1
|
Li L, Yao Y, Cao L, Le Y, Li X, Wang X, Zhang X, Li J, Zhang N, Jiang W, Gong P. RAGE-mediated intestinal pro-inflammatory responses triggered by Giardia duodenalis. Acta Trop 2025; 262:107529. [PMID: 39848554 DOI: 10.1016/j.actatropica.2025.107529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/25/2025]
Abstract
Giardia duodenalis is a waterborne zoonotic protozoan that causes gastrointestinal inflammation. Giardiasis and metabolic illnesses share features such as chronic inflammation and intestinal symptoms. Receptor for advanced glycation end products (RAGE) signaling plays a role in metabolic illnesses and intestinal inflammatory responses. The presence of protozoan viruses can influence host immunological responses triggered by protozoa. However, these effects of G. duodenalis remain unknown. In this study, mice treated with the RAGE inhibitor FPS-ZM1 showed more severe intestinal damage, including increased intestinal permeability and lesions, compared to that of the untreated group. Next, we found that G. duodenalis infection activated RAGE, leading to increased secretion of pro-inflammatory cytokines, including IL-1 β, IL-6, IL-12, TNF-α and IFN-γ in mouse intestinal epithelial cells. Notably, these pro-inflammatory responses were significantly higher in Giardiavirus (GLV)-free Giardia than those of GLV-containing Giardia, except for IFN-γ. Additionally, lactate dehydrogenase (LDH) release, GSDMD-N cleavage, and the morphological observation of pyroptosis were significantly higher in cells induced by GLV-free Giardia than those infected with GLV-carrying Giardia. Differences were also observed in the MAPK (p-JNK, p-38, p-ERK) and NF-κB pathway activation, as well as reactive oxygen species (ROS) levels, with higher activation in cells infected by GLV-free Giardia, and the ROS was involved in the regulation of p38 MAPK and JNK activation. These findings reveal the potential of RAGE as a target for developing vaccines or drugs, suggesting the differences in the regulation of host immune responses induced by GLV-free Giardia or GLV-containing Giardia, providing new insights for the prevention and treatment of giardiasis.
Collapse
Affiliation(s)
- Lu Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yuxuan Yao
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Lili Cao
- Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun, 130062, China
| | - Yukun Le
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xin Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xiaocen Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xichen Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Jianhua Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Nan Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Weina Jiang
- Department of Pathology, Qingdao Municipal Hospital, Qingdao, Shandong Province, 266071, China
| | - Pengtao Gong
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
2
|
Dhillon P, Naidu M, Olson MC, VanBuren WM, Sheedy SP, Wells ML, Fidler JL, Heiken JP, Venkatesh SK, Kelm ZS. Diffusely Infiltrative Small Bowel Disease. Radiographics 2024; 44:e230148. [PMID: 39207924 DOI: 10.1148/rg.230148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Multiple infiltrative disorders can affect the small bowel, often resulting in diffuse small bowel wall thickening. These infiltrative disorders can manifest owing to various factors such as an influx of immunologic or neoplastic cells or the accumulation of substances within one or more layers of the intestinal wall. Although there can be considerable overlap in the appearances of infiltrative diseases on cross-sectional images, a comprehensive understanding of more specific ancillary imaging features and clinicopathologic correlation can substantially narrow the differential diagnosis. The radiologist can be instrumental in synthesizing the clinical and imaging information and guiding subsequent workup. The authors present a comprehensive review of the infiltrative disorders that commonly involve the small bowel. These disorders are organized on the basis of their pathophysiologic features, with multiple illustrative case examples to enhance understanding of these entities. CT and MRI are currently the most commonly used imaging modalities for evaluating small bowel disorders, and this review is focused on these two modalities. Detailed information regarding the pathologic features, clinical presentation, and imaging findings of these infiltrative disorders is provided to aid radiologists in recognizing and differentiating these conditions. ©RSNA, 2024.
Collapse
Affiliation(s)
- Preet Dhillon
- From the Department of Radiology (P.D., M.C.O., W.M.V., S.P.S., M.L.W., J.L.F., J.P.H., S.K.V., Z.S.K.), Mayo Clinic (M.N.), 200 First St SW, Rochester, MN 55905
| | - Madeline Naidu
- From the Department of Radiology (P.D., M.C.O., W.M.V., S.P.S., M.L.W., J.L.F., J.P.H., S.K.V., Z.S.K.), Mayo Clinic (M.N.), 200 First St SW, Rochester, MN 55905
| | - Michael C Olson
- From the Department of Radiology (P.D., M.C.O., W.M.V., S.P.S., M.L.W., J.L.F., J.P.H., S.K.V., Z.S.K.), Mayo Clinic (M.N.), 200 First St SW, Rochester, MN 55905
| | - Wendaline M VanBuren
- From the Department of Radiology (P.D., M.C.O., W.M.V., S.P.S., M.L.W., J.L.F., J.P.H., S.K.V., Z.S.K.), Mayo Clinic (M.N.), 200 First St SW, Rochester, MN 55905
| | - Shannon P Sheedy
- From the Department of Radiology (P.D., M.C.O., W.M.V., S.P.S., M.L.W., J.L.F., J.P.H., S.K.V., Z.S.K.), Mayo Clinic (M.N.), 200 First St SW, Rochester, MN 55905
| | - Michael L Wells
- From the Department of Radiology (P.D., M.C.O., W.M.V., S.P.S., M.L.W., J.L.F., J.P.H., S.K.V., Z.S.K.), Mayo Clinic (M.N.), 200 First St SW, Rochester, MN 55905
| | - Jeff L Fidler
- From the Department of Radiology (P.D., M.C.O., W.M.V., S.P.S., M.L.W., J.L.F., J.P.H., S.K.V., Z.S.K.), Mayo Clinic (M.N.), 200 First St SW, Rochester, MN 55905
| | - Jay P Heiken
- From the Department of Radiology (P.D., M.C.O., W.M.V., S.P.S., M.L.W., J.L.F., J.P.H., S.K.V., Z.S.K.), Mayo Clinic (M.N.), 200 First St SW, Rochester, MN 55905
| | - Sudhakar K Venkatesh
- From the Department of Radiology (P.D., M.C.O., W.M.V., S.P.S., M.L.W., J.L.F., J.P.H., S.K.V., Z.S.K.), Mayo Clinic (M.N.), 200 First St SW, Rochester, MN 55905
| | - Zachary S Kelm
- From the Department of Radiology (P.D., M.C.O., W.M.V., S.P.S., M.L.W., J.L.F., J.P.H., S.K.V., Z.S.K.), Mayo Clinic (M.N.), 200 First St SW, Rochester, MN 55905
| |
Collapse
|
3
|
González Maciel A, Rosas López LE, Romero-Velázquez RM, Ramos-Morales A, Ponce-Macotela M, Calderón-Guzmán D, Trujillo-Jiménez F, Alfaro-Rodríguez A, Reynoso-Robles R. Postnatal zinc deficiency due to giardiasis disrupts hippocampal and cerebellar development. PLoS Negl Trop Dis 2024; 18:e0012302. [PMID: 38950061 PMCID: PMC11244800 DOI: 10.1371/journal.pntd.0012302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 07/12/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Giardiasis and zinc deficiency have been identified as serious health problems worldwide. Although Zn depletion is known to occur in giardiasis, no work has investigated whether changes occur in brain structures. METHODS Three groups of gerbils were used: control (1), orogastrically inoculated on day 3 after birth with trophozoites of two isolates of Giardia intestinalis (HGINV/WB) group (2 and 3). Estimates were made at five ages covering: establishment of infection, Giardia population growth, natural parasite clearance and a post-infection age. QuantiChrome zinc assay kit, cresyl violet staining and TUNEL technique were used. RESULTS A significant decrease (p<0.01) in tissue zinc was observed and persisted after infection. Cytoarchitectural changes were observed in 75% of gerbils in the HGINV or WB groups. Ectopic pyramidal neurons were found in the cornus ammonis (CA1-CA3). At 60 and 90 days of age loss of lamination was clearly visible in CA1. In the dentate gyrus (DG), thinning of the dorsal lamina and abnormal thickening of the ventral lamina were observed from 30 days of age. In the cerebellum, we found an increase (p<0.01) in the thickness of the external granular layer (EGL) at 14 days of age that persisted until day 21 (C 3 ± 0.3 μm; HGINV 37 ± 5 μm; WB 28 ± 3 μm); Purkinje cell population estimation showed a significant decrease; a large number of apoptotic somas were observed scattered in the molecular layer; in 60 and 90 days old gerbils we found granular cell heterotopia and Purkinje cell ectopia. The pattern of apoptosis was different in the cerebellum and hippocampus of parasitized gerbils. CONCLUSION The morphological changes found suggest that neuronal migration is affected by zinc depletion caused by giardiasis in early postnatal life; for the first time, the link between giardiasis-zinc depletion and damaged brain structures is shown. This damage may explain the psychomotor/cognitive delay associated with giardiasis. These findings are alarming. Alterations in zinc metabolism and signalling are known to be involved in many brain disorders, including autism.
Collapse
Affiliation(s)
- Angélica González Maciel
- Laboratory of Cell and Tissue Morphology, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| | - Laura Elizabeth Rosas López
- Laboratory of Cell and Tissue Morphology, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| | - Rosa María Romero-Velázquez
- Laboratory of Cell and Tissue Morphology, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| | - Andrea Ramos-Morales
- Laboratory of Cell and Tissue Morphology, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| | - Martha Ponce-Macotela
- Laboratory of Experimental Parasitology, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| | - David Calderón-Guzmán
- Laboratory of Neuroscience, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| | | | - Alfonso Alfaro-Rodríguez
- Division of Neurosciences, Instituto Nacional de Rehabilitación, "Luis Guillermo Ibarra Ibarra", Secretaría de Salud, Mexico City, Mexico
| | - Rafael Reynoso-Robles
- Laboratory of Cell and Tissue Morphology, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| |
Collapse
|
4
|
Xaplanteri P, Rodis N, Potsios C. Gut Microbiota Crosstalk with Resident Macrophages and Their Role in Invasive Amebic Colitis and Giardiasis-Review. Microorganisms 2023; 11:1203. [PMID: 37317178 DOI: 10.3390/microorganisms11051203] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/29/2023] [Accepted: 05/03/2023] [Indexed: 06/16/2023] Open
Abstract
The innate immune response is highly dependent on the action of macrophages. They are abundant in the intestine subepithelial lamina propria of the mucosa, where they deploy multiple tasks and play a critical role. The balance between the gut microbiota and M2 macrophages is critical for gut health and homeostasis. Gut microbiota has the power to change macrophage phenotype and replenish the resident macrophage niche during and post infection. As far as the extracellular enteric parasitic infections invasive amebic colitis and giardiasis are concerned, a change of macrophages phenotype to a pro-inflammatory state is dependent on direct contact of the protozoan parasites with host cells. Macrophages induce strong pro-inflammatory response by inflammasome activation and secretion of interleukin IL-1β. Inflammasomes play a key role in the response to cellular stress and microbe attacks. The balance between gut mucosal homeostasis and infection is dependent on the crosstalk between microbiota and resident macrophages. Parasitic infections involve NLRP1 and NLRP3 inflammasome activation. For Entamoeba histolytica and Giardia duodenalis infections, inflammasome NLRP3 activation is crucial to promote the host defenses. More studies are needed to further elucidate possible therapeutic and protective strategies against these protozoan enteric parasites' invasive infections in humans.
Collapse
Affiliation(s)
- Panagiota Xaplanteri
- Department of Microbiology, General Hospital of Eastern Achaia, 25001 Kalavrita, Greece
| | - Nikiforos Rodis
- Department of Surgery, University General Hospital of Patras, 26332 Patras, Greece
| | - Charalampos Potsios
- Department of Internal Medicine, University General Hospital of Patras, 26504 Patras, Greece
| |
Collapse
|
5
|
Tijani MK, Köster PC, Guadano-Procesi I, George IS, Abodunrin E, Adeola A, Dashti A, Bailo B, González-Barrio D, Carmena D. High Diversity of Giardia duodenalis Assemblages and Sub-Assemblages in Asymptomatic School Children in Ibadan, Nigeria. Trop Med Infect Dis 2023; 8:tropicalmed8030152. [PMID: 36977153 PMCID: PMC10051407 DOI: 10.3390/tropicalmed8030152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
Giardia duodenalis is a significant contributor to the burden of diarrheal disease in sub-Saharan Africa. This study assesses the occurrence and molecular diversity of G. duodenalis and other intestinal parasites in apparently healthy children (n = 311) in Ibadan, Nigeria. Microscopy was used as a screening method and PCR and Sanger sequencing as confirmatory and genotyping methods, respectively. Haplotype analyses were performed to examine associations between genetic variants and epidemiological variables. At microscopy examination, G. duodenalis was the most prevalent parasite found (29.3%, 91/311; 95% CI: 24.3–34.7), followed by Entamoeba spp. (18.7%, 58/311; 14.5–23.4), Ascaris lumbricoides (1.3%, 4/311; 0.4–3.3), and Taenia sp. (0.3%, 1/311; 0.01–1.8). qPCR confirmed the presence of G. duodenalis in 76.9% (70/91) of the microscopy-positive samples. Of them, 65.9% (60/91) were successfully genotyped. Assemblage B (68.3%, 41/60) was more prevalent than assemblage A (28.3%, 17/60). Mixed A + B infections were identified in two samples (3.3%, 2/60). These facts, together with the absence of animal-adapted assemblages, suggest that human transmission of giardiasis was primarily anthroponotic. Efforts to control G. duodenalis (and other fecal-orally transmitted pathogens) should focus on providing safe drinking water and improving sanitation and personal hygiene practices.
Collapse
Affiliation(s)
- Muyideen K. Tijani
- Cellular Parasitology Programme, Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan 200284, Nigeria
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, Skåne University Hospital, 221 85 Lund, Sweden
| | - Pamela C. Köster
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, 28220 Madrid, Spain
| | - Isabel Guadano-Procesi
- Department of Clinical Sciences and Translational Medicine, Faculty of Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
- PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Imo S. George
- Cellular Parasitology Programme, Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan 200284, Nigeria
| | - Elizabeth Abodunrin
- Cellular Parasitology Programme, Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan 200284, Nigeria
| | - Adedamola Adeola
- Cellular Parasitology Programme, Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan 200284, Nigeria
| | - Alejandro Dashti
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, 28220 Madrid, Spain
| | - Begoña Bailo
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, 28220 Madrid, Spain
| | - David González-Barrio
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, 28220 Madrid, Spain
- Correspondence: (D.G.-B.); (D.C.)
| | - David Carmena
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, 28220 Madrid, Spain
- Center for Biomedical Research Network (CIBER) in Infectious Diseases, Health Institute Carlos III, 28029 Madrid, Spain
- Correspondence: (D.G.-B.); (D.C.)
| |
Collapse
|
6
|
Sardinha-Silva A, Alves-Ferreira EVC, Grigg ME. Intestinal immune responses to commensal and pathogenic protozoa. Front Immunol 2022; 13:963723. [PMID: 36211380 PMCID: PMC9533738 DOI: 10.3389/fimmu.2022.963723] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
The physical barrier of the intestine and associated mucosal immunity maintains a delicate homeostatic balance between the host and the external environment by regulating immune responses to commensals, as well as functioning as the first line of defense against pathogenic microorganisms. Understanding the orchestration and characteristics of the intestinal mucosal immune response during commensal or pathological conditions may provide novel insights into the mechanisms underlying microbe-induced immunological tolerance, protection, and/or pathogenesis. Over the last decade, our knowledge about the interface between the host intestinal mucosa and the gut microbiome has been dominated by studies focused on bacterial communities, helminth parasites, and intestinal viruses. In contrast, specifically how commensal and pathogenic protozoa regulate intestinal immunity is less well studied. In this review, we provide an overview of mucosal immune responses induced by intestinal protozoa, with a major focus on the role of different cell types and immune mediators triggered by commensal (Blastocystis spp. and Tritrichomonas spp.) and pathogenic (Toxoplasma gondii, Giardia intestinalis, Cryptosporidium parvum) protozoa. We will discuss how these various protozoa modulate innate and adaptive immune responses induced in experimental models of infection that benefit or harm the host.
Collapse
|
7
|
Solaymani-Mohammadi S. Mucosal Defense Against Giardia at the Intestinal Epithelial Cell Interface. Front Immunol 2022; 13:817468. [PMID: 35250996 PMCID: PMC8891505 DOI: 10.3389/fimmu.2022.817468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/31/2022] [Indexed: 02/05/2023] Open
Abstract
Human giardiasis, caused by the protozoan parasite Giardia duodenalis (syn. Giardia lamblia, Giardia intestinalis, Lamblia intestinalis), is one of the most commonly-identified parasitic diseases worldwide. Chronic G. duodenalis infections cause a malabsorption syndrome that may lead to failure to thrive and/or stunted growth, especially in children in developing countries. Understanding the parasite/epithelial cell crosstalk at the mucosal surfaces of the small intestine during human giardiasis may provide novel insights into the mechanisms underlying the parasite-induced immunopathology and epithelial tissue damage, leading to malnutrition. Efforts to identify new targets for intervening in the development of intestinal immunopathology and the progression to malnutrition are critical. Translating these findings into a clinical setting will require analysis of these pathways in cells and tissues from humans and clinical trials could be devised to determine whether interfering with unwanted mucosal immune responses developed during human giardiasis provide better therapeutic benefits and clinical outcomes for G. duodenalis infections in humans.
Collapse
Affiliation(s)
- Shahram Solaymani-Mohammadi
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| |
Collapse
|
8
|
Kolářová I, Valigurová A. Hide-and-Seek: A Game Played between Parasitic Protists and Their Hosts. Microorganisms 2021; 9:2434. [PMID: 34946036 PMCID: PMC8707157 DOI: 10.3390/microorganisms9122434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 11/17/2022] Open
Abstract
After invading the host organism, a battle occurs between the parasitic protists and the host's immune system, the result of which determines not only whether and how well the host survives and recovers, but also the fate of the parasite itself. The exact weaponry of this battle depends, among others, on the parasite localisation. While some parasitic protists do not invade the host cell at all (extracellular parasites), others have developed successful intracellular lifestyles (intracellular parasites) or attack only the surface of the host cell (epicellular parasites). Epicellular and intracellular protist parasites have developed various mechanisms to hijack host cell functions to escape cellular defences and immune responses, and, finally, to gain access to host nutrients. They use various evasion tactics to secure the tight contact with the host cell and the direct nutrient supply. This review focuses on the adaptations and evasion strategies of parasitic protists on the example of two very successful parasites of medical significance, Cryptosporidium and Leishmania, while discussing different localisation (epicellular vs. intracellular) with respect to the host cell.
Collapse
Affiliation(s)
- Iva Kolářová
- Laboratory of Vector Biology, Department of Parasitology, Faculty of Science, Charles University, Albertov 6, 128 44 Prague, Czech Republic
| | - Andrea Valigurová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| |
Collapse
|
9
|
Dashti N, Zarebavani M. Probiotics in the management of Giardia duodenalis: an update on potential mechanisms and outcomes. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1869-1878. [PMID: 34324017 DOI: 10.1007/s00210-021-02124-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
Giardia duodenalis is a common cause of infection in children and travelers. The most frequent symptom is diarrhea in these patients. G. duodenalis trophozoites use a highly specialized adhesive disc to attach the host intestinal epithelium to induce intestinal damages. Pathological features of the small intestine following giardiasis include villous atrophy; infiltration of granulocytes, lymphocytes, and plasma cells into the lamina propria; and nodular lymphoid hyperplasia. The disturbed intestinal microbiota has been observed in patients with giardiasis. Therefore, a growing body of evidence has emphasized restoring the gut microbiome by probiotics in giardiasis. This study aimed to review the literature to find the pathologic features of giardiasis and its relationship with imbalanced microbiota. Then, benefits of probiotics in giardiasis and their potential molecular mechanisms were discussed. It has been illustrated that using probiotics (e.g., Lactobacillus and Saccharomyces) can reduce the time of gastrointestinal symptoms and repair the damages, particularly in giardiasis. Probiotics' capability in restoring the composition of commensal microbiota may lead to therapeutic outcomes. According to preclinical and clinical studies, probiotics can protect against parasite-induced mucosal damages via increasing the antioxidant capacity, suppressing oxidative products, and regulating the systemic and mucosal immune responses. In addition, they can reduce the proportion of G. duodenalis load by directly targeting the parasite. They can destroy the cellular architecture of parasites and suppress the proliferation and growth of trophozoites via the production of some factors with anti-giardial features. Further researches are required to find suitable probiotics for the prevention and treatment of giardiasis.
Collapse
Affiliation(s)
- Nasrin Dashti
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitra Zarebavani
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
|
11
|
Abd-Elhamid TH, Abdel-Rahman IAM, Mahmoud AR, Allemailem KS, Almatroudi A, Fouad SS, Abdella OH, Elshabrawy HA, El-Kady AM. A Complementary Herbal Product for Controlling Giardiasis. Antibiotics (Basel) 2021; 10:477. [PMID: 33919165 PMCID: PMC8143091 DOI: 10.3390/antibiotics10050477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 01/18/2023] Open
Abstract
Giardiasis is an intestinal protozoal disease caused by Giardia lamblia. The disease became a global health issue due to development of resistance to commonly used drugs. Since many plant-derived products have been used to treat many parasitic infestations, we aimed to assess the therapeutic utility of Artemisia annua (A. annua) for giardiasis. We showed that NO production was significantly reduced whereas serum levels of IL-6, IFN-γ, and TNF-α were elevated in infected hamsters compared to uninfected ones. Additionally, infection resulted in increased numbers of intraepithelial lymphocytes and reduced villi heights, goblet cell numbers, and muscularis externa thickness. We also showed that inducible NO synthase (iNOS) and caspase-3 were elevated in the intestine of infected animals. However, treatment with A. annua significantly reduced the intestinal trophozoite counts and IEL numbers, serum IL-6, IFN-γ, and TNF-α, while increasing NO and restoring villi heights, GC numbers, and ME thickness. Moreover, A. annua treatment resulted in lower levels of caspase-3, which indicates a protective effect from apoptotic cell death. Interestingly, A. annua therapeutic effects are comparable to metronidazole. In conclusion, our results show that A. annua extract is effective in alleviating infection-induced intestinal inflammation and pathological effects, which implies its potential therapeutic utility in controlling giardiasis.
Collapse
Affiliation(s)
- Tarek Hamdy Abd-Elhamid
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Iman A. M. Abdel-Rahman
- Department of Pharmacognosy, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt;
| | - Amany Refaat Mahmoud
- Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
- Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah 51911, Saudi Arabia
| | - Khaled S. Allemailem
- Department of Medical laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (K.S.A.); (A.A.)
| | - Ahmad Almatroudi
- Department of Medical laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (K.S.A.); (A.A.)
| | - Samer S. Fouad
- Qena University Hospital, South Valley University, Qena 83523, Egypt;
| | - Osama H. Abdella
- Department of Medical Parasitology, Faculty of Medicine, South Valley University, Qena 83523, Egypt;
| | - Hatem A. Elshabrawy
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| | - Asmaa M. El-Kady
- Department of Medical Parasitology, Faculty of Medicine, South Valley University, Qena 83523, Egypt;
| |
Collapse
|
12
|
Buret AG, Cacciò SM, Favennec L, Svärd S. Update on Giardia: Highlights from the seventh International Giardia and Cryptosporidium Conference. ACTA ACUST UNITED AC 2020; 27:49. [PMID: 32788035 PMCID: PMC7425178 DOI: 10.1051/parasite/2020047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/01/2020] [Indexed: 12/22/2022]
Abstract
Although Giardia duodenalis is recognized as one of the leading causes of parasitic human diarrhea in the world, knowledge of the mechanisms of infection is limited, as the pathophysiological consequences of infection remain incompletely elucidated. Similarly, the reason for and consequences of the very specific genome-organization in this parasite with 2 active nuclei is only partially known. Consistent with its tradition, the 7th International Giardia and Cryptosporidium Conference (IGCC 2019) was held from June 23 to 26, 2019, at the Faculty of Medicine and Pharmacy of the University of Rouen-Normandie, France, to discuss current research perspectives in the field. This renowned event brought together an international delegation of researchers to present and debate recent advances and identify the main research themes and knowledge gaps. The program for this interdisciplinary conference included all aspects of host-parasite relationships, from basic research to applications in human and veterinary medicine, as well as the environmental issues raised by water-borne parasites and their epidemiological consequences. With regard to Giardia and giardiasis, the main areas of research for which new findings and the most impressive communications were presented and discussed included: parasite ecology and epidemiology of giardiasis, Giardia-host interactions, and cell biology of Giardia, genomes and genomic evolution. The high-quality presentations discussed at the Conference noted breakthroughs and identified new opportunities that will inspire researchers and funding agencies to stimulate future research in a “one health” approach to improve basic knowledge and clinical and public health management of zoonotic giardiasis.
Collapse
Affiliation(s)
- André G Buret
- Biological Sciences, University of Calgary, TN4N1 Calgary (AB), Canada
| | - Simone M Cacciò
- Department of Infectious Diseases, Istituto Superiore di Sanita, 00161 Rome, Italy
| | - Loïc Favennec
- French National Cryptosporidiosis Reference Center, Rouen University Hospital, 1 rue de Germont, 76031 Rouen cedex, France - EA 7510, UFR Santé, University of Rouen Normandy, Normandy University, 22 bd Gambetta, 76183 Rouen cedex, France
| | - Staffan Svärd
- Department of Cell and Molecular Biology, Uppsala University, SE 75124 Uppsala, Sweden
| |
Collapse
|
13
|
Allain T, Buret AG. Pathogenesis and post-infectious complications in giardiasis. ADVANCES IN PARASITOLOGY 2019; 107:173-199. [PMID: 32122529 DOI: 10.1016/bs.apar.2019.12.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Giardia is an important cause of diarrhoea, and results in post-infectious and extra-intestinal complications. This chapter presents a state-of-the art of our understanding of how this parasite may cause such abnormalities, which appear to develop at least in part in Assemblage-dependent manner. Findings from prospective longitudinal cohort studies indicate that Giardia is one of the four most prevalent enteropathogens in early life, and represents a risk factor for stunting at 2 years of age. This may occur independently of diarrheal disease, in strong support of the pathophysiological significance of the intestinal abnormalities induced by this parasite. These include epithelial malabsorption and maldigestion, increased transit, mucus depletion, and disruptions of the commensal microbiota. Giardia increases epithelial permeability and facilitates the invasion of gut bacteria. Loss of intestinal barrier function is at the core of the acute and post-infectious complications associated with this infection. Recent findings demonstrate that the majority of the pathophysiological responses triggered by this parasite can be recapitulated by the effects of its membrane-bound and secreted cysteine proteases.
Collapse
Affiliation(s)
- Thibault Allain
- University of Calgary, Host-Parasite Interactions Program, Inflammation Research Network, Department of Biological Sciences, Calgary, Canada
| | - André G Buret
- University of Calgary, Host-Parasite Interactions Program, Inflammation Research Network, Department of Biological Sciences, Calgary, Canada.
| |
Collapse
|
14
|
Virili C, Antonelli A, Santaguida MG, Benvenga S, Centanni M. Gastrointestinal Malabsorption of Thyroxine. Endocr Rev 2019; 40:118-136. [PMID: 30476027 DOI: 10.1210/er.2018-00168] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023]
Abstract
Levothyroxine, a largely prescribed drug with a narrow therapeutic index, is often a lifelong treatment. The therapeutic efficacy of T4 may be marred by behavioral, pharmacologic, and pathologic issues acting as interfering factors. Despite a continuous search for an optimal T4 treatment, a significant number of patients fail to show a complete chemical and/or clinical response to this reference dose of T4. Gastrointestinal malabsorption of oral T4 represents an emerging cause of refractory hypothyroidism and may be more frequent than previously reputed. In this review, we examine the pharmacologic features of T4 preparations and their linkage with the intestinal absorption of the hormone. We have stressed the major biochemical and pharmacologic characteristics of T4 and its interaction with the putative transporter at the intestinal level. We have examined the interfering role of nutrients, foods, and drugs on T4 absorption at the gastric and intestinal levels. The impact of gastrointestinal disorders on T4 treatment efficacy has been also analyzed, in keeping with the site of action and the interfering mechanisms. Based on the evidence obtained from the literature, we also propose a schematic diagnostic workup for the most frequent and often hidden gastrointestinal diseases impairing T4 absorption.
Collapse
Affiliation(s)
- Camilla Virili
- Endocrinology Unit, Department of Medico-Surgical Sciences and Biotechnologies, "Sapienza" University of Rome, Latina, Italy
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Maria Giulia Santaguida
- Endocrinology Unit, Department of Medico-Surgical Sciences and Biotechnologies, "Sapienza" University of Rome, Latina, Italy.,Endocrinology Unit, AUSL Latina, Latina, Italy
| | - Salvatore Benvenga
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario G. Martino, Messina, Italy.,Master Program on Childhood, Adolescent and Women's Endocrine Health, University of Messina, Policlinico Universitario G. Martino, Messina, Italy.,Interdepartmental Program of Molecular and Clinical Endocrinology, and Women's Endocrine Health, University Hospital, Policlinico Universitario G. Martino, Messina, Italy
| | - Marco Centanni
- Endocrinology Unit, Department of Medico-Surgical Sciences and Biotechnologies, "Sapienza" University of Rome, Latina, Italy.,Endocrinology Unit, AUSL Latina, Latina, Italy
| |
Collapse
|
15
|
Ankarklev J, Lebbad M, Einarsson E, Franzén O, Ahola H, Troell K, Svärd SG. A novel high-resolution multilocus sequence typing of Giardia intestinalis Assemblage A isolates reveals zoonotic transmission, clonal outbreaks and recombination. INFECTION GENETICS AND EVOLUTION 2018; 60:7-16. [DOI: 10.1016/j.meegid.2018.02.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/30/2018] [Accepted: 02/09/2018] [Indexed: 12/22/2022]
|
16
|
Song Y, Li W, Liu H, Zhong Z, Luo Y, Wei Y, Fu W, Ren Z, Zhou Z, Deng L, Cheng J, Peng G. First report of Giardia duodenalis and Enterocytozoon bieneusi in forest musk deer (Moschus berezovskii) in China. Parasit Vectors 2018; 11:204. [PMID: 29580294 PMCID: PMC5870929 DOI: 10.1186/s13071-018-2681-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/29/2018] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Giardia duodenalis and Enterocytozoon bieneusi are widespread pathogens that can infect humans and various animal species. Thus far, there are only a few reports of G. duodenalis and E. bieneusi infections in ruminant wildlife. Thus, the objective of this study was to examine the prevalence of G. duodenalis and E. bieneusi in forest musk deer in Sichuan, China, as well as identifying their genotypes. RESULTS In total, we collected 223 faecal samples from musk deer at the Sichuan Institute of Musk Deer Breeding in Dujiangyan (n = 80) and the Maerkang Breeding Institute (n = 143). Five (2.24%) faecal samples were positive for G. duodenalis; three belonged to assemblage E, and two belonged to assemblage A based on the sequence analysis of the β-giardin (bg) gene. One sample each was found to be positive based on the glutamate dehydrogenase (gdh) and triosephosphate isomerase (tpi) gene, respectively. Thirty-eight (17.04%) faecal samples were found to be E. bieneusi-positive based on the internal transcribed spacer (ITS) sequence, and only SC03 genotype was identified, which belonged to the zoonotic group 1 according to the phylogenic analysis. The infection rates were significantly different among the different geographical areas and age groups but had no apparent association with gender or clinical symptoms. CONCLUSIONS To our knowledge, this was the first molecular characterisation of G. duodenalis and E. bieneusi in musk deer. Identification of the zoonotic genotypes indicated a potential public health threat, and our study suggested that the forest musk deer is an important carrier of these parasites.
Collapse
Affiliation(s)
- Yuan Song
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province China
| | - Wei Li
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province China
| | - Haifeng Liu
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province China
| | - Zhijun Zhong
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province China
| | - Yan Luo
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province China
| | - Yao Wei
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province China
| | - Wenlong Fu
- Sichuan Institute of Musk Deer Breeding, Dujiangyan, Sichuan Province China
| | - Zhihua Ren
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province China
| | - Ziyao Zhou
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province China
| | - Lei Deng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province China
| | - Jianguo Cheng
- Sichuan Institute of Musk Deer Breeding, Dujiangyan, Sichuan Province China
| | - Guangneng Peng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province China
| |
Collapse
|
17
|
Pavanelli MF, Colli CM, Gomes ML, Góis MB, de Alcântara Nogueira de Melo G, de Almeida Araújo EJ, de Mello Gonçales Sant'Ana D. Comparative study of effects of assemblages AII and BIV of Giardia duodenalis on mucosa and microbiota of the small intestine in mice. Biomed Pharmacother 2018. [PMID: 29514129 DOI: 10.1016/j.biopha.2018.02.141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AIMS Giardiasis is one of the major causes of diarrhea worldwide and its symptoms vary in intensity, which can be attributed to different parasite assemblages. The goal of the present study was to compare the effects of infection caused by assemblages AII and BIV ofGiardia duodenalis on the response of the small intestine, microbiota, and behavioral parameters in mice. MAIN METHODS Swiss mice were infected with assemblages AII and BIV of G. duodenalis for 15 days. Leucometry, pain, intestinal microbiota and histological parameters of the duodenum and jejunum were evaluated in the experimental groups. KEY FINDINGS Both assemblages modified the composition of the intestinal microbiota. Infection with assemblage AII promoted leukocytosis, reflected by increasing number of polymorphonuclear cells, intraepithelial lymphocytes and pain-related behavior, indicating that this was the more aggressive assemblage with regard to its effects on the intestinal mucosa and duodenum. SIGNIFICANCE The specific assemblage of the parasite is an important parameter that affects symptomatology in the host.
Collapse
|
18
|
Cacciò SM, Lalle M, Svärd SG. Host specificity in the Giardia duodenalis species complex. INFECTION GENETICS AND EVOLUTION 2017; 66:335-345. [PMID: 29225147 DOI: 10.1016/j.meegid.2017.12.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/01/2017] [Accepted: 12/02/2017] [Indexed: 12/15/2022]
Abstract
Giardia duodenalis is a unicellular flagellated parasite that infects the gastrointestinal tract of a wide range of mammalian species, including humans. Investigations of protein and DNA polymorphisms revealed that G. duodenalis should be considered as a species complex, whose members, despite being morphologically indistinguishable, can be classified into eight groups, or Assemblages, separated by large genetic distances. Assemblages display various degree of host specificity, with Assemblages A and B occurring in humans and many other hosts, Assemblage C and D in canids, Assemblage E in hoofed animals, Assemblage F in cats, Assemblage G in rodents, and Assemblage H in pinnipeds. The factors determining host specificity are only partially understood, and clearly involve both the host and the parasite. Here, we review the results of in vitro and in vivo experiments, and clinical observations to highlight relevant biological and genetic differences between Assemblages, with a focus on human infection.
Collapse
Affiliation(s)
- Simone M Cacciò
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy.
| | - Marco Lalle
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Staffan G Svärd
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Rufino-González Y, Ponce-Macotela M, Jiménez-Estrada M, Jiménez-Fragoso CN, Palencia G, Sansón-Romero G, Anzo-Osorio A, Martínez-Gordillo MN. Piqueria trinervia as a source of metabolites against Giardia intestinalis. PHARMACEUTICAL BIOLOGY 2017; 55:1787-1791. [PMID: 28524742 PMCID: PMC6130510 DOI: 10.1080/13880209.2017.1325912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
CONTEXT Piqueria trinervia Cav. (Asteraceae) is a plant species with a long history in traditional medicine to cure diarrhoea and other digestive disorders. OBJECTIVE The study investigates the antigiardial activity of piquerol, trinervinol, red oil and two fractions (F1 and F2) from P. trinervia. MATERIALS AND METHODS P. trinervia was collected in the Ajusco in Mexico City. Aerial parts were ground and mixed with water to obtain the extract, which was treated with dichloromethane to isolate piquerol and trinervinol (P & T). Remnants were the red oil, fractions 1 and 2 (RO, F1 & F2). Trophozoites of Giardia intestinalis were treated with P, T, RO, F1 and F2 at different concentrations (0.78-200 μg/mL) for 48 h. Antigiardial activity was measured using the methylene blue reduction, and the cytotoxicity assayed on human fibroblasts and Vero cells by reduction of tetrazolium salts. RESULTS Trinervinol and piquerol showed antigiardial activity with an IC50 = 2.03 and 2.42 μg/mL, and IC90 = 13.03 and 8.74 μg/mL, respectively. The concentrations of trinervinol (CC50 = 590 μg/mL) and piquerol (CC50 = 501 μg/mL) were not cytotoxic to human fibroblasts. CONCLUSIONS Compounds from P. trinervia showed antigiardial activity; to enhance this activity, piquerol and trinervinol can be chemically modified.
Collapse
Affiliation(s)
- Yadira Rufino-González
- Laboratorio de Parasitología Experimental, Instituto Nacional de Pediatría, México City, México
| | - Martha Ponce-Macotela
- Laboratorio de Parasitología Experimental, Instituto Nacional de Pediatría, México City, México
| | | | | | - Guadalupe Palencia
- Laboratorio de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, México City, México
| | | | - Anahi Anzo-Osorio
- Metodología de la Investigación, Instituto Nacional de Pediatría, México City, México
| | - Mario N. Martínez-Gordillo
- Laboratorio de Parasitología Experimental, Instituto Nacional de Pediatría, México City, México
- CONTACT Mario N. Martínez-Gordillo, Laboratorio de Parasitología experimental, Instituto Nacional de Pediatría, Insurgentes Sur No. 3700-C, C.P. 04530, Ciudad de México, México
| |
Collapse
|
20
|
Ashour DS, Saad AE, Dawood LM, Zamzam Y. Immunological interaction between Giardia cyst extract and experimental toxoplasmosis. Parasite Immunol 2017; 40. [PMID: 29130475 DOI: 10.1111/pim.12503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 11/07/2017] [Indexed: 12/16/2022]
Abstract
Toxoplasmosis is mostly associated with other intestinal parasitic infections especially Giardia due to shared mode of peroral infection. Toxoplasma and Giardia induce a strong T-helper 1- immune response. Our aim was to induce a protective immune response that results in significant impact on intestinal and extra-intestinal phases of Toxoplasma infection. This study was conducted in experimental animals and assessment of Giardia cyst extract effect on Toxoplasma infection was investigated by histopathological examination of small intestine and brain, Toxoplasma cyst count and iNOS staining of the brain, measurement of IFN-γ and TGF-β in intestinal tissues. Results showed that the brain Toxoplasma cyst number was decreased in mice infected with Toxoplasma then received Giardia cyst extract as compared to mice infected with Toxoplasma only. This effect was produced because Giardia cyst extract augmented the immune response to Toxoplasma infection as evidenced by severe inflammatory reaction in the intestinal and brain tissues, increased levels of IFN-γ and TGF-β in intestinal tissues and strong iNOS staining of the brain. In conclusion, Giardia cyst extract generated a protective response against T. gondii infection. Therefore, Giardia antigen will be a suitable candidate for further researches as an immunomodulatory agent against Toxoplasma infection.
Collapse
Affiliation(s)
- D S Ashour
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - A E Saad
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - L M Dawood
- Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Y Zamzam
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Giardia is a common intestinal parasite worldwide, and infection can be associated with clear and sometimes persistent symptomatology. However, in children in high-prevalence settings, it is not associated with or is perhaps even protective against acute diarrhea, and the association with long-term outcomes has been difficult to discern. RECENT FINDINGS Recent studies have made progress in helping us disentangle this apparent paradox. First, prospective, well-characterized cohort studies have added to the data on the association between Giardia and diarrhea in these settings and have further characterized associations between Giardia infection and nutrition, gut function, and growth. Second, animal models have further characterized the host response to Giardia and helped elucidate mechanisms by which Giardia could impair child development. Finally, new work has shed light on the heterogeneity of human Giardia strains, which may both explain discrepant findings in the literature and help guide higher-resolution analyses of this pathogen in the future. SUMMARY The true clinical impact of endemic pediatric giardiasis remains unclear, but recent prospective studies have confirmed a high prevalence of persistent, subclinical Giardia infections and associated growth shortfalls. Integrating how nutritional, microbial, metabolic, and pathogen-strain variables influence these outcomes could sharpen delineations between pathogenic and potentially beneficial attributes of this enigmatic parasite.
Collapse
|
22
|
Fink MY, Singer SM. The Intersection of Immune Responses, Microbiota, and Pathogenesis in Giardiasis. Trends Parasitol 2017; 33:901-913. [PMID: 28830665 DOI: 10.1016/j.pt.2017.08.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/18/2017] [Accepted: 08/01/2017] [Indexed: 02/07/2023]
Abstract
Giardia lamblia is one of the most common infectious protozoans in the world. Giardia rarely causes severe life-threatening diarrhea, and may even have a slight protective effect in this regard, but it is a major contributor to malnutrition and growth faltering in children in the developing world. Giardia infection also appears to be a significant risk factor for postinfectious irritable bowel and chronic fatigue syndromes. In this review we highlight recent work focused on the impact of giardiasis and the mechanisms that contribute to the various outcomes of this infection, including changes in the composition of the microbiota, activation of immune responses, and immunopathology.
Collapse
Affiliation(s)
- Marc Y Fink
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Steven M Singer
- Department of Biology, Georgetown University, Washington, DC, USA.
| |
Collapse
|
23
|
Allain T, Amat CB, Motta JP, Manko A, Buret AG. Interactions of Giardia sp. with the intestinal barrier: Epithelium, mucus, and microbiota. Tissue Barriers 2017; 5:e1274354. [PMID: 28452685 DOI: 10.1080/21688370.2016.1274354] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Understanding how intestinal enteropathogens cause acute and chronic alterations has direct animal and human health perspectives. Significant advances have been made on this field by studies focusing on the dynamic crosstalk between the intestinal protozoan parasite model Giardia duodenalis and the host intestinal mucosa. The concept of intestinal barrier function is of the highest importance in the context of many gastrointestinal diseases such as infectious enteritis, inflammatory bowel disease, and post-infectious gastrointestinal disorders. This crucial function relies on 3 biotic and abiotic components, first the commensal microbiota organized as a biofilm, then an overlaying mucus layer, and finally the tightly structured intestinal epithelium. Herein we review multiple strategies used by Giardia parasite to circumvent these 3 components. We will summarize what is known and discuss preliminary observations suggesting how such enteropathogen directly and/ or indirectly impairs commensal microbiota biofilm architecture, disrupts mucus layer and damages host epithelium physiology and survival.
Collapse
Affiliation(s)
- Thibault Allain
- a Department of Biological Sciences , University of Calgary , Calgary , AB , Canada.,b Inflammation Research Network, University of Calgary , Calgary , AB , Canada.,c Host-Parasite Interactions, University of Calgary , Calgary , AB , Canada
| | - Christina B Amat
- a Department of Biological Sciences , University of Calgary , Calgary , AB , Canada.,b Inflammation Research Network, University of Calgary , Calgary , AB , Canada.,c Host-Parasite Interactions, University of Calgary , Calgary , AB , Canada
| | - Jean-Paul Motta
- a Department of Biological Sciences , University of Calgary , Calgary , AB , Canada.,b Inflammation Research Network, University of Calgary , Calgary , AB , Canada.,c Host-Parasite Interactions, University of Calgary , Calgary , AB , Canada
| | - Anna Manko
- a Department of Biological Sciences , University of Calgary , Calgary , AB , Canada.,b Inflammation Research Network, University of Calgary , Calgary , AB , Canada.,c Host-Parasite Interactions, University of Calgary , Calgary , AB , Canada
| | - André G Buret
- a Department of Biological Sciences , University of Calgary , Calgary , AB , Canada.,b Inflammation Research Network, University of Calgary , Calgary , AB , Canada.,c Host-Parasite Interactions, University of Calgary , Calgary , AB , Canada
| |
Collapse
|
24
|
Adaptive immune response in symptomatic and asymptomatic enteric protozoal infection: evidence for a determining role of parasite genetic heterogeneity in host immunity to human giardiasis. Microbes Infect 2016; 18:687-695. [PMID: 27401766 DOI: 10.1016/j.micinf.2016.06.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/13/2016] [Accepted: 06/29/2016] [Indexed: 11/23/2022]
Abstract
The genetic basis of the ultimate clinical outcomes of human giardiasis has been the subject of numerous investigations. We previously demonstrated roles for both host and parasite factors in determining the outcome of enteric infection in a murine model of Giardia duodenalis infection. In the current study, fecal and serum specimens from healthy controls and human subjects infected with the intestinal parasite G. duodenalis were assessed. Using a semi-nested PCR method, clinical isolates were genetically characterized based on the gdh and tpi loci, and the phylogenetic trees were constructed. Using a sandwich ELISA method, the serum levels of representative TH1 and TH2 cytokines were measured in infected human subjects and healthy controls. Here we showed that symptomatic human giardiasis was characterized by significantly elevated serum levels of the TH1 cytokine IFN-γ compared to healthy controls, whereas asymptomatic human subjects and healthy controls had comparable levels of serum IFN-γ. Further analyses showed that human subjects infected with G. duodenalis genotype AI had significantly elevated levels of serum IFN-γ and IL-10, but not IL-5, whereas human subjects infected with AII had similar levels of those cytokines compared to healthy controls. These data demonstrate roles for both host and parasite factors in the determination of the outcome of enteric infections and may further broaden our understanding of host-parasite interaction during enteric protozoal infections.
Collapse
|
25
|
Cotton JA, Amat CB, Buret AG. Disruptions of Host Immunity and Inflammation by Giardia Duodenalis: Potential Consequences for Co-Infections in the Gastro-Intestinal Tract. Pathogens 2015; 4:764-92. [PMID: 26569316 PMCID: PMC4693164 DOI: 10.3390/pathogens4040764] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 12/11/2022] Open
Abstract
Giardia duodenalis (syn. G. intestinalis, or G. lamblia) is a leading cause of waterborne diarrheal disease that infects hundreds of millions of people annually. Research on Giardia has greatly expanded within the last few years, and our understanding of the pathophysiology and immunology on this parasite is ever increasing. At peak infection, Giardia trophozoites induce pathophysiological responses that culminate in the development of diarrheal disease. However, human data has suggested that the intestinal mucosa of Giardia-infected individuals is devoid of signs of overt intestinal inflammation, an observation that is reproduced in animal models. Thus, our understanding of host inflammatory responses to the parasite remain incompletely understood and human studies and experimental data have produced conflicting results. It is now also apparent that certain Giardia infections contain mechanisms capable of modulating their host's immune responses. As the oral route of Giardia infection is shared with many other gastrointestinal (GI) pathogens, co-infections may often occur, especially in places with poor sanitation and/or improper treatment of drinking water. Moreover, Giardia infections may modulate host immune responses and have been found to protect against the development of diarrheal disease in developing countries. The following review summarizes our current understanding of the immunomodulatory mechanisms of Giardia infections and their consequences for the host, and highlights areas for future research. Potential implications of these immunomodulatory effects during GI co-infection are also discussed.
Collapse
Affiliation(s)
- James A Cotton
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Christina B Amat
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 1N4, Canada.
- Host-Parasite Interactions, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | - Andre G Buret
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 1N4, Canada.
- Host-Parasite Interactions, University of Calgary, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|