1
|
Chen YL, Reddy S, Suzuki A. Reversible and effective cell cycle synchronization method for studying stage-specific processes. Life Sci Alliance 2025; 8:e202403000. [PMID: 40037894 PMCID: PMC11880160 DOI: 10.26508/lsa.202403000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/06/2025] Open
Abstract
The cell cycle is a crucial process for cell proliferation, differentiation, and development. Numerous genes and proteins play pivotal roles at specific cell cycle stages to ensure precise regulation of these events. Understanding the stage-specific regulations of the cell cycle requires the accumulation of cell populations at desired cell cycle stages, typically achieved through cell cycle synchronization using kinase and protein inhibitors. However, suboptimal concentrations of these inhibitors can result in inefficiencies, irreversibility, and unintended cellular defects. In this study, we have optimized effective and reversible cell cycle synchronization protocols for human RPE1 cells by combining high-precision cell cycle identification techniques with high-temporal resolution live-cell imaging. These reproducible synchronization methods offer powerful tools for dissecting cell cycle stage-specific regulatory mechanisms.
Collapse
Affiliation(s)
- Yu-Lin Chen
- https://ror.org/01y2jtd41 McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Syon Reddy
- https://ror.org/01y2jtd41 McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Aussie Suzuki
- https://ror.org/01y2jtd41 McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI, USA
- https://ror.org/01y2jtd41 Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
2
|
Coats JT, Li S, Tanaka TU, Tauro S, Sutherland C, Saurin AT. Elraglusib Induces Cytotoxicity via Direct Microtubule Destabilization Independently of GSK3 Inhibition. CANCER RESEARCH COMMUNICATIONS 2024; 4:3013-3024. [PMID: 39470360 PMCID: PMC11586712 DOI: 10.1158/2767-9764.crc-24-0408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/01/2024] [Accepted: 10/25/2024] [Indexed: 10/30/2024]
Abstract
SIGNIFICANCE Elraglusib was designed as a GSK3 inhibitor and is currently in clinical trials for several cancers. We show conclusively that the target of elraglusib that leads to cytotoxicity is MTs and not GSK3. This has significant implications for ongoing clinical trials of the compound and will help in understanding off-target side effects, inform future clinical trial design, and facilitate the development of biomarkers to predict response.
Collapse
Affiliation(s)
- Josh T. Coats
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Shuyu Li
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Tomoyuki U. Tanaka
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sudhir Tauro
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Calum Sutherland
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Adrian T. Saurin
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
3
|
Chen YL, Reddy S, Suzuki A. Reversible and effective cell cycle synchronization method for studying stage-specific investigations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.02.610832. [PMID: 39282459 PMCID: PMC11398389 DOI: 10.1101/2024.09.02.610832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The cell cycle is a crucial process for cell proliferation, differentiation, and development. Numerous genes and proteins play pivotal roles at specific cell cycle stages to regulate these events precisely. Studying the stage-specific functions of the cell cycle requires accumulating cell populations at the desired cell cycle stage. Cell synchronization, achieved through the use of cell cycle kinase and protein inhibitors, is often employed for this purpose. However, suboptimal concentrations of these inhibitors can result in reduced efficiency, irreversibility, and undesirable cell cycle defects. In this study, we have optimized effective and reversible techniques to synchronize the cell cycle at each stage in human RPE1 cells, utilizing both fixed high-precision cell cycle identification methods and high-temporal live-cell imaging. These reproducible synchronization methods are invaluable for investigating the regulatory mechanisms specific to each cell cycle stage.
Collapse
Affiliation(s)
- Yu-Lin Chen
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Syon Reddy
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
4
|
D'costa M, Bothe A, Das S, Udhaya Kumar S, Gnanasambandan R, George Priya Doss C. CDK regulators—Cell cycle progression or apoptosis—Scenarios in normal cells and cancerous cells. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:125-177. [PMID: 37061330 DOI: 10.1016/bs.apcsb.2022.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Serine/threonine kinases called cyclin-dependent kinases (CDKs) interact with cyclins and CDK inhibitors (CKIs) to control the catalytic activity. CDKs are essential controllers of RNA transcription and cell cycle advancement. The ubiquitous overactivity of the cell cycle CDKs is caused by a number of genetic and epigenetic processes in human cancer, and their suppression can result in both cell cycle arrest and apoptosis. This review focused on CDKs, describing their kinase activity, their role in phosphorylation inhibition, and CDK inhibitory proteins (CIP/KIP, INK 4, RPIC). We next compared the role of different CDKs, mainly p21, p27, p57, p16, p15, p18, and p19, in the cell cycle and apoptosis in cancer cells with respect to normal cells. The current work also draws attention to the use of CDKIs as therapeutics, overcoming the pharmacokinetic barriers of pan-CDK inhibitors, analyze new chemical classes that are effective at attacking the CDKs that control the cell cycle (cdk4/6 or cdk2). It also discusses CDKI's drawbacks and its combination therapy against cancer patients. These findings collectively demonstrate the complexity of cancer cell cycles and the need for targeted therapeutic intervention. In order to slow the progression of the disease or enhance clinical outcomes, new medicines may be discovered by researching the relationship between cell death and cell proliferation.
Collapse
Affiliation(s)
- Maria D'costa
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Anusha Bothe
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Soumik Das
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - S Udhaya Kumar
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - R Gnanasambandan
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| | - C George Priya Doss
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| |
Collapse
|
5
|
Renda F, Miles C, Tikhonenko I, Fisher R, Carlini L, Kapoor TM, Mogilner A, Khodjakov A. Non-centrosomal microtubules at kinetochores promote rapid chromosome biorientation during mitosis in human cells. Curr Biol 2022; 32:1049-1063.e4. [PMID: 35108523 PMCID: PMC8930511 DOI: 10.1016/j.cub.2022.01.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/23/2021] [Accepted: 01/06/2022] [Indexed: 12/18/2022]
Abstract
Proper segregation of chromosomes during mitosis depends on "amphitelic attachments"-load-bearing connections of sister kinetochores to the opposite spindle poles via bundles of microtubules, termed as the "K-fibers." Current models of spindle assembly assume that K-fibers arise largely from stochastic capture of microtubules, which occurs at random times and locations and independently at sister kinetochores. We test this assumption by following the movements of all kinetochores in human cells and determine that most amphitelic attachments form synchronously at a specific stage of spindle assembly and within a spatially distinct domain. This biorientation domain is enriched in bundles of antiparallel microtubules, and perturbation of microtubule bundling changes the temporal and spatial dynamics of amphitelic attachment formation. Structural analyses indicate that interactions of kinetochores with microtubule bundles are mediated by non-centrosomal short microtubules that emanate from most kinetochores during early prometaphase. Computational analyses suggest that momentous molecular motor-driven interactions with antiparallel bundles rapidly convert these short microtubules into nascent K-fibers. Thus, load-bearing connections to the opposite spindle poles form simultaneously on sister kinetochores. In contrast to the uncoordinated sequential attachments of sister kinetochores expected in stochastic models of spindle assembly, our model envisions the formation of amphitelic attachments as a deterministic process in which the chromosomes connect with the spindle poles synchronously at a specific stage of spindle assembly and at a defined location determined by the spindle architecture. Experimental analyses of changes in the kinetochore behavior in cells with perturbed activity of molecular motors CenpE and dynein confirm the predictive power of the model.
Collapse
Affiliation(s)
- Fioranna Renda
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Christopher Miles
- Courant Institute and Department of Biology, New York University, New York, NY, USA; Department of Mathematics and the NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
| | - Irina Tikhonenko
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Rebecca Fisher
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Lina Carlini
- Laboratory of Chemistry and Cell Biology, Rockefeller University, New York, NY, USA
| | - Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, Rockefeller University, New York, NY, USA
| | - Alex Mogilner
- Courant Institute and Department of Biology, New York University, New York, NY, USA.
| | - Alexey Khodjakov
- Wadsworth Center, New York State Department of Health, Albany, NY, USA; Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
6
|
Ettl T, Schulz D, Bauer RJ. The Renaissance of Cyclin Dependent Kinase Inhibitors. Cancers (Basel) 2022; 14:293. [PMID: 35053461 PMCID: PMC8773807 DOI: 10.3390/cancers14020293] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022] Open
Abstract
Cyclin-dependent kinases (CDK) regulate cell cycle progression. During tumor development, altered expression and availability of CDKs strongly contribute to impaired cell proliferation, a hallmark of cancer. In recent years, targeted inhibition of CDKs has shown considerable therapeutic benefit in a variety of tumor entities. Their success is reflected in clinical approvals of specific CDK4/6 inhibitors for breast cancer. This review provides a detailed insight into the molecular mechanisms of CDKs as well as a general overview of CDK inhibition. It also summarizes the latest research approaches and current advances in the treatment of head and neck cancer with CDK inhibitors. Instead of monotherapies, combination therapies with CDK inhibitors may especially provide promising results in tumor therapy. Indeed, recent studies have shown a synergistic effect of CDK inhibition together with chemo- and radio- and immunotherapy in cancer treatment to overcome tumor evasion, which may lead to a renaissance of CDK inhibitors.
Collapse
Affiliation(s)
- Tobias Ettl
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Daniela Schulz
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
- Center for Medical Biotechnology, Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Richard Josef Bauer
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
- Center for Medical Biotechnology, Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
7
|
The PHLPP1 N-Terminal Extension Is a Mitotic Cdk1 Substrate and Controls an Interactome Switch. Mol Cell Biol 2021; 41:e0033320. [PMID: 33397691 PMCID: PMC8088274 DOI: 10.1128/mcb.00333-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PH domain leucine-rich repeat protein phosphatase 1 (PHLPP1) is a tumor suppressor that directly dephosphorylates a wide array of substrates, most notably the prosurvival kinase Akt. However, little is known about the molecular mechanisms governing PHLPP1 itself. Here, we report that PHLPP1 is dynamically regulated in a cell cycle-dependent manner and deletion of PHLPP1 results in mitotic delays and increased rates of chromosomal segregation errors. We show that PHLPP1 is hyperphosphorylated during mitosis by Cdk1 in a functionally uncharacterized region known as the PHLPP1 N-terminal extension (NTE). A proximity-dependent biotin identification (BioID) interaction screen revealed that during mitosis, PHLPP1 dissociates from plasma membrane scaffolds, such as Scribble, by a mechanism that depends on its NTE and gains proximity to kinetochore and mitotic spindle proteins such as KNL1 and TPX2. Our data are consistent with a model in which phosphorylation of PHLPP1 during mitosis regulates binding to its mitotic partners and allows accurate progression through mitosis. The finding that PHLPP1 binds mitotic proteins in a cell cycle- and phosphorylation-dependent manner may have relevance to its tumor-suppressive function.
Collapse
|
8
|
Fujimura A, Hayashi Y, Kato K, Kogure Y, Kameyama M, Shimamoto H, Daitoku H, Fukamizu A, Hirota T, Kimura K. Identification of a novel nucleolar protein complex required for mitotic chromosome segregation through centromeric accumulation of Aurora B. Nucleic Acids Res 2020; 48:6583-6596. [PMID: 32479628 PMCID: PMC7337965 DOI: 10.1093/nar/gkaa449] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 04/24/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022] Open
Abstract
The nucleolus is a membrane-less nuclear structure that disassembles when cells undergo mitosis. During mitosis, nucleolar factors are thus released from the nucleolus and dynamically change their subcellular localization; however, their functions remain largely uncharacterised. Here, we found that a nucleolar factor called nucleolar protein 11 (NOL11) forms a protein complex with two tryptophan-aspartic acid (WD) repeat proteins named WD-repeat protein 43 (WDR43) and Cirhin in mitotic cells. This complex, referred to here as the NWC (NOL11-WDR43-Cirhin) complex, exists in nucleoli during interphase and translocates to the periphery of mitotic chromosomes, i.e., perichromosomal regions. During mitotic progression, both the congression of chromosomes to the metaphase plate and sister chromatid cohesion are impaired in the absence of the NWC complex, as it is required for the centromeric enrichment of Aurora B and the associating phosphorylation of histone H3 at threonine 3. These results reveal the characteristics of a novel protein complex consisting of nucleolar proteins, which is required for regulating kinetochores and centromeres to ensure faithful chromosome segregation.
Collapse
Affiliation(s)
- Akiko Fujimura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Yuki Hayashi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Kazashi Kato
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Yuichiro Kogure
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Mutsuro Kameyama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Haruka Shimamoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Hiroaki Daitoku
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Toru Hirota
- Cancer Institute of the Japanese Foundation for Cancer Research, Division of Experimental Pathology, 3-8-1 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Keiji Kimura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| |
Collapse
|
9
|
Hégarat N, Crncec A, Suarez Peredo Rodriguez MF, Echegaray Iturra F, Gu Y, Busby O, Lang PF, Barr AR, Bakal C, Kanemaki MT, Lamond AI, Novak B, Ly T, Hochegger H. Cyclin A triggers Mitosis either via the Greatwall kinase pathway or Cyclin B. EMBO J 2020; 39:e104419. [PMID: 32350921 PMCID: PMC7265243 DOI: 10.15252/embj.2020104419] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/09/2020] [Accepted: 03/25/2020] [Indexed: 01/23/2023] Open
Abstract
Two mitotic cyclin types, cyclin A and B, exist in higher eukaryotes, but their specialised functions in mitosis are incompletely understood. Using degron tags for rapid inducible protein removal, we analyse how acute depletion of these proteins affects mitosis. Loss of cyclin A in G2-phase prevents mitotic entry. Cells lacking cyclin B can enter mitosis and phosphorylate most mitotic proteins, because of parallel PP2A:B55 phosphatase inactivation by Greatwall kinase. The final barrier to mitotic establishment corresponds to nuclear envelope breakdown, which requires a decisive shift in the balance of cyclin-dependent kinase Cdk1 and PP2A:B55 activity. Beyond this point, cyclin B/Cdk1 is essential for phosphorylation of a distinct subset of mitotic Cdk1 substrates that are essential to complete cell division. Our results identify how cyclin A, cyclin B and Greatwall kinase coordinate mitotic progression by increasing levels of Cdk1-dependent substrate phosphorylation.
Collapse
Affiliation(s)
- Nadia Hégarat
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
| | - Adrijana Crncec
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
| | | | | | - Yan Gu
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
| | - Oliver Busby
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
| | - Paul F Lang
- Department of BiochemistryUniversity of OxfordOxfordUK
| | - Alexis R Barr
- MRC London Institute of Medical ScienceImperial CollegeLondonUK
- Institute of Clinical SciencesFaculty of MedicineImperial CollegeLondonUK
| | - Chris Bakal
- Institute for Cancer ResearchChester Beatty LaboratoriesLondonUK
| | - Masato T Kanemaki
- National Institute of GeneticsResearch Organization of Information and Systems (ROIS)MishimaJapan
- Department of GeneticsSOKENDAI (The Graduate University of Advanced Studies)MishimaJapan
| | - Angus I Lamond
- Centre for Gene Regulation and ExpressionSchool of Life SciencesUniversity of DundeeDundeeUK
| | - Bela Novak
- Department of BiochemistryUniversity of OxfordOxfordUK
| | - Tony Ly
- Wellcome Trust Centre for Cell BiologyUniversity of EdinburghEdinburghUK
| | - Helfrid Hochegger
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
| |
Collapse
|
10
|
Gowans LJ, Cameron-Christie S, Slayton RL, Busch T, Romero-Bustillos M, Eliason S, Sweat M, Sobreira N, Yu W, Kantaputra PN, Wohler E, Adeyemo WL, Lachke SA, Anand D, Campbell C, Drummond BK, Markie DM, van Vuuren WJ, van Vuuren LJ, Casamassimo PS, Ettinger R, Owais A, van Staden I, Amendt BA, Adeyemo AA, Murray JC, Robertson SP, Butali A. Missense Pathogenic variants in KIF4A Affect Dental Morphogenesis Resulting in X-linked Taurodontism, Microdontia and Dens-Invaginatus. Front Genet 2019; 10:800. [PMID: 31616463 PMCID: PMC6764483 DOI: 10.3389/fgene.2019.00800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 07/30/2019] [Indexed: 12/13/2022] Open
Abstract
The etiology of dental anomalies is multifactorial; and genetic and environmental factors that affect the dental lamina have been implicated. We investigated two families of European ancestry in which males were affected by taurodontism, microdontia and dens invaginatus. In both families, males were related to each other via unaffected females. A linkage analysis was conducted in a New Zealand family, followed by exome sequencing and focused analysis of the X-chromosome. In a US family, exome sequencing of the X-chromosome was followed by Sanger sequencing to conduct segregation analyses. We identified two independent missense variants in KIF4A that segregate in affected males and female carriers. The variant in a New Zealand family (p.Asp371His) predicts the substitution of a residue in the motor domain of the protein while the one in a US family (p.Arg771Lys) predicts the substitution of a residue in the domain that interacts with Protein Regulator of Cytokinesis 1 (PRC1). We demonstrated that the gene is expressed in the developing tooth bud during development, and that the p.Arg771Lys variant influences cell migration in an in vitro assay. These data implicate missense variations in KIF4A in a pathogenic mechanism that causes taurodontism, microdontia and dens invaginatus phenotypes.
Collapse
Affiliation(s)
- Lord J.J. Gowans
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Sophia Cameron-Christie
- Department of Women’s and Children’s Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Rebecca L. Slayton
- Department of Pediatric Dentistry, University of Washington, Seattle, WA, United States
| | - Tamara Busch
- Department of Oral Pathology, Radiology and Medicine, University of Iowa, Iowa City, IA, United States
| | | | - Steven Eliason
- Department of Anatomy, University of Iowa, Iowa City, IA, United States
| | - Mason Sweat
- Department of Anatomy, University of Iowa, Iowa City, IA, United States
| | - Nara Sobreira
- Institute of Genetic Medicine, John Hopkins University, Baltimore, MD, United States
| | - Wenjie Yu
- Department of Anatomy, University of Iowa, Iowa City, IA, United States
| | - Piranit N. Kantaputra
- Center of Excellence in Medical Genetics Research, Chiang Mai University, Chiang Mai, Thailand
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Elizabeth Wohler
- Institute of Genetic Medicine, John Hopkins University, Baltimore, MD, United States
| | - Wasiu Lanre Adeyemo
- Department of Oral and Maxillofacial Surgery, University of Lagos, Lagos, Nigeria
| | - Salil A. Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Collen Campbell
- Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
| | | | - David M. Markie
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | | | | | - Paul S. Casamassimo
- Department of Pediatric Dentistry, Ohio State University, Columbus, OH, United States
| | - Ronald Ettinger
- Department of Prosthodontics, University of Iowa, Iowa City, IA, United States
| | - Arwa Owais
- Department of Pediatric Dentistry, College of Dentistry, University of Iowa, Iowa City, IA, United States
| | - I. van Staden
- Department of Oral Sciences, University of Otago, Dunedin, New Zealand
| | - Brad A. Amendt
- Department of Anatomy, University of Iowa, Iowa City, IA, United States
| | | | - Jeffrey C. Murray
- Department of Pediatrics University of Iowa, Iowa City, IA, United States
| | - Stephen P. Robertson
- Department of Women’s and Children’s Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Azeez Butali
- Department of Oral Pathology, Radiology and Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
11
|
She ZY, Wei YL, Lin Y, Li YL, Lu MH. Mechanisms of the Ase1/PRC1/MAP65 family in central spindle assembly. Biol Rev Camb Philos Soc 2019; 94:2033-2048. [PMID: 31343816 DOI: 10.1111/brv.12547] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 06/27/2019] [Accepted: 07/03/2019] [Indexed: 01/08/2023]
Abstract
During cytokinesis, the organization of the spindle midzone and chromosome segregation is controlled by the central spindle, a microtubule cytoskeleton containing kinesin motors and non-motor microtubule-associated proteins. The anaphase spindle elongation 1/protein regulator of cytokinesis 1/microtubule associated protein 65 (Ase1/PRC1/MAP65) family of microtubule-bundling proteins are key regulators of central spindle assembly, mediating microtubule crosslinking and spindle elongation in the midzone. Ase1/PRC1/MAP65 serves as a complex regulatory platform for the recruitment of other midzone proteins at the spindle midzone. Herein, we summarize recent advances in understanding of the structural domains and molecular kinetics of the Ase1/PRC1/MAP65 family. We summarize the regulatory network involved in post-translational modifications of Ase1/PRC1 by cyclin-dependent kinase 1 (Cdk1), cell division cycle 14 (Cdc14) and Polo-like kinase 1 (Plk1) and also highlight multiple functions of Ase1/PRC1 in central spindle organization, spindle elongation and cytokinesis during cell division.
Collapse
Affiliation(s)
- Zhen-Yu She
- Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Ya-Lan Wei
- Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Yang Lin
- Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Yue-Ling Li
- Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Ming-Hui Lu
- Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| |
Collapse
|
12
|
Pamula MC, Carlini L, Forth S, Verma P, Suresh S, Legant WR, Khodjakov A, Betzig E, Kapoor TM. High-resolution imaging reveals how the spindle midzone impacts chromosome movement. J Cell Biol 2019; 218:2529-2544. [PMID: 31248912 PMCID: PMC6683753 DOI: 10.1083/jcb.201904169] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/21/2019] [Accepted: 05/30/2019] [Indexed: 12/11/2022] Open
Abstract
Microtubule bundles in the spindle midzone have been reported to either promote or hinder chromosome movement. Pamula et al. examine the assembly dynamics of midzone microtubule bundles during anaphase and how chromosome segregation is impacted by aberrant bundle assembly. In the spindle midzone, microtubules from opposite half-spindles form bundles between segregating chromosomes. Microtubule bundles can either push or restrict chromosome movement during anaphase in different cellular contexts, but how these activities are achieved remains poorly understood. Here, we use high-resolution live-cell imaging to analyze individual microtubule bundles, growing filaments, and chromosome movement in dividing human cells. Within bundles, filament overlap length marked by the cross-linking protein PRC1 decreases during anaphase as chromosome segregation slows. Filament ends within microtubule bundles appear capped despite dynamic PRC1 turnover and submicrometer proximity to growing microtubules. Chromosome segregation distance and rate are increased in two human cell lines when microtubule bundle assembly is prevented via PRC1 knockdown. Upon expressing a mutant PRC1 with reduced microtubule affinity, bundles assemble but chromosome hypersegregation is still observed. We propose that microtubule overlap length reduction, typically linked to pushing forces generated within filament bundles, is needed to properly restrict spindle elongation and position chromosomes within daughter cells.
Collapse
Affiliation(s)
- Melissa C Pamula
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY
| | - Lina Carlini
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY
| | - Scott Forth
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY
| | - Priyanka Verma
- Department of Cancer Biology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Subbulakshmi Suresh
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY
| | - Wesley R Legant
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC.,Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, NC
| | - Alexey Khodjakov
- Wadsworth Center, New York State Department of Health, Albany, NY
| | - Eric Betzig
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA.,Department of Physics and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY
| |
Collapse
|
13
|
van Harten AM, Buijze M, van der Mast R, Rooimans MA, Martens-de Kemp SR, Bachas C, Brink A, Stigter-van Walsum M, Wolthuis RMF, Brakenhoff RH. Targeting the cell cycle in head and neck cancer by Chk1 inhibition: a novel concept of bimodal cell death. Oncogenesis 2019; 8:38. [PMID: 31209198 PMCID: PMC6572811 DOI: 10.1038/s41389-019-0147-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/19/2019] [Accepted: 04/17/2019] [Indexed: 12/14/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) coincide with poor survival rates. The lack of driver oncogenes complicates the development of targeted treatments for HNSCC. Here, we follow-up on two previous genome-wide RNA and microRNA interference screens in HNSCC to cross-examine tumor-specific lethality by targeting ATM, ATR, CHEK1, or CHEK2. Our results uncover CHEK1 as the most promising target for HNSCC. CHEK1 expression is essential across a panel of HNSCC cell lines but redundant for growth and survival of untransformed oral keratinocytes and fibroblasts. LY2603618 (Rabusertib), which specifically targets Chk1 kinase, kills HNSCC cells effectively and specifically. Our findings show that HNSCC cells depend on Chk1-mediated signaling to progress through S-phase successfully. Chk1 inhibition coincides with stalled DNA replication, replication fork collapses, and accumulation of DNA damage. We further show that Chk1 inhibition leads to bimodal HNSCC cell killing. In the most sensitive cell lines, apoptosis is induced in S-phase, whereas more resistant cell lines manage to bypass replication-associated apoptosis, but accumulate chromosomal breaks that become lethal in subsequent mitosis. Interestingly, CDK1 expression correlates with treatment outcome. Moreover, sensitivity to Chk1 inhibition requires functional CDK1 and CDK4/6 to drive cell cycle progression, arguing against combining Chk1 inhibitors with CDK inhibitors. In contrast, Wee1 inhibitor Adavosertib progresses the cell cycle and thereby increases lethality to Chk1 inhibition in HNSCC cell lines. We conclude that Chk1 has become a key molecule in HNSCC cell cycle regulation and a very promising therapeutic target. Chk1 inhibition leads to S-phase apoptosis or death in mitosis. We provide a potential efficacy biomarker and combination therapy to follow-up in clinical setting.
Collapse
Affiliation(s)
- Anne M van Harten
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Section Tumor Biology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Marijke Buijze
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Section Tumor Biology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Richard van der Mast
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Section Tumor Biology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Martin A Rooimans
- Amsterdam UMC, Vrije Universiteit Amsterdam, Clinical Genetics, Section Oncogenetics, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Sanne R Martens-de Kemp
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Section Tumor Biology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Costa Bachas
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Section Tumor Biology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Arjen Brink
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Section Tumor Biology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Marijke Stigter-van Walsum
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Section Tumor Biology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Rob M F Wolthuis
- Amsterdam UMC, Vrije Universiteit Amsterdam, Clinical Genetics, Section Oncogenetics, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Ruud H Brakenhoff
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Section Tumor Biology, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Phosphoregulation of the oncogenic protein regulator of cytokinesis 1 (PRC1) by the atypical CDK16/CCNY complex. Exp Mol Med 2019; 51:1-17. [PMID: 30992425 PMCID: PMC6467995 DOI: 10.1038/s12276-019-0242-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/11/2018] [Accepted: 01/02/2019] [Indexed: 01/03/2023] Open
Abstract
CDK16 (also known as PCTAIRE1 or PCTK1) is an atypical member of the cyclin-dependent kinase (CDK) family that forms an active complex with cyclin Y (CCNY). Although both proteins have been recently implicated in cancer pathogenesis, it is still unclear how the CDK16/CCNY complex exerts its biological activity. To understand the CDK16/CCNY network, we used complementary proteomic approaches to identify potential substrates of this complex. We identified several candidates implicating the CDK16/CCNY complex in cytoskeletal dynamics, and we focused on the microtubule-associated protein regulator of cytokinesis (PRC1), an essential protein for cell division that organizes antiparallel microtubules and whose deregulation may drive genomic instability in cancer. Using analog-sensitive (AS) CDK16 generated by CRISPR-Cas9 mutagenesis in 293T cells, we found that specific inhibition of CDK16 induces PRC1 dephosphorylation at Thr481 and delocalization to the nucleus during interphase. The observation that CDK16 inhibition and PRC1 downregulation exhibit epistatic effects on cell viability confirms that these proteins can act through a single pathway. In conclusion, we identified PRC1 as the first substrate of the CDK16/CCNY complex and demonstrated that the proliferative function of CDK16 is mediated by PRC1 phosphorylation. As CDK16 is emerging as a critical node in cancer, our study reveals novel potential therapeutic targets. Studying the activity of proteins that work together to control cell division is revealing several that might be suitable targets for new drugs to fight cancer. Researchers led by Josep Clotet and Mariana Ribeiro at the International University of Catalonia, Barcelona, Spain, investigated the activities of the complex formed between two proteins, CDK16 and CCNY. CDK16 is an enzyme that modifies other molecules by adding phosphate groups (PO4) to them. CCNY is a protein that controls the activity of CDK16 and other proteins. Previous research has suggested a role for the complex in the development of cancer, but the mechanism has been unclear. The researchers found that the CDK16/CCNY complex activates proteins that control the network of microtubules in cells known as the cytoskeleton. One of these proteins, PRC1, is essential for cell division.
Collapse
|
15
|
The multiple functions of kinesin-4 family motor protein KIF4 and its clinical potential. Gene 2018; 678:90-99. [DOI: 10.1016/j.gene.2018.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023]
|
16
|
Tipton AR, Wren JD, Daum JR, Siefert JC, Gorbsky GJ. GTSE1 regulates spindle microtubule dynamics to control Aurora B kinase and Kif4A chromokinesin on chromosome arms. J Cell Biol 2017; 216:3117-3132. [PMID: 28821562 PMCID: PMC5626529 DOI: 10.1083/jcb.201610012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 04/20/2017] [Accepted: 07/12/2017] [Indexed: 12/24/2022] Open
Abstract
In mitosis, the dynamic assembly and disassembly of microtubules are critical for normal chromosome movement and segregation. Microtubule turnover varies among different mitotic spindle microtubules, dictated by their spatial distribution within the spindle. How turnover among the various classes of spindle microtubules is differentially regulated and the resulting significance of differential turnover for chromosome movement remains a mystery. As a new tactic, we used global microarray meta-analysis (GAMMA), a bioinformatic method, to identify novel regulators of mitosis, and in this study, we describe G2- and S phase-expressed protein 1 (GTSE1). GTSE1 is expressed exclusively in late G2 and M phase. From nuclear envelope breakdown until anaphase onset, GTSE1 binds preferentially to the most stable mitotic spindle microtubules and promotes their turnover. Cells depleted of GTSE1 show defects in chromosome alignment at the metaphase plate and in spindle pole integrity. These defects are coupled with an increase in the proportion of stable mitotic spindle microtubules. A consequence of this reduced microtubule turnover is diminished recruitment and activity of Aurora B kinase on chromosome arms. This decrease in Aurora B results in diminished binding of the chromokinesin Kif4A to chromosome arms.
Collapse
Affiliation(s)
- Aaron R Tipton
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Jonathan D Wren
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - John R Daum
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Joseph C Siefert
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Gary J Gorbsky
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
17
|
Tadesse S, Yu M, Mekonnen LB, Lam F, Islam S, Tomusange K, Rahaman MH, Noll B, Basnet SKC, Teo T, Albrecht H, Milne R, Wang S. Highly Potent, Selective, and Orally Bioavailable 4-Thiazol-N-(pyridin-2-yl)pyrimidin-2-amine Cyclin-Dependent Kinases 4 and 6 Inhibitors as Anticancer Drug Candidates: Design, Synthesis, and Evaluation. J Med Chem 2017; 60:1892-1915. [PMID: 28156111 DOI: 10.1021/acs.jmedchem.6b01670] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cyclin D dependent kinases (CDK4 and CDK6) regulate entry into S phase of the cell cycle and are validated targets for anticancer drug discovery. Herein we detail the discovery of a novel series of 4-thiazol-N-(pyridin-2-yl)pyrimidin-2-amine derivatives as highly potent and selective inhibitors of CDK4 and CDK6. Medicinal chemistry optimization resulted in 83, an orally bioavailable inhibitor molecule with remarkable selectivity. Repeated oral administration of 83 caused marked inhibition of tumor growth in MV4-11 acute myeloid leukemia mouse xenografts without having a negative effect on body weight and showing any sign of clinical toxicity. The data merit 83 as a clinical development candidate.
Collapse
Affiliation(s)
- Solomon Tadesse
- Center for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, and Center for Cancer Biology, University of South Australia , Adelaide, South Australia 5001, Australia
| | - Mingfeng Yu
- Center for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, and Center for Cancer Biology, University of South Australia , Adelaide, South Australia 5001, Australia
| | - Laychiluh B Mekonnen
- Center for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, and Center for Cancer Biology, University of South Australia , Adelaide, South Australia 5001, Australia
| | - Frankie Lam
- Center for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, and Center for Cancer Biology, University of South Australia , Adelaide, South Australia 5001, Australia
| | - Saiful Islam
- Center for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, and Center for Cancer Biology, University of South Australia , Adelaide, South Australia 5001, Australia
| | - Khamis Tomusange
- Center for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, and Center for Cancer Biology, University of South Australia , Adelaide, South Australia 5001, Australia
| | - Muhammed H Rahaman
- Center for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, and Center for Cancer Biology, University of South Australia , Adelaide, South Australia 5001, Australia
| | - Benjamin Noll
- Center for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, and Center for Cancer Biology, University of South Australia , Adelaide, South Australia 5001, Australia
| | - Sunita K C Basnet
- Center for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, and Center for Cancer Biology, University of South Australia , Adelaide, South Australia 5001, Australia
| | - Theodosia Teo
- Center for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, and Center for Cancer Biology, University of South Australia , Adelaide, South Australia 5001, Australia
| | - Hugo Albrecht
- Center for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, and Center for Cancer Biology, University of South Australia , Adelaide, South Australia 5001, Australia
| | - Robert Milne
- Center for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, and Center for Cancer Biology, University of South Australia , Adelaide, South Australia 5001, Australia
| | - Shudong Wang
- Center for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, and Center for Cancer Biology, University of South Australia , Adelaide, South Australia 5001, Australia
| |
Collapse
|
18
|
Abstract
Progression through the meiotic cell cycle must be strictly regulated in oocytes to generate viable embryos and offspring. During mitosis, the kinesin motor protein Kif4 is indispensable for chromosome condensation and separation, midzone formation and cytokinesis. Additionally, the bioactivity of Kif4 is dependent on phosphorylation via Aurora Kinase B and Cdk1, which regulate Kif4 function throughout mitosis. Here, we examine the role of Kif4 in mammalian oocyte meiosis. Kif4 localized in the cytoplasm throughout meiosis I and II, but was also observed to have a dynamic subcellular distribution, associating with both microtubules and kinetochores at different stages of development. Co-localization and proximity ligation assays revealed that the kinetochore proteins, CENP-C and Ndc80, are potential Kif4 interacting proteins. Functional analysis of Kif4 in oocytes via antisense knock-down demonstrated that this protein was not essential for meiosis I completion. However, Kif4 depleted oocytes displayed enlarged polar bodies and abnormal metaphase II spindles, indicating an essential role for this protein for correct asymmetric cell division in meiosis I. Further investigation of the phosphoregulation of meiotic Kif4 revealed that Aurora Kinase and Cdk activity is critical for Kif4 kinetochore localization and interaction with Ndc80 and CENP-C. Finally, Kif4 protein but not gene expression was found to be upregulated with age, suggesting a role for this protein in the decline of oocyte quality with age.
Collapse
|
19
|
Hégarat N, Rata S, Hochegger H. Bistability of mitotic entry and exit switches during open mitosis in mammalian cells. Bioessays 2016; 38:627-43. [PMID: 27231150 DOI: 10.1002/bies.201600057] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mitotic entry and exit are switch-like transitions that are driven by the activation and inactivation of Cdk1 and mitotic cyclins. This simple on/off reaction turns out to be a complex interplay of various reversible reactions, feedback loops, and thresholds that involve both the direct regulators of Cdk1 and its counteracting phosphatases. In this review, we summarize the interplay of the major components of the system and discuss how they work together to generate robustness, bistability, and irreversibility. We propose that it may be beneficial to regard the entry and exit reactions as two separate reversible switches that are distinguished by differences in the state of phosphatase activity, mitotic proteolysis, and a dramatic rearrangement of cellular components after nuclear envelope breakdown, and discuss how the major Cdk1 activity thresholds could be determined for these transitions.
Collapse
Affiliation(s)
- Nadia Hégarat
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Scott Rata
- Department of Biochemistry, Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford, UK
| | - Helfrid Hochegger
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| |
Collapse
|
20
|
Lackner DH, Carré A, Guzzardo PM, Banning C, Mangena R, Henley T, Oberndorfer S, Gapp BV, Nijman SM, Brummelkamp TR, Bürckstümmer T. A generic strategy for CRISPR-Cas9-mediated gene tagging. Nat Commun 2015; 6:10237. [PMID: 26674669 PMCID: PMC4703899 DOI: 10.1038/ncomms10237] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/20/2015] [Indexed: 02/06/2023] Open
Abstract
Genome engineering has been greatly enhanced by the availability of Cas9 endonuclease that can be targeted to almost any genomic locus using so called guide RNAs (gRNAs). However, the introduction of foreign DNA sequences to tag an endogenous gene is still cumbersome as it requires the synthesis or cloning of homology templates. Here we present a strategy that enables the tagging of endogenous loci using one generic donor plasmid. It contains the tag of interest flanked by two gRNA recognition sites that allow excision of the tag from the plasmid. Co-transfection of cells with Cas9, a gRNA specifying the genomic locus of interest, the donor plasmid and a cassette-specific gRNA triggers the insertion of the tag by a homology-independent mechanism. The strategy is efficient and delivers clones that display a predictable integration pattern. As showcases we generated NanoLuc luciferase- and TurboGFP-tagged reporter cell lines.
Collapse
Affiliation(s)
| | - Alexia Carré
- Horizon Genomics, Campus Vienna Biocenter 3, 1030 Vienna, Austria
| | | | - Carina Banning
- Horizon Genomics, Campus Vienna Biocenter 3, 1030 Vienna, Austria
| | - Ramu Mangena
- Horizon Discovery, 7100 Cambridge Research Park, Waterbeach, Cambridge CB25 9TL, UK
| | - Tom Henley
- Horizon Discovery, 7100 Cambridge Research Park, Waterbeach, Cambridge CB25 9TL, UK
| | | | - Bianca V. Gapp
- Ludwig Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Sebastian M.B. Nijman
- Ludwig Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | | | | |
Collapse
|