1
|
Ding Y, Ou G, Wang D. Aggregation-induced emission luminescence for angiography and atherosclerotic diagnosis. iScience 2024; 27:110719. [PMID: 39297169 PMCID: PMC11407974 DOI: 10.1016/j.isci.2024.110719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024] Open
Abstract
Optical imaging technology has become increasingly recognized for its utility in diagnosing atherosclerosis thanks to advantages such as high spatial resolution, rapid data acquisition, lack of radiation exposure, cost-effectiveness, minimal invasiveness, and limited side effects. However, traditional luminogens employed in optical diagnostics are often troubled by aggregation-caused quenching (ACQ) effect, causing diagnostic errors in vivo. Since Professor Tang discovered the aggregation-induced emission (AIE) phenomenon, AIE luminogens (AIEgens) have been rapidly developing and are considered as the next-generation fluorescent contrast agents for angiography and atherosclerotic diagnosis. This mini review will outline the use of AIEgens in angiography and the diagnosis of atherosclerosis, exploring different imaging models, including second near-infrared, two/multi-photon, and photoacoustic imaging, and will provide a forward-looking perspective on their potential in atherosclerotic diagnosis.
Collapse
Affiliation(s)
- Yuxun Ding
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Guanchu Ou
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
2
|
Zhang X, Dorlhiac G, Landry MP, Streets A. Phototoxic effects of nonlinear optical microscopy on cell cycle, oxidative states, and gene expression. Sci Rep 2022; 12:18796. [PMID: 36335145 PMCID: PMC9637160 DOI: 10.1038/s41598-022-23054-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2022] Open
Abstract
Nonlinear optical imaging modalities, such as stimulated Raman scattering (SRS) microscopy, use pulsed-laser excitation with high peak intensity that can perturb the native state of cells. In this study, we used bulk RNA sequencing, quantitative measurement of cell proliferation, and fluorescent measurement of the generation of reactive oxygen species to assess phototoxic effects of near-IR pulsed laser radiation, at different time scales, for laser excitation settings relevant to SRS imaging. We define a range of laser excitation settings for which there was no significant change in mouse Neuro2A cells after laser exposure. This study provides guidance for imaging parameters that minimize photo-induced perturbations in SRS microscopy to ensure accurate interpretation of experiments with time-lapse imaging or with paired measurements of imaging and sequencing on the same cells.
Collapse
Affiliation(s)
- Xinyi Zhang
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gabriel Dorlhiac
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA, USA
| | - Markita P Landry
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| | - Aaron Streets
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA.
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA, USA.
- Chan-Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
3
|
Lin PC, Lin YT, LIU KUANTING, Chen MS, Zhang YY, Li JC, Leung MK. Differential Detection of Strong-Acids in Weak-Acids: A combination of Benzimidazole-carbazole backbone with AIE luminophores as highly sensitive and selective turn-on fluorescent probes. NEW J CHEM 2022. [DOI: 10.1039/d2nj01226j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
o-BzcDPE and p-BzcDPE have been synthesized and used as probes for strong acid detection. The probes contain an aggregation-induced emission luminogens (AIEgens) that is incorporated with benzimidazole-carbazole backbone. Both probes...
Collapse
|
4
|
Li H, Lu Y, Chung J, Han J, Kim H, Yao Q, Kim G, Wu X, Long S, Peng X, Yoon J. Activation of apoptosis by rationally constructing NIR amphiphilic AIEgens: surmounting the shackle of mitochondrial membrane potential for amplified tumor ablation. Chem Sci 2021; 12:10522-10531. [PMID: 34447545 PMCID: PMC8356816 DOI: 10.1039/d1sc02227j] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/25/2021] [Indexed: 12/13/2022] Open
Abstract
In recent years, the use of aggregation-induced emission luminogens (AIEgens) for biological imaging and phototherapy has become an area of intense research. However, most traditional AIEgens suffer from undesired aggregation in aqueous media with "always on" fluorescence, or their targeting effects cannot be maintained accurately in live cells with the microenvironment changes. These drawbacks seriously impede their application in the fields of bio-imaging and antitumor therapy, which require a high signal-to-noise ratio. Herein, we propose a molecular design strategy to tune the dispersity of AIEgens in both lipophilic and hydrophilic systems to obtain the novel near-infrared (NIR, ∼737 nm) amphiphilic AIE photosensitizer (named TPA-S-TPP) with two positive charges as well as a triplet lifetime of 11.43 μs. The synergistic effects of lipophilicity, electrostatic interaction, and structure-anchoring enable the wider dynamic range of AIEgen TPA-S-TPP for mitochondrial targeting with tolerance to the changes of mitochondrial membrane potential (ΔΨ m). Intriguingly, TPA-S-TPP was difficult for normal cells to be taken up, indicative of low inherent toxicity for normal cells and tissues. Deeper insight into the changes of mitochondrial membrane potential and cleaved caspase 3 levels further revealed the mechanism of tumor cell apoptosis activated by AIEgen TPA-S-TPP under light irradiation. With its advantages of low dark toxicity and good biocompatibility, acting as an efficient theranostic agent, TPA-S-TPP was successfully applied to kill cancer cells and to efficiently inhibit tumor growth in mice. This study will provide a new avenue for researchers to design more ideal amphiphilic AIE photosensitizers with NIR fluorescence.
Collapse
Affiliation(s)
- Haidong Li
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Korea
| | - Yang Lu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology 2 Linggong Road Dalian 116024 P. R. China
| | - Jeewon Chung
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Korea
| | - Jingjing Han
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Korea
| | - Heejeong Kim
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Korea
| | - Qichao Yao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology 2 Linggong Road Dalian 116024 P. R. China
- Ningbo Institute of Dalian University of Technology 26 Yucai Road, Jiangbei District Ningbo 315016 P. R. China
| | - Gyoungmi Kim
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Korea
| | - Xiaofeng Wu
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Korea
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Dalian University of Technology 2 Linggong Road Dalian 116024 P. R. China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology 2 Linggong Road Dalian 116024 P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Korea
| |
Collapse
|
5
|
Lu Q, Wu CJ, Liu Z, Niu G, Yu X. Fluorescent AIE-Active Materials for Two-Photon Bioimaging Applications. Front Chem 2020; 8:617463. [PMID: 33381495 PMCID: PMC7767854 DOI: 10.3389/fchem.2020.617463] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Fluorescence imaging has been widely used as a powerful tool for in situ and real-time visualization of important analytes and biological events in live samples with remarkably high selectivity, sensitivity, and spatial resolution. Compared with one-photon fluorescence imaging, two-photon fluorescence imaging exhibits predominant advantages of minimal photodamage to samples, deep tissue penetration, and outstanding resolution. Recently, the aggregation-induced emission (AIE) materials have become a preferred choice in two-photon fluorescence biological imaging because of its unique bright fluorescence in solid and aggregate states and strong resistance to photobleaching. In this review, we will exclusively summarize the applications of AIE-active materials in two-photon fluorescence imaging with some representative examples from four aspects: fluorescence detection, in vitro cell imaging, ex vivo tissue imaging, and in vivo vascular imaging. In addition, the current challenges and future development directions of AIE-active materials for two-photon bioimaging are briefly discussed.
Collapse
Affiliation(s)
- Qing Lu
- State Key Laboratory of Crystal Materials, and Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Cheng-Juan Wu
- College of Chemistry, Chemical Engineering and Material Science, Shandong Normal University, Jinan, China
| | - Zhiqiang Liu
- State Key Laboratory of Crystal Materials, and Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Guangle Niu
- State Key Laboratory of Crystal Materials, and Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Xiaoqiang Yu
- State Key Laboratory of Crystal Materials, and Advanced Medical Research Institute, Shandong University, Jinan, China
| |
Collapse
|
6
|
Feng Z, Li D, Zhang M, Shao T, Shen Y, Tian X, Zhang Q, Li S, Wu J, Tian Y. Enhanced three-photon activity triggered by the AIE behaviour of a novel terpyridine-based Zn(ii) complex bearing a thiophene bridge. Chem Sci 2019; 10:7228-7232. [PMID: 31588291 PMCID: PMC6677111 DOI: 10.1039/c9sc01705d] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/06/2019] [Indexed: 12/12/2022] Open
Abstract
Multiphoton bioimaging benefits from good penetration of tissue, low phototoxicity and high resolution. Hence, development of efficient multiphoton imaging agents is highly desirable but remains challenging. Herein, a novel terpyridine-based Zn(ii) complex bearing a thiophene bridge was designed rationally and fabricated. Thanks to its aggregation-induced emission (AIE), DZ1 emitted bright yellow-green fluorescence (λ em = 575 nm) under physiological conditions. The three-photon spectral changes of DZ1 when binding with RNA unambiguously reflected its RNA-specific targeting behaviour, resulting in twofold enhancement in three-photon action cross-sections located at the second near-infrared window (1700 nm).
Collapse
Affiliation(s)
- Zhihui Feng
- Institutes of Physics Science and Information Technology , College of Chemistry and Chemical Engineering , Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province , Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , Anhui University , Hefei 230601 , People's Republic of China . ;
| | - Dandan Li
- Institutes of Physics Science and Information Technology , College of Chemistry and Chemical Engineering , Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province , Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , Anhui University , Hefei 230601 , People's Republic of China . ;
| | - Mingzhu Zhang
- Institutes of Physics Science and Information Technology , College of Chemistry and Chemical Engineering , Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province , Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , Anhui University , Hefei 230601 , People's Republic of China . ;
| | - Tao Shao
- Institutes of Physics Science and Information Technology , College of Chemistry and Chemical Engineering , Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province , Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , Anhui University , Hefei 230601 , People's Republic of China . ;
| | - Yu Shen
- Institutes of Physics Science and Information Technology , College of Chemistry and Chemical Engineering , Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province , Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , Anhui University , Hefei 230601 , People's Republic of China . ;
| | - Xiaohe Tian
- School of Life Science , Anhui University , Hefei 230601 , P. R. China
| | - Qiong Zhang
- Institutes of Physics Science and Information Technology , College of Chemistry and Chemical Engineering , Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province , Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , Anhui University , Hefei 230601 , People's Republic of China . ;
| | - Shengli Li
- Institutes of Physics Science and Information Technology , College of Chemistry and Chemical Engineering , Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province , Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , Anhui University , Hefei 230601 , People's Republic of China . ;
| | - Jieying Wu
- Institutes of Physics Science and Information Technology , College of Chemistry and Chemical Engineering , Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province , Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , Anhui University , Hefei 230601 , People's Republic of China . ;
| | - Yupeng Tian
- Institutes of Physics Science and Information Technology , College of Chemistry and Chemical Engineering , Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province , Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , Anhui University , Hefei 230601 , People's Republic of China . ;
| |
Collapse
|
7
|
Guan Y, Sun T, Ding J, Xie Z. Robust organic nanoparticles for noninvasive long-term fluorescence imaging. J Mater Chem B 2019; 7:6879-6889. [PMID: 31657432 DOI: 10.1039/c9tb01905g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Organic nanoparticles obtained from fluorophores with aggregation-caused quenching and aggregation-induced emission features for noninvasive long-term bioimaging are summarized and highlighted.
Collapse
Affiliation(s)
- Yuyao Guan
- Department of Radiology
- China-Japan Union Hospital of Jilin University
- Changchun
- P. R. China
| | - Tingting Sun
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Jun Ding
- Department of Radiology
- China-Japan Union Hospital of Jilin University
- Changchun
- P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| |
Collapse
|
8
|
Adil LR, Gopikrishna P, Krishnan Iyer P. Receptor-Free Detection of Picric Acid: A New Structural Approach for Designing Aggregation-Induced Emission Probes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:27260-27268. [PMID: 30022660 DOI: 10.1021/acsami.8b07019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A pristine aggregation-induced enhanced emission (AIEE) active monomer 2,5-bis(( E)-4-bromostyryl)-3,4-diphenylthiophene (TPBZ) and its copolymer (PFTPBZ) with 9,9-dioctylfluorene-2,7-diboronic acid bis(1,3-propandiol) ester have been synthesized via Suzuki coupling polymerization. PFTPBZ that is devoid of any receptor showed AIEE property and demonstrated excellent and selective fluorometric recognition of 2,4,6-trinitrotoluene (TNT) in aggregated state (aqueous medium) and picric acid (PA) in aggregated state and solution state (organic solvent) as well as in vapor phase via PFTPBZ dip-coated Whatman filter paper on a solid-phase platform in 1.86 ng level (naked eye). Limit of detection (LOD) for TNT in 95% water fraction ( fw) was 53.74 × 10-6 M, and at 40% fw, it was 14.26 × 10-7 M. PA detection in tetrahydrofuran solution was possible with a LOD of 28.16 × 10-7 M, 95% fw with LOD of 10.47 × 10-6 M, and in 40% fw with LOD of 47.39 × 10-8 M. As a unique example of structural design, the probe PFTPBZ surprisingly possesses no receptor, yet remarkably high selectivity was achieved via Förster resonance energy transfer (FRET) and photoinduced electron transfer from the copolymer PFTPBZ to PA and TNT. Detection of PA in the presence of various metal analytes and inorganic acids in real water samples (lakes, rivers, and sea water) was also demonstrated using this concept of receptor-free conjugated polymer probe.
Collapse
|
9
|
Cai X, Hu F, Feng G, Kwok RTK, Liu B, Tang BZ. Organic Mitoprobes based on Fluorogens with Aggregation-Induced Emission. Isr J Chem 2018. [DOI: 10.1002/ijch.201800031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiaolei Cai
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585
| | - Fang Hu
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585
| | - Guangxue Feng
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585
| | - Ryan Tsz Kin Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Institute for Advanced Study and Division of Life Science; The Hong Kong University of Science and Technology; Clear Water Bay, Kowloon, Hong Kong China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Institute for Advanced Study and Division of Life Science; The Hong Kong University of Science and Technology; Clear Water Bay, Kowloon, Hong Kong China
| |
Collapse
|
10
|
Xia Q, Chen Z, Yu Z, Wang L, Qu J, Liu R. Aggregation-Induced Emission-Active Near-Infrared Fluorescent Organic Nanoparticles for Noninvasive Long-Term Monitoring of Tumor Growth. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17081-17088. [PMID: 29717866 DOI: 10.1021/acsami.8b03861] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Effective long-term monitoring of tumor growth is significant for the evaluation of cancer therapy. Aggregation-induced emission-active near-infrared (NIR) fluorescent organic nanoparticles (TPFE-Rho dots) are designed and synthesized for long-term in vitro cell tracking and in vivo monitoring of tumor growth. TPFE-Rho dots display the advantages of NIR fluorescent emission, large Stokes shift (∼180 nm), good biocompatibility, and high photostability. In vitro cell tracing studies demonstrate that TPFE-Rho dots can track SK-Hep-1 cells over 11 generations. In vivo optical imaging results confirm that TPFE-Rho dots can monitor tumor growth for more than 19 days in a real-time manner. This work indicates that TPFE-Rho dots could act as NIR fluorescent nanoprobes for real-time long-term in situ in vivo monitoring of tumor growth.
Collapse
Affiliation(s)
| | | | | | - Lei Wang
- School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Jinqing Qu
- School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | | |
Collapse
|
11
|
Liu J, Evrard M, Cai X, Feng G, Tomczak N, Ng LG, Liu B. Organic nanoparticles with ultrahigh quantum yield and aggregation-induced emission characteristics for cellular imaging and real-time two-photon lung vasculature imaging. J Mater Chem B 2018; 6:2630-2636. [DOI: 10.1039/c8tb00386f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organic nanoparticles with a high quantum yield of 90% and aggregation-induced emission characteristics were prepared for cellular imaging and real-time two-photon vasculature imaging of the lungs.
Collapse
Affiliation(s)
- Jie Liu
- Department of Chemical and biomolecular Engineering
- National University of Singapore
- Singapore
| | - Maximilien Evrard
- Singapore Immunology Network (SIgN)
- Agency for Science Technology and Research (A*STAR)
- Biopolis
- Singapore
| | - Xiaolei Cai
- Department of Chemical and biomolecular Engineering
- National University of Singapore
- Singapore
| | - Guangxue Feng
- Department of Chemical and biomolecular Engineering
- National University of Singapore
- Singapore
| | - Nikodem Tomczak
- Institute of Materials Research and Engineering (IMRE)
- Agency for Science Technology and Research (A*STAR)
- Fusionopolis
- Singapore
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN)
- Agency for Science Technology and Research (A*STAR)
- Biopolis
- Singapore
| | - Bin Liu
- Department of Chemical and biomolecular Engineering
- National University of Singapore
- Singapore
- Singapore Immunology Network (SIgN)
- Agency for Science Technology and Research (A*STAR)
| |
Collapse
|
12
|
Wang Y, Han X, Xi W, Li J, Roe AW, Lu P, Qian J. Bright AIE Nanoparticles with F127 Encapsulation for Deep-Tissue Three-Photon Intravital Brain Angiography. Adv Healthc Mater 2017; 6. [PMID: 28795507 DOI: 10.1002/adhm.201700685] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/16/2017] [Indexed: 12/20/2022]
Abstract
Deep-tissue imaging is of great significance to biological applications. In this paper, a deep-red emissive luminogen 2,3-bis(4'-(diphenylamino)-[1,1'-biphenyl]-4-yl) fumaronitrile (TPATCN) with aggregation-induced emission (AIE) feature is prepared. TPATCN molecules were then encapsulated within a polymeric matrix of Pluronic F-127 to form nanoparticles (NPs). TPATCN NPs exhibit bright three-photon fluorescence (3PF) in deep-red region, together with high chemical stability, good photostability, and biocompatibility. They are further utilized for in vivo 3PF imaging of the brain vasculature of mice, under the excitation of a 1550 nm femtosecond laser. A vivid 3D reconstruction of the brain vasculature is then built with a penetration depth of 875 µm, which is the largest in ever reported 3PF imaging based on AIE NPs. After that, by collecting both of the 3PF and third-harmonic generation signals, multichannel nonlinear optical imaging of the brain blood vessels is further realized. These results will be helpful to study the structures and functions of the brain in the future.
Collapse
Affiliation(s)
- Yalun Wang
- State Key Laboratory of Modern Optical Instrumentations; Center for Optical and Electromagnetic Research; Zhejiang University; Hangzhou 310058 China
| | - Xiao Han
- State Key Laboratory of Supramolecular Structure and Materials; Jilin University; Changchun 130012 China
| | - Wang Xi
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT); Zhejiang University; Hangzhou 310020 China
| | - Jinyu Li
- State Key Laboratory of Supramolecular Structure and Materials; Jilin University; Changchun 130012 China
| | - Anna Wang Roe
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT); Zhejiang University; Hangzhou 310020 China
| | - Ping Lu
- State Key Laboratory of Supramolecular Structure and Materials; Jilin University; Changchun 130012 China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations; Center for Optical and Electromagnetic Research; Zhejiang University; Hangzhou 310058 China
| |
Collapse
|
13
|
Wang Y, Chen M, Alifu N, Li S, Qin W, Qin A, Tang BZ, Qian J. Aggregation-Induced Emission Luminogen with Deep-Red Emission for Through-Skull Three-Photon Fluorescence Imaging of Mouse. ACS NANO 2017; 11:10452-10461. [PMID: 29016105 DOI: 10.1021/acsnano.7b05645] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Imaging the brain with high integrity is of great importance to neuroscience and related applications. X-ray computed tomography (CT) and magnetic resonance imaging (MRI) are two clinically used modalities for deep-penetration brain imaging. However, their spatial resolution is quite limited. Two-photon fluorescence microscopic (2PFM) imaging with its femtosecond (fs) excitation wavelength in the traditional near-infrared (NIR) region (700-1000 nm) is able to realize deep-tissue and high-resolution brain imaging. However, it requires craniotomy and cranial window or skull-thinning techniques due to photon scattering of the excitation light. Herein, based on a type of aggregation-induced emission luminogen (AIEgen) DCDPP-2TPA with a large three-photon absorption (3PA) cross section at 1550 nm and deep-red emission, we realized through-skull three-photon fluorescence microscopic (3PFM) imaging of mouse cerebral vasculature without craniotomy and skull-thinning. Reduced photon scattering of a 1550 nm fs excitation laser allowed it to effectively penetrate the skull and tightly focus onto DCDPP-2TPA nanoparticles (NPs) in the cerebral vasculature, generating bright three-photon fluorescence (3PF) signals. In vivo 3PF images of the cerebral vasculature at various vertical depths were obtained, and a vivid 3D reconstruction of the vascular architecture beneath the skull was built. As deep as 300 μm beneath the skull, small blood vessels of 2.4 μm could still be recognized.
Collapse
Affiliation(s)
- Yalun Wang
- State Key Laboratory of Modern Optical Instrumentations, Center for Optical and Electromagnetic Research, Joint Research Laboratory of Optics of Zhejiang Normal University and Zhejiang University, Zhejiang University , Hangzhou 310058, China
| | - Ming Chen
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | - Nuernisha Alifu
- State Key Laboratory of Modern Optical Instrumentations, Center for Optical and Electromagnetic Research, Joint Research Laboratory of Optics of Zhejiang Normal University and Zhejiang University, Zhejiang University , Hangzhou 310058, China
| | - Shiwu Li
- Guangdong Innovative Research Team State Key Laboratory of Luminescent Materials and Devices, South China University of Technology , Guangzhou 510640, China
| | - Wei Qin
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | - Anjun Qin
- Guangdong Innovative Research Team State Key Laboratory of Luminescent Materials and Devices, South China University of Technology , Guangzhou 510640, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Center for Optical and Electromagnetic Research, Joint Research Laboratory of Optics of Zhejiang Normal University and Zhejiang University, Zhejiang University , Hangzhou 310058, China
| |
Collapse
|
14
|
Riebe S, Vallet C, van der Vight F, Gonzalez-Abradelo D, Wölper C, Strassert CA, Jansen G, Knauer S, Voskuhl J. Aromatic Thioethers as Novel Luminophores with Aggregation-Induced Fluorescence and Phosphorescence. Chemistry 2017; 23:13660-13668. [DOI: 10.1002/chem.201701867] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Steffen Riebe
- Institute of Organic Chemistry; University of Duisburg-Essen; Universitätsstrasse 7 45117 Essen Germany), E-mail
| | - Cecilia Vallet
- Institute for Molecular Biology; Centre for Medical Biotechnology (ZMB); University of Duisburg-Essen; Universitätsstrasse 2 45117 Essen Germany
| | - Felix van der Vight
- Theoretical Organic Chemistry; University of Duisburg-Essen; Universitätsstrasse 5 45117 Essen Germany
| | - Dario Gonzalez-Abradelo
- Physikalisches Institut and CeNTech; Westfälische Wilhelms-Universität Münster; Mendelstrasse 7 48149 Münster Germany
| | - Christoph Wölper
- Institute of Organic Chemistry; University of Duisburg-Essen; Universitätsstrasse 7 45117 Essen Germany
| | - Cristian A. Strassert
- Physikalisches Institut and CeNTech; Westfälische Wilhelms-Universität Münster; Mendelstrasse 7 48149 Münster Germany
| | - Georg Jansen
- Theoretical Organic Chemistry; University of Duisburg-Essen; Universitätsstrasse 5 45117 Essen Germany
| | - Shirley Knauer
- Institute for Molecular Biology; Centre for Medical Biotechnology (ZMB); University of Duisburg-Essen; Universitätsstrasse 2 45117 Essen Germany
| | - Jens Voskuhl
- Institute of Organic Chemistry; University of Duisburg-Essen; Universitätsstrasse 7 45117 Essen Germany), E-mail
| |
Collapse
|