1
|
Guo Y, Quirk K, Kelley DH, Thomas JH. Advection and diffusion in perivascular and extracellular spaces in the brain. J R Soc Interface 2025; 22:20250010. [PMID: 40393523 DOI: 10.1098/rsif.2025.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/06/2025] [Accepted: 02/25/2025] [Indexed: 05/22/2025] Open
Abstract
Knowledge of the relative importance of advection and diffusion in clearing waste from the brain has been elusive, especially concerning the extracellular space (ECS). With local and global computational models of the mouse brain, we explore how the presence or absence of advection in the ECS affects solute transport. Without advection in the ECS, clearance would occur by diffusion into flowing cerebrospinal fluid in perivascular spaces (PVSs) or elsewhere, but we find this process to be severely limited by build-up of solute in the PVSs. We simulate flow in the ECS driven by a pressure drop between arteriole and venule PVSs, which enhances clearance considerably. To assess the relative importance of advection and diffusion, we introduce a local Péclet number [Formula: see text], a dimensionless scalar field. For our simulations, [Formula: see text] through much of the ECS but [Formula: see text] near PVSs near the brain surface. This local dominance of advection in the ECS establishes a clearance mechanism markedly different from that produced by diffusion alone. In network simulations that explore different parameter values and efflux routes, the pressures needed to drive the PVS flows measured in vivo are unrealistically large for most cases lacking ECS flow. Collectively, our models indicate that a flow in the ECS is necessary to explain experimental measurements and maintain homeostasis.
Collapse
Affiliation(s)
- Yisen Guo
- Mechanical Engineering, University of Rochester, Rochester, NY, USA
| | - Keelin Quirk
- Mechanical Engineering, University of Rochester, Rochester, NY, USA
| | - Douglas H Kelley
- Mechanical Engineering, University of Rochester, Rochester, NY, USA
| | - John H Thomas
- Mechanical Engineering, University of Rochester, Rochester, NY, USA
| |
Collapse
|
2
|
Siri S, Burchett A, Datta M. Simulating the impact of tumor mechanical forces on glymphatic networks in the brain parenchyma. Biomech Model Mechanobiol 2024; 23:2229-2241. [PMID: 39298038 PMCID: PMC11554883 DOI: 10.1007/s10237-024-01890-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024]
Abstract
The brain glymphatic system is currently being explored in the context of many neurological disorders and diseases, including traumatic brain injury, Alzheimer's disease, and ischemic stroke. However, little is known about the impact of brain tumors on glymphatic function. Mechanical forces generated during tumor development and growth may be responsible for compromised glymphatic transport pathways, reducing waste clearance and cerebrospinal fluid (CSF) transport in the brain parenchyma. One such force is solid stress, i.e., growth-induced forces from cell hyperproliferation and excess matrix deposition. Because there are no prior studies assessing the impact of tumor-derived solid stress on glymphatic system structure and performance in the brain parenchyma, this study serves to fill an important gap in the field. We adapted a previously developed Electrical Analog Model using MATLAB Simulink for glymphatic transport coupled with Finite Element Analysis for tumor mechanical stresses and strains in COMSOL. This allowed simulation of the impact of tumor mechanical force generation on fluid transport within brain parenchymal glymphatic units-which include perivascular spaces, astrocytic networks, interstitial spaces, and capillary basement membranes. We conducted a parametric analysis to compare the contributions of tumor size, tumor proximity, and ratio of glymphatic subunits to the stress and strain experienced by the glymphatic unit and corresponding reduction in flow rate of CSF. Mechanical stresses intensify with proximity to the tumor and increasing tumor size, highlighting the vulnerability of nearby glymphatic units to tumor-derived forces. Our stress and strain profiles reveal compressive deformation of these surrounding glymphatics and demonstrate that varying the relative contributions of astrocytes vs. interstitial spaces impact the resulting glymphatic structure significantly under tumor mechanical forces. Increased tumor size and proximity caused increased stress and strain across all glymphatic subunits, as does decreased astrocyte composition. Indeed, our model reveals an inverse correlation between extent of astrocyte contribution to the composition of the glymphatic unit and the resulting mechanical stress. This increased mechanical strain across the glymphatic unit decreases the venous efflux rate of CSF, dependent on the degree of strain and the specific glymphatic subunit of interest. For example, a 20% mechanical strain on capillary basement membranes does not significantly decrease venous efflux (2% decrease in flow rates), while the same magnitude of strain on astrocyte networks and interstitial spaces decreases efflux flow rates by 7% and 22%, respectively. Our simulations reveal that solid stress from growing brain tumors directly reduces glymphatic fluid transport, independently from biochemical effects from cancer cells. Understanding these pathophysiological implications is crucial for developing targeted interventions aimed at restoring effective waste clearance mechanisms in the brain. This study opens potential avenues for future experimental research in brain tumor-related glymphatic dysfunction.
Collapse
Affiliation(s)
- Saeed Siri
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Alice Burchett
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Meenal Datta
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
3
|
Quirk K, Boster KAS, Tithof J, Kelley DH. A brain-wide solute transport model of the glymphatic system. J R Soc Interface 2024; 21:20240369. [PMID: 39439312 PMCID: PMC11496954 DOI: 10.1098/rsif.2024.0369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/31/2024] [Accepted: 09/04/2024] [Indexed: 10/25/2024] Open
Abstract
Brain waste is largely cleared via diffusion and advection in cerebrospinal fluid (CSF). CSF flows through a pathway referred to as the glymphatic system, which is also being targeted for delivering drugs to the brain. Despite the importance of solute transport, no brain-wide models for predicting clearance and delivery through perivascular pathways and adjacent parenchyma existed. We devised such a model by upgrading an existing model of CSF flow in the mouse brain to additionally solve advection-diffusion equations, thereby estimating solute transport. We simulated steady-state transport of 3 kDa dextran injected proximal to the perivascular space (PVS) of the middle cerebral artery, mimicking in vivo experiments. We performed a sensitivity analysis of 11 biological properties of PVSs and brain parenchyma by repeatedly simulating solute transport with varying parameter values. Parameter combinations that led to a large total pressure gradient, poor CSF perfusion or a steep solute gradient were deemed unrealistic. Solute concentrations in parenchyma were most sensitive to changes in pial PVS size, as this parameter linearly affects volume flow rates. We also found that realistic transport requires both highly permeable penetrating PVSs and high-resistance parenchyma. This study highlights the potential of brain-wide models to provide insights into solute transport processes.
Collapse
Affiliation(s)
- Keelin Quirk
- Department of Mechanical Engineering, University of Rochester, Rochester, NY14627, USA
| | - Kimberly A. S. Boster
- Department of Mechanical Engineering, University of Rochester, Rochester, NY14627, USA
| | - Jeffrey Tithof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN55455, USA
| | - Douglas H. Kelley
- Department of Mechanical Engineering, University of Rochester, Rochester, NY14627, USA
| |
Collapse
|
4
|
Sriram S, Carstens K, Dewing W, Fiacco TA. Astrocyte regulation of extracellular space parameters across the sleep-wake cycle. Front Cell Neurosci 2024; 18:1401698. [PMID: 38988660 PMCID: PMC11233815 DOI: 10.3389/fncel.2024.1401698] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/07/2024] [Indexed: 07/12/2024] Open
Abstract
Multiple subfields of neuroscience research are beginning to incorporate astrocytes into current frameworks of understanding overall brain physiology, neuronal circuitry, and disease etiology that underlie sleep and sleep-related disorders. Astrocytes have emerged as a dynamic regulator of neuronal activity through control of extracellular space (ECS) volume and composition, both of which can vary dramatically during different levels of sleep and arousal. Astrocytes are also an attractive target of sleep research due to their prominent role in the glymphatic system, a method by which toxic metabolites generated during wakefulness are cleared away. In this review we assess the literature surrounding glial influences on fluctuations in ECS volume and composition across the sleep-wake cycle. We also examine mechanisms of astrocyte volume regulation in glymphatic solute clearance and their role in sleep and wake states. Overall, findings highlight the importance of astrocytes in sleep and sleep research.
Collapse
Affiliation(s)
- Sandhya Sriram
- Interdepartmental Graduate Program in Neuroscience, University of California, Riverside, Riverside, CA, United States
- Department of Biochemistry and Molecular Biology, University of California, Riverside, Riverside, CA, United States
| | - Kaira Carstens
- Department of Biochemistry and Molecular Biology, University of California, Riverside, Riverside, CA, United States
| | - Wayne Dewing
- Undergraduate Major in Neuroscience, University of California, Riverside, Riverside, CA, United States
| | - Todd A Fiacco
- Interdepartmental Graduate Program in Neuroscience, University of California, Riverside, Riverside, CA, United States
- Department of Biochemistry and Molecular Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
5
|
Siri S, Burchett A, Datta M. Simulating the Impact of Tumor Mechanical Forces on Glymphatic Networks in the Brain Parenchyma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.18.594808. [PMID: 38826201 PMCID: PMC11142116 DOI: 10.1101/2024.05.18.594808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Background The brain glymphatic system is currently being explored in the context of many neurological disorders and diseases, including traumatic brain injury, Alzheimer's disease, and ischemic stroke. However, little is known about the impact of brain tumors on glymphatic function. Mechanical forces generated during tumor development and growth may be responsible for compromised glymphatic transport pathways, reducing waste clearance and cerebrospinal fluid (CSF) transport in the brain parenchyma. One such force is solid stress, i.e., growth-induced forces from cell hyperproliferation and excess matrix deposition. Because there are no prior studies assessing the impact of tumor-derived solid stress on glymphatic system structure and performance in the brain parenchyma, this study serves to fill an important gap in the field. Methods We adapted a previously developed Electrical Analog Model using MATLAB Simulink for glymphatic transport coupled with Finite Element Analysis for tumor mechanical stresses and strains in COMSOL. This allowed simulation of the impact of tumor mechanical force generation on fluid transport within brain parenchymal glymphatic units - which include paravascular spaces, astrocytic networks, interstitial spaces, and capillary basement membranes. We conducted a parametric analysis to compare the contributions of tumor size, tumor proximity, and ratio of glymphatic subunits to the stress and strain experienced by the glymphatic unit and corresponding reduction in flow rate of CSF. Results Mechanical stresses intensify with proximity to the tumor and increasing tumor size, highlighting the vulnerability of nearby glymphatic units to tumor-derived forces. Our stress and strain profiles reveal compressive deformation of these surrounding glymphatics and demonstrate that varying the relative contributions of astrocytes vs. interstitial spaces impact the resulting glymphatic structure significantly under tumor mechanical forces. Increased tumor size and proximity caused increased stress and strain across all glymphatic subunits, as does decreased astrocyte composition. Indeed, our model reveals an inverse correlation between extent of astrocyte contribution to the composition of the glymphatic unit and the resulting mechanical stress. This increased mechanical strain across the glymphatic unit decreases the venous efflux rate of CSF, dependent on the degree of strain and the specific glymphatic subunit of interest. For example, a 20% mechanical strain on capillary basement membranes does not significantly decrease venous efflux (2% decrease in flow rates), while the same magnitude of strain on astrocyte networks and interstitial spaces decreases efflux flow rates by 7% and 22%, respectively. Conclusion Our simulations reveal that solid stress from brain tumors directly reduces glymphatic fluid transport, independently from biochemical effects from cancer cells. Understanding these pathophysiological implications is crucial for developing targeted interventions aimed at restoring effective waste clearance mechanisms in the brain.This study opens potential avenues for future experimental research in brain tumor-related glymphatic dysfunction.
Collapse
|
6
|
Boster KAS, Sun J, Shang JK, Kelley DH, Thomas JH. Hydraulic resistance of three-dimensional pial perivascular spaces in the brain. Fluids Barriers CNS 2024; 21:7. [PMID: 38212763 PMCID: PMC10785473 DOI: 10.1186/s12987-023-00505-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/15/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Perivascular spaces (PVSs) carry cerebrospinal fluid (CSF) around the brain, facilitating healthy waste clearance. Measuring those flows in vivo is difficult, and often impossible, because PVSs are small, so accurate modeling is essential for understanding brain clearance. The most important parameter for modeling flow in a PVS is its hydraulic resistance, defined as the ratio of pressure drop to volume flow rate, which depends on its size and shape. In particular, the local resistance per unit length varies along a PVS and depends on variations in the local cross section. METHODS Using segmented, three-dimensional images of pial PVSs in mice, we performed fluid dynamical simulations to calculate the resistance per unit length. We applied extended lubrication theory to elucidate the difference between the calculated resistance and the expected resistance assuming a uniform flow. We tested four different approximation methods, and a novel correction factor to determine how to accurately estimate resistance per unit length with low computational cost. To assess the impact of assuming unidirectional flow, we also considered a circular duct whose cross-sectional area varied sinusoidally along its length. RESULTS We found that modeling a PVS as a series of short ducts with uniform flow, and numerically solving for the flow in each, yields good resistance estimates at low cost. If the second derivative of area with respect to axial location is less than 2, error is typically less than 15%, and can be reduced further with our correction factor. To make estimates with even lower cost, we found that instead of solving for the resistance numerically, the well-known resistance of a circular duct could be scaled by a shape factor. As long as the aspect ratio of the cross section was less than 0.7, the additional error was less than 10%. CONCLUSIONS Neglecting off-axis velocity components underestimates the average resistance, but the error can be reduced with a simple correction factor. These results could increase the accuracy of future models of brain-wide and local CSF flow, enabling better prediction of clearance, for example, as it varies with age, brain state, and pathological conditions.
Collapse
Affiliation(s)
- Kimberly A S Boster
- Department of Mechanical Engineering, University of Rochester, Rochester, NY, 14627, USA.
| | - Jiatong Sun
- Department of Mechanical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Jessica K Shang
- Department of Mechanical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Douglas H Kelley
- Department of Mechanical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - John H Thomas
- Department of Mechanical Engineering, University of Rochester, Rochester, NY, 14627, USA
| |
Collapse
|
7
|
Shih NC, Barisano G, Lincoln KD, Mack WJ, Sepehrband F, Choupan J. Effects of sleep on brain perivascular space in a cognitively healthy population. Sleep Med 2023; 111:170-179. [PMID: 37782994 PMCID: PMC10591884 DOI: 10.1016/j.sleep.2023.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/04/2023]
Abstract
The magnetic resonance imaging (MRI) visible perivascular space (PVS) reportedly clears amyloid-β and metabolic waste during sleep. Previous studies reported an association between sleep and the PVS in small vessel disease, traumatic brain injury, and Alzheimer's disease. However, this relationship in a healthy cohort is still unclear. Here, we used the Human Connectome Project Aging dataset to analyze the relationship between sleep and the PVS in cognitively healthy adults across the aging continuum. We measured sleep parameters using the self-reported Pittsburgh Sleep Quality Index questionnaire. We found that older adults who had better sleep quality and sleep efficiency presented with a larger PVS volume fraction in the basal ganglia (BG). However, sleep measures were not associated with PVS volume fraction in the centrum semiovale (CSO). In addition, we found that body mass index (BMI) influenced the BG-PVS across middle-aged and older participants. In the entire cognitively healthy cohort, the effect of sleep quality on PVS volume fraction was mediated by BMI. However, BMI did not influence this effect in the older cohort. Furthermore, there are significant differences in PVS volume fraction across racial/ethnic cohorts. In summary, the effect of sleep on the PVS volume alteration was different in the middle-aged adults and older adults.
Collapse
Affiliation(s)
- Nien-Chu Shih
- Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Giuseppe Barisano
- Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Neurosurgery, Stanford University, Palo Alto, CA, USA
| | - Karen D Lincoln
- Program in Public Health, Department of Environmental and Occupational Health, University of California, Irvine, CA, USA
| | - Wendy J Mack
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Farshid Sepehrband
- Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jeiran Choupan
- Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Boster KAS, Sun J, Shang JK, Kelley DH, Thomas JH. Hydraulic resistance of three-dimensional pial perivascular spaces in the brain. RESEARCH SQUARE 2023:rs.3.rs-3411983. [PMID: 37886576 PMCID: PMC10602107 DOI: 10.21203/rs.3.rs-3411983/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Background Perivascular spaces (PVSs) carry cerebrospinal fluid (CSF) around the brain, facilitating healthy waste clearance. Measuring those flows in vivo is difficult, and often impossible, because PVSs are small, so accurate modeling is essential for understanding brain clearance. The most important parameter for modeling flow in a PVS is its hydraulic resistance, defined as the ratio of pressure drop to volume flow rate, which depends on its size and shape. In particular, the local resistance per unit length varies along a PVS and depends on variations in the local cross section. Methods Using segmented, three-dimensional images of pial PVSs in mice, we performed fluid dynamical simulations to calculate the resistance per unit length. We applied extended lubrication theory to elucidate the difference between the calculated resistance and the expected resistance assuming a uniform flow. We tested four different approximation methods, and a novel correction factor to determine how to accurately estimate resistance per unit length with low computational cost. To assess the impact of assuming unidirectional flow, we also considered a circular duct whose cross-sectional area varied sinusoidally along its length. Results We found that modeling a PVS as a series of short ducts with uniform flow, and numerically solving for the flow in each, yields good resistance estimates at low cost. If the second derivative of area with respect to axial location is less than 2, error is typically less than 15%, and can be reduced further with our correction factor. To make estimates with even lower cost, we found that instead of solving for the resistance numerically, the well-known resistance of a circular duct could be scaled by a shape factor. As long as the aspect ratio of the cross section was less than 0.7, the additional error was less than 10%. Conclusions Neglecting off-axis velocity components underestimates the average resistance, but the error can be reduced with a simple correction factor. These results could increase the accuracy of future models of brain-wide and local CSF flow, enabling better prediction of clearance, for example, as it varies with age, brain state, and pathological conditions.
Collapse
Affiliation(s)
- Kimberly A. S. Boster
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Jiatong Sun
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Jessica K. Shang
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Douglas H. Kelley
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - John H. Thomas
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
9
|
Raicevic N, Forer JM, Ladrón-de-Guevara A, Du T, Nedergaard M, Kelley DH, Boster K. Sizes and shapes of perivascular spaces surrounding murine pial arteries. Fluids Barriers CNS 2023; 20:56. [PMID: 37461047 PMCID: PMC10351203 DOI: 10.1186/s12987-023-00454-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/21/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Flow of cerebrospinal fluid (CSF) through brain perivascular spaces (PVSs) is essential for the clearance of interstitial metabolic waste products whose accumulation and aggregation is a key mechanism of pathogenesis in many diseases. The PVS geometry has important implications for CSF flow as it affects CSF and solute transport rates. Thus, the size and shape of the perivascular spaces are essential parameters for models of CSF transport in the brain and require accurate quantification. METHODS We segmented two-photon images of pial (surface) PVSs and the adjacent arteries and characterized their sizes and shapes of cross sections from 14 PVS segments in 9 mice. Based on the analysis, we propose an idealized model that approximates the cross-sectional size and shape of pial PVSs, closely matching their area ratios and hydraulic resistances. RESULTS The ratio of PVS-to-vessel area varies widely across the cross sections analyzed. The hydraulic resistance per unit length of the PVS scales with the PVS cross-sectional area, and we found a power-law fit that predicts resistance as a function of the area. Three idealized geometric models were compared to PVSs imaged in vivo, and their accuracy in reproducing hydraulic resistances and PVS-to-vessel area ratios were evaluated. The area ratio was obtained across different cross sections, and we found that the distribution peaks for the original PVS and its closest idealized fit (polynomial fit) were 1.12 and 1.21, respectively. The peak of the hydraulic resistance distribution is [Formula: see text] Pa s/m[Formula: see text] and [Formula: see text] Pa s/m[Formula: see text] for the segmentation and its closest idealized fit, respectively. CONCLUSIONS PVS hydraulic resistance can be reasonably predicted as a function of the PVS area. The proposed polynomial-based fit most closely captures the shape of the PVS with respect to area ratio and hydraulic resistance. Idealized PVS shapes are convenient for modeling, which can be used to better understand how anatomical variations affect clearance and drug transport.
Collapse
Affiliation(s)
- Nikola Raicevic
- Department of Mechanical Engineering, University of Rochester, Rochester, USA
| | - Jarod M Forer
- Department of Mechanical Engineering, University of Rochester, Rochester, USA
| | - Antonio Ladrón-de-Guevara
- Center for Translational Neuromedicine and Department of Neuroscience, University of Rochester Medical Center, Rochester, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, USA
| | - Ting Du
- Center for Translational Neuromedicine and Department of Neuroscience, University of Rochester Medical Center, Rochester, USA
- School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Maiken Nedergaard
- Center for Translational Neuromedicine and Department of Neuroscience, University of Rochester Medical Center, Rochester, USA
| | - Douglas H Kelley
- Department of Mechanical Engineering, University of Rochester, Rochester, USA
| | - Kimberly Boster
- Department of Mechanical Engineering, University of Rochester, Rochester, USA.
| |
Collapse
|
10
|
Sætra MJ, Ellingsrud AJ, Rognes ME. Neural activity induces strongly coupled electro-chemo-mechanical interactions and fluid flow in astrocyte networks and extracellular space-A computational study. PLoS Comput Biol 2023; 19:e1010996. [PMID: 37478153 PMCID: PMC10396022 DOI: 10.1371/journal.pcbi.1010996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/02/2023] [Accepted: 06/28/2023] [Indexed: 07/23/2023] Open
Abstract
The complex interplay between chemical, electrical, and mechanical factors is fundamental to the function and homeostasis of the brain, but the effect of electrochemical gradients on brain interstitial fluid flow, solute transport, and clearance remains poorly quantified. Here, via in-silico experiments based on biophysical modeling, we estimate water movement across astrocyte cell membranes, within astrocyte networks, and within the extracellular space (ECS) induced by neuronal activity, and quantify the relative role of different forces (osmotic, hydrostatic, and electrical) on transport and fluid flow under such conditions. We find that neuronal activity alone may induce intracellular fluid velocities in astrocyte networks of up to 14μm/min, and fluid velocities in the ECS of similar magnitude. These velocities are dominated by an osmotic contribution in the intracellular compartment; without it, the estimated fluid velocities drop by a factor of ×34-45. Further, the compartmental fluid flow has a pronounced effect on transport: advection accelerates ionic transport within astrocytic networks by a factor of ×1-5 compared to diffusion alone.
Collapse
Affiliation(s)
- Marte J. Sætra
- Department of Numerical Analysis and Scientific Computing, Simula Research Laboratory, Oslo, Norway
| | - Ada J. Ellingsrud
- Department of Numerical Analysis and Scientific Computing, Simula Research Laboratory, Oslo, Norway
| | - Marie E. Rognes
- Department of Numerical Analysis and Scientific Computing, Simula Research Laboratory, Oslo, Norway
| |
Collapse
|
11
|
Whitfield JF, Rennie K, Chakravarthy B. Alzheimer's Disease and Its Possible Evolutionary Origin: Hypothesis. Cells 2023; 12:1618. [PMID: 37371088 PMCID: PMC10297544 DOI: 10.3390/cells12121618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/29/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The enormous, 2-3-million-year evolutionary expansion of hominin neocortices to the current enormity enabled humans to take over the planet. However, there appears to have been a glitch, and it occurred without a compensatory expansion of the entorhinal cortical (EC) gateway to the hippocampal memory-encoding system needed to manage the processing of the increasing volume of neocortical data converging on it. The resulting age-dependent connectopathic glitch was unnoticed by the early short-lived populations. It has now surfaced as Alzheimer's disease (AD) in today's long-lived populations. With advancing age, processing of the converging neocortical data by the neurons of the relatively small lateral entorhinal cortex (LEC) inflicts persistent strain and high energy costs on these cells. This may result in their hyper-release of harmless Aβ1-42 monomers into the interstitial fluid, where they seed the formation of toxic amyloid-β oligomers (AβOs) that initiate AD. At the core of connectopathic AD are the postsynaptic cellular prion protein (PrPC). Electrostatic binding of the negatively charged AβOs to the positively charged N-terminus of PrPC induces hyperphosphorylation of tau that destroys synapses. The spread of these accumulating AβOs from ground zero is supported by Aβ's own production mediated by target cells' Ca2+-sensing receptors (CaSRs). These data suggest that an early administration of a strongly positively charged, AβOs-interacting peptide or protein, plus an inhibitor of CaSR, might be an effective AD-arresting therapeutic combination.
Collapse
Affiliation(s)
- James F. Whitfield
- Human Health Therapeutics, National Research Council, Ottawa, ON K1A 0R6, Canada
| | | | | |
Collapse
|
12
|
Shao X, Zhao C, Shou Q, St Lawrence KS, Wang DJJ. Quantification of blood-brain barrier water exchange and permeability with multidelay diffusion-weighted pseudo-continuous arterial spin labeling. Magn Reson Med 2023; 89:1990-2004. [PMID: 36622951 PMCID: PMC10079266 DOI: 10.1002/mrm.29581] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/22/2022] [Accepted: 12/26/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE To present a pulse sequence and mathematical models for quantification of blood-brain barrier water exchange and permeability. METHODS Motion-compensated diffusion-weighted (MCDW) gradient-and-spin echo (GRASE) pseudo-continuous arterial spin labeling (pCASL) sequence was proposed to acquire intravascular/extravascular perfusion signals from five postlabeling delays (PLDs, 1590-2790 ms). Experiments were performed on 11 healthy subjects at 3 T. A comprehensive set of perfusion and permeability parameters including cerebral blood flow (CBF), capillary transit time (τc ), and water exchange rate (kw ) were quantified, and permeability surface area product (PSw ), total extraction fraction (Ew ), and capillary volume (Vc ) were derived simultaneously by a three-compartment single-pass approximation (SPA) model on group-averaged data. With information (i.e., Vc and τc ) obtained from three-compartment SPA modeling, a simplified linear regression of logarithm (LRL) approach was proposed for individual kw quantification, and Ew and PSw can be estimated from long PLD (2490/2790 ms) signals. MCDW-pCASL was compared with a previously developed diffusion-prepared (DP) pCASL sequence, which calculates kw by a two-compartment SPA model from PLD = 1800 ms signals, to evaluate the improvements. RESULTS Using three-compartment SPA modeling, group-averaged CBF = 51.5/36.8 ml/100 g/min, kw = 126.3/106.7 min-1 , PSw = 151.6/93.8 ml/100 g/min, Ew = 94.7/92.2%, τc = 1409.2/1431.8 ms, and Vc = 1.2/0.9 ml/100 g in gray/white matter, respectively. Temporal SNR of MCDW-pCASL perfusion signals increased 3-fold, and individual kw maps calculated by the LRL method achieved higher spatial resolution (3.5 mm3 isotropic) as compared with DP pCASL (3.5 × 3.5 × 8 mm3 ). CONCLUSION MCDW-pCASL allows visualization of intravascular/extravascular ASL signals across multiple PLDs. The three-compartment SPA model provides a comprehensive measurement of blood-brain barrier water dynamics from group-averaged data, and a simplified LRL method was proposed for individual kw quantification.
Collapse
Affiliation(s)
- Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chenyang Zhao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Qinyang Shou
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Keith S St Lawrence
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Danny JJ Wang
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
13
|
Koch T, Vinje V, Mardal KA. Estimates of the permeability of extra-cellular pathways through the astrocyte endfoot sheath. Fluids Barriers CNS 2023; 20:20. [PMID: 36941607 PMCID: PMC10026447 DOI: 10.1186/s12987-023-00421-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Astrocyte endfoot processes are believed to cover all micro-vessels in the brain cortex and may play a significant role in fluid and substance transport into and out of the brain parenchyma. Detailed fluid mechanical models of diffusive and advective transport in the brain are promising tools to investigate theories of transport. METHODS We derive theoretical estimates of astrocyte endfoot sheath permeability for advective and diffusive transport and its variation in microvascular networks from mouse brain cortex. The networks are based on recently published experimental data and generated endfoot patterns are based on Voronoi tessellations of the perivascular surface. We estimate corrections for projection errors in previously published data. RESULTS We provide structural-functional relationships between vessel radius and resistance that can be directly used in flow and transport simulations. We estimate endfoot sheath filtration coefficients in the range [Formula: see text] to [Formula: see text], diffusion membrane coefficients for small solutes in the range [Formula: see text] to [Formula: see text], and gap area fractions in the range 0.2-0.6%, based on a inter-endfoot gap width of 20 nm. CONCLUSIONS The astrocyte endfoot sheath surrounding microvessels forms a secondary barrier to extra-cellular transport, separating the extra-cellular space of the parenchyma and the perivascular space outside the endothelial layer. The filtration and membrane diffusion coefficients of the endfoot sheath are estimated to be an order of magnitude lower than those of the extra-cellular matrix while being two orders of magnitude higher than those of the vessel wall.
Collapse
Affiliation(s)
- Timo Koch
- Department of Mathematics, University of Oslo, Postboks 1053 Blindern, 0316 Oslo, Norway
- Simula Research Laboratory, Kristian Augusts gate 23, 0164 Oslo, Norway
| | - Vegard Vinje
- Simula Research Laboratory, Kristian Augusts gate 23, 0164 Oslo, Norway
| | - Kent-André Mardal
- Department of Mathematics, University of Oslo, Postboks 1053 Blindern, 0316 Oslo, Norway
- Simula Research Laboratory, Kristian Augusts gate 23, 0164 Oslo, Norway
| |
Collapse
|
14
|
McArthur S. Regulation of Physiological Barrier Function by the Commensal Microbiota. Life (Basel) 2023; 13:life13020396. [PMID: 36836753 PMCID: PMC9964120 DOI: 10.3390/life13020396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
A fundamental characteristic of living organisms is their ability to separate the internal and external environments, a function achieved in large part through the different physiological barrier systems and their component junctional molecules. Barrier integrity is subject to multiple influences, but one that has received comparatively little attention to date is the role of the commensal microbiota. These microbes, which represent approximately 50% of the cells in the human body, are increasingly recognized as powerful physiological modulators in other systems, but their role in regulating barrier function is only beginning to be addressed. Through comparison of the impact commensal microbes have on cell-cell junctions in three exemplar physiological barriers-the gut epithelium, the epidermis and the blood-brain barrier-this review will emphasize the important contribution microbes and microbe-derived mediators play in governing barrier function. By extension, this will highlight the critical homeostatic role of commensal microbes, as well as identifying the puzzles and opportunities arising from our steadily increasing knowledge of this aspect of physiology.
Collapse
Affiliation(s)
- Simon McArthur
- Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary University of London, Blizard Institute, 4, Newark Street, London E1 2AT, UK
| |
Collapse
|
15
|
Suresh S, Larson J, Jenrow KA. Chronic neuroinflammation impairs waste clearance in the rat brain. Front Neuroanat 2022; 16:1013808. [PMID: 36569282 PMCID: PMC9768431 DOI: 10.3389/fnana.2022.1013808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Background Previous reports have established an association between impaired clearance of macromolecular waste from the brain parenchyma and a variety of brain insults for which chronic neuroinflammation is a common pathological feature. Here we investigate whether chronic neuroinflammation is sufficient to impair macromolecular waste clearance from the rat brain. Methods Using a rodent model of chronic neuroinflammation induced by a single high-dose injection of lipopolysaccharide, the clearance kinetics of two fluorophore-conjugated dextran tracers were assayed at 8-weeks post-induction. The expression and distribution of amyloid β and aquaporin-4 proteins within selected brain regions were assayed at 36-weeks post-induction, following open-field, novel object recognition, and contextual fear conditioning assays. Results Chronic neuroinflammation significantly impaired the clearance kinetics of both dextran tracers and resulted in significantly elevated levels of amyloid β within the hippocampus. Aquaporin-4 density on astrocytic endfeet processes was also reduced within multiple brain regions. These pathologies were associated with significantly enhanced contextual fear memory. Conclusion Our results suggest that chronic neuroinflammation is sufficient to compromise the clearance of macromolecular waste from the brain parenchyma and may be the root cause of impaired waste clearance associated with a variety of brain pathologies.
Collapse
Affiliation(s)
- Swathi Suresh
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
| | - Jacob Larson
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States,Department of Physics, Central Michigan University, Mount Pleasant, MI, United States
| | - Kenneth Allen Jenrow
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States,Department of Psychology, Central Michigan University, Mount Pleasant, MI, United States,*Correspondence: Kenneth Allen Jenrow,
| |
Collapse
|
16
|
Transport in the Brain Extracellular Space: Diffusion, but Which Kind? Int J Mol Sci 2022; 23:ijms232012401. [PMID: 36293258 PMCID: PMC9604357 DOI: 10.3390/ijms232012401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
The mechanisms of transport of substances in the brain parenchyma have been a hot topic in scientific discussion in the past decade. This discussion was triggered by the proposed glymphatic hypothesis, which assumes a directed flow of cerebral fluid within the parenchyma, in contrast to the previous notion that diffusion is the main mechanism. However, when discussing the issue of “diffusion or non-diffusion”, much less attention was given to the question that diffusion itself can have a different character. In our opinion, some of the recently published results do not fit into the traditional understanding of diffusion. In this regard, we outline the relevant new theoretical approaches on transport processes in complex random media such as concepts of diffusive diffusivity and time-dependent homogenization, which expands the understanding of the forms of transport of substances based on diffusion.
Collapse
|
17
|
Abstract
Circulation of cerebrospinal fluid and interstitial fluid around the central nervous system and through the brain transports not only those water-like fluids but also any solutes they carry, including nutrients, drugs, and metabolic wastes. Passing through brain tissue primarily during sleep, this circulation has implications for neurodegenerative disorders including Alzheimer's disease, for tissue damage during stroke and cardiac arrest, and for flow-related disorders such as hydrocephalus and syringomyelia. Recent experimental results reveal several features of this flow, but other aspects are not fully understood, including its driving mechanisms. We review the experimental evidence and theoretical modeling of cerebrospinal fluid flow, including the roles of advection and diffusion in transporting solutes. We discuss both local, detailed fluid-dynamic models of specific components of the system and global hydraulic models of the overall network of flow paths.
Collapse
Affiliation(s)
- Douglas H Kelley
- Department of Mechanical Engineering, University of Rochester, Rochester, New York, USA
| | - John H Thomas
- Department of Mechanical Engineering and Department of Physics and Astronomy, University of Rochester, Rochester, New York, USA
| |
Collapse
|
18
|
Bohr T, Hjorth PG, Holst SC, Hrabětová S, Kiviniemi V, Lilius T, Lundgaard I, Mardal KA, Martens EA, Mori Y, Nägerl UV, Nicholson C, Tannenbaum A, Thomas JH, Tithof J, Benveniste H, Iliff JJ, Kelley DH, Nedergaard M. The glymphatic system: Current understanding and modeling. iScience 2022; 25:104987. [PMID: 36093063 PMCID: PMC9460186 DOI: 10.1016/j.isci.2022.104987] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We review theoretical and numerical models of the glymphatic system, which circulates cerebrospinal fluid and interstitial fluid around the brain, facilitating solute transport. Models enable hypothesis development and predictions of transport, with clinical applications including drug delivery, stroke, cardiac arrest, and neurodegenerative disorders like Alzheimer's disease. We sort existing models into broad categories by anatomical function: Perivascular flow, transport in brain parenchyma, interfaces to perivascular spaces, efflux routes, and links to neuronal activity. Needs and opportunities for future work are highlighted wherever possible; new models, expanded models, and novel experiments to inform models could all have tremendous value for advancing the field.
Collapse
Affiliation(s)
- Tomas Bohr
- Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Poul G. Hjorth
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Richard Petersens Plads, 2800 Kgs. Lyngby, Denmark
| | - Sebastian C. Holst
- Neuroscience and Rare Diseases Discovery and Translational Area, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Sabina Hrabětová
- Department of Cell Biology and The Robert Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Vesa Kiviniemi
- Oulu Functional NeuroImaging, Department of Diagnostic Radiology, MRC, Oulu University Hospital, Oulu, Finland
- Medical Imaging, Physics and Technology, the Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Tuomas Lilius
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Emergency Medicine and Services, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Iben Lundgaard
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Kent-Andre Mardal
- Department of Mathematics, University of Oslo, Oslo, Norway
- Simula Research Laboratory, Department of Numerical Analysis and Scientific Computing, Oslo, Norway
| | | | - Yuki Mori
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - U. Valentin Nägerl
- Instítut Interdisciplinaire de Neurosciences, Université de Bordeaux / CNRS UMR 5297, Centre Broca Nouvelle-Aquitaine, 146 rue Léo Saignat, CS 61292 Case 130, 33076 Bordeaux Cedex France
| | - Charles Nicholson
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Allen Tannenbaum
- Departments of Computer Science/ Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - John H. Thomas
- Department of Mechanical Engineering, University of Rochester, Rochester, 14627 NY, USA
| | - Jeffrey Tithof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, USA
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Medicine, New Haven, CT, USA
| | - Jeffrey J. Iliff
- VISN 20 Mental Illness Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Douglas H. Kelley
- Department of Mechanical Engineering, University of Rochester, Rochester, 14627 NY, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, 14642 NY, USA
| |
Collapse
|
19
|
Boster KAS, Tithof J, Cook DD, Thomas JH, Kelley DH. Sensitivity analysis on a network model of glymphatic flow. J R Soc Interface 2022; 19:20220257. [PMID: 35642425 PMCID: PMC9156905 DOI: 10.1098/rsif.2022.0257] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/05/2022] [Indexed: 12/24/2022] Open
Abstract
Intracranial cerebrospinal and interstitial fluid (ISF) flow and solute transport have important clinical implications, but limited in vivo access to the brain interior leaves gaping holes in human understanding of the nature of these neurophysiological phenomena. Models can address some gaps, but only insofar as model inputs are accurate. We perform a sensitivity analysis using a Monte Carlo approach on a lumped-parameter network model of cerebrospinal and ISF in perivascular and extracellular spaces in the murine brain. We place bounds on model predictions given the uncertainty in input parameters. Péclet numbers for transport in penetrating perivascular spaces (PVSs) and within the parenchyma are separated by at least two orders of magnitude. Low permeability in penetrating PVSs requires unrealistically large driving pressure and/or results in poor perfusion and are deemed unlikely. The model is most sensitive to the permeability of penetrating PVSs, a parameter whose value is largely unknown, highlighting an important direction for future experiments. Until the value of the permeability of penetrating PVSs is more accurately measured, the uncertainty of any model that includes flow in penetrating PVSs is so large that absolute numbers have little meaning and practical application is limited.
Collapse
Affiliation(s)
- Kimberly A. S. Boster
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Jeffrey Tithof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Douglas D. Cook
- Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602, USA
| | - John H. Thomas
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Douglas H. Kelley
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
20
|
Alajangi HK, Kaur M, Sharma A, Rana S, Thakur S, Chatterjee M, Singla N, Jaiswal PK, Singh G, Barnwal RP. Blood-brain barrier: emerging trends on transport models and new-age strategies for therapeutics intervention against neurological disorders. Mol Brain 2022; 15:49. [PMID: 35650613 PMCID: PMC9158215 DOI: 10.1186/s13041-022-00937-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/24/2022] [Indexed: 12/12/2022] Open
Abstract
The integrity of the blood–brain barrier (BBB) is essential for normal central nervous system (CNS) functioning. Considering the significance of BBB in maintaining homeostasis and the neural environment, we aim to provide an overview of significant aspects of BBB. Worldwide, the treatment of neurological diseases caused by BBB disruption has been a major challenge. BBB also restricts entry of neuro-therapeutic drugs and hinders treatment modalities. Hence, currently nanotechnology-based approaches are being explored on large scale as alternatives to conventional methodologies. It is necessary to investigate the in-depth characteristic features of BBB to facilitate the discovery of novel drugs that can successfully cross the barrier and target the disease effectively. It is imperative to discover novel strategies to treat life-threatening CNS diseases in humans. Therefore, insights regarding building blocks of BBB, activation of immune response on breach of this barrier, and various autoimmune neurological disorders caused due to BBB dysfunction are discussed. Further, special emphasis is given on delineating BBB disruption leading to CNS disorders. Moreover, various mechanisms of transport pathways across BBB, several novel strategies, and alternative routes by which drugs can be properly delivered into CNS are also discussed.
Collapse
Affiliation(s)
- Hema Kumari Alajangi
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.,University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Mandeep Kaur
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.,University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Sumedh Rana
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Shipali Thakur
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Mary Chatterjee
- Department of Biotechnology, UIET, Panjab University, Chandigarh, 160014, India
| | - Neha Singla
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Pradeep Kumar Jaiswal
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India.
| | | |
Collapse
|
21
|
Tithof J, Boster KA, Bork PA, Nedergaard M, Thomas JH, Kelley DH. A network model of glymphatic flow under different experimentally-motivated parametric scenarios. iScience 2022; 25:104258. [PMID: 35521514 PMCID: PMC9062681 DOI: 10.1016/j.isci.2022.104258] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/08/2022] [Accepted: 04/08/2022] [Indexed: 12/04/2022] Open
Abstract
Flow of cerebrospinal fluid (CSF) through perivascular spaces (PVSs) in the brain delivers nutrients, clears metabolic waste, and causes edema formation. Brain-wide imaging cannot resolve PVSs, and high-resolution methods cannot access deep tissue. However, theoretical models provide valuable insight. We model the CSF pathway as a network of hydraulic resistances, using published parameter values. A few parameters (permeability of PVSs and the parenchyma, and dimensions of PVSs and astrocyte endfoot gaps) have wide uncertainties, so we focus on the limits of their ranges by analyzing different parametric scenarios. We identify low-resistance PVSs and high-resistance parenchyma as the only scenario that satisfies three essential criteria: that the flow be driven by a small pressure drop, exhibit good CSF perfusion throughout the cortex, and exhibit a substantial increase in flow during sleep. Our results point to the most important parameters, such as astrocyte endfoot gap dimensions, to be measured in future experiments. We model the CSF pathway as a network of hydraulic resistances Predictions are bracketed by analyzing parametric scenarios for unknown parameters Low-resistance PVSs and high-resistance parenchyma produce realistic flows Astrocyte endfoot gap size is among the important parameters to be measured
Collapse
Affiliation(s)
- Jeffrey Tithof
- Department of Mechanical Engineering, University of Rochester, 235 Hopeman Building, Rochester 14627, NY, USA
- Department of Mechanical Engineering, University of Minnesota, 111 Church St SE, Minneapolis 55455, MN, USA
- Corresponding author
| | - Kimberly A.S. Boster
- Department of Mechanical Engineering, University of Rochester, 235 Hopeman Building, Rochester 14627, NY, USA
| | - Peter A.R. Bork
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Copenhagen, Denmark
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Copenhagen, Denmark
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester 14642, NY, USA
| | - John H. Thomas
- Department of Mechanical Engineering, University of Rochester, 235 Hopeman Building, Rochester 14627, NY, USA
| | - Douglas H. Kelley
- Department of Mechanical Engineering, University of Rochester, 235 Hopeman Building, Rochester 14627, NY, USA
| |
Collapse
|
22
|
Kedarasetti RT, Drew PJ, Costanzo F. Arterial vasodilation drives convective fluid flow in the brain: a poroelastic model. Fluids Barriers CNS 2022; 19:34. [PMID: 35570287 PMCID: PMC9107702 DOI: 10.1186/s12987-022-00326-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/29/2022] [Indexed: 01/26/2023] Open
Abstract
The movement of fluid into, through, and out of the brain plays an important role in clearing metabolic waste. However, there is controversy regarding the mechanisms driving fluid movement in the fluid-filled paravascular spaces (PVS), and whether the movement of metabolic waste in the brain extracellular space (ECS) is primarily driven by diffusion or convection. The dilation of penetrating arterioles in the brain in response to increases in neural activity (neurovascular coupling) is an attractive candidate for driving fluid circulation, as it drives deformation of the brain tissue and of the PVS around arteries, resulting in fluid movement. We simulated the effects of vasodilation on fluid movement into and out of the brain ECS using a novel poroelastic model of brain tissue. We found that arteriolar dilations could drive convective flow through the ECS radially outward from the arteriole, and that this flow is sensitive to the dynamics of the dilation. Simulations of sleep-like conditions, with larger vasodilations and increased extracellular volume in the brain showed enhanced movement of fluid from the PVS into the ECS. Our simulations suggest that both sensory-evoked and sleep-related arteriolar dilations can drive convective flow of cerebrospinal fluid not just in the PVS, but also into the ECS through the PVS around arterioles.
Collapse
Affiliation(s)
- Ravi Teja Kedarasetti
- grid.29857.310000 0001 2097 4281Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA USA ,grid.29857.310000 0001 2097 4281Center for Neural Engineering, Pennsylvania State University, University Park, PA USA
| | - Patrick J. Drew
- grid.29857.310000 0001 2097 4281Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA USA ,grid.29857.310000 0001 2097 4281Center for Neural Engineering, Pennsylvania State University, University Park, PA USA ,grid.29857.310000 0001 2097 4281Department of Biomedical Engineering, Pennsylvania State University, University Park, PA USA ,grid.29857.310000 0001 2097 4281Department of Neurosurgery, Pennsylvania State University, University Park, PA USA
| | - Francesco Costanzo
- grid.29857.310000 0001 2097 4281Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA USA ,grid.29857.310000 0001 2097 4281Center for Neural Engineering, Pennsylvania State University, University Park, PA USA ,grid.29857.310000 0001 2097 4281Department of Biomedical Engineering, Pennsylvania State University, University Park, PA USA ,grid.29857.310000 0001 2097 4281Department of Mathematics, Pennsylvania State University, University Park, PA USA
| |
Collapse
|
23
|
Abstract
The brain harbors a unique ability to, figuratively speaking, shift its gears. During wakefulness, the brain is geared fully toward processing information and behaving, while homeostatic functions predominate during sleep. The blood-brain barrier establishes a stable environment that is optimal for neuronal function, yet the barrier imposes a physiological problem; transcapillary filtration that forms extracellular fluid in other organs is reduced to a minimum in brain. Consequently, the brain depends on a special fluid [the cerebrospinal fluid (CSF)] that is flushed into brain along the unique perivascular spaces created by astrocytic vascular endfeet. We describe this pathway, coined the term glymphatic system, based on its dependency on astrocytic vascular endfeet and their adluminal expression of aquaporin-4 water channels facing toward CSF-filled perivascular spaces. Glymphatic clearance of potentially harmful metabolic or protein waste products, such as amyloid-β, is primarily active during sleep, when its physiological drivers, the cardiac cycle, respiration, and slow vasomotion, together efficiently propel CSF inflow along periarterial spaces. The brain's extracellular space contains an abundance of proteoglycans and hyaluronan, which provide a low-resistance hydraulic conduit that rapidly can expand and shrink during the sleep-wake cycle. We describe this unique fluid system of the brain, which meets the brain's requisites to maintain homeostasis similar to peripheral organs, considering the blood-brain-barrier and the paths for formation and egress of the CSF.
Collapse
Affiliation(s)
- Martin Kaag Rasmussen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Humberto Mestre
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
24
|
Trimmel NE, Podgoršak A, Oertel MF, Jucker S, Arras M, Schmid Daners M, Weisskopf M. The Sheep as a Comprehensive Animal Model to Investigate Interdependent Physiological Pressure Propagation and Multiparameter Influence on Cerebrospinal Fluid Dynamics. Front Neurosci 2022; 16:868567. [PMID: 35431780 PMCID: PMC9008349 DOI: 10.3389/fnins.2022.868567] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/09/2022] [Indexed: 11/18/2022] Open
Abstract
The present study aims to develop a suitable animal model for evaluating the physiological interactions between cerebrospinal fluid (CSF) dynamics, hemodynamics, and abdominal compartment pressures. We seek to contribute to the enhanced recognition of the pathophysiology of CSF-dependent neurological disorders like hydrocephalus and the improvement of available treatment options. To date, no comprehensive animal model of CSF dynamics exists, and establishing an accurate model will advance our understanding of complex CSF physiology. Persisting knowledge gaps surrounding the communication and pressure propagation between the cerebrospinal space and adjacent anatomical compartments exacerbate the development of novel therapies for neurological diseases. Hence, the need for further investigation of the interactions of vascular, craniospinal, and abdominal pressures remains beyond dispute. Moreover, the results of this animal study support the optimization of in vitro test benches for medical device development, e.g., ventriculoperitoneal shunts. Six female white alpine sheep were surgically equipped with pressure sensors to investigate the physiological values of intracranial, intrathecal, arterial, central venous, jugular venous, vesical pressure, and four differently located abdominal pressures. These values were measured simultaneously during the acute animal trial with sheep under general anesthesia. Both carotid and femoral arterial blood pressure indicate a reliable and comparable representation of the systematic blood pressure. However, the jugular venous pressure and the central venous pressure in sheep in dorsal recumbency do not correlate well under general anesthesia. Furthermore, there is a trend for possible comparability of lateral intraventricular and lumbar intrathecal pressure. Nevertheless, animal body position during measurements must be considered since different body constitutions can alter the horizontal line between the cerebral ventricles and the lumbar subarachnoid space. While intra-abdominal pressure measurement in the four different abdominal quadrants yielded greater inter-individual variability, intra-vesical pressure measurements in our setting delivered comparable values for all sheep. We established a novel and comprehensive ovine animal model to investigate interdependent physiologic pressure propagation and multiparameter influences on CSF dynamics. The results of this study will contribute to further in vitro bench testing, the derivation of novel quantitative models, and the development of a pathologic ovine hydrocephalus model.
Collapse
Affiliation(s)
- Nina Eva Trimmel
- Center for Surgical Research, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Anthony Podgoršak
- Department of Mechanical and Process Engineering, ETH Zürich, Zurich, Switzerland
| | - Markus Florian Oertel
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Simone Jucker
- Center for Surgical Research, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Margarete Arras
- Center for Surgical Research, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Miriam Weisskopf
- Center for Surgical Research, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
25
|
Wei T, Zhou M, Gu L, Yang H, Zhou Y, Li M. A Novel Gating Mechanism of Aquaporin-4 Water Channel Mediated by Blast Shockwaves for Brain Edema. J Phys Chem Lett 2022; 13:2486-2492. [PMID: 35271290 DOI: 10.1021/acs.jpclett.2c00321] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As the principal water channel in the brain, aquaporin-4 (AQP4) plays a vital role in brain edema, but its role in blast brain edema is unclear. On the basis of molecular simulations, we reveal the atomically detailed picture of AQP4 in response to blast shockwaves. The results show that the shockwave alone closes the AQP4 channel; however, shock-induced bubble collapse opens it. The jet from bubble collapse forcefully increases the distance between helices and the tilt angles of six helices relative to the membrane vertical direction in a very short time. The average channel size increases about 2.6 times, and the water flux rate is nearly 20 times higher than for normal states. It is responsible for abnormal water transport and a potential cause of acute blast brain edema. Additionally, the open AQP4 channel quickly returns to its normal state, which is in turn helpful for edema absorption. Thus, a novel gating mechanism for AQP4 related to the secondary structure change has been provided, which is different from the previous residue-mediated gating mechanism.
Collapse
Affiliation(s)
- Tong Wei
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China
| | - Mi Zhou
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| | - Lingzhi Gu
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| | - Hong Yang
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| | - Yang Zhou
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| | - Ming Li
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| |
Collapse
|
26
|
Hladky SB, Barrand MA. The glymphatic hypothesis: the theory and the evidence. Fluids Barriers CNS 2022; 19:9. [PMID: 35115036 PMCID: PMC8815211 DOI: 10.1186/s12987-021-00282-z] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022] Open
Abstract
The glymphatic hypothesis proposes a mechanism for extravascular transport into and out of the brain of hydrophilic solutes unable to cross the blood-brain barrier. It suggests that there is a circulation of fluid carrying solutes inwards via periarterial routes, through the interstitium and outwards via perivenous routes. This review critically analyses the evidence surrounding the mechanisms involved in each of these stages. There is good evidence that both influx and efflux of solutes occur along periarterial routes but no evidence that the principal route of outflow is perivenous. Furthermore, periarterial inflow of fluid is unlikely to be adequate to provide the outflow that would be needed to account for solute efflux. A tenet of the hypothesis is that flow sweeps solutes through the parenchyma. However, the velocity of any possible circulatory flow within the interstitium is too small compared to diffusion to provide effective solute movement. By comparison the earlier classical hypothesis describing extravascular transport proposed fluid entry into the parenchyma across the blood-brain barrier, solute movements within the parenchyma by diffusion, and solute efflux partly by diffusion near brain surfaces and partly carried by flow along "preferred routes" including perivascular spaces, white matter tracts and subependymal spaces. It did not suggest fluid entry via periarterial routes. Evidence is still incomplete concerning the routes and fate of solutes leaving the brain. A large proportion of the solutes eliminated from the parenchyma go to lymph nodes before reaching blood but the proportions delivered directly to lymph or indirectly via CSF which then enters lymph are as yet unclear. In addition, still not understood is why and how the absence of AQP4 which is normally highly expressed on glial endfeet lining periarterial and perivenous routes reduces rates of solute elimination from the parenchyma and of solute delivery to it from remote sites of injection. Neither the glymphatic hypothesis nor the earlier classical hypothesis adequately explain how solutes and fluid move into, through and out of the brain parenchyma. Features of a more complete description are discussed. All aspects of extravascular transport require further study.
Collapse
Affiliation(s)
- Stephen B. Hladky
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| | - Margery A. Barrand
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| |
Collapse
|
27
|
Klostranec JM, Vucevic D, Bhatia KD, Kortman HGJ, Krings T, Murphy KP, terBrugge KG, Mikulis DJ. Current Concepts in Intracranial Interstitial Fluid Transport and the Glymphatic System: Part I-Anatomy and Physiology. Radiology 2021; 301:502-514. [PMID: 34665028 DOI: 10.1148/radiol.2021202043] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Normal physiologic function of organs requires a circulation of interstitial fluid to deliver nutrients and clear cellular waste products. Lymphatic vessels serve as collectors of this fluid in most organs; however, these vessels are absent in the central nervous system. How the central nervous system maintains tight control of extracellular conditions has been a fundamental question in neuroscience until recent discovery of the glial-lymphatic, or glymphatic, system was made this past decade. Networks of paravascular channels surrounding pial and parenchymal arteries and veins were found that extend into the walls of capillaries to allow fluid transport and exchange between the interstitial and cerebrospinal fluid spaces. The currently understood anatomy and physiology of the glymphatic system is reviewed, with the paravascular space presented as an intrinsic component of healthy pial and parenchymal cerebral blood vessels. Glymphatic system behavior in animal models of health and disease, and its enhanced function during sleep, are discussed. The evolving understanding of glymphatic system characteristics is then used to provide a current interpretation of its physiology that can be helpful for radiologists when interpreting neuroimaging investigations.
Collapse
Affiliation(s)
- Jesse M Klostranec
- From the Montreal Neurologic Institute and Hospital, Department of Diagnostic and Interventional Neuroradiology, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging, University of Toronto, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montreal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montreal, Montréal, Canada (J.M.K.); Department of Materials Science & Engineering, Faculty of Applied Science & Engineering, University of Toronto, Toronto, Canada (D.V.); Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.); and Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada (T.K., K.G.t.B.)
| | - Diana Vucevic
- From the Montreal Neurologic Institute and Hospital, Department of Diagnostic and Interventional Neuroradiology, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging, University of Toronto, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montreal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montreal, Montréal, Canada (J.M.K.); Department of Materials Science & Engineering, Faculty of Applied Science & Engineering, University of Toronto, Toronto, Canada (D.V.); Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.); and Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada (T.K., K.G.t.B.)
| | - Kartik D Bhatia
- From the Montreal Neurologic Institute and Hospital, Department of Diagnostic and Interventional Neuroradiology, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging, University of Toronto, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montreal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montreal, Montréal, Canada (J.M.K.); Department of Materials Science & Engineering, Faculty of Applied Science & Engineering, University of Toronto, Toronto, Canada (D.V.); Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.); and Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada (T.K., K.G.t.B.)
| | - Hans G J Kortman
- From the Montreal Neurologic Institute and Hospital, Department of Diagnostic and Interventional Neuroradiology, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging, University of Toronto, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montreal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montreal, Montréal, Canada (J.M.K.); Department of Materials Science & Engineering, Faculty of Applied Science & Engineering, University of Toronto, Toronto, Canada (D.V.); Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.); and Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada (T.K., K.G.t.B.)
| | - Timo Krings
- From the Montreal Neurologic Institute and Hospital, Department of Diagnostic and Interventional Neuroradiology, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging, University of Toronto, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montreal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montreal, Montréal, Canada (J.M.K.); Department of Materials Science & Engineering, Faculty of Applied Science & Engineering, University of Toronto, Toronto, Canada (D.V.); Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.); and Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada (T.K., K.G.t.B.)
| | - Kieran P Murphy
- From the Montreal Neurologic Institute and Hospital, Department of Diagnostic and Interventional Neuroradiology, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging, University of Toronto, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montreal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montreal, Montréal, Canada (J.M.K.); Department of Materials Science & Engineering, Faculty of Applied Science & Engineering, University of Toronto, Toronto, Canada (D.V.); Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.); and Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada (T.K., K.G.t.B.)
| | - Karel G terBrugge
- From the Montreal Neurologic Institute and Hospital, Department of Diagnostic and Interventional Neuroradiology, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging, University of Toronto, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montreal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montreal, Montréal, Canada (J.M.K.); Department of Materials Science & Engineering, Faculty of Applied Science & Engineering, University of Toronto, Toronto, Canada (D.V.); Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.); and Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada (T.K., K.G.t.B.)
| | - David J Mikulis
- From the Montreal Neurologic Institute and Hospital, Department of Diagnostic and Interventional Neuroradiology, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging, University of Toronto, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montreal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montreal, Montréal, Canada (J.M.K.); Department of Materials Science & Engineering, Faculty of Applied Science & Engineering, University of Toronto, Toronto, Canada (D.V.); Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.); and Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada (T.K., K.G.t.B.)
| |
Collapse
|
28
|
Martinac AD, Fletcher DF, Bilston LE. Phase offset between arterial pulsations and subarachnoid space pressure fluctuations are unlikely to drive periarterial cerebrospinal fluid flow. Biomech Model Mechanobiol 2021; 20:1751-1766. [PMID: 34275063 DOI: 10.1007/s10237-021-01474-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 06/02/2021] [Indexed: 11/24/2022]
Abstract
Circulation of fluid through the central nervous system maintains fluid homeostasis and is involved in solute clearance. The glymphatic system is hypothesised to facilitate waste clearance in the brain, with inflow via periarterial spaces, bulk flow through the parenchyma, and outflow via perivenous spaces. The driving force for this mechanism is unknown. Previous modelling in the spinal cord suggests that timing offsets between arterial and subarachnoid space pressure pulses can enable net inflow in perivascular spaces (PVS). This study adapted the spinal pulse offset mechanism to the brain and simulated movement of tracer particles used in experiments. Both bulk flow and diffusive movement of tracer were simulated. Intracranial pressure pulses were applied to one end of a 300-μm-long perivascular space combined with a moving arterial wall simulating arterial pulsations. The simulations indicate the pulse offset mechanism can enable net inflow via PVS; however, it is unknown whether the temporal offset required is physiologically realistic. Increasing the positive component of the ICP (intracranial pressure) pulse increased net flow. Tracer particles driven by bulk flow reached the outlet of the PVS with a net speed of ~ 16 μm/s when the permeability was two orders of magnitude higher than values in the literature. These particles were unable to penetrate into the parenchyma in the absence of diffusion. Dispersion dominated tracer movement in the parenchyma. Further research is required to reconcile discrepancies between these results, and both experimental and computational studies.
Collapse
Affiliation(s)
- Adam D Martinac
- Neuroscience Research Australia and Prince of Wales Clinical School, UNSW, Kensington, Australia.
| | - David F Fletcher
- School of Chemical and Biomolecular Engineering, The University of Sydney, Camperdown, Australia
| | - Lynne E Bilston
- Neuroscience Research Australia and Prince of Wales Clinical School, UNSW, Kensington, Australia
| |
Collapse
|
29
|
Alshuhri MS, Gallagher L, Work LM, Holmes WM. Direct imaging of glymphatic transport using H217O MRI. JCI Insight 2021; 6:141159. [PMID: 33857020 PMCID: PMC8262348 DOI: 10.1172/jci.insight.141159] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
The recently proposed glymphatic pathway for solute transport and waste clearance from the brain has been the focus of intense debate. By exploiting an isotopically enriched MRI tracer, H217O, we directly imaged glymphatic water transport in the rat brain in vivo. Our results reveal glymphatic transport that is dramatically faster and more extensive than previously thought and unlikely to be explained by diffusion alone. Moreover, we confirm the critical role of aquaporin-4 channels in glymphatic transport.
Collapse
Affiliation(s)
- Mohammed S Alshuhri
- Institute of Neuroscience and Psychology, College of Medicine, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom.,Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Lindsay Gallagher
- Institute of Neuroscience and Psychology, College of Medicine, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom
| | - Lorraine M Work
- Institute of Cardiovascular and Medical Sciences, College of Medicine, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom
| | - William M Holmes
- Institute of Neuroscience and Psychology, College of Medicine, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
30
|
Donahue EK, Murdos A, Jakowec MW, Sheikh-Bahaei N, Toga AW, Petzinger GM, Sepehrband F. Global and Regional Changes in Perivascular Space in Idiopathic and Familial Parkinson's Disease. Mov Disord 2021; 36:1126-1136. [PMID: 33470460 DOI: 10.1002/mds.28473] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/23/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The glymphatic system, including the perivascular space (PVS), plays a critical role in brain homeostasis. Although mounting evidence from Alzheimer's disease has supported the potential role of PVS in neurodegenerative disorders, its contribution in Parkinson's disease (PD) has not been fully elucidated. Although idiopathic (IPD) and familial PD (FPD) share similar pathophysiology in terms of protein aggregation, the differential impact of PVS on PD subtypes remains unknown. Our objective was to examine the differences in PVS volume fraction in IPD and FPD compared to healthy controls (HCs) and nonmanifest carriers (NMCs). METHODS A total of 470 individuals were analyzed from the Parkinson's Progression Markers Initiative database, including (1) IPD (n = 179), (2) FPD (LRRK2 [leucine-rich repeat kinase 2], glucocerebrosidase, or α-synuclein) (n = 67), (3) NMC (n = 101), and (4) HCs (n = 84). Total PVS volume fraction (%) was compared using parcellation and quantitation within greater white matter volume at global and regional levels in all cortical and subcortical white matter. RESULTS There was a significant increase in global and regional PVS volume fraction in PD versus non-PD, particularly in FPD versus NMC and LRRK2 FPD versus NMC. Regionally, FPD and NMC differed in the medial orbitofrontal region, as did LRRK2 FPD versus NMC. Non-PD and PD differed in the medial orbitofrontal region and the banks of the superior temporal regions. IPD and FPD differed in the cuneus and lateral occipital regions. CONCLUSIONS Our findings support the role of PVS in PD and highlight a potentially significant contribution of PVS to the pathophysiology of FPD, particularly LRRK2. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Erin K Donahue
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Neuroscience Graduate Program, University of Southern California, Los Angeles, California, USA
| | - Amjad Murdos
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Michael W Jakowec
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Neuroscience Graduate Program, University of Southern California, Los Angeles, California, USA
| | - Nasim Sheikh-Bahaei
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Arthur W Toga
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Giselle M Petzinger
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Neuroscience Graduate Program, University of Southern California, Los Angeles, California, USA
| | - Farshid Sepehrband
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
31
|
Croci M, Vinje V, Rognes ME. Fast uncertainty quantification of tracer distribution in the brain interstitial fluid with multilevel and quasi Monte Carlo. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3412. [PMID: 33174347 PMCID: PMC7900999 DOI: 10.1002/cnm.3412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/28/2020] [Accepted: 11/01/2020] [Indexed: 06/11/2023]
Abstract
Efficient uncertainty quantification algorithms are key to understand the propagation of uncertainty-from uncertain input parameters to uncertain output quantities-in high resolution mathematical models of brain physiology. Advanced Monte Carlo methods such as quasi Monte Carlo (QMC) and multilevel Monte Carlo (MLMC) have the potential to dramatically improve upon standard Monte Carlo (MC) methods, but their applicability and performance in biomedical applications is underexplored. In this paper, we design and apply QMC and MLMC methods to quantify uncertainty in a convection-diffusion model of tracer transport within the brain. We show that QMC outperforms standard MC simulations when the number of random inputs is small. MLMC considerably outperforms both QMC and standard MC methods and should therefore be preferred for brain transport models.
Collapse
Affiliation(s)
- Matteo Croci
- Mathematical InstituteUniversity of OxfordOxfordUK
- Department for Numerical Analysis and Scientific ComputingSimula Research LaboratoryLysakerNorway
| | - Vegard Vinje
- Department for Numerical Analysis and Scientific ComputingSimula Research LaboratoryLysakerNorway
| | - Marie E. Rognes
- Department for Numerical Analysis and Scientific ComputingSimula Research LaboratoryLysakerNorway
| |
Collapse
|
32
|
Howe MD, McCullough LD, Urayama A. The Role of Basement Membranes in Cerebral Amyloid Angiopathy. Front Physiol 2020; 11:601320. [PMID: 33329053 PMCID: PMC7732667 DOI: 10.3389/fphys.2020.601320] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/28/2020] [Indexed: 12/25/2022] Open
Abstract
Dementia is a neuropsychiatric syndrome characterized by cognitive decline in multiple domains, often leading to functional impairment in activities of daily living, disability, and death. The most common causes of age-related progressive dementia include Alzheimer's disease (AD) and vascular cognitive impairment (VCI), however, mixed disease pathologies commonly occur, as epitomized by a type of small vessel pathology called cerebral amyloid angiopathy (CAA). In CAA patients, the small vessels of the brain become hardened and vulnerable to rupture, leading to impaired neurovascular coupling, multiple microhemorrhage, microinfarction, neurological emergencies, and cognitive decline across multiple functional domains. While the pathogenesis of CAA is not well understood, it has long been thought to be initiated in thickened basement membrane (BM) segments, which contain abnormal protein deposits and amyloid-β (Aβ). Recent advances in our understanding of CAA pathogenesis link BM remodeling to functional impairment of perivascular transport pathways that are key to removing Aβ from the brain. Dysregulation of this process may drive CAA pathogenesis and provides an important link between vascular risk factors and disease phenotype. The present review summarizes how the structure and composition of the BM allows for perivascular transport pathways to operate in the healthy brain, and then outlines multiple mechanisms by which specific dementia risk factors may promote dysfunction of perivascular transport pathways and increase Aβ deposition during CAA pathogenesis. A better understanding of how BM remodeling alters perivascular transport could lead to novel diagnostic and therapeutic strategies for CAA patients.
Collapse
Affiliation(s)
| | | | - Akihiko Urayama
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
33
|
Tapp ZM, Kumar JE, Witcher KG, Atluri RR, Velasquez JA, O'Neil SM, Dziabis JE, Bray CE, Sheridan JF, Godbout JP, Kokiko-Cochran ON. Sleep Disruption Exacerbates and Prolongs the Inflammatory Response to Traumatic Brain Injury. J Neurotrauma 2020; 37:1829-1843. [PMID: 32164485 PMCID: PMC7404833 DOI: 10.1089/neu.2020.7010] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Traumatic brain injury (TBI) alters stress responses, which may influence neuroinflammation and behavioral outcome. Sleep disruption (SD) is an understudied post-injury environmental stressor that directly engages stress-immune pathways. Thus, we predicted that maladaptive changes in the hypothalamic-pituitary-adrenal (HPA) axis after TBI compromise the neuroendocrine response to SD and exacerbate neuroinflammation. To test this, we induced lateral fluid percussion TBI or sham injury in female and male C57BL/6 mice aged 8-10 weeks that were then left undisturbed or exposed to 3 days of transient SD. At 3 days post-injury (DPI) plasma corticosterone (CORT) was reduced in TBI compared with sham mice, indicating altered HPA-mediated stress response to SD. This response was associated with approach-avoid conflict behavior and exaggerated cortical neuroinflammation. Post-injury SD specifically enhanced neutrophil trafficking to the injured brain in conjunction with dysregulated aquaporin-4 (AQP4) polarization. Delayed and persistent effects of post-injury SD were determined 4 days after SD concluded at 7 DPI. SD prolonged anxiety-like behavior regardless of injury and was associated with increased cortical Iba1 labeling in both sham and TBI mice. Strikingly, TBI SD mice displayed an increased number of CD45+ cells near the site of injury, enhanced cortical glial fibrillary acidic protein (GFAP) immunolabeling, and persistent expression of Trem2 and Tlr4 7 DPI compared with TBI mice. These results support the hypothesis that post-injury SD alters stress-immune pathways and inflammatory outcomes after TBI. These data provide new insight to the dynamic interplay between TBI, stress, and inflammation.
Collapse
Affiliation(s)
- Zoe M. Tapp
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Julia E. Kumar
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Kristina G. Witcher
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Ravitej R. Atluri
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - John A. Velasquez
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Shane M. O'Neil
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Julia E. Dziabis
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Chelsea E. Bray
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - John F. Sheridan
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
- Neurological Institute, Institute for Behavioral Medicine Research (IBMR), The Ohio State University, Columbus, Ohio, USA
| | - Jonathan P. Godbout
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Neurological Institute, Institute for Behavioral Medicine Research (IBMR), The Ohio State University, Columbus, Ohio, USA
- Chronic Brain Injury Program, The Ohio State University, Columbus, Ohio, USA
| | - Olga N. Kokiko-Cochran
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Neurological Institute, Institute for Behavioral Medicine Research (IBMR), The Ohio State University, Columbus, Ohio, USA
- Chronic Brain Injury Program, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
34
|
Vinje V, Eklund A, Mardal KA, Rognes ME, Støverud KH. Intracranial pressure elevation alters CSF clearance pathways. Fluids Barriers CNS 2020; 17:29. [PMID: 32299464 PMCID: PMC7161287 DOI: 10.1186/s12987-020-00189-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 03/28/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Infusion testing is a common procedure to determine whether shunting will be beneficial in patients with normal pressure hydrocephalus. The method has a well-developed theoretical foundation and corresponding mathematical models that describe the CSF circulation from the choroid plexus to the arachnoid granulations. Here, we investigate to what extent the proposed glymphatic or paravascular pathway (or similar pathways) modifies the results of the traditional mathematical models. METHODS We used a compartment model to estimate pressure in the subarachnoid space and the paravascular spaces. For the arachnoid granulations, the cribriform plate and the glymphatic circulation, resistances were calculated and used to estimate pressure and flow before and during an infusion test. Finally, different variations to the model were tested to evaluate the sensitivity of selected parameters. RESULTS At baseline intracranial pressure (ICP), we found a very small paravascular flow directed into the subarachnoid space, while 60% of the fluid left through the arachnoid granulations and 40% left through the cribriform plate. However, during the infusion, 80% of the fluid left through the arachnoid granulations, 20% through the cribriform plate and flow in the PVS was stagnant. Resistance through the glymphatic system was computed to be 2.73 mmHg/(mL/min), considerably lower than other fluid pathways, giving non-realistic ICP during infusion if combined with a lymphatic drainage route. CONCLUSIONS The relative distribution of CSF flow to different clearance pathways depends on ICP, with the arachnoid granulations as the main contributor to outflow. As such, ICP increase is an important factor that should be addressed when determining the pathways of injected substances in the subarachnoid space. Our results suggest that the glymphatic resistance is too high to allow for pressure driven flow by arterial pulsations and at the same time too small to allow for a direct drainage route from PVS to cervical lymphatics.
Collapse
Affiliation(s)
- Vegard Vinje
- Department of Scientific Computing and Numerical Analysis, Simula Research Laboratory, Lysaker, Norway.
| | - Anders Eklund
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Kent-Andre Mardal
- Department of Scientific Computing and Numerical Analysis, Simula Research Laboratory, Lysaker, Norway.,Department of Mathematics, University of Oslo, Oslo, Norway
| | - Marie E Rognes
- Department of Scientific Computing and Numerical Analysis, Simula Research Laboratory, Lysaker, Norway
| | | |
Collapse
|
35
|
Jacobsen HH, Ringstad G, Jørstad ØK, Moe MC, Sandell T, Eide PK. The Human Visual Pathway Communicates Directly With the Subarachnoid Space. Invest Ophthalmol Vis Sci 2019; 60:2773-2780. [PMID: 31247084 DOI: 10.1167/iovs.19-26997] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Explore in vivo whether there is direct communication between the cerebrospinal fluid (CSF) and extravascular compartment of human visual pathway structures. Methods A prospective and observational study included 10 subjects who underwent intrathecal gadolinium-enhanced magnetic resonance imaging (MRI) for suspected CSF circulation disorder, but with a negative result and with no known ophthalmic diseases. After precontrast T1-weighted MRI, 0.5 mL of gadobutrol (Gadovist, 1.0 mmol/mL) was injected intrathecally. Gadobutrol distributes in the extravascular space, and served as a CSF tracer. Consecutive MRI scans were obtained throughout 24 to 48 hours. To assess gadobutrol contrast enrichment, regions of interest (ROIs) were placed at multiple locations along the visual pathway, from the primary visual cortex to the eye's vitreous body. CSF tracer dependent T1 signal was measured in each ROI. A linear mixed-model was used for statistical analyses. Results CSF tracer enrichment was found within the optic nerve, optic chiasm, optic tract, and primary visual cortex (P < 0.001). Peak tracer enrichment in the visual pathway generally occurred after 24 hours and was preceded by peak enhancement in the prechiasmatic cistern after 4 to 6 hours. Conclusions The results indicate direct communication between CSF of subarachnoid space and the extravascular space of the human visual pathway. Extravascular entry of the CSF tracer is a prerequisite for a glymphatic system, the present findings may suggest its presence. The existence of a glymphatic system in the human visual pathway could bring novel perspectives on the pathophysiology and treatment of ophthalmic diseases.
Collapse
Affiliation(s)
- Henrik Holvin Jacobsen
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Geir Ringstad
- Division of Radiology and Nuclear Medicine, Department of Radiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Øystein Kalsnes Jørstad
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Morten C Moe
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Tiril Sandell
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - Per Kristian Eide
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Neurosurgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
36
|
Civita P, M. Leite D, Pilkington GJ. Pre-Clinical Drug Testing in 2D and 3D Human In Vitro Models of Glioblastoma Incorporating Non-Neoplastic Astrocytes: Tunneling Nano Tubules and Mitochondrial Transfer Modulates Cell Behavior and Therapeutic Respons. Int J Mol Sci 2019; 20:E6017. [PMID: 31795330 PMCID: PMC6929151 DOI: 10.3390/ijms20236017] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/19/2019] [Accepted: 11/23/2019] [Indexed: 12/15/2022] Open
Abstract
The role of astrocytes in the glioblastoma (GBM) microenvironment is poorly understood; particularly with regard to cell invasion and drug resistance. To assess this role of astrocytes in GBMs we established an all human 2D co-culture model and a 3D hyaluronic acid-gelatin based hydrogel model (HyStem™-HP) with different ratios of GBM cells to astrocytes. A contact co-culture of fluorescently labelled GBM cells and astrocytes showed that the latter promotes tumour growth and migration of GBM cells. Notably, the presence of non-neoplastic astrocytes in direct contact, even in low amounts in co-culture, elicited drug resistance in GBM. Recent studies showed that non-neoplastic cells can transfer mitochondria along tunneling nanotubes (TNT) and rescue damaged target cancer cells. In these studies, we explored TNT formation and mitochondrial transfer using 2D and 3D in vitro co-culture models of GBM and astrocytes. TNT formation occurs in glial fibrillary acidic protein (GFAP) positive "reactive" astrocytes after 48 h co-culture and the increase of TNT formations was greater in 3D hyaluronic acid-gelatin based hydrogel models. This study shows that human astrocytes in the tumour microenvironment, both in 2D and 3D in vitro co-culture models, could form TNT connections with GBM cells. We postulate that the association on TNT delivery non-neoplastic mitochondria via a TNT connection may be related to GBM drug response as well as proliferation and migration.
Collapse
Affiliation(s)
- Prospero Civita
- Brain Tumour Research Centre, Institute of Biological and Biomedical Sciences (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, UK;
| | - Diana M. Leite
- Brain Tumour Research Centre, Institute of Biological and Biomedical Sciences (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, UK;
- Department of Chemistry, University College London, 20 Gordon Street, Christopher Ingold Building, London WC1H 0AJ, UK
| | - Geoffrey J. Pilkington
- Brain Tumour Research Centre, Institute of Biological and Biomedical Sciences (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, UK;
| |
Collapse
|
37
|
Abstract
Despite its small size, the brain consumes 25% of the body’s energy, generating its own weight in potentially toxic proteins and biological debris each year. The brain is also the only organ lacking lymph vessels to assist in removal of interstitial waste. Over the past 50 years, a picture has been developing of the brain’s unique waste removal system. Experimental observations show cerebrospinal fluid, which surrounds the brain, enters the brain along discrete pathways, crosses a barrier into the spaces between brain cells, and flushes the tissue, carrying wastes to routes exiting the brain. Dysfunction of this cerebral waste clearance system has been demonstrated in Alzheimer’s disease, traumatic brain injury, diabetes, and stroke. The activity of the system is observed to increase during sleep. In addition to waste clearance, this circuit of flow may also deliver nutrients and neurotransmitters. Here, we review the relevant literature with a focus on transport processes, especially the potential role of diffusion and advective flows.
Collapse
|
38
|
Boespflug EL, Simon MJ, Leonard E, Grafe M, Woltjer R, Silbert LC, Kaye JA, Iliff JJ. Targeted Assessment of Enlargement of the Perivascular Space in Alzheimer's Disease and Vascular Dementia Subtypes Implicates Astroglial Involvement Specific to Alzheimer's Disease. J Alzheimers Dis 2019; 66:1587-1597. [PMID: 30475760 DOI: 10.3233/jad-180367] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Waste clearance from the brain parenchyma occurs along perivascular pathways. Enlargement of the perivascular space (ePVS) is associated with pathologic features of Alzheimer's disease (AD), although the mechanisms and implications of this dilation are unclear. Fluid exchange along the cerebral vasculature is dependent on the perivascular astrocytic water channel aquaporin-4 (AQP4) and loss of perivascular AQP4 localization is found in AD. We directly measured ePVS in postmortem samples of pathologically characterized tissue from participants who were cognitively intact or had AD or mixed dementia (vascular lesions with AD). We found that both AD and mixed dementia groups had significantly increased ePVS compared to cognitively intact subjects. In addition, we found increased global AQP4 expression of the AD group over both control and mixed dementia groups and a qualitative reduction in perivascular localization of AQP4 in the AD group. Among these cases, increasing ePVS burden was associated with the presence of tau and amyloid-β pathology. These findings are consistent with the existing evidence of ePVS in AD and provide novel information regarding differences in AD and vascular dementia and the potential role of astroglial pathology in ePVS.
Collapse
Affiliation(s)
- Erin L Boespflug
- Layton Aging & Alzheimer's Disease Center, Oregon Health & Science University, Portland, OR, USA
| | - Matthew J Simon
- Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Emmalyn Leonard
- Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Marjorie Grafe
- Pathology Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Randall Woltjer
- Layton Aging & Alzheimer's Disease Center, Oregon Health & Science University, Portland, OR, USA.,Pathology Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Lisa C Silbert
- Layton Aging & Alzheimer's Disease Center, Oregon Health & Science University, Portland, OR, USA
| | - Jeffrey A Kaye
- Layton Aging & Alzheimer's Disease Center, Oregon Health & Science University, Portland, OR, USA
| | - Jeffrey J Iliff
- Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA.,Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
39
|
Martinac AD, Bilston LE. Computational modelling of fluid and solute transport in the brain. Biomech Model Mechanobiol 2019; 19:781-800. [DOI: 10.1007/s10237-019-01253-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/05/2019] [Indexed: 01/10/2023]
|
40
|
Smith AJ, Verkman AS. CrossTalk opposing view: Going against the flow: interstitial solute transport in brain is diffusive and aquaporin-4 independent. J Physiol 2019; 597:4421-4424. [PMID: 31389038 DOI: 10.1113/jp277636] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Alex J Smith
- Departments of Medicine and Physiology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Alan S Verkman
- Departments of Medicine and Physiology, University of California San Francisco, San Francisco, CA, 94143, USA
| |
Collapse
|
41
|
Tithof J, Kelley DH, Mestre H, Nedergaard M, Thomas JH. Hydraulic resistance of periarterial spaces in the brain. Fluids Barriers CNS 2019; 16:19. [PMID: 31217012 PMCID: PMC6585017 DOI: 10.1186/s12987-019-0140-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/30/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Periarterial spaces (PASs) are annular channels that surround arteries in the brain and contain cerebrospinal fluid (CSF): a flow of CSF in these channels is thought to be an important part of the brain's system for clearing metabolic wastes. In vivo observations reveal that they are not concentric, circular annuli, however: the outer boundaries are often oblate, and the arteries that form the inner boundaries are often offset from the central axis. METHODS We model PAS cross-sections as circles surrounded by ellipses and vary the radii of the circles, major and minor axes of the ellipses, and two-dimensional eccentricities of the circles with respect to the ellipses. For each shape, we solve the governing Navier-Stokes equation to determine the velocity profile for steady laminar flow and then compute the corresponding hydraulic resistance. RESULTS We find that the observed shapes of PASs have lower hydraulic resistance than concentric, circular annuli of the same size, and therefore allow faster, more efficient flow of cerebrospinal fluid. We find that the minimum hydraulic resistance (and therefore maximum flow rate) for a given PAS cross-sectional area occurs when the ellipse is elongated and intersects the circle, dividing the PAS into two lobes, as is common around pial arteries. We also find that if both the inner and outer boundaries are nearly circular, the minimum hydraulic resistance occurs when the eccentricity is large, as is common around penetrating arteries. CONCLUSIONS The concentric circular annulus assumed in recent studies is not a good model of the shape of actual PASs observed in vivo, and it greatly overestimates the hydraulic resistance of the PAS. Our parameterization can be used to incorporate more realistic resistances into hydraulic network models of flow of cerebrospinal fluid in the brain. Our results demonstrate that actual shapes observed in vivo are nearly optimal, in the sense of offering the least hydraulic resistance. This optimization may well represent an evolutionary adaptation that maximizes clearance of metabolic waste from the brain.
Collapse
Affiliation(s)
- Jeffrey Tithof
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627 USA
| | - Douglas H. Kelley
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627 USA
| | - Humberto Mestre
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - John H. Thomas
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627 USA
| |
Collapse
|
42
|
Aldea R, Weller RO, Wilcock DM, Carare RO, Richardson G. Cerebrovascular Smooth Muscle Cells as the Drivers of Intramural Periarterial Drainage of the Brain. Front Aging Neurosci 2019; 11:1. [PMID: 30740048 PMCID: PMC6357927 DOI: 10.3389/fnagi.2019.00001] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/07/2019] [Indexed: 12/25/2022] Open
Abstract
The human brain is the organ with the highest metabolic activity but it lacks a traditional lymphatic system responsible for clearing waste products. We have demonstrated that the basement membranes of cerebral capillaries and arteries represent the lymphatic pathways of the brain along which intramural periarterial drainage (IPAD) of soluble metabolites occurs. Failure of IPAD could explain the vascular deposition of the amyloid-beta protein as cerebral amyloid angiopathy (CAA), which is a key pathological feature of Alzheimer's disease. The underlying mechanisms of IPAD, including its motive force, have not been clarified, delaying successful therapies for CAA. Although arterial pulsations from the heart were initially considered to be the motive force for IPAD, they are not strong enough for efficient IPAD. This study aims to unravel the driving force for IPAD, by shifting the perspective of a heart-driven clearance of soluble metabolites from the brain to an intrinsic mechanism of cerebral arteries (e.g., vasomotion-driven IPAD). We test the hypothesis that the cerebrovascular smooth muscle cells, whose cycles of contraction and relaxation generate vasomotion, are the drivers of IPAD. A novel multiscale model of arteries, in which we treat the basement membrane as a fluid-filled poroelastic medium deformed by the contractile cerebrovascular smooth muscle cells, is used to test the hypothesis. The vasomotion-induced intramural flow rates suggest that vasomotion-driven IPAD is the only mechanism postulated to date capable of explaining the available experimental observations. The cerebrovascular smooth muscle cells could represent valuable drug targets for prevention and early interventions in CAA.
Collapse
Affiliation(s)
- Roxana Aldea
- Mathematical Sciences, University of Southampton, Southampton, United Kingdom
| | - Roy O Weller
- Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Donna M Wilcock
- Department of Physiology, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - Roxana O Carare
- Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Giles Richardson
- Mathematical Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
43
|
Semyachkina-Glushkovskaya O, Postnov D, Kurths J. Blood⁻Brain Barrier, Lymphatic Clearance, and Recovery: Ariadne's Thread in Labyrinths of Hypotheses. Int J Mol Sci 2018; 19:ijms19123818. [PMID: 30513598 PMCID: PMC6320935 DOI: 10.3390/ijms19123818] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 12/25/2022] Open
Abstract
The peripheral lymphatic system plays a crucial role in the recovery mechanisms after many pathological changes, such as infection, trauma, vascular, or metabolic diseases. The lymphatic clearance of different tissues from waste products, viruses, bacteria, and toxic proteins significantly contributes to the correspondent recovery processes. However, understanding of the cerebral lymphatic functions is a challenging problem. The exploration of mechanisms of lymphatic communication with brain fluids as well as the role of the lymphatic system in brain drainage, clearance, and recovery is still in its infancy. Here we review novel concepts on the anatomy and physiology of the lymphatics in the brain, which warrant a substantial revision of our knowledge about the role of lymphatics in the rehabilitation of the brain functions after neural pathologies. We discuss a new vision on the connective bridge between the opening of a blood–brain barrier and activation of the meningeal lymphatic clearance. The ability to stimulate the lymph flow in the brain, is likely to play an important role in developing future innovative strategies in neurorehabilitation therapy.
Collapse
Affiliation(s)
| | - Dmitry Postnov
- Department of Optics and Biophotonics, Saratov State University, 83 Astrakhanskaya str., 410012 Saratov, Russia.
| | - Jürgen Kurths
- Department of Human and Animal Physiology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia.
- Physics Department, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany.
- Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany.
| |
Collapse
|
44
|
Hladky SB, Barrand MA. Elimination of substances from the brain parenchyma: efflux via perivascular pathways and via the blood-brain barrier. Fluids Barriers CNS 2018; 15:30. [PMID: 30340614 PMCID: PMC6194691 DOI: 10.1186/s12987-018-0113-6] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023] Open
Abstract
This review considers efflux of substances from brain parenchyma quantified as values of clearances (CL, stated in µL g-1 min-1). Total clearance of a substance is the sum of clearance values for all available routes including perivascular pathways and the blood-brain barrier. Perivascular efflux contributes to the clearance of all water-soluble substances. Substances leaving via the perivascular routes may enter cerebrospinal fluid (CSF) or lymph. These routes are also involved in entry to the parenchyma from CSF. However, evidence demonstrating net fluid flow inwards along arteries and then outwards along veins (the glymphatic hypothesis) is still lacking. CLperivascular, that via perivascular routes, has been measured by following the fate of exogenously applied labelled tracer amounts of sucrose, inulin or serum albumin, which are not metabolized or eliminated across the blood-brain barrier. With these substances values of total CL ≅ 1 have been measured. Substances that are eliminated at least partly by other routes, i.e. across the blood-brain barrier, have higher total CL values. Substances crossing the blood-brain barrier may do so by passive, non-specific means with CLblood-brain barrier values ranging from < 0.01 for inulin to > 1000 for water and CO2. CLblood-brain barrier values for many small solutes are predictable from their oil/water partition and molecular weight. Transporters specific for glucose, lactate and many polar substrates facilitate efflux across the blood-brain barrier producing CLblood-brain barrier values > 50. The principal route for movement of Na+ and Cl- ions across the blood-brain barrier is probably paracellular through tight junctions between the brain endothelial cells producing CLblood-brain barrier values ~ 1. There are large fluxes of amino acids into and out of the brain across the blood-brain barrier but only small net fluxes have been observed suggesting substantial reuse of essential amino acids and α-ketoacids within the brain. Amyloid-β efflux, which is measurably faster than efflux of inulin, is primarily across the blood-brain barrier. Amyloid-β also leaves the brain parenchyma via perivascular efflux and this may be important as the route by which amyloid-β reaches arterial walls resulting in cerebral amyloid angiopathy.
Collapse
Affiliation(s)
- Stephen B. Hladky
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| | - Margery A. Barrand
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| |
Collapse
|
45
|
Diem AK, Carare RO, Weller RO, Bressloff NW. A control mechanism for intra-mural peri-arterial drainage via astrocytes: How neuronal activity could improve waste clearance from the brain. PLoS One 2018; 13:e0205276. [PMID: 30286191 PMCID: PMC6171921 DOI: 10.1371/journal.pone.0205276] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/22/2018] [Indexed: 11/18/2022] Open
Abstract
The mechanisms behind the clearance of soluble waste from deep within the parenchyma of the brain remain unclear. Experimental evidence reveals that one pathway for clearance of waste, termed intra-mural peri-arterial drainage (IPAD), is the rapid drainage of interstitial fluid along basement membranes (BM) of the smooth muscle cells of cerebral arteries; failure of IPAD is closely associated with the pathology of Alzheimer's disease (AD), but its driving mechanism remains unclear. We have previously shown that arterial pulsations generated by the heart beat are not strong enough to drive IPAD. Here we present computational evidence for a mechanism for clearance of waste from the brain that is driven by functional hyperaemia, that is, the dilatation of cerebral arterioles as a consequence of increased nutrient demand from neurons. This mechanism is based on our model for the flow of fluid through the vascular BM. It accounts for clearance rates observed in mouse experiments, and aligns with pathological observations and recommendations to lower the individual risk of AD, such as mental and physical activity. Thus, our neurovascular hypothesis should act as the new working hypothesis for the driving force behind IPAD.
Collapse
Affiliation(s)
- Alexandra K. Diem
- Department of Computational Physiology, Simula Research Laboratory, 1364 Fornebu, Norway
- Computational Engineering and Design, Faculty of Engineering and the Environment, University of Southampton, Southampton Boldrewood Innovation Campus, Southampton, SO16 7QF, United Kingdom
- * E-mail:
| | - Roxana O. Carare
- Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, United Kingdom
| | - Roy O. Weller
- Neuropathology, Southampton General Hospital, Southampton, SO16 6YD, United Kingdom
| | - Neil W. Bressloff
- Computational Engineering and Design, Faculty of Engineering and the Environment, University of Southampton, Southampton Boldrewood Innovation Campus, Southampton, SO16 7QF, United Kingdom
| |
Collapse
|
46
|
Rey J, Sarntinoranont M. Pulsatile flow drivers in brain parenchyma and perivascular spaces: a resistance network model study. Fluids Barriers CNS 2018; 15:20. [PMID: 30012159 PMCID: PMC6048913 DOI: 10.1186/s12987-018-0105-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 07/03/2018] [Indexed: 11/10/2022] Open
Abstract
Background In animal models, dissolved compounds in the subarachnoid space and parenchyma have been found to preferentially transport through the cortex perivascular spaces (PVS) but the transport phenomena involved are unclear. Methods In this study two hydraulic network models were used to predict fluid motion produced by blood vessel pulsations and estimate the contribution made to solute transport in PVS and parenchyma. The effect of varying pulse amplitude and timing, PVS dimensions, and tissue hydraulic conductivity on fluid motion was investigated. Results Periodic vessel pulses resulted in oscillatory fluid motion in PVS and parenchyma but no net flow over time. For baseline parameters, PVS and parenchyma peak fluid velocity was on the order of 10 μm/s and 1 nm/s, with corresponding Peclet numbers below 103 and 10−1 respectively. Peak fluid velocity in the PVS and parenchyma tended to increase with increasing pulse amplitude and vessel size, and exhibited asymptotic relationships with hydraulic conductivity. Conclusions Solute transport in parenchyma was predicted to be diffusion dominated, with a negligible contribution from convection. In the PVS, dispersion due to oscillating flow likely plays a significant role in PVS rapid transport observed in previous in vivo experiments. This dispersive effect could be more significant than convective solute transport from net flow that may exist in PVS and should be studied further.
Collapse
Affiliation(s)
- Julian Rey
- Department of Mechanical and Aerospace Engineering, University of Florida, PO Box 116250, Gainesville, FL, 32611, USA
| | - Malisa Sarntinoranont
- Department of Mechanical and Aerospace Engineering, University of Florida, PO Box 116250, Gainesville, FL, 32611, USA.
| |
Collapse
|
47
|
Perez-Nievas BG, Serrano-Pozo A. Deciphering the Astrocyte Reaction in Alzheimer's Disease. Front Aging Neurosci 2018; 10:114. [PMID: 29922147 PMCID: PMC5996928 DOI: 10.3389/fnagi.2018.00114] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/03/2018] [Indexed: 12/24/2022] Open
Abstract
Reactive astrocytes were identified as a component of senile amyloid plaques in the cortex of Alzheimer's disease (AD) patients several decades ago. However, their role in AD pathophysiology has remained elusive ever since, in part owing to the extrapolation of the literature from primary astrocyte cultures and acute brain injury models to a chronic neurodegenerative scenario. Recent accumulating evidence supports the idea that reactive astrocytes in AD acquire neurotoxic properties, likely due to both a gain of toxic function and a loss of their neurotrophic effects. However, the diversity and complexity of this glial cell is only beginning to be unveiled, anticipating that astrocyte reaction might be heterogeneous as well. Herein we review the evidence from mouse models of AD and human neuropathological studies and attempt to decipher the main conundrums that astrocytes pose to our understanding of AD development and progression. We discuss the morphological features that characterize astrocyte reaction in the AD brain, the consequences of astrocyte reaction for both astrocyte biology and AD pathological hallmarks, and the molecular pathways that have been implicated in this reaction.
Collapse
Affiliation(s)
| | - Alberto Serrano-Pozo
- Alzheimer's Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
48
|
Zhang C, Lin J, Wei F, Song J, Chen W, Shan L, Xue R, Wang G, Tao J, Zhang G, Xu GY, Wang L. Characterizing the glymphatic influx by utilizing intracisternal infusion of fluorescently conjugated cadaverine. Life Sci 2018; 201:150-160. [PMID: 29605446 DOI: 10.1016/j.lfs.2018.03.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/21/2018] [Accepted: 03/29/2018] [Indexed: 12/31/2022]
Abstract
AIMS Accumulating evidence supports that cerebrospinal fluid (CSF) in the subarachnoid space (SAS) could reenter the brain parenchyma via the glymphatic influx. The present study was designed to characterize the detailed pathway of subarachnoid CSF influx by using a novel CSF tracer. MAIN METHODS Fluorescently conjugated cadaverine (A488-ca), for the first time, was employed to investigate CSF movement in the brain. Following intracisternal infusion of CSF tracers, mice brain was sliced and prepared for fluorescence imaging. Some brain sections were immunostained in order to observe tracer distribution and cellular uptake. KEY FINDINGS A488-ca moved into the brain parenchyma rapidly, and the influx was time and region dependent. A488-ca entered the mice brain more readily and spread more widely than another commonly used CSF tracer-fluorescently conjugated ovalbumin (OA-45). Furthermore, A488-ca could enter the brain parenchyma either along the paravascular space or across the pial surface. Suppression of glymphatic transport by administration with acetazolamide strikingly reduced the influx of A488-ca. More importantly, relative to OA-45 largely remained in the extracellular space, A488-ca exhibited obvious cellular uptake by astrocytes surrounding the blood vessels and neurons in the cerebral cortex. SIGNIFICANCE Subarachnoid CSF could flow into the brain parenchyma via the glymphatic influx, in which the transcellular pathway was faithfully traced by intracisternal infusion with fluorescently conjugated cadaverine. These observations extend our comprehension on the glymphatic influx pathway.
Collapse
Affiliation(s)
- Cui Zhang
- Department of Physiology and Neurobiology, Medical College of Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Jun Lin
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shi-Zi Street, Suzhou 215006, PR China
| | - Fang Wei
- Department of Physiology and Neurobiology, Medical College of Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Jian Song
- Department of Physiology and Neurobiology, Medical College of Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Wenyue Chen
- Department of Physiology and Neurobiology, Medical College of Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Lidong Shan
- Department of Physiology and Neurobiology, Medical College of Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Rong Xue
- Department of Physiology and Neurobiology, Medical College of Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Guoqing Wang
- Department of Physiology and Neurobiology, Medical College of Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Jin Tao
- Department of Physiology and Neurobiology, Medical College of Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Guoxing Zhang
- Department of Physiology and Neurobiology, Medical College of Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Guang-Yin Xu
- Institute of Neuroscience, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China.
| | - Linhui Wang
- Department of Physiology and Neurobiology, Medical College of Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China.
| |
Collapse
|
49
|
Linninger AA, Xu C, Tangen K, Hartung G. Starling forces drive intracranial water exchange during normal and pathological states. Croat Med J 2018; 58:384-394. [PMID: 29308830 PMCID: PMC5778682 DOI: 10.3325/cmj.2017.58.384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AIM To quantify the exchange of water between cerebral compartments, specifically blood, tissue, perivascular pathways, and cerebrospinal fluid-filled spaces, on the basis of experimental data and to propose a dynamic global model of water flux through the entire brain to elucidate functionally relevant fluid exchange phenomena. METHODS The mechanistic computer model to predict brain water shifts is discretized by cerebral compartments into nodes. Water and species flux is calculated between these nodes across a network of arcs driven by Hagen-Poiseuille flow (blood), Darcy flow (interstitial fluid transport), and Starling's Law (transmembrane fluid exchange). Compartment compliance is accounted for using a pressure-volume relationship to enforce the Monro-Kellie doctrine. This nonlinear system of differential equations is solved implicitly using MATLAB software. RESULTS The model predictions of intraventricular osmotic injection caused a pressure rise from 10 to 22 mmHg, followed by a taper to 14 mmHg over 100 minutes. The computational results are compared to experimental data with R2=0.929. Moreover, simulated osmotic therapy of systemic (blood) injection reduced intracranial pressure from 25 to 10 mmHg. The modeled volume and intracranial pressure changes following cerebral edema agree with experimental trends observed in animal models with R2=0.997. CONCLUSION The model successfully predicted time course and the efficacy of osmotic therapy for clearing cerebral edema. Furthermore, the mathematical model implicated the perivascular pathways as a possible conduit for water and solute exchange. This was a first step to quantify fluid exchange throughout the brain.
Collapse
Affiliation(s)
- Andreas A Linninger
- Andreas A. Linninger, Department of Bioengineering, Neurosurgery, University of Illinois at Chicago, 851 S Morgan St, Chicago, IL 60607, USA,
| | | | | | | |
Collapse
|
50
|
Boespflug EL, Iliff JJ. The Emerging Relationship Between Interstitial Fluid-Cerebrospinal Fluid Exchange, Amyloid-β, and Sleep. Biol Psychiatry 2018; 83:328-336. [PMID: 29279202 PMCID: PMC5767516 DOI: 10.1016/j.biopsych.2017.11.031] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 11/28/2022]
Abstract
Amyloid-β (Aβ) plaques are a key histopathological hallmark of Alzheimer's disease (AD), and soluble Aβ species are believed to play an important role in the clinical development of this disease. Emerging biomarker data demonstrate that Aβ plaque deposition begins decades before the onset of clinical symptoms, suggesting that understanding the biological determinants of the earliest steps in the development of AD pathology may provide key opportunities for AD treatment and prevention. Although a clinical association between sleep disruption and AD has long been appreciated, emerging clinical studies and insights from the basic neurosciences have shed important new light on how sleep and Aβ homeostasis may be connected in the setting of AD. Aβ, like many interstitial solutes, is cleared in part through the exchange of brain interstitial fluid and cerebrospinal fluid along a brain-wide network of perivascular pathways recently termed the glymphatic system. Glymphatic function is primarily a feature of the sleeping brain, rather than the waking brain, and is slowed in the aging and posttraumatic brain. These changes may underlie the diurnal fluctuations in interstitial and cerebrospinal fluid Aβ levels observed in both the rodent and the human. These and other emerging studies suggest that age-related sleep disruption may be one key factor that renders the aging brain vulnerable to Aβ deposition and the development of AD. If this is true, sleep may represent a key modifiable risk factor or therapeutic target in the preclinical phases of AD.
Collapse
Affiliation(s)
- Erin L Boespflug
- Department of Neurology, Oregon Health & Science University, Portland, Oregon; Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon
| | - Jeffrey J Iliff
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon; Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon.
| |
Collapse
|