043780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Bone is one of the most complex, inaccessible body structures, responsible for calcium storage and haematopoiesis. The second highest cause of death across the world is cancer. Amongst all the types of cancers, bone cancer treatment modalities are limited due to the structural complexity and inaccessibility of bones. The worldwide incidence of bone diseases and bone defects due to cancer, infection, trauma, age-related bone degeneration is increasing. Currently different conventional therapies are available for bone cancer such as chemotherapy, surgery and radiotherapy, but they have several disadvantages associated with them. Nanomedicine is being extensively researched as viable therapeutics to mitigate drug resistance in cancer therapy and promote bone regeneration. Several natural polymers such as chitosan, dextran, alginate, hyaluronic acid, and synthetic polymers like polyglycolic acid, poly(lactic-co-glycolic acid), polycaprolactone are investigated for their application in nanomedicine for bone cancer treatment and bone regeneration. Nanocarriers have shown promising results in preclinical experimental studies. However, they still face a major drawback of inadequate targetability. The paper summarizes the status of research and the progress made so far in modifications and functionalization of natural polymers for improving their site specificity and targeting for effective treatment of bone cancer and enhancing bone regeneration.
Collapse
Affiliation(s)
- Yogesh Nimbalkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Vile Parle West, Mumbai 400056 India
| | - Sankalp A Gharat
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Vile Parle West, Mumbai 400056 India
| | - Vidhi Tanna
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Vile Parle West, Mumbai 400056 India
| | - Vandana S Nikam
- Department of Pharmacology, STES's Smt. Kashibai Navale College of Pharmacy, Kondhwa, S.P. Pune University, Pune 411048, India
| | - Swapna Nabar
- Radiation Medicine Centre, Tata Memorial Hospital, Parel, Mumbai, India
| | - Sujata P Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Vile Parle West, Mumbai 400056 India
| |
Collapse
|
18
|
Xi Y, Wang W, Ma L, Xu N, Shi C, Xu G, He H, Pan W. Alendronate modified mPEG-PLGA nano-micelle drug delivery system loaded with astragaloside has anti-osteoporotic effect in rats. Drug Deliv 2022; 29:2386-2402. [PMID: 35869674 PMCID: PMC9310824 DOI: 10.1080/10717544.2022.2086942] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Astragaloside (AS) has an anti-osteoporotic effect, but its poor water solubility and low bioavailability limit its application. In this study, a novel nano-carrier with bone targeting was prepared by modifying mPEG-PLGA with alendronate (AL) before incorporation into astragaloside nano-micelles (AS-AL-mPEG-PLGA) to enhance the oral bioavailability, bone targeting and anti-osteoporosis effect of AS. The release behavior of AS-AL-mPEG-PLGA in vitro was investigated via dialysis. The pharmacokinetics of AS-AL-mPEG-PLGA was studied in Sprague-Dawley (SD) rats. The cytotoxicity of AS-AL-mPEG-PLGA in vitro (via MTT method), coupled with bone targeting ability in vitro and in vivo were evaluated. The therapeutic effects of free AS and AS-AL-mPEG-PLGA (ELISA, micro-CT, H&E staining) were compared in osteoporotic rats. AS-AL-mPEG-PLGA with smaller particle size (45.3 ± 3.8 nm) and high absolute zeta potential (−23.02 ± 0.51 mV) were successfully prepared, wherein it demonstrated higher entrapment efficiency (96.16 ± 0.18%), a significant sustained-release effect for 96 h and acceptable safety within 10–200 μg/mL. AS-AL-mPEG-PLGA could enhance the hydroxyapatite affinity and bone tissue concentration of AS. The relative bioavailability of AS-AL-mPEG-PLGA was 233.90% compared with free AS. In addition, the effect of AS in reducing serum levels of bone metabolism-related indicators, restoring the bone microarchitecture and improving bone injury could be enhanced by AS-AL-mPEG-PLGA. AS-AL-mPEG-PLGA with small particle size, good stability, remarkable sustained-release effect, safety and bone targeting was successfully constructed in this experiment to potentially improve the oral bioavailability and anti-osteoporosis effect of AS. Thus, AS-AL-mPEG-PLGA may be a promising strategy to prevent and treat osteoporosis.
Collapse
Affiliation(s)
- Yanhai Xi
- Department of Orthopedics, Spine Surgery, The Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Weiheng Wang
- Department of Orthopedics, Spine Surgery, The Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Liang Ma
- Minimally invasive Spinal Surgery department, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ning Xu
- Department of Orthopedics, Spine Surgery, The Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Changgui Shi
- Department of Orthopedics, Spine Surgery, The Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Guohua Xu
- Department of Orthopedics, Spine Surgery, The Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Hailong He
- Department of Orthopedics, Spine Surgery, The Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Wenming Pan
- Department of Spine Surgery, The Affiliated Changshu Hospital of Xuzhou Medical School, The Second People's Hospital of Changshu, Changshu, China
| |
Collapse
|
19
|
Shokri M, Dalili F, Kharaziha M, Baghaban Eslaminejad M, Ahmadi Tafti H. Strong and bioactive bioinspired biomaterials, next generation of bone adhesives. Adv Colloid Interface Sci 2022; 305:102706. [PMID: 35623113 DOI: 10.1016/j.cis.2022.102706] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/20/2022] [Accepted: 05/15/2022] [Indexed: 12/29/2022]
Abstract
The bone adhesive is a clinical requirement for complicated bone fractures always articulated by surgeons. Applying glue is a quick and easy way to fix broken bones. Adhesives, unlike conventional fixation methods such as wires and sutures, improve healing conditions and reduce postoperative pain by creating a complete connection at the fractured joint. Despite many efforts in the field of bone adhesives, the creation of a successful adhesive with robust adhesion and appropriate bioactivity for the treatment of bone fractures is still in its infancy. Because of the resemblance of the body's humid environment to the underwater environment, in the latest decades, researchers have pursued inspiration from nature to develop strong bioactive adhesives for bone tissue. The aim of this review article is to discuss the recent state of the art in bone adhesives with a specific focus on biomimetic adhesives, their action mechanisms, and upcoming perspective. Firstly, the adhesive biomaterials with specific affinity to bone tissue are introduced and their rational design is studied. Consequently, various types of synthetic and natural bioadhesives for bone tissue are comprehensively overviewed. Then, bioinspired-adhesives are described, highlighting relevant structures and examples of biomimetic adhesives mainly made of DOPA and the complex coacervates inspired by proteins secreted in mussel and sandcastle worms, respectively. Finally, this article overviews the challenges of the current bioadhesives and the future research for the improvement of the properties of biomimetic adhesives for use as bone adhesives.
Collapse
Affiliation(s)
- Mahshid Shokri
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Faezeh Dalili
- School of Metallurgy & Materials Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Hossein Ahmadi Tafti
- Tehran Heart Hospital Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Yamali C, Sakagami H, Satoh K, Bandow K, Uesawa Y, Bua S, Angeli A, Supuran CT, Inci Gul H. Investigation of carbonic anhydrase inhibitory effects and cytotoxicities of pyrazole-based hybrids carrying hydrazone linker and zinc-binding benzenesulfonamide pharmacophores. Bioorg Chem 2022; 127:105969. [DOI: 10.1016/j.bioorg.2022.105969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/07/2022] [Accepted: 06/12/2022] [Indexed: 11/02/2022]
|
21
|
Naghibi S, Sabouri S, Hong Y, Jia Z, Tang Y. Brush-like Polymer Prodrug with Aggregation-Induced Emission Features for Precise Intracellular Drug Tracking. BIOSENSORS 2022; 12:bios12060373. [PMID: 35735521 PMCID: PMC9221197 DOI: 10.3390/bios12060373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022]
Abstract
In this study, a brush-like polymer with aggregation-induced emission (AIE) features was synthesized for drug delivery and intracellular drug tracking. The polymer consisting of tetraphenylethene (TPE) chain-end as well as oligo-poly (ethylene glycol) (PEG) and hydrazine functionalities was successfully synthesized through copper (0)-mediated reversible-deactivation radical polymerization (Cu0-mediated RDRP). Anticancer drug doxorubicin (DOX) was conjugated to the polymer and formed a prodrug named TPE-PEGA-Hyd-DOX, which contains 11% DOX. The hydrazone between DOX and polymer backbone is a pH-sensitive linkage that can control the release of DOX in slightly acidic conditions, which can precisely control the DOX release rate. The drug release of 10% after 96 h in normal cell environments compared with about 40% after 24 h in cancer cell environments confirmed the influence of the hydrazone bond. The ratiometric design of fluorescent intensities with peaks at 410 nm (emission due to AIE feature of TPE) and 600 nm (emission due to ACQ feature of DOX) provides an excellent opportunity for this product as a precise intracellular drug tracker. Cancer cells confocal microscopy showed negligible DOX solution uptake, but an intense green emission originated from prodrug uptake. Moreover, a severe red emission in the DOX channel confirmed a promising level of drug release from the prodrug in the cytoplasm. The merged images of cancer cells confirmed the high performance of the TPE-PEGA-Hyd-DOX compound in the viewpoints of cellular uptake and drug release. This polymer prodrug successfully demonstrates low cytotoxicity in healthy cells and high performance in killing cancer cells.
Collapse
Affiliation(s)
- Sanaz Naghibi
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Tonsley, SA 5042, Australia;
| | - Soheila Sabouri
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia; (S.S.); (Y.H.)
| | - Yuning Hong
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia; (S.S.); (Y.H.)
- Australia-China Joint Research Centre on Personal Health Technologies, Tonsley, SA 5042, Australia
| | - Zhongfan Jia
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Tonsley, SA 5042, Australia;
- Correspondence: (Z.J.); (Y.T.); Tel.: +61-8-8201-2804 (Z.J.); +61-8-8201-2138 (Y.T.)
| | - Youhong Tang
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Tonsley, SA 5042, Australia;
- Australia-China Joint Research Centre on Personal Health Technologies, Tonsley, SA 5042, Australia
- Correspondence: (Z.J.); (Y.T.); Tel.: +61-8-8201-2804 (Z.J.); +61-8-8201-2138 (Y.T.)
| |
Collapse
|
22
|
Jangid A, Solanki R, Patel S, Medicherla K, Pooja D, Kulhari H. Improving Anticancer Activity of Chrysin using Tumor Microenvironment pH-Responsive and Self-Assembled Nanoparticles. ACS OMEGA 2022; 7:15919-15928. [PMID: 35571829 PMCID: PMC9096951 DOI: 10.1021/acsomega.2c01041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/13/2022] [Indexed: 05/11/2023]
Abstract
Chrysin is a natural bioactive compound with potential biological activities. However, unfavorable physicochemical properties of native chrysin make it difficult to achieve good therapeutic efficacies. In this study, poly(ethylene) glycol (PEG4000)-conjugated chrysin nanoparticles were prepared. The PEG4000 was conjugated to chrysin through cis-aconityl and succinoyl linkers to achieve tumor microenvironment-specific drug release from PEGylated nanoparticles. The conjugation of PEG and chrysin via succinoyl (PCNP-1) and cis-aconityl (PCNP-2) linkers was confirmed by the 1H NMR and FTIR analysis. The nanoparticles were characterized by DLS, TEM, XRD, and DSC analysis. Comparatively, PCNP-2 showed a better drug release profile and higher anticancer activity against human breast cancer cells than chrysin or PCNP-1. The apoptosis studies and colony formation inhibition assay revealed that the PCNP-2 induced more apoptosis and more greatly controlled the growth of human breast cancer cells than pure chrysin. Thus, the use of PCNPs may help to overcome the issues of chrysin and could be a better therapeutic approach.
Collapse
Affiliation(s)
- Ashok
Kumar Jangid
- School
of Nano Sciences and School of Life Sciences, Central University
of Gujarat, Gandhinagar 382030, India
| | - Raghu Solanki
- School
of Nano Sciences and School of Life Sciences, Central University
of Gujarat, Gandhinagar 382030, India
| | - Sunita Patel
- School
of Nano Sciences and School of Life Sciences, Central University
of Gujarat, Gandhinagar 382030, India
| | - Kanakaraju Medicherla
- Department
of Human Genetics, College of Science and Technology, Andhra University, Visakhapatnam 530003, India
| | - Deep Pooja
- School
of Pharmacy, National Forensic Sciences
University, Sector 9, Gandhinagar, Gujarat 382007, India
| | - Hitesh Kulhari
- School
of Nano Sciences and School of Life Sciences, Central University
of Gujarat, Gandhinagar 382030, India
- Department
of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research, Guwahati, Assam 781101, India
| |
Collapse
|
23
|
Breast Cancer Bone Metastasis: A Narrative Review of Emerging Targeted Drug Delivery Systems. Cells 2022; 11:cells11030388. [PMID: 35159207 PMCID: PMC8833898 DOI: 10.3390/cells11030388] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/10/2022] [Accepted: 01/16/2022] [Indexed: 01/06/2023] Open
Abstract
Bone is one of the most common metastatic sites among breast cancer (BC) patients. Once bone metastasis is developed, patients' survival and quality of life will be significantly declined. At present, there are limited therapeutic options for BC patients with bone metastasis. Different nanotechnology-based delivery systems have been developed aiming to specifically deliver the therapeutic agents to the bone. The conjugation of targeting agents to nanoparticles can enhance the selective delivery of various payloads to the metastatic bone lesion. The current review highlights promising and emerging advanced nanotechnologies designed for targeted delivery of anticancer therapeutics, contrast agents, photodynamic and photothermal materials to the bone to achieve the goal of treatment, diagnosis, and prevention of BC bone metastasis. A better understanding of various properties of these new therapeutic approaches may open up new landscapes in medicine towards improving the quality of life and overall survival of BC patients who experience bone metastasis.
Collapse
|
24
|
Giordano F, Lenna S, Rampado R, Brozovich A, Hirase T, Tognon MG, Martini F, Agostini M, Yustein JT, Taraballi F. Nanodelivery Systems Face Challenges and Limitations in Bone Diseases Management. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Federica Giordano
- Center for Musculoskeletal Regeneration Houston Methodist Academic Institute, Houston Methodist 6670 Bertner Ave Houston TX 77030 USA
- Orthopedics and Sports Medicine Houston Methodist Hospital Houston Methodist, 6565 Fannin Street Houston TX 77030 USA
| | - Stefania Lenna
- Center for Musculoskeletal Regeneration Houston Methodist Academic Institute, Houston Methodist 6670 Bertner Ave Houston TX 77030 USA
- Orthopedics and Sports Medicine Houston Methodist Hospital Houston Methodist, 6565 Fannin Street Houston TX 77030 USA
| | - Riccardo Rampado
- Center for Musculoskeletal Regeneration Houston Methodist Academic Institute, Houston Methodist 6670 Bertner Ave Houston TX 77030 USA
- Orthopedics and Sports Medicine Houston Methodist Hospital Houston Methodist, 6565 Fannin Street Houston TX 77030 USA
- First Surgical Clinic Section, Department of Surgical Oncological and Gastroenterological Sciences, University of Padua Padua 35124 Italy
- Nano‐Inspired Biomedicine Laboratory Institute of Pediatric Research—Città della Speranza Padua Italy
| | - Ava Brozovich
- Center for Musculoskeletal Regeneration Houston Methodist Academic Institute, Houston Methodist 6670 Bertner Ave Houston TX 77030 USA
- Orthopedics and Sports Medicine Houston Methodist Hospital Houston Methodist, 6565 Fannin Street Houston TX 77030 USA
- Texas A&M College of Medicine 8447 Highway 47 Bryan TX 77807 USA
| | - Takashi Hirase
- Center for Musculoskeletal Regeneration Houston Methodist Academic Institute, Houston Methodist 6670 Bertner Ave Houston TX 77030 USA
- Orthopedics and Sports Medicine Houston Methodist Hospital Houston Methodist, 6565 Fannin Street Houston TX 77030 USA
| | - Mauro G. Tognon
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine University of Ferrara Ferrara Italy
| | - Fernanda Martini
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine University of Ferrara Ferrara Italy
| | - Marco Agostini
- First Surgical Clinic Section, Department of Surgical Oncological and Gastroenterological Sciences, University of Padua Padua 35124 Italy
- Nano‐Inspired Biomedicine Laboratory Institute of Pediatric Research—Città della Speranza Padua Italy
| | - Jason T. Yustein
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center Baylor College of Medicine Houston TX 77030 USA
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration Houston Methodist Academic Institute, Houston Methodist 6670 Bertner Ave Houston TX 77030 USA
- Orthopedics and Sports Medicine Houston Methodist Hospital Houston Methodist, 6565 Fannin Street Houston TX 77030 USA
| |
Collapse
|
25
|
Barik D, Dash P, Uma PI, Kumari S, Dash M. A Review on Re-Packaging of Bisphosphonates Using Biomaterials. J Pharm Sci 2021; 110:3757-3772. [PMID: 34474062 DOI: 10.1016/j.xphs.2021.08.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/19/2022]
Abstract
The need for bone repair and insight into new regeneration therapies as well as improvement of existing regeneration routes is constantly increasing as a direct consequence of the rise in the number of trauma victims, musculoskeletal disorders, and increased life expectancy. Bisphosphonates (BPs) have emerged as a class of drugs with proven efficacy against many bone disorders. The most recent ability of this class of drugs is being explored in its anti-cancer ability. However, despite the pharmacological success, there are certain shortcomings that have circumvented this class of the drug. The mediation of biomaterials in delivering bisphosphonates has greatly helped in overcoming some of these shortcomings. This article is focused on reviewing the benefits the bisphosphonates have provided upon getting delivered via the use of biomaterials. Furthermore, the role of bisphosphonates as a potent anticancer agent is also accounted. It is witnessed that employing engineering tools in combination with therapeutics has the potential to provide solutions to bone loss from degenerative, surgical, or traumatic processes, and also aid in accelerating the healing of large bone fractures and problematic non-union fractures. The role of nanotechnology in enhancing the efficacy of the bisphosphonates is also reviewed and innovative approaches are identified.
Collapse
Affiliation(s)
- Debyashreeta Barik
- Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, Odisha, India; School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, 751024, Bhubaneswar, Odisha, India
| | - Pratigyan Dash
- Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, Odisha, India; School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, 751024, Bhubaneswar, Odisha, India
| | - P I Uma
- Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, Odisha, India
| | - Sneha Kumari
- Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, Odisha, India
| | - Mamoni Dash
- Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, Odisha, India.
| |
Collapse
|
26
|
Delivery of doxorubicin loaded P18 conjugated-poly(2-ethyl-oxazoline)-DOPE nanoliposomes for targeted therapy of breast cancer. Toxicol Appl Pharmacol 2021; 428:115671. [PMID: 34391753 DOI: 10.1016/j.taap.2021.115671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 01/11/2023]
Abstract
Breast cancer, a heterogeneous disease, has the highest incidence rate and is a major cause of death in females worldwide. Drug delivery by using nanotechnology has shown great promise for improving cancer treatment. Nanoliposomes are known to have enhanced accumulation ability in tumors due to prolonged systemic circulation. Peptide 18 (P18), a tumor homing peptide targeting keratin-1 (KRT-1), was previously shown to have high binding affinity towards breast cancer cells. In this study, we investigate the ability of P18 conjugated PEtOx-DOPE nanoliposomes (P18-PEtOx-DOPE) for the targeted delivery of doxorubicin to AU565 breast cancer model. Toxicology studies of PEtOx-DOPE nanoliposomes performed on normal breast epithelial cells (MCF10A), showed minimal toxicity. Doxorubicin delivery by P18-PEtOx-DOPE to AU565 cells induces cytotoxicity in a dose and time dependent manner causing mitotic arrest in G2/M phase at 24 h. Anti-cancer activity of P18-PEtOx-DOPE-DOX nanoliposomes on AU565 cells was detected by Annexin V/PI apoptosis assay. In terms of in vivo antitumor efficacy, P18-PEtOx-DOPE-DOX nanoliposomes administration to AU565 CD-1 nu/nu mice model showed significant decrease in tumor volume suggesting that DOX delivered by these nanoliposomes elicited a strong antitumor response comparable to the free delivery of doxorubicin. Overall, our results offered preclinical proof for the use of P18-PEtOx-DOPE-DOX nanoliposomes in KRT-1+ breast cancer therapy.
Collapse
|
27
|
Plesselova S, Garcia-Cerezo P, Blanco V, Reche-Perez FJ, Hernandez-Mateo F, Santoyo-Gonzalez F, Giron-Gonzalez MD, Salto-Gonzalez R. Polyethylenimine-Bisphosphonate-Cyclodextrin Ternary Conjugates: Supramolecular Systems for the Delivery of Antineoplastic Drugs. J Med Chem 2021; 64:12245-12260. [PMID: 34369757 PMCID: PMC8477368 DOI: 10.1021/acs.jmedchem.1c00887] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bisphosphonates (BPs) are bone-binding molecules that provide targeting capabilities to bone cancer cells when conjugated with drug-carrying polymers. This work reports the design, synthesis, and biological evaluation of polyethyleneimine-BP-cyclodextrin (PEI-BP-CD) ternary conjugates with supramolecular capabilities for the loading of antineoplastic drugs. A straightforward, modular, and versatile strategy based on the click aza-Michael addition reaction of vinyl sulfones (VSs) allows the grafting of BPs targeting ligands and βCD carrier appendages to the PEI polymeric scaffold. The in vitro evaluation (cytotoxicity, cellular uptake, internalization routes, and subcellular distribution) for the ternary conjugates and their doxorubicin inclusion complexes in different bone-related cancer cell lines (MC3T3-E1 osteoblasts, MG-63 sarcoma cells, and MDA-MB-231 breast cancer cells) confirmed specificity, mitochondrial targeting, and overall capability to mediate a targeted drug transport to those cells. The in vivo evaluation using xenografts of MG-63 and MDA-MB-231 cells on mice also confirmed the targeting of the conjugates.
Collapse
Affiliation(s)
- Simona Plesselova
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, E-18071 Granada, Spain.,Unit of Excellence in Chemistry Applied to Biomedicine and the Environment of the University of Granada, E-18071 Granada, Spain
| | - Pablo Garcia-Cerezo
- Department of Organic Chemistry, School of Sciences, University of Granada, E-18071 Granada, Spain.,Unit of Excellence in Chemistry Applied to Biomedicine and the Environment of the University of Granada, E-18071 Granada, Spain
| | - Victor Blanco
- Department of Organic Chemistry, School of Sciences, University of Granada, E-18071 Granada, Spain.,Unit of Excellence in Chemistry Applied to Biomedicine and the Environment of the University of Granada, E-18071 Granada, Spain
| | - Francisco J Reche-Perez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, E-18071 Granada, Spain.,Unit of Excellence in Chemistry Applied to Biomedicine and the Environment of the University of Granada, E-18071 Granada, Spain
| | - Fernando Hernandez-Mateo
- Department of Organic Chemistry, School of Sciences, University of Granada, E-18071 Granada, Spain.,Biotechnology Institute, University of Granada, E-18071 Granada, Spain.,Unit of Excellence in Chemistry Applied to Biomedicine and the Environment of the University of Granada, E-18071 Granada, Spain
| | - Francisco Santoyo-Gonzalez
- Department of Organic Chemistry, School of Sciences, University of Granada, E-18071 Granada, Spain.,Biotechnology Institute, University of Granada, E-18071 Granada, Spain.,Unit of Excellence in Chemistry Applied to Biomedicine and the Environment of the University of Granada, E-18071 Granada, Spain
| | - María Dolores Giron-Gonzalez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, E-18071 Granada, Spain.,Unit of Excellence in Chemistry Applied to Biomedicine and the Environment of the University of Granada, E-18071 Granada, Spain
| | - Rafael Salto-Gonzalez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, E-18071 Granada, Spain.,Unit of Excellence in Chemistry Applied to Biomedicine and the Environment of the University of Granada, E-18071 Granada, Spain
| |
Collapse
|
28
|
Wang B, Liu J, Niu D, Wu N, Yun W, Wang W, Zhang K, Li G, Yan S, Xu G, Yin J. Mussel-Inspired Bisphosphonated Injectable Nanocomposite Hydrogels with Adhesive, Self-Healing, and Osteogenic Properties for Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32673-32689. [PMID: 34227792 DOI: 10.1021/acsami.1c06058] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Injectable hydrogels have received much attention because of the advantages of simulation of the natural extracellular matrix, microinvasive implantation, and filling and repairing of complex shape defects. Yet, for bone repair, the current injectable hydrogels have shown significant limitations such as the lack of tissue adhesion, deficiency of self-healing ability, and absence of osteogenic activity. Herein, a strategy to construct mussel-inspired bisphosphonated injectable nanocomposite hydrogels with adhesive, self-healing, and osteogenic properties is developed. The nano-hydroxyapatite/poly(l-glutamic acid)-dextran (nHA/PLGA-Dex) dually cross-linked (DC) injectable hydrogels are fabricated via Schiff base cross-linking and noncovalent nHA-BP chelation. The chelation between bisphosphonate ligands (alendronate sodium, BP) and nHA favors the uniform dispersion of the latter. Moreover, multiple adhesion ligands based on catechol motifs, BP, and aldehyde groups endow the hydrogels with good tissue adhesion. The hydrogels possess excellent biocompatibility and the introduction of BP and nHA both can effectively promote viability, proliferation, migration, and osteogenesis differentiation of MC3T3-E1 cells. The incorporation of BP groups and HA nanoparticles could also facilitate the angiogenic property of endothelial cells. The nHA/PLGA-Dex DC hydrogels exhibited considerable biocompatibility despite the presence of a certain degree of inflammatory response in the early stage. The successful healing of a rat cranial defect further proves the bone regeneration ability of nHA/PLGA-Dex DC injectable hydrogels. The developed tissue adhesive osteogenic injectable nHA/PLGA-Dex hydrogels show significant potential for bone regeneration application.
Collapse
Affiliation(s)
- Bo Wang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Jia Liu
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai 200003, PR China
| | - Dongyang Niu
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai 200003, PR China
| | - Nianqi Wu
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Wentao Yun
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Weidong Wang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Kunxi Zhang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Guifei Li
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Shifeng Yan
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Guohua Xu
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai 200003, PR China
| | - Jingbo Yin
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|
29
|
Bobde Y, Paul M, Patel T, Biswas S, Ghosh B. Polymeric micelles of a copolymer composed of all-trans retinoic acid, methoxy-poly(ethylene glycol), and b-poly(N-(2 hydroxypropyl) methacrylamide) as a doxorubicin-delivery platform and for combination chemotherapy in breast cancer. Int J Pharm 2021; 606:120866. [PMID: 34237409 DOI: 10.1016/j.ijpharm.2021.120866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/20/2021] [Accepted: 07/02/2021] [Indexed: 12/26/2022]
Abstract
Delivery of combination chemotherapeutic agents to the tumor via nanovesicles has the potential for superior tumor suppression and reduced toxicity. Herein, we prepare a block copolymer (mPH-RA) composed of methoxy-poly(ethylene glycol) (mPEG), b-poly(N-(2 hydroxypropyl) methacrylamide) (pHPMA), and all-trans retinoic acid (ATRA) by conjugating ATRA to the pre-formed copolymer, mPEG-b-pHPMA(mP-b-pH). Doxorubicin-loaded micelles, Dox@mP-b-pH, and Dox@mPH-RA were characterized by determining particle size, zeta potential, % DL, EE, Dox release, hemolysis study, and by DSC. The Dox@mPH-RA micelles (mPH-RA: Dox ratios of 10:0.5-2) displayed nano-size (36-45 nm), EE. 26-74%, and DL. 2.9-5.6%. Dox@mPH-RA micelles displayed the highest penetrability and cytotoxicity than free Dox and Dox@mP-b-pH micelles in breast cancer cell lines. Dox@mPH-RA exhibited the highest induction of apoptosis (94.1 ± 3%) than Dox (52.1 ± 4.5%), and Dox@mP-b-pH (81.7 ± 3%), and arrested cells in the highest population in G2 and S phase. Dox@mPH-RA increased the t1/2 and Cmax of Dox and demonstrated improved therapeutic efficacy and highest Dox distribution to the tumor. The Dox@mPH-RA increased the levels of apoptosis markers, caspase 3, 7, Ki-67, and caused the highest DNA fragmentation. The presence of RA improved the micelles' physicochemical properties, Dox-loading ability, and the therapeutic potential in Dox@mPH-RA via the combination therapeutic strategy.
Collapse
Affiliation(s)
- Yamini Bobde
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science - Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, India; Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science - Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, India
| | - Milan Paul
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science - Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, India
| | - Tarun Patel
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science - Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science - Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, India.
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science - Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, India.
| |
Collapse
|
30
|
Ramezani-Aliakbari M, Varshosaz J, Sadeghi-Aliabadi H, Hassanzadeh F, Rostami M. Biotin-Targeted Nanomicellar Formulation of an Anderson-Type Polyoxomolybdate: Synthesis and In Vitro Cytotoxicity Evaluations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6475-6489. [PMID: 34010005 DOI: 10.1021/acs.langmuir.1c00623] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study is aimed at developing a micellar carrier for an Anderson-type manganese polyoxomolybdate (TRIS-MnPOMo) to improve the potency and reduce the general toxicity. The biotin-targeted stearic acid-polyethylene glycol (SPB) polymeric conjugate was selected for the first time as a micelle-forming basis for the delivery of TRIS-MnPOMo to breast cancer cells. The cytotoxicity of TRIS-MnPOMo and its nanomicellar form (TRIS-MnPOMo@SPB) was evaluated against MCF-7, MDA-MB-231 (breast cancer cell lines), and HUVEC (normal cell line) in vitro using the MTT assay. The quantity of cellular uptake and apoptosis level were studied properly using standard methods. The hydrodynamic size, zeta potential, and polydispersity index of the prepared micelles were 140 nm, -15.6 mV, and 0.16, respectively. The critical micelle concentration was about 30 μg/mL, which supports the colloidal stability of the micellar dispersion. The entrapment efficiency was interestingly high (about 82%), and a pH-responsive release of TRIS-MnPOMo was successfully achieved. The micellar form showed better cytotoxicity than the free TRIS-MnPOMo on cancer cells without any significant heme and normal cell toxicity. Biotin-targeted nanomicelles internalized into the MDA-MB-231 cells interestingly better than nontargeted micelles and TRIS-MnPOMo, most probably via the endocytosis pathway. Furthermore, at the same concentration, micelles remarkably increased the level of induced apoptosis in MDA-MB-231 cells. In conclusion, TRIS-MnPOMo@SPB could profoundly improve potency, safety, and cellular uptake; these results are promising for further evaluations in vivo.
Collapse
Affiliation(s)
- Maryam Ramezani-Aliakbari
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Center and Department of Pharmaceutics, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Hojjat Sadeghi-Aliabadi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Farshid Hassanzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Mahboubeh Rostami
- Novel Drug Delivery Systems Research Center and Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| |
Collapse
|
31
|
Samal S, Dash P, Dash M. Drug Delivery to the Bone Microenvironment Mediated by Exosomes: An Axiom or Enigma. Int J Nanomedicine 2021; 16:3509-3540. [PMID: 34045855 PMCID: PMC8149288 DOI: 10.2147/ijn.s307843] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
The increasing incidence of bone-related disorders is causing a burden on the clinical scenario. Even though bone is one of the tissues that possess tremendous regenerative potential, certain bone anomalies need therapeutic intervention through appropriate delivery of a drug. Among several nanosystems and biologics that offer the potential to contribute towards bone healing, the exosomes from the class of extracellular vesicles are outstanding. Exosomes are extracellular nanovesicles that, apart from the various advantages, are standing out of the crowd for their ability to conduct cellular communication. The internal cargo of the exosomes is leading to its potential use in therapeutics. Exosomes are being unraveled in terms of the mechanism as well as application in targeting various diseases and tissues. Through this review, we have tried to understand and review all that is already established and the gap areas that still exist in utilizing them as drug delivery vehicles targeting the bone. The review highlights the potential of the exosomes towards their contribution to the drug delivery scenario in the bone microenvironment. A comparison of the pros and cons of exosomes with other prevalent drug delivery systems is also done. A section on the patents that have been generated so far from this field is included.
Collapse
Affiliation(s)
- Sasmita Samal
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha, 751024, India
| | - Pratigyan Dash
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha, 751024, India
| | - Mamoni Dash
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
| |
Collapse
|
32
|
Chen SH, Liu TI, Chuang CL, Chen HH, Chiang WH, Chiu HC. Alendronate/folic acid-decorated polymeric nanoparticles for hierarchically targetable chemotherapy against bone metastatic breast cancer. J Mater Chem B 2021; 8:3789-3800. [PMID: 32150202 DOI: 10.1039/d0tb00046a] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To considerably enhance treatment efficacy for bone metastatic breast cancer via dual bone/tumor-targeted chemotherapy, a nanoparticle-based delivery system comprising poly(lactic-co-glycolic acid) (PLGA) as the hydrophobic core coated with alendronate-modified d-α-tocopheryl polyethylene glycol succinate (ALN-TPGS) and folic acid-conjugated TPGS (FA-TPGS) was developed as a vehicle for paclitaxel (PTX) in this work. The ALN/FA-decorated nanoparticles not only showed superior ALN-mediated binding affinity for hydroxyapatite abundant in bone tissue but also promoted uptake of payloads by folate receptor-overexpressing cancer cells to significantly augment PTX cytotoxicity. Notably, through dual-targetable delivery to the bone matrix and folate receptor-overexpressing 4T1 tumors, the PTX-loaded nanoparticles substantially accumulated in bone metastases in vivo and inhibited 4T1 tumor growth and lung metastasis, leading to significant improvement of the survival rate of treated mice. Upon treatment with the ALN/FA-decorated PTX-loaded nanoparticles, the bone destruction and bone loss of the tumor-bearing mice were appreciably retarded, and the adverse effects on normal tissues were alleviated. These results demonstrate that the ALN/FA-decorated PTX-loaded delivery system developed in this study shows great promise for the effective treatment of bone metastatic breast cancer.
Collapse
Affiliation(s)
- Shih-Hong Chen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan. and Department of Anesthesiology, Taipei Tzu Chi Hospital, New Taipei City 231, Taiwan and Department of Anesthesiology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Te-I Liu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Cheng-Lin Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Hsin-Hung Chen
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan.
| | - Wen-Hsuan Chiang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan.
| | - Hsin-Cheng Chiu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
33
|
Synthesis and Characterization of Bone Binding Antibiotic-1 (BBA-1), a Novel Antimicrobial for Orthopedic Applications. Molecules 2021; 26:molecules26061541. [PMID: 33799713 PMCID: PMC7999004 DOI: 10.3390/molecules26061541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 11/16/2022] Open
Abstract
Osteomyelitis and orthopedic infections are major clinical problems, limited by a lack of antibiotics specialized for such applications. In this paper, we describe the design and synthesis of a novel bone-binding antibiotic (BBA-1) and its subsequent structural and functional characterization. The synthesis of BBA-1 was the result of a two-step chemical conjugation of cationic selective antimicrobial-90 (CSA-90) and the bisphosphonate alendronate (ALN) via a heterobifunctional linker. This was analytically confirmed by HPLC, FT-IR, MS and NMR spectroscopy. BBA-1 showed rapid binding and high affinity to bone mineral in an in vitro hydroxyapatite binding assay. Kirby—Baur assays confirmed that BBA-1 shows a potent antibacterial activity against Staphylococcus aureus and methicillin-resistant S. aureus comparable to CSA-90. Differentiation of cultured osteoblasts in media supplemented with BBA-1 led to increased alkaline phosphatase expression, which is consistent with the pro-osteogenic activity of CSA-90. Bisphosphonates, such as ALN, are inhibitors of protein prenylation, however, the amine conjugation of ALN to CSA-90 disrupted this activity in an in vitro protein prenylation assay. Overall, these findings support the antimicrobial, bone-binding, and pro-osteogenic activities of BBA-1. The compound and related agents have the potential to ensure lasting activity against osteomyelitis after systemic delivery.
Collapse
|
34
|
Parvarinezhad S, Salehi M. Synthesis, characterization, anti-proliferative activity and chemistry computation of DFT theoretical methods of hydrazine-based Schiff bases derived from methyl acetoacetate and α-hydroxyacetophenone. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
35
|
Baniahmad F, Yousefi S, Rabiee M, Sara Shafiei S, Faghihi S. Alendronate Sodium Intercalation in Layered Double Hydroxide/Poly (ε-caprolactone): Application in Osteoporosis Treatment. IRANIAN JOURNAL OF BIOTECHNOLOGY 2021; 19:e2490. [PMID: 34179186 PMCID: PMC8217540 DOI: 10.30498/ijb.2021.2490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background: Osteoporosis is a bone disease alters the amount and variety of proteins in bone tissue and increases the potential of bone fracture.
Antiresorptive therapy is one of the most popular treatment methods for osteoporosis. To reduce side effects and enhance the bioavailability of drug agents,
the controlled delivery of drug is commonly utilized. Objectives: We investigated the controlled release of Alendronate in different composites of layered double hydroxide (LDH) using poly (ε-caprolactone) (PCL) as a matrix. Materials and Methods: We prepared different microsphere composites of ALD intercalated in various amounts of LDH, using PCL as a matrix.
The controlled release of ALD from these composites is subsequently investigated. Samples are characterized and in vitro cell cytotoxicity, attachment,
osteogenic activity including alkaline phosphatase activity and mineralization are examined using MG-63 human osteosarcoma cells. Results: The results showed that the release of ALD is more desirable and controlled in the samples having a higher amount of LDH incorporated into the
PCL matrix. MG63 cells show a significant increase in viability, attachment, and mineralization while alkaline phosphatase activity remains almost at a constant level after 3 weeks. Conclusions: Overall, the findings showed that by incorporation of 15 wt% of LDH, the composite microsphere is capable of holding the antiresorptive drug longer and release
it in a more controlled manner. This is an advantageous and promising characteristic for a carrier that could be used as a potential candidate for osteoporosis treatment.
Collapse
Affiliation(s)
- Faranak Baniahmad
- Department of Stem cell and Regenerative Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.,Biomaterials Center of Excellence, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Soroor Yousefi
- Department of Stem cell and Regenerative Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterials Center of Excellence, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Seyedeh Sara Shafiei
- Department of Stem cell and Regenerative Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Shahab Faghihi
- Department of Stem cell and Regenerative Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
36
|
Medina OP, Medina TP, Humbert J, Qi B, Baum W, Will O, Damm T, Glüer C. Using Alendronic Acid Coupled Fluorescently Labelled SM Liposomes as a Vehicle for Bone Targeting. Curr Pharm Des 2020; 26:6021-6027. [DOI: 10.2174/1381612826666200614175905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/14/2020] [Indexed: 11/22/2022]
Abstract
Background:
We recently developed a liposomal nanoparticle system that can be used for drug delivery
and simultaneously be monitored by optical or photoacoustic imaging devices. Here we tested the efficacy of
alendronate as a homing molecule in SM-liposomes for bone targeting.
Methods:
Alendronate was immobilized covalently on the liposomal surface and the fluorescent dye indocyanine
green was used as a payload in the liposomes. The indocyanine green delivery was analyzed by 3D optical tomography,
optical fluorescence scanner, photoacoustic imaging, and by ex-vivo biodistribution studies.
Results:
The results show that the alendronate, coupled to the liposomal surface, increases sphingomyelin containing
liposome targeting up to several-folds.
Conclusion:
The alendronate targeted liposomes open possibilities for an application in active bone targeting.
Collapse
Affiliation(s)
- Oula Peñate Medina
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein [UKSH], Kiel University, Kiel, Germany; MOIN CC - Am Botanischen Garten 14 24118 Kiel Germany, Institut für Experimentelle Tumorforschung [IET], Arnold-Heller-Str. 3, Building U3024105 Kiel, Germany
| | - Tuula Peñate Medina
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein [UKSH], Kiel University, Kiel, Germany; MOIN CC - Am Botanischen Garten 14 24118 Kiel Germany, Institut für Experimentelle Tumorforschung [IET], Arnold-Heller-Str. 3, Building U3024105 Kiel, Germany
| | - Jana Humbert
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein [UKSH], Kiel University, Kiel, Germany; MOIN CC - Am Botanischen Garten 14 24118 Kiel Germany, Institut für Experimentelle Tumorforschung [IET], Arnold-Heller-Str. 3, Building U3024105 Kiel, Germany
| | - Bao Qi
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein [UKSH], Kiel University, Kiel, Germany; MOIN CC - Am Botanischen Garten 14 24118 Kiel Germany, Institut für Experimentelle Tumorforschung [IET], Arnold-Heller-Str. 3, Building U3024105 Kiel, Germany
| | - Wolfgang Baum
- Universitätsklinikum Erlangen, Medizinische Klinik 3, Institut für Klinische Immunologie, Glückstrasse 4A, 91054 Erlangen, Germany
| | - Olga Will
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein [UKSH], Kiel University, Kiel, Germany; MOIN CC - Am Botanischen Garten 14 24118 Kiel Germany, Institut für Experimentelle Tumorforschung [IET], Arnold-Heller-Str. 3, Building U3024105 Kiel, Germany
| | - Timo Damm
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein [UKSH], Kiel University, Kiel, Germany; MOIN CC - Am Botanischen Garten 14 24118 Kiel Germany, Institut für Experimentelle Tumorforschung [IET], Arnold-Heller-Str. 3, Building U3024105 Kiel, Germany
| | - Claus Glüer
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein [UKSH], Kiel University, Kiel, Germany; MOIN CC - Am Botanischen Garten 14 24118 Kiel Germany, Institut für Experimentelle Tumorforschung [IET], Arnold-Heller-Str. 3, Building U3024105 Kiel, Germany
| |
Collapse
|
37
|
Thotakura N, Parashar P, Raza K. Assessing the pharmacokinetics and toxicology of polymeric micelle conjugated therapeutics. Expert Opin Drug Metab Toxicol 2020; 17:323-332. [PMID: 33292023 DOI: 10.1080/17425255.2021.1862085] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Analogous to nanocarriers such as nanoparticles, liposomes, nano lipoidal carriers, niosomes, and ethosomes, polymeric micelles have gained significance in the field of drug delivery. They have attracted scientists worldwide by their nanometric size, wide range of polymers available for building block synthesis, stability and potential to enhance the targeting and safety of drugs. Incorporation of drugs within the interior of polymeric micelles alters the drug pharmacokinetics, which generally results in increased efficiency.Areas covered: This review deals with the pharmacokinetics of various anti-neoplastic drugs loaded into micelles. The structure of polymeric micelles, polymers employed in their development and techniques involved will be discussed. This is followed by discussion on the pharmacokinetics of anti-cancer drugs loaded into polymeric micelles and the toxicity concerns associated.Expert opinion: Polymeric micelles are nanometeric carriers, with higher stability, polymeric flexibility and higher drug loading of poorly water-soluble drugs. These nanosystems help in increasing the bioavailability of drugs by encapsulating them within the hydrophobic core. The proper selection and design of the amphiphilic polymer for micelles is a crucial step as it decides the toxicity and the biocompatibility.
Collapse
Affiliation(s)
- Nagarani Thotakura
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Poonam Parashar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, U.P, India
| | - Kaisar Raza
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
38
|
Ordikhani F, Zandi N, Mazaheri M, Luther GA, Ghovvati M, Akbarzadeh A, Annabi N. Targeted nanomedicines for the treatment of bone disease and regeneration. Med Res Rev 2020; 41:1221-1254. [PMID: 33347711 DOI: 10.1002/med.21759] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 10/14/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022]
Abstract
Targeted delivery by either passive or active targeting of therapeutics to the bone is an attractive treatment for various bone related diseases such as osteoporosis, osteosarcoma, multiple myeloma, and metastatic bone tumors. Engineering novel drug delivery carriers can increase therapeutic efficacy and minimize the risk of side effects. Developmnet of nanocarrier delivery systems is an interesting field of ongoing studies with opportunities to provide more effective therapies. In addition, preclinical nanomedicine research can open new opportunities for preclinical bone-targeted drug delivery; nevertheless, further research is needed to progress these therapies towards clinical applications. In the present review, the latest advancements in targeting moieties and nanocarrier drug delivery systems for the treatment of bone diseases are summarized. We also review the regeneration capability and effective delivery of nanomedicines for orthopedic applications.
Collapse
Affiliation(s)
- Farideh Ordikhani
- Transplantation Research Center, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nooshin Zandi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran.,Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Mozhdeh Mazaheri
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Gaurav A Luther
- Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mahsa Ghovvati
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, California, Los Angeles, USA
| | - Abolfazl Akbarzadeh
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA.,Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, California, Los Angeles, USA
| |
Collapse
|
39
|
Supasena W, Muangnoi C, Praengam K, Wong TW, Qiu G, Ye S, Wu J, Tanasupawat S, Rojsitthisak P. Enhanced selective cytotoxicity of doxorubicin to breast cancer cells by methoxypolyethylene glycol conjugation via a novel beta-thiopropanamide linker. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Dhara (Ganguly) M. Smart polymeric nanostructures for targeted delivery of therapeutics. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1842766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mahua Dhara (Ganguly)
- Department of Chemistry, Vivekananda Satavarshiki Mahavidyalaya, Jhargram, West Bengal, India
| |
Collapse
|
41
|
Katsumi H, Yamashita S, Morishita M, Yamamoto A. Bone-Targeted Drug Delivery Systems and Strategies for Treatment of Bone Metastasis. Chem Pharm Bull (Tokyo) 2020; 68:560-566. [DOI: 10.1248/cpb.c20-00017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Shugo Yamashita
- Department of Biopharmaceutics, Kyoto Pharmaceutical University
| | | | - Akira Yamamoto
- Department of Biopharmaceutics, Kyoto Pharmaceutical University
| |
Collapse
|
42
|
Bobde Y, Biswas S, Ghosh B. PEGylated N-(2 hydroxypropyl) methacrylamide-doxorubicin conjugate as pH-responsive polymeric nanoparticles for cancer therapy. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104561] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
43
|
Huang X, Wu W, Yang W, Qing X, Shao Z. Surface engineering of nanoparticles with ligands for targeted delivery to osteosarcoma. Colloids Surf B Biointerfaces 2020; 190:110891. [PMID: 32114271 DOI: 10.1016/j.colsurfb.2020.110891] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 02/08/2023]
Abstract
Osteosarcoma is one of the most common malignant bone tumors which affect adolescents. Neoadjuvant chemotherapy followed by operation has become recommended for osteosarcoma treatment. Whereas, the effects of conventional chemotherapy are unsatisfactory because of multidrug resistance, fast clearance rate, nontargeted delivery, side effects and so on. Accordingly, Nanoparticle-mediated targeted drug delivery system (NTDDS) is recommended to be a novel treatment strategy for osteosarcoma. NTDDS can overcome the above obstacles by enhanced permeability and retention effect and active targeting. The active targeting of the delivery system is mainly based on ligands. In this study, we investigate and summarize the most common ligands used in the latest NTDDS for osteosarcoma. It might provide new insights into nanomedicine for osteosarcoma treatment.
Collapse
Affiliation(s)
- Xin Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Wei Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenbo Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
44
|
Piorecka K, Smith D, Kurjata J, Stanczyk M, Stanczyk WA. Synthetic routes to nanoconjugates of anthracyclines. Bioorg Chem 2020; 96:103617. [PMID: 32014639 DOI: 10.1016/j.bioorg.2020.103617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 02/06/2023]
Abstract
Anthracyclines (Anth) are widely used in the treatment of various types of cancer. Unfortunately, they exhibit serious adverse effects, such as hematopoietic depression and cardiotoxicity, leading to heart failure. In this review, we focus on recently developed conjugates of anthracyclines with a range of nanocarriers, such as polymers, peptides, DNA or inorganic systems. Manipulation of the composition, size and shape of chemical entities at the nanometer scale makes possible the design and development of a range of prodrugs. In this review we concentrate on synthetic chemistry in the long process leading to the introduction of novel therapeutic products.
Collapse
Affiliation(s)
- Kinga Piorecka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - David Smith
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK
| | - Jan Kurjata
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | | | - Wlodzimierz A Stanczyk
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| |
Collapse
|
45
|
Zhang X. Interactions between cancer cells and bone microenvironment promote bone metastasis in prostate cancer. Cancer Commun (Lond) 2019; 39:76. [PMID: 31753020 PMCID: PMC6873445 DOI: 10.1186/s40880-019-0425-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/13/2019] [Indexed: 12/26/2022] Open
Abstract
Bone metastasis is the leading cause of death in prostate cancer patients, for which there is currently no effective treatment. Since the bone microenvironment plays an important role in this process, attentions have been directed to the interactions between cancer cells and the bone microenvironment, including osteoclasts, osteoblasts, and bone stromal cells. Here, we explained the mechanism of interactions between prostate cancer cells and metastasis-associated cells within the bone microenvironment and further discussed the recent advances in targeted therapy of prostate cancer bone metastasis. This review also summarized the effects of bone microenvironment on prostate cancer metastasis and the related mechanisms, and provides insights for future prostate cancer metastasis studies.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Pathology, Jining First People's Hospital, Jining Medical University, No. 6 Jiankang Road, Jining, 272000, Shandong, P. R. China.
| |
Collapse
|
46
|
Zhang CY, Dong X, Gao J, Lin W, Liu Z, Wang Z. Nanoparticle-induced neutrophil apoptosis increases survival in sepsis and alleviates neurological damage in stroke. SCIENCE ADVANCES 2019; 5:eaax7964. [PMID: 31723603 PMCID: PMC6834394 DOI: 10.1126/sciadv.aax7964] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/17/2019] [Indexed: 05/19/2023]
Abstract
Human neutrophils are the most abundant circulating leukocytes and contribute to acute and chronic inflammatory disorders. Neutrophil apoptosis is programed cell death to maintain immune homeostasis, but inflammatory responses to infections or tissue injury disrupt neutrophil death program, leading to many diseases. Precise control of neutrophil apoptosis may resolve inflammation to return immune homeostasis. Here, we report a method in which doxorubicin (DOX)-conjugated protein nanoparticles (NPs) can in situ selectively target inflammatory neutrophils for intracellular delivery of DOX that induces neutrophil apoptosis. We showed that neutrophil uptake of NPs required their activation and was highly selective. DOX release was triggered by acidic environments in neutrophils, subsequently inhibiting neutrophil transmigration and inflammatory responses. In two disease models, DOX-conjugated NPs notably increased mouse survival in sepsis and prevented brain damage in cerebral ischemia/reperfusion, but the NPs did not suppress systemic immunity. Our studies offer a promising strategy to treat inflammatory diseases.
Collapse
Affiliation(s)
- Can Yang Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210, USA
| | - Xinyue Dong
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210, USA
| | - Jin Gao
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210, USA
| | - Wenjing Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Ze Liu
- Office of Research, Washington State University, Spokane, WA 99210, USA
| | - Zhenjia Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210, USA
- Corresponding author.
| |
Collapse
|
47
|
Bai SB, Liu DZ, Cheng Y, Cui H, Liu M, Cui MX, Zhang BL, Mei QB, Zhou SY. Osteoclasts and tumor cells dual targeting nanoparticle to treat bone metastases of lung cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 21:102054. [DOI: 10.1016/j.nano.2019.102054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 02/16/2019] [Accepted: 06/30/2019] [Indexed: 01/01/2023]
|
48
|
Xi Y, Jiang T, Yu Y, Yu J, Xue M, Xu N, Wen J, Wang W, He H, Shen Y, Chen D, Ye X, Webster TJ. Dual targeting curcumin loaded alendronate-hyaluronan- octadecanoic acid micelles for improving osteosarcoma therapy. Int J Nanomedicine 2019; 14:6425-6437. [PMID: 31496695 PMCID: PMC6691947 DOI: 10.2147/ijn.s211981] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/27/2019] [Indexed: 01/24/2023] Open
Abstract
INTRODUCTION Curcumin (CUR) is a general ingredient of traditional Chinese medicine, which has potential antitumor effects. However, its use clinically has been limited due to its low aqueous solubility and bioavailability. In order to improve the therapeutic effect of CUR on osteosarcoma (i.e., bone cancer), a multifunctional micelle was developed here by combining active bone accumulating ability with tumor CD44 targeting capacity. METHODS The CUR loaded micelles were self-assembled by using alendronate-hyaluronic acid-octadecanoic acid (ALN-HA-C18) as an amphiphilic material. The obtained micelles were characterized for size and drug loading. In addition, the in vitro release behavior of CUR was investigated under PBS (pH 5.7) medium containing 1% Tween 80 at 37℃. Furthermore, an hydroxyapatite (the major inorganic component of bone) affinity experiment was studied. In vitro antitumor activity was evaluated. Finally, the anti-tumor efficiency was studied. RESULTS The size and drug loading of the CUR loaded ALN-HA-C18 micelles were about 118 ± 3.6 nm and 6 ± 1.2%, respectively. CUR was released from the ALN-HA-C18 micelles in a sustained manner after 12 h. The hydroxyapatite affinity experiment indicated that CUR loaded ALN-HA-C18 micelles exhibited a high affinity to bone. CUR loaded ALN-HA-C18 micelles exhibited much higher cytotoxic activity against MG-63 cells compared to free CUR. Finally, CUR loaded ALN-HA-C18 micelles effectively delayed anti-tumor growth properties in osteosarcoma bearing mice as compared with free CUR. CONCLUSION The present study suggested that ALN-HA-C18 is a novel promising micelle for osteosarcoma targeting and delivery of the hydrophobic anticancer drug CUR.
Collapse
Affiliation(s)
- Yanhai Xi
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Tingwang Jiang
- Department of Immunology and Microbiology, Institution of Laboratory Medicine of Changshu, Changshu215500, Jiangsu, People’s Republic of China
| | - Yinglan Yu
- Department of Pharmaceutics, Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Jiangmin Yu
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Mintao Xue
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Ning Xu
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Jiankun Wen
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Weiheng Wang
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Hailong He
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Yan Shen
- Department of Pharmaceutics, Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Daquan Chen
- Department of Pharmaceutics, School of Pharmacy, Yantai University, Yantai264005, People’s Republic of China
| | - Xiaojian Ye
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
49
|
Pham TT, Nguyen HT, Phung CD, Pathak S, Regmi S, Ha DH, Kim JO, Yong CS, Kim SK, Choi JE, Yook S, Park JB, Jeong JH. Targeted delivery of doxorubicin for the treatment of bone metastasis from breast cancer using alendronate-functionalized graphene oxide nanosheets. J IND ENG CHEM 2019; 76:310-317. [DOI: 10.1016/j.jiec.2019.03.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
50
|
Sun W, Ge K, Jin Y, Han Y, Zhang H, Zhou G, Yang X, Liu D, Liu H, Liang XJ, Zhang J. Bone-Targeted Nanoplatform Combining Zoledronate and Photothermal Therapy To Treat Breast Cancer Bone Metastasis. ACS NANO 2019; 13:7556-7567. [PMID: 31259530 DOI: 10.1021/acsnano.9b00097] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bone metastasis, a clinical complication of patients with advanced breast cancer, seriously reduces the quality of life. To avoid destruction of the bone matrix, current treatments focus on inhibiting the cancer cell growth and the osteoclast activity through combination therapy. Therefore, it could be beneficial to develop a bone-targeted drug delivery system to treat bone metastasis. Here, a bone-targeted nanoplatform was developed using gold nanorods enclosed inside mesoporous silica nanoparticles (Au@MSNs) which were then conjugated with zoledronic acid (ZOL). The nanoparticles (Au@MSNs-ZOL) not only showed bone-targeting ability in vivo but also inhibited the formation of osteoclast-like cells and promoted osteoblast differentiation in vitro. The combination of Au@MSNs-ZOL and photothermal therapy (PTT), triggered by near-infrared irradiation, inhibited tumor growth both in vitro and in vivo and relieved pain and bone resorption in vivo by inducing apoptosis in cancer cells and improving the bone microenvironment. This single nanoplatform combines ZOL and PTT to provide an exciting strategy for treating breast cancer bone metastasis.
Collapse
Affiliation(s)
- Wentong Sun
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , P.R. China
| | - Kun Ge
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , P.R. China
- Hebei Key Laboratory of Chronic Kidney Diseases and Bone Metabolism , Affiliated Hospital of Hebei University , Baoding 071000 , P.R. China
| | - Yan Jin
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , P.R. China
| | - Yu Han
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , P.R. China
| | - Haisong Zhang
- Hebei Key Laboratory of Chronic Kidney Diseases and Bone Metabolism , Affiliated Hospital of Hebei University , Baoding 071000 , P.R. China
| | - Guoqiang Zhou
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , P.R. China
| | - Xinjian Yang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , P.R. China
| | - Dandan Liu
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , P.R. China
| | - Huifang Liu
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , P.R. China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , No. 11, First North Road , Zhongguancun, Beijing 100190 , P.R. China
| | - Jinchao Zhang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , P.R. China
| |
Collapse
|