1
|
Yoon TM, Kim SA, Jung EK, Kim YK, Lee KH, Lim SC. MicroRNA-129-3p Suppresses Tumor Progression and Chemoradioresistance in Head and Neck Squamous Cell Carcinoma. Curr Oncol 2025; 32:54. [PMID: 39851970 PMCID: PMC11763343 DOI: 10.3390/curroncol32010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/08/2025] [Accepted: 01/18/2025] [Indexed: 01/26/2025] Open
Abstract
(1) Background: MicroRNA-129 (miR-129) participates in tumor progression and chemoresistance in various cancer types. In this study, the role of miR-129-3p, the main mature form of miR-129, in tumor progression and chemoradiotherapy resistance in head and neck cancer was evaluated. (2) Methods: RT-PCR, western blotting, cell proliferation assays, cell apoptosis assays, and cell invasion and migration assays were used. (3) Results: In this study, the miR-129-3p overexpression suppressed the proliferation, invasion, and migration of SNU1041, SCC15, and SCC25 human HNSCC cell lines. Additionally, it induced apoptosis and enhanced radiation-/cisplatin-induced apoptosis of SNU1041, SCC15, and SCC25 cells. Therefore, miR-129-3p could suppress tumor progression and enhance chemoradiosensitivity in human HNSCC. Furthermore, miR-129-3p was downregulated in fresh tumor tissues from patients with HNSCC compared with that in the adjacent normal mucosa. In a nude mouse xenograft model with SNU15 cells, the miR-129-3p overexpression significantly decreased tumor growth, as measured by tumor weight and volume. (4) Conclusions: Our study provides evidence that miR-129-3p suppresses tumor progression and chemoradioresistance in HNSCC. This finding may serve as a basis for developing miR-129-3p-based therapeutic strategies.
Collapse
Affiliation(s)
- Tae Mi Yoon
- Departments of Otorhinolaryngology-Head and Neck Surgery, Chonnam National University Medical School, Hwasun Hospital, Hwasun 58128, Jeonnam, Republic of Korea; (T.M.Y.)
| | - Sun-Ae Kim
- Departments of Otorhinolaryngology-Head and Neck Surgery, Chonnam National University Medical School, Hwasun Hospital, Hwasun 58128, Jeonnam, Republic of Korea; (T.M.Y.)
| | - Eun Kyung Jung
- Departments of Otorhinolaryngology-Head and Neck Surgery, Chonnam National University Medical School, Hwasun Hospital, Hwasun 58128, Jeonnam, Republic of Korea; (T.M.Y.)
| | - Young-Kook Kim
- Departments of Biochemistry, Chonnam National University Medical School, Hwasun Hospital, Hwasun 58128, Jeonnam, Republic of Korea
| | - Kyung-Hwa Lee
- Departments of Pathology, Chonnam National University Medical School, Hwasun Hospital, Hwasun 58128, Jeonnam, Republic of Korea
| | - Sang Chul Lim
- Departments of Otorhinolaryngology-Head and Neck Surgery, Chonnam National University Medical School, Hwasun Hospital, Hwasun 58128, Jeonnam, Republic of Korea; (T.M.Y.)
| |
Collapse
|
2
|
Raju B, Narendra G, Verma H, Silakari O. Identification of chemoresistance associated key genes-miRNAs-TFs in docetaxel resistant breast cancer by bioinformatics analysis. 3 Biotech 2024; 14:128. [PMID: 38590544 PMCID: PMC10998825 DOI: 10.1007/s13205-024-03971-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 03/01/2024] [Indexed: 04/10/2024] Open
Abstract
The present study aimed to identify the differentially expressed genes (DEGs) and enriched pathways in docetaxel (DTX) resistant breast cancer cell lines by bioinformatics analysis. The microarray dataset GSE28784 was obtained from gene expression omnibus (GEO) database. The differentially expressed genes (DEGs), gene ontology (GO), and Kyoto Encyclopedia of gene and genome (KEGG) pathway analyses were performed with the help of GEO2R and DAVID tools. Furthermore, the protein-protein interaction (PPI) and hub-gene network of DEGs were constructed using STRING and Cytohubba tools. The prognostic values of hub genes were calculated with the help of the Kaplan-Meier plotter database. From the GEO2R analysis, 222 DEGs were identified of which 120 are upregulated and 102 are downregulated genes. In the PPIs network, five up-regulated genes including CCL2, SPARC, CYR61, F3, and MFGE8 were identified as hub genes. It was observed that low expression of six hub genes CXCL8, CYR61, F3, ICAM1, PLAT, and THBD were significantly correlated with poor overall survival of BC patients in survival analysis. miRNA analysis identified that hsa-mir-16-5p, hsa-mir-335-5p, hsa-mir-124-3p, hsa-mir-20a-5p, and hsa-mir-155-5p are the top 5 interactive miRNAs that are commonly interacting with more hub genes with degree score of greater than five. Additionally, drug-gene interaction analysis was performed to identify drugs which are could potentially elevate/lower the expression levels of hub genes. In summary, the gene-miRNAs-TFs network and subsequent correlation of candidate drugs with hub genes may improve individualized diagnosis and help select appropriate combination therapy for DTX-resistant BC in the future. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03971-2.
Collapse
Affiliation(s)
- Baddipadige Raju
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002 India
| | - Gera Narendra
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002 India
| | - Himanshu Verma
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002 India
| | - Om Silakari
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002 India
| |
Collapse
|
3
|
Yan LJ, Y. Lau AT, Xu YM. The regulation of microRNAs on chemoresistance in triple-negative breast cancer: a recent update. Epigenomics 2024; 16:571-587. [PMID: 38639712 PMCID: PMC11160456 DOI: 10.2217/epi-2023-0430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/07/2024] [Indexed: 04/20/2024] Open
Abstract
Triple-negative breast cancer (TNBC) has negative expressions of ER, PR and HER2. Due to the insensitivity to both endocrine therapy and HER2-targeted therapy, the main treatment method for TNBC is cytotoxic chemotherapy. However, the curative effect of chemotherapy is limited because of the existence of acquired or intrinsic multidrug resistance. MicroRNAs (miRNAs) are frequently dysregulated in malignant tumors and involved in tumor occurrence and progression. Interestingly, growing studies show that miRNAs are involved in chemoresistance in TNBC. Thus, targeting dysregulated miRNAs could be a plausible way for better treatment of TNBC. Here, we present the updated knowledge of miRNAs associated with chemoresistance in TNBC, which may be helpful for the early diagnosis, prognosis and treatment of this life-threatening disease.
Collapse
Affiliation(s)
- Li-Jun Yan
- Laboratory of Cancer Biology & Epigenetics, Department of Cell Biology & Genetics, Shantou University Medical College, Shantou, 515041, China
| | - Andy T. Y. Lau
- Laboratory of Cancer Biology & Epigenetics, Department of Cell Biology & Genetics, Shantou University Medical College, Shantou, 515041, China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology & Epigenetics, Department of Cell Biology & Genetics, Shantou University Medical College, Shantou, 515041, China
| |
Collapse
|
4
|
Varsha KK, Yang X, Cannon AS, Zhong Y, Nagarkatti M, Nagarkatti P. Identification of miRNAs that target Fcγ receptor-mediated phagocytosis during macrophage activation syndrome. Front Immunol 2024; 15:1355315. [PMID: 38558807 PMCID: PMC10981272 DOI: 10.3389/fimmu.2024.1355315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Macrophage activation syndrome (MAS) is a life-threatening complication of systemic juvenile arthritis, accompanied by cytokine storm and hemophagocytosis. In addition, COVID-19-related hyperinflammation shares clinical features of MAS. Mechanisms that activate macrophages in MAS remain unclear. Here, we identify the role of miRNA in increased phagocytosis and interleukin-12 (IL-12) production by macrophages in a murine model of MAS. MAS significantly increased F4/80+ macrophages and phagocytosis in the mouse liver. Gene expression profile revealed the induction of Fcγ receptor-mediated phagocytosis (FGRP) and IL-12 production in the liver. Phagocytosis pathways such as High-affinity IgE receptor is known as Fc epsilon RI -signaling and pattern recognition receptors involved in the recognition of bacteria and viruses and phagosome formation were also significantly upregulated. In MAS, miR-136-5p and miR-501-3p targeted and caused increased expression of Fcgr3, Fcgr4, and Fcgr1 genes in FGRP pathway and consequent increase in phagocytosis by macrophages, whereas miR-129-1-3p and miR-150-3p targeted and induced Il-12. Transcriptome analysis of patients with MAS revealed the upregulation of FGRP and FCGR gene expression. A target analysis of gene expression data from a patient with MAS discovered that miR-136-5p targets FCGR2A and FCGR3A/3B, the human orthologs of mouse Fcgr3 and Fcgr4, and miR-501-3p targets FCGR1A, the human ortholog of mouse Fcgr1. Together, we demonstrate the novel role of miRNAs during MAS pathogenesis, thereby suggesting miRNA mimic-based therapy to control the hyperactivation of macrophages in patients with MAS as well as use overexpression of FCGR genes as a marker for MAS classification.
Collapse
Affiliation(s)
| | | | | | | | | | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
5
|
Singh S, Saini H, Sharma A, Gupta S, Huddar VG, Tripathi R. Breast cancer: miRNAs monitoring chemoresistance and systemic therapy. Front Oncol 2023; 13:1155254. [PMID: 37397377 PMCID: PMC10312137 DOI: 10.3389/fonc.2023.1155254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
With a high mortality rate that accounts for millions of cancer-related deaths each year, breast cancer is the second most common malignancy in women. Chemotherapy has significant potential in the prevention and spreading of breast cancer; however, drug resistance often hinders therapy in breast cancer patients. The identification and the use of novel molecular biomarkers, which can predict response to chemotherapy, might lead to tailoring breast cancer treatment. In this context, accumulating research has reported microRNAs (miRNAs) as potential biomarkers for early cancer detection, and are conducive to designing a more specific treatment plan by helping analyze drug resistance and sensitivity in breast cancer treatment. In this review, miRNAs are discussed in two alternative ways-as tumor suppressors to be used in miRNA replacement therapy to reduce oncogenesis and as oncomirs to lessen the translation of the target miRNA. Different miRNAs like miR-638, miR-17, miR-20b, miR-342, miR-484, miR-21, miR-24, miR-27, miR-23 and miR-200 are involved in the regulation of chemoresistance through diverse genetic targets. For instance, tumor-suppressing miRNAs like miR-342, miR-16, miR-214, and miR-128 and tumor-promoting miRNAs like miR101 and miR-106-25 cluster regulate the cell cycle, apoptosis, epithelial to mesenchymal transition and other pathways to impart breast cancer drug resistance. Hence, in this review, we have discussed the significance of miRNA biomarkers that could assist in providing novel therapeutic targets to overcome potential chemotherapy resistance to systemic therapy and further facilitate the design of tailored therapy for enhanced efficacy against breast cancer.
Collapse
Affiliation(s)
- Shivam Singh
- Department of Radiation Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Heena Saini
- Integrated translational Molecular Biology laboratory, Department of Rog Nidan and Vikriti vigyan (Pathology), All India Institute of Ayurveda (AIIA), New Delhi, India
| | - Ashok Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Subhash Gupta
- Department of Radiation Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - V. G. Huddar
- Department of Kaya Chikitsa (Internal Medicine), All India Institute of Ayurveda (AIIA), New Delhi, India
| | - Richa Tripathi
- Integrated translational Molecular Biology laboratory, Department of Rog Nidan and Vikriti vigyan (Pathology), All India Institute of Ayurveda (AIIA), New Delhi, India
| |
Collapse
|
6
|
Chen S, Liang Y, Shen Y, Wang X. lncRNA XIST/miR‑129‑2‑3p axis targets CCP110 to regulate the proliferation, invasion and migration of endometrial cancer cells. Exp Ther Med 2023; 25:159. [PMID: 36911384 PMCID: PMC9996364 DOI: 10.3892/etm.2023.11858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/06/2023] [Indexed: 02/24/2023] Open
Abstract
Centromere coiled-coil protein 110 (CCP110) plays a role in the development of several types of cancer; however, its regulatory mechanism and role in endometrial cancer is unclear. The present study revealed that CCP110 is regulated by a signaling pathway involving microRNA (miR/miRNA)-129-2-3p and the long non-coding RNA (lncRNA) X-inactive-specific transcript (XIST), and plays a role in controlling the proliferation, migration and invasion of endometrial cancer cells. CCP110 was upregulated in human endometrial cancer tissues, as revealed by immunohistochemistry, and high expression of the protein was related to reduced overall survival of the patients. Genetic knockdown of CCP110 by small interfering RNA promoted apoptosis and suppressed the proliferation, migration, invasion and colony formation of endometrial cancer cells significantly in the endometrial cancer Ishikawa and HEC-1B cell lines, as assessed by flow cytometry, and Cell Counting Kit-8, Transwell and colony formation assays. A bioinformatics analysis and luciferase reporter assay revealed that CCP110 is a target of miR-129-2-3p. Overexpression of miR-129-2-3p mimic fragments inhibited the proliferation, migration and invasion of endometrial cancer cells significantly, while co-overexpression of CCP110 counteracted these inhibitory effects. The expression level of the lncRNA XIST was upregulated significantly in endometrial cancer tissues, as assessed by reverse transcription-quantitative PCR assay, while that of miR-129-2-3p was downregulated significantly. A bioinformatics analysis and luciferase reporter assay showed that XIST could inhibit miR-129-2-3p via a miRNA sponge effect. Furthermore, co-overexpression of XIST antagonized the inhibitory effect of the miR-129-2-3p mimic on the luciferase reporter gene signal and protein expression of CCP110. Co-overexpression of XIST also abolished the inhibitory effect of the miR-129-2-3p mimic on the proliferation, migration and invasion of endometrial cancer cells. Overall, these data identified a novel regulatory mechanism of CCP110 involving XIST and miR-129-2-3p, which affected the development of endometrial carcinoma. CCP110, XIST and miR-129-2-3p could represent novel targets for the clinical treatment of endometrial cancer.
Collapse
Affiliation(s)
- Shu Chen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Yaozhong Liang
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Yuan Shen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Xiaoyu Wang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
7
|
Peng J, He Z, Yuan Y, Xie J, Zhou Y, Guo B, Guo J. Docetaxel suppressed cell proliferation through Smad3/HIF-1α-mediated glycolysis in prostate cancer cells. Cell Commun Signal 2022; 20:194. [PMID: 36536346 PMCID: PMC9762006 DOI: 10.1186/s12964-022-00950-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/16/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Tumor glycolysis is a critical event for tumor progression. Docetaxel is widely used as a first-line drug for chemotherapy and shown to have a survival advantage. However, the role of docetaxel in tumor glycolysis remained poorly understood. METHODS The effect of Docetaxel in tumor glycolysis and proliferation were performed by CCK-8, Western blotting, real-time PCR, glucose, and lactate detection and IHC. ChIP and luciferase assay were used to analyze the mechanism of Docetaxel on Smad3-mediated HIF-1α transactivity. RESULTS In this study, we showed that docetaxel treatment led to a significant inhibition of cell proliferation in prostate cancer cells through PFKP-mediated glycolysis. Addition of lactate, a production of glycolysis, could reverse the inhibitory effect of docetaxel on cell proliferation. Further analysis has demonstrated that phosphorylation of Smad3 (Ser213) was drastically decreased in response to docetaxel stimulation, leading to reduce Smad3 nuclear translocation. Luciferase and Chromatin immunoprecipitation (ChIP) analysis revealed that docetaxel treatment inhibited the binding of Smad3 to the promoter of the HIF-1α gene, suppressing transcriptional activation of HIF-1α. Moreover, ectopic expression of Smad3 in prostate cancer cells could overcome the decreased HIF-1α expression and its target gene PFKP caused by docetaxel treatment. Most importantly, endogenous Smad3 regulated and interacted with HIF-1α, and this interaction was destroyed in response to docetaxel treatment. What's more, both HIF-1α and PFKP expression were significantly reduced in prostate cancer received docetaxel treatment in vivo. CONCLUSION These findings extended the essential role of docetaxel and revealed that docetaxel inhibited cell proliferation by targeting Smad3/HIF-1α signaling-mediated tumor Warburg in prostate cancer cells. Video Abstract.
Collapse
Affiliation(s)
- Junming Peng
- grid.263817.90000 0004 1773 1790The Department of Urology, Shenzhen People’s Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, 518055 Guangdong China
| | - Zhijun He
- Department of Pharmacy, Zhuhai Center for Maternal and Child Health Care, Zhuhai, 519000 China
| | - Yeqing Yuan
- grid.263817.90000 0004 1773 1790The Department of Urology, Shenzhen People’s Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, 518055 Guangdong China ,Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Shenzhen, China
| | - Jing Xie
- grid.263817.90000 0004 1773 1790The Department of Urology, Shenzhen People’s Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, 518055 Guangdong China
| | - Yu Zhou
- grid.263817.90000 0004 1773 1790The Department of Urology, Shenzhen People’s Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, 518055 Guangdong China
| | - Baochun Guo
- Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Shenzhen, China ,grid.440218.b0000 0004 1759 7210Shenzhen Key Laboratory of Kidney Diseases (ZDSYS201504301616234), Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518055 Guangdong China ,grid.440218.b0000 0004 1759 7210Department of Nephrology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020 Guangdong China
| | - Jinan Guo
- grid.263817.90000 0004 1773 1790The Department of Urology, Shenzhen People’s Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, 518055 Guangdong China ,Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Shenzhen, China ,grid.258164.c0000 0004 1790 3548Department of Urology, Shenzhen People’s Hospital, The Second Clinical College of Jinan University, Shenzhen, 518000 China
| |
Collapse
|
8
|
Li P, Chen J, Zou J, Zhu W, Zang Y, Li H. Circular RNA coiled-coil domain containing 66 regulates malignant development of papillary thyroid carcinoma by upregulating La ribonucleoprotein 1 via the sponge effect on miR-129-5p. Bioengineered 2022; 13:7181-7196. [PMID: 35264065 PMCID: PMC8973727 DOI: 10.1080/21655979.2022.2036304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Circular RNAs (circRNAs) play vital roles in the development and progression of various diseases. CircRNA coiled-coil domain containing 66 (circ-CCDC66) has been reported to be involved in several cancers, but its biological function and underlying mechanism in papillary thyroid carcinoma (PTC) remain unclear. We detected the relative expression level of circ-CCDC66 in PTC specimens and cell lines using real-time reverse transcription PCR. In addition, EdU assay, transwell assay, and xenograft analysis were performed to measure the effect of circ-CCDC66 on the proliferative, migratory, and invasive capacities of PTC cells. We also investigated the potential mechanism of circ-CCDC66 by bioinformatics analysis, RNA immunoprecipitation, and dual-luciferase reporter assay. We observed that circ-CCDC66 expression was upregulated in PTC specimens and cell lines and was correlated with poor clinical characteristics of PTC patients. Moreover, in vitro experiments demonstrated that knockdown of circ-CCDC66 markedly suppressed the proliferative, migratory, and invasive capacities of PTC cells. Mechanistically, miR-129-5p was a target gene of circ-CCDC66 and was downregulated in PTC tissues. LARP1, a downstream target of miR-129-5p, was upregulated in PTC tissues. In addition, we confirmed that inhibition of circ-CCDC66 could repress xenograft tumor growth. Circ-CCDC66 promoted PTC proliferation, migration, invasion, and tumor growth by sponging miR-129-5p and promoting LARP1 expression.
Collapse
Affiliation(s)
- Peipei Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Neurosurgery, Wuxi Clinical Medical School of Anhui Medical University, 904th Hospital of PLA(Wuxi Taihu Hospital), Wuxi, China
| | - Junhui Chen
- Department of Neurosurgery, Wuxi Clinical Medical School of Anhui Medical University, 904th Hospital of PLA(Wuxi Taihu Hospital), Wuxi, China
| | - Jun Zou
- Department of Otolaryngology, Wuxi No. 5 People's Hospital, Wuxi, China
| | - Wei Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yan Zang
- Department of Otorhinolaryngology Head and Neck Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hongwu Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
9
|
Valacchi G, Pambianchi E, Coco S, Pulliero A, Izzotti A. MicroRNA Alterations Induced in Human Skin by Diesel Fumes, Ozone, and UV Radiation. J Pers Med 2022; 12:176. [PMID: 35207665 PMCID: PMC8880698 DOI: 10.3390/jpm12020176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022] Open
Abstract
Epigenetic alterations are a driving force of the carcinogenesis process. MicroRNAs play a role in silencing mutated oncogenes, thus defending the cell against the adverse consequences of genotoxic damages induced by environmental pollutants. These processes have been well investigated in lungs; however, although skin is directly exposed to a great variety of environmental pollutants, more research is needed to better understand the effect on cutaneous tissue. Therefore, we investigated microRNA alteration in human skin biopsies exposed to diesel fumes, ozone, and UV light for over 24 h of exposure. UV and ozone-induced microRNA alteration right after exposure, while the peak of their deregulations induced by diesel fumes was reached only at the end of the 24 h. Diesel fumes mainly altered microRNAs involved in the carcinogenesis process, ozone in apoptosis, and UV in DNA repair. Accordingly, each tested pollutant induced a specific pattern of microRNA alteration in skin related to the intrinsic mechanisms activated by the specific pollutant. These alterations, over a short time basis, reflect adaptive events aimed at defending the tissue against damages. Conversely, whenever environmental exposure lasts for a long time, the irreversible alteration of the microRNA machinery results in epigenetic damage contributing to the pathogenesis of inflammation, dysplasia, and cancer induced by environmental pollutants.
Collapse
Affiliation(s)
- Giuseppe Valacchi
- Animal Science Department, Plants for Human Health Institute, North Carolina State University, Research Campus Kannapolis, Kannapolis, NC 28081, USA; (G.V.); (E.P.)
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul 130-701, Korea
| | - Erika Pambianchi
- Animal Science Department, Plants for Human Health Institute, North Carolina State University, Research Campus Kannapolis, Kannapolis, NC 28081, USA; (G.V.); (E.P.)
| | - Simona Coco
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | | | - Alberto Izzotti
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy
- UOC Mutagenesis and Cancer Prevention, IRCCS San Martino Hospital, 16132 Genova, Italy
| |
Collapse
|
10
|
Ghafouri-Fard S, Khanbabapour Sasi A, Abak A, Shoorei H, Khoshkar A, Taheri M. Contribution of miRNAs in the Pathogenesis of Breast Cancer. Front Oncol 2021; 11:768949. [PMID: 34804971 PMCID: PMC8602198 DOI: 10.3389/fonc.2021.768949] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/18/2021] [Indexed: 12/16/2022] Open
Abstract
Breast cancer is the most frequently diagnosed cancer among females. Gene expression profiling methods have shown the deregulation of several genes in breast cancer samples and have confirmed the heterogeneous nature of breast cancer at the genomic level. microRNAs (miRNAs) are among the recently appreciated contributors in breast carcinogenic processes. These small-sized transcripts have been shown to partake in breast carcinogenesis through modulation of apoptosis, autophagy, and epithelial-mesenchymal transition. Moreover, they can confer resistance to chemotherapy. Based on the contribution of miRNAs in almost all fundamental aspects of breast carcinogenesis, therapeutic intervention with their expression might affect the course of this disorder. Moreover, the presence of miRNAs in the peripheral blood of patients potentiates these transcripts as tools for non-invasive diagnosis of breast cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Khanbabapour Sasi
- Biochemistry Group, School of Medicine, Golestan University of Medical Science, Gorgan, Iran
| | - Atefe Abak
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Ali Khoshkar
- Department of Surgery, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Tian JH, Liu SH, Yu CY, Wu LG, Wang LB. The Role of Non-Coding RNAs in Breast Cancer Drug Resistance. Front Oncol 2021; 11:702082. [PMID: 34589423 PMCID: PMC8473733 DOI: 10.3389/fonc.2021.702082] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/17/2021] [Indexed: 12/21/2022] Open
Abstract
Breast cancer (BC) is one of the commonly occurring malignancies in females worldwide. Despite significant advances in therapeutics, the mortality and morbidity of BC still lead to low survival and poor prognosis due to the drug resistance. There are certain chemotherapeutic, endocrine, and target medicines often used for BC patients, including anthracyclines, taxanes, docetaxel, cisplatin, and fluorouracil. The drug resistance mechanisms of these medicines are complicated and have not been fully elucidated. It was reported that non-coding RNAs (ncRNAs), such as micro RNAs (miRNA), long-chain non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) performed key roles in regulating tumor development and mediating therapy resistance. However, the mechanism of these ncRNAs in BC chemotherapeutic, endocrine, and targeted drug resistance was different. This review aims to reveal the mechanism and potential functions of ncRNAs in BC drug resistance and to highlight the ncRNAs as a novel target for achieving improved treatment outcomes for BC patients.
Collapse
Affiliation(s)
- Jin-Hai Tian
- The Biochip Research Center, General Hospital of Ningxia Medical University, Yinchuan, China, Yinchuan, China.,The Clinical Medicine College of Ningxia Medical University, Yinchuan, China
| | - Shi-Hai Liu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chuan-Yang Yu
- The Biochip Research Center, General Hospital of Ningxia Medical University, Yinchuan, China, Yinchuan, China.,The Clinical Medicine College of Ningxia Medical University, Yinchuan, China
| | - Li-Gang Wu
- Department of Oncology, General Hospital of Ningxia Medical University, Yingchuan, China
| | - Li-Bin Wang
- The Biochip Research Center, General Hospital of Ningxia Medical University, Yinchuan, China, Yinchuan, China.,The Clinical Medicine College of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
12
|
Xu S, Li W, Wu J, Lu Y, Xie M, Li Y, Zou J, Zeng T, Ling H. The role of miR-129-5p in cancer: a novel therapeutic target. Curr Mol Pharmacol 2021; 15:647-657. [PMID: 34521336 DOI: 10.2174/1874467214666210914122010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/30/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022]
Abstract
MiRNA-129-5p belongs to the microRNA-129 (miRNA-129) family. MiRNA-129-5p is expressed in many tissues and organs of the human body, and it regulates a wide range of biological functions. The abnormal expression of miRNA-129-5p is related to the occurrence and development of a variety of malignant tumors. MiRNA-129-5p plays an important role in the tumorigenesis process and functions by promoting or inhibiting tumors. However, the role of miRNA-129-5p in cancer remains controversial. This article reviews the different biological functions of miRNA-129-5p in cancer and provides ideas for research in this field to guide the development of targeted therapies and drugs for malignant tumors.
Collapse
Affiliation(s)
- Shan Xu
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001. China
| | - Wei Li
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001. China
| | - Jing Wu
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001. China
| | - Yuru Lu
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001. China
| | - Ming Xie
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001. China
| | - Yanlan Li
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001. China
| | - Juan Zou
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001. China
| | - Tiebing Zeng
- Hunan Province Cooperative innovation Center for Molecular Target New Drug Study [Hunan Provincial Education Department document (Approval number: 2014-405], Hengyang, Hunan 421001. China
| | - Hui Ling
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001. China
| |
Collapse
|
13
|
Li W, Song Z, Jia N, Zhang C, Gao W, Wang L. microRNA-4429-5p suppresses the malignant development of colon cancer by targeting matrix metalloproteinase 16. In Vitro Cell Dev Biol Anim 2021; 57:715-725. [PMID: 34448115 DOI: 10.1007/s11626-021-00603-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/16/2021] [Indexed: 10/20/2022]
Abstract
Colon cancer has been recognized as the major reason for global cancer-associated mortality. microRNA (miRNA, miR)-4429-5p has been documented to act as a tumor-suppressive miRNA in some cancers, but its effect on colon cancer remains elusive. In this study, the biological effects of miR-4429-5p were investigated both in vitro by MTT, 5-ethynyl-2'-deoxyuridine (EdU), wound healing, and transwell assays and in vivo by a xenograft mice model. Western blot, quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and dual-luciferase assay were used to identify the binding of miR-4429-5p on matrix metalloproteinase 16 (MMP16) 3'-UTR. Our results suggested that overexpression of miR-4429-5p hindered colon cancer cell proliferation, migration, and invasion, whereas knockdown of miR-4429-5p exhibited the opposite effect in colon cancer cells. Mechanistically, miR-4429-5p directly bound to the 3'-UTR of MMP16 and led to inhibition of MMP16 protein. Overexpression of miR-4429-5p inhibited colon tumor growth by targeting MMP16. Taken together, our study revealed that miR-4429-5p prevented colon cancer progression through targeting MMP16, indicating miR-4429-5p as a promising target for treatment improvement for colon cancer.
Collapse
Affiliation(s)
- Wei Li
- The Second Department of General Surgery, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061000, Hebei, China
| | - Zhe Song
- The Second Department of General Surgery, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061000, Hebei, China
| | - Nan Jia
- The Second Department of General Surgery, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061000, Hebei, China
| | - Cui Zhang
- The Second Department of General Surgery, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061000, Hebei, China
| | - Weina Gao
- The Fourth Department of Endocrinology, Cangzhou Central Hospital, Cangzhou, 061000, Hebei, China
| | - Liang Wang
- The Second Department of General Surgery, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061000, Hebei, China.
| |
Collapse
|
14
|
Petrović N, Nakashidze I, Nedeljković M. Breast Cancer Response to Therapy: Can microRNAs Lead the Way? J Mammary Gland Biol Neoplasia 2021; 26:157-178. [PMID: 33479880 DOI: 10.1007/s10911-021-09478-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/17/2021] [Indexed: 12/23/2022] Open
Abstract
Breast cancer (BC) is a leading cause of death among women with malignant diseases. The selection of adequate therapies for highly invasive and metastatic BCs still represents a major challenge. Novel combinatorial therapeutic approaches are urgently required to enhance the efficiency of BC treatment. Recently, microRNAs (miRNAs) emerged as key regulators of the complex mechanisms that govern BC therapeutic resistance and susceptibility. In the present review we aim to critically examine how miRNAs influence BC response to therapies, or how to use miRNAs as a basis for new therapeutic approaches. We summarized recent findings in this rapidly evolving field, emphasizing the challenges still ahead for the successful implementation of miRNAs into BC treatment while providing insights for future BC management.The goal of this review was to propose miRNAs, that might simultaneously improve the efficacy of all four therapies that are the backbone of current BC management (radio-, chemo-, targeted, and hormone therapy). Among the described miRNAs, miR-21 and miR-16 emerged as the most promising, closely followed by miR-205, miR-451, miR-182, and miRNAs from the let-7 family. miR-21 inhibition might be the best choice for future improvement of invasive BC treatment.New therapeutic strategies of miRNA-based agents alongside current standard treatment modalities could greatly benefit BC patients. This review represents a guideline on how to navigate this elaborate puzzle.
Collapse
Affiliation(s)
- Nina Petrović
- Laboratory for Radiobiology and Molecular Genetics, Department of Health and Environment, "VINČA" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11001, Belgrade, Serbia.
- Department for Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia.
| | - Irina Nakashidze
- Department of Biology, Natural Science and Health Care, Batumi Shota Rustaveli State University, Ninoshvili str. 35, 6010, Batumi, Georgia
| | - Milica Nedeljković
- Department for Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia
| |
Collapse
|
15
|
Wang B, Li Y, You C. miR-129-3p Targeting of MCU Protects Against Glucose Fluctuation-Mediated Neuronal Damage via a Mitochondrial-Dependent Intrinsic Apoptotic Pathway. Diabetes Metab Syndr Obes 2021; 14:153-163. [PMID: 33488104 PMCID: PMC7815084 DOI: 10.2147/dmso.s285179] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/12/2020] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Glucose fluctuations have an adverse effect on several diabetes-related complications, especially for the nervous system, but the underlying mechanisms are not clear. MicroRNAs are critical regulators of posttranscription in many physiological processes, such as apoptosis. Our study clarified the neuroprotective effects of miR-129-3p targeting mitochondrial calcium uniporter (MCU) in glucose fluctuation-mediated neuronal damage and the specific mechanisms involved. METHODS The expression of MCU and miR-129-3p was examined by real-time PCR and Western blot in the glucose fluctuation cell model. Dual-luciferase reporter assay was performed to confirm the transcriptional regulation of miR-129-3p by MCU. Fluorescent probe and assay kit assay was used to determine oxidative stress condition. Mitochondrial-dependent intrinsic apoptotic factors were examined by flow cytometry assay, enzyme-linked immunosorbent assay (ELISA), and gene and protein expression assays. RESULTS We found an upregulation of MCU and downregulation of miR-129-3p in glucose fluctuation-treated primary hippocampal neuronal cells, and miR-129-3p directly targeted MCU. miR-129-3p overexpression produced a dramatic reduction in calcium overload, reactive oxygen species (ROS) generation, GSH-to-GSSG ratio, MMP-2 expression in the mitochondrial-dependent intrinsic apoptosis pathway and an increase in MnSOD activity. Increasing MCU expression rescued the effects of miR-129-3p overexpression. miR-129-3p downregulation produced a significant increase in calcium overload, reactive oxygen species (ROS) generation, MMP-2 expression, cytochrome c release and cell apoptosis, and antioxidant N-acetyl cysteine (NAC) rescued the effects of miR-129-3p downregulation. CONCLUSION Therefore, miR-129-3p suppressed glucose fluctuation-mediated neuronal damage by targeting MCU via a mitochondrial-dependent intrinsic apoptotic pathway. The miR-129-3p/MCU axis may be a promising therapeutic target for glucose fluctuation-mediated neuronal damage.
Collapse
Affiliation(s)
- Bo Wang
- Department of Neurosurgery, West China School of Medicine/West China Hospital of Sichuan University, Chengdu, Sichuan610041, People’s Republic of China
- Department of Neurosurgery, Kunming Medical University First Affiliated Hospital, Kunming, Yunnan650032, People’s Republic of China
| | - Yang Li
- Intensive Care Unit, West China School of Medicine/West China Hospital of Sichuan University, Chengdu, Sichuan610041, People’s Republic of China
| | - Chao You
- Department of Neurosurgery, West China School of Medicine/West China Hospital of Sichuan University, Chengdu, Sichuan610041, People’s Republic of China
- Correspondence: Chao You Department of Neurosurgery, West China School of Medicine/West China Hospital of Sichuan University, Chengdu, Sichuan610041, People’s Republic of ChinaTel +86 28-85422026 Email
| |
Collapse
|
16
|
Chen R, Ye B, Xie H, Huang Y, Wu Z, Wu H, Wang X, Miao H, Liang W. miR-129-3p alleviates chondrocyte apoptosis in knee joint fracture-induced osteoarthritis through CPEB1. J Orthop Surg Res 2020; 15:552. [PMID: 33228708 PMCID: PMC7684967 DOI: 10.1186/s13018-020-02070-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Background Osteoarthritis (OA), a refractory disease, is one of the leading contributors for disability worldwide. Since chondrocyte is the only resident cell in cartilage, this study aims to explore the roles of miR-129-3p and CPEB1 in chondrocyte apoptosis in knee joint fracture-induced OA. Methods Cartilage was collected from 20 OA patients who underwent total knee replacement (OA group) and 20 patients with knee contusion (normal group). Then, miR-129-3p and CPEB1 levels in the cartilage were quantified by qRT-PCR. Primary rat chondrocytes in the knee were isolated and identified by toluidine blue staining and immunofluorescent staining of type II collagen. OA cellular models were induced by TNF-α treatment, in which miR-129-3p and CPEB1 expressions were assessed. Subsequently, cell viability, apoptosis, and the expression levels of apoptotic protein and caspase-3 were measured. Dual luciferase reporter assay identified the interaction between miR-129-3p and CPEB1. Results Patients in the OA group had decreased miR-129-3p expression and increased CPEB1 expression than those in the normal group. TNF-α treatment successfully induced the OA cellular model. Downregulated miR-129-3p and upregulated CPEB1 expressions were found in OA-treated chondrocytes. miR-129-3p overexpression or CPEB1 knockdown improved chondrocyte viability and attenuated apoptosis, and vice versa. miR-129-3p negatively regulated CPEB1, thus ameliorating apoptosis and enhancing cell viability. Conclusion miR-129-3p negatively targeted CPEB1 to facilitate chondrocyte viability and hamper apoptosis. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-020-02070-1.
Collapse
Affiliation(s)
- Ruixiong Chen
- Department of Orthopedics, Guangzhou Red Cross Hospital Affiliated to Jinan University, No. 396, Mid Tongfu Road, Haizhu District, Guangzhou, 510000, Guangdong, People's Republic of China
| | - Baoqing Ye
- Department of Orthopedics, Guangzhou Red Cross Hospital Affiliated to Jinan University, No. 396, Mid Tongfu Road, Haizhu District, Guangzhou, 510000, Guangdong, People's Republic of China
| | - Han Xie
- Department of Orthopedics, Huizhou Central People's Hospital, Huizhou, 516000, Guangdong, People's Republic of China
| | - Yuliang Huang
- Department of Orthopedics, Huizhou Central People's Hospital, Huizhou, 516000, Guangdong, People's Republic of China
| | - Zhehui Wu
- Department of Orthopedics, Huizhou Central People's Hospital, Huizhou, 516000, Guangdong, People's Republic of China
| | - Hongbo Wu
- Department of Orthopedics, Huizhou Central People's Hospital, Huizhou, 516000, Guangdong, People's Republic of China
| | - Xiaofeng Wang
- Department of Orthopedics, Huizhou Central People's Hospital, Huizhou, 516000, Guangdong, People's Republic of China
| | - Haixiong Miao
- Department of Orthopedics, Guangzhou Red Cross Hospital Affiliated to Jinan University, No. 396, Mid Tongfu Road, Haizhu District, Guangzhou, 510000, Guangdong, People's Republic of China.
| | - Weiguo Liang
- Department of Orthopedics, Guangzhou Red Cross Hospital Affiliated to Jinan University, No. 396, Mid Tongfu Road, Haizhu District, Guangzhou, 510000, Guangdong, People's Republic of China.
| |
Collapse
|
17
|
Dobre EG, Dinescu S, Costache M. Connecting the Missing Dots: ncRNAs as Critical Regulators of Therapeutic Susceptibility in Breast Cancer. Cancers (Basel) 2020; 12:E2698. [PMID: 32967267 PMCID: PMC7565380 DOI: 10.3390/cancers12092698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/24/2022] Open
Abstract
Whether acquired or de novo, drug resistance remains a significant hurdle in achieving therapeutic success in breast cancer (BC). Thus, there is an urge to find reliable biomarkers that will help in predicting the therapeutic response. Stable and easily accessible molecules such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are regarded as valuable prognostic biomarkers and therapeutic targets since they act as crucial regulators of the various mechanisms involved in BC drug resistance. Here, we reviewed the current literature on ncRNAs as mediators of resistance to systemic therapies in BC. Interestingly, upon integrating data results from individual studies, we concluded that miR-221, miR-222, miR-451, Urothelial Carcinoma Associated 1 (UCA1), and Growth arrest-specific 5 (GAS5) are strong candidates as prognostic biomarkers and therapeutic targets since they are regulating multiple drug resistance phenotypes in BC. However, further research around their clinical implications is needed to validate and integrate them into therapeutic applications. Therefore, we believe that our review may provide relevant evidence for the selection of novel therapeutic targets and prognostic biomarkers for BC and will serve as a foundation for future translational research in the field.
Collapse
Affiliation(s)
- Elena-Georgiana Dobre
- AMS Genetic Lab, 030882 Bucharest, Romania;
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania;
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania;
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania;
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| |
Collapse
|
18
|
Prabhu KS, Raza A, Karedath T, Raza SS, Fathima H, Ahmed EI, Kuttikrishnan S, Therachiyil L, Kulinski M, Dermime S, Junejo K, Steinhoff M, Uddin S. Non-Coding RNAs as Regulators and Markers for Targeting of Breast Cancer and Cancer Stem Cells. Cancers (Basel) 2020; 12:351. [PMID: 32033146 PMCID: PMC7072613 DOI: 10.3390/cancers12020351] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/27/2020] [Accepted: 02/02/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is regarded as a heterogeneous and complicated disease that remains the prime focus in the domain of public health concern. Next-generation sequencing technologies provided a new perspective dimension to non-coding RNAs, which were initially considered to be transcriptional noise or a product generated from erroneous transcription. Even though understanding of biological and molecular functions of noncoding RNA remains enigmatic, researchers have established the pivotal role of these RNAs in governing a plethora of biological phenomena that includes cancer-associated cellular processes such as proliferation, invasion, migration, apoptosis, and stemness. In addition to this, the transmission of microRNAs and long non-coding RNAs was identified as a source of communication to breast cancer cells either locally or systemically. The present review provides in-depth information with an aim at discovering the fundamental potential of non-coding RNAs, by providing knowledge of biogenesis and functional roles of micro RNA and long non-coding RNAs in breast cancer and breast cancer stem cells, as either oncogenic drivers or tumor suppressors. Furthermore, non-coding RNAs and their potential role as diagnostic and therapeutic moieties have also been summarized.
Collapse
Affiliation(s)
- Kirti S. Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (H.F.); (E.I.A.); (S.K.); (L.T.); (M.K.); (M.S.); (S.U.)
| | - Afsheen Raza
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha 3050, Qatar; (A.R.); (S.D.)
| | | | - Syed Shadab Raza
- Department of Stem Cell Biology and Regenerative Medicine, Era University, Lucknow 226003, India;
| | - Hamna Fathima
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (H.F.); (E.I.A.); (S.K.); (L.T.); (M.K.); (M.S.); (S.U.)
| | - Eiman I. Ahmed
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (H.F.); (E.I.A.); (S.K.); (L.T.); (M.K.); (M.S.); (S.U.)
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (H.F.); (E.I.A.); (S.K.); (L.T.); (M.K.); (M.S.); (S.U.)
- Qatar College of Pharmacy, Qatar University, Doha 3050, Qatar
| | - Lubna Therachiyil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (H.F.); (E.I.A.); (S.K.); (L.T.); (M.K.); (M.S.); (S.U.)
- Qatar College of Pharmacy, Qatar University, Doha 3050, Qatar
| | - Michal Kulinski
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (H.F.); (E.I.A.); (S.K.); (L.T.); (M.K.); (M.S.); (S.U.)
| | - Said Dermime
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha 3050, Qatar; (A.R.); (S.D.)
| | - Kulsoom Junejo
- General Surgery Department, Hamad General Hospital, Hamad Medical Corporation, Doha 3050, Qatar;
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (H.F.); (E.I.A.); (S.K.); (L.T.); (M.K.); (M.S.); (S.U.)
- Department of Dermatology Venereology, Hamad Medical Corporation, Doha 3050, Qatar
- Department of Dermatology, Weill Cornell Medicine, Qatar Foundation, Education City, Doha 24144, Qatar
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (H.F.); (E.I.A.); (S.K.); (L.T.); (M.K.); (M.S.); (S.U.)
| |
Collapse
|
19
|
Wu C, Miao C, Tang Q, Zhou X, Xi P, Chang P, Hua L, Ni H. MiR-129-5p promotes docetaxel resistance in prostate cancer by down-regulating CAMK2N1 expression. J Cell Mol Med 2019; 24:2098-2108. [PMID: 31876385 PMCID: PMC7011149 DOI: 10.1111/jcmm.14050] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 09/11/2018] [Accepted: 11/05/2018] [Indexed: 12/22/2022] Open
Abstract
This study focuses on the effect of miR‐129‐5p on docetaxel‐resistant (DR) prostate cancer (PCa) cells invasion, migration and apoptosis. In our study, the expression of CAMK2N1 was assessed by qRT‐PCR in PCa patient tissues and cell lines including PC‐3 and PC‐3‐DR. Cells transfected with miR‐129‐5p mimics, inhibitor, CAMK2N1 or negative controls (NC) were used to interrogate their effects on DR cell invasions, migrations and apoptosis during docetaxel (DTX) treatments. The apoptosis rate of the PCa cells was validated by flow cytometry. Relationships between miR‐129‐5p and CAMK2N1 levels were identified by qRT‐PCR and dual‐luciferase reporter assay. CAMK2N1 was found to be down‐expressed in DR PCa tissue sample, and low levels of CAMK2N1 were correlated with high docetaxel resistance and clinical prediction of poor survival. CAMK2N1 levels were decreased in DR PCa cells treated with DXT. We further explored that up‐regulation of miR‐129‐5p could promote DR PCa cells viability, invasion and migration but demote apoptosis. Involved molecular mechanism studies revealed that miR‐129‐5p reduced downstream CAMK2N1 expression to further impact on chemoresistance to docetaxel of PCa cells, indicating its vital role in PCa docetaxel resistance. Our findings revealed that miR‐129‐5p contributed to the resistance of PC‐3‐DR cells to docetaxel through suppressing CAMK2N1 expression, and thus targeting miR‐129‐5p may provide a novel therapeutic approach in sensitizing PCa to future docetaxel treatment.
Collapse
Affiliation(s)
- Cheng Wu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chunqing Miao
- Department of Urology, People's Hospital of Dongtai City, Dongtai, Jiangsu, China
| | - Qingsheng Tang
- Department of Urology, People's Hospital of Dongtai City, Dongtai, Jiangsu, China
| | - Xunrong Zhou
- Department of Urology, People's Hospital of Dongtai City, Dongtai, Jiangsu, China
| | - Pengshan Xi
- Department of Urology, People's Hospital of Dongtai City, Dongtai, Jiangsu, China
| | - Ping'an Chang
- Department of Urology, People's Hospital of Dongtai City, Dongtai, Jiangsu, China
| | - Lixin Hua
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haodong Ni
- Department of Urology, People's Hospital of Dongtai City, Dongtai, Jiangsu, China
| |
Collapse
|
20
|
Liu W, Han J, Shi S, Dai Y, He J. TUFT1 promotes metastasis and chemoresistance in triple negative breast cancer through the TUFT1/Rab5/Rac1 pathway. Cancer Cell Int 2019; 19:242. [PMID: 31572059 PMCID: PMC6757435 DOI: 10.1186/s12935-019-0961-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/13/2019] [Indexed: 12/19/2022] Open
Abstract
Background Triple negative breast cancer (TNBC) is a breast cancer (BC) subtype that is characterized by its strong invasion and a high risk of metastasis. However, the specific mechanisms underlying these phenotypes are unclear. TUFT1 plays an important role in BC and impacts the proliferation and survival of BC cells. Recent studies have shown that TUFT1 mediates intracellular lysosome localization and vesicle transport by regulating Rab GTPase, but the relevance of this activity in TNBC is unknown. Therefore, our aim was to systematically study the role of TUFT1 in the metastasis and chemoresistance of TNBC. Methods We measured TUFT1, Rab5-GTP, and Rac1-GTP expression levels in samples of human TNBC by immunohistochemistry (IHC) and conducted univariate and multivariate analyses. shRNA-mediated knockdown and overexpression, combined with transwell assays, co-immunoprecipitation, a nude mouse xenograft tumor model, and GTP activity assays were used for further mechanistic studies. Results TUFT1 expression was positively correlated with Rab5-GTP and Rac1-GTP in the TNBC samples, and co-expression of TUFT1 and Rab5-GTP predicted poor prognosis in TNBC patients who were treated with chemotherapy. Mechanism studies showed that TUFT1 could activate Rab5 by binding to p85α, leading to activation of Rac1 through recruitment of Tiam1, and concurrent down-regulation of the NF-κB pathway and proapoptotic factors, ultimately promoting metastasis and chemoresistance in TNBC cells. Conclusions Our findings suggest that the TUFT1/Rab5/Rac1 pathway may be a potential target for the effective treatment of TNBC.
Collapse
Affiliation(s)
- Weiguang Liu
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000 Hebei China
| | - Jianjun Han
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000 Hebei China
| | - Sufang Shi
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000 Hebei China
| | - Yuna Dai
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000 Hebei China
| | - Jianchao He
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000 Hebei China
| |
Collapse
|
21
|
Chen G, Sun L, Han J, Shi S, Dai Y, Liu W. RILPL2 regulates breast cancer proliferation, metastasis, and chemoresistance via the TUBB3/PTEN pathway. Am J Cancer Res 2019; 9:1583-1606. [PMID: 31497344 PMCID: PMC6726981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023] Open
Abstract
Breast cancer (BC) is the most common malignancy in women and is one of the leading causes of cancer-associated deaths. The analysis of data obtained from online databases revealed that RILPL2 expression in BC tissues is lower than that in normal tissues, and that RILPL2 upregulation is correlated with prolonged recurrence-free survival (RFS), overall survival (OS), and distant metastasis-free survival (DMFS). However, the function of RILPL2 in tumor proliferation and metastasis remains unclear. In this study, we demonstrated that RILPL2 had lower expression in BC tissues than in adjacent normal tissues, and that RILPL2 expression was significantly negatively correlated with tumor size, histological grade, and lymph node metastasis. Univariate analysis showed a positive correlation between RILPL2 and estrogen receptor (ER) expression and a negative correlation between RILPL2 and human epidermal growth factor receptor 2 (HER2) expression. Overexpression of RILPL2 inhibited BC cell proliferation and metastasis in vitro and in vivo. In addition, the interaction of exogenous RILPL2 with TUBB3 resulted in the downregulation of BC cell proliferation and migration and upregulation of PTEN expression by promoting destabilization of TUBB3. Furthermore, RILPL2 could reverse BC cell resistance to taxotere-mediated apoptosis by regulating the TUBB3/PTEN/AKT pathway. In conclusion, these results suggest that RILPL2 could be a novel biomarker for the diagnosis and treatment of BC.
Collapse
Affiliation(s)
- Guanglei Chen
- Department of Breast Surgery, Shengjing Hospital of China Medical UniversityShenyang 110004, Liaoning Province, China
| | - Lisha Sun
- Department of Breast Surgery, Shengjing Hospital of China Medical UniversityShenyang 110004, Liaoning Province, China
| | - Jianjun Han
- Department of Breast Surgery, Affiliated Hospital of Hebei University of EngineeringHandan 056000, Hebei Province, China
| | - Sufang Shi
- Department of Breast Surgery, Affiliated Hospital of Hebei University of EngineeringHandan 056000, Hebei Province, China
| | - Yuna Dai
- Department of Breast Surgery, Affiliated Hospital of Hebei University of EngineeringHandan 056000, Hebei Province, China
| | - Weiguang Liu
- Department of Breast Surgery, Affiliated Hospital of Hebei University of EngineeringHandan 056000, Hebei Province, China
| |
Collapse
|
22
|
Najminejad H, Kalantar SM, Abdollahpour‐Alitappeh M, Karimi MH, Seifalian AM, Gholipourmalekabadi M, Sheikhha MH. Emerging roles of exosomal miRNAs in breast cancer drug resistance. IUBMB Life 2019; 71:1672-1684. [DOI: 10.1002/iub.2116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Hamid Najminejad
- Department of Medical GeneticsShahid Sadoughi University of Medical Sciences Yazd Iran
| | - Seyed Mehdi Kalantar
- Research and Clinical Center for InfertilityShahid Sadoughi University of Medical Sciences Yazd Iran
| | | | | | - Alexander M. Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (Ltd)The London BioScience Innovation Centre London UK
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research CentreIran University of Medical Sciences Tehran Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in MedicineIran University of Medical Sciences Tehran Iran
| | - Mohammad Hasan Sheikhha
- Research and Clinical Center for InfertilityShahid Sadoughi University of Medical Sciences Yazd Iran
| |
Collapse
|
23
|
Xie XP, Xie YF, Liu YT, Wang HQ. Adaptively capturing the heterogeneity of expression for cancer biomarker identification. BMC Bioinformatics 2018; 19:401. [PMID: 30390627 PMCID: PMC6215657 DOI: 10.1186/s12859-018-2437-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 10/15/2018] [Indexed: 11/25/2022] Open
Abstract
Background Identifying cancer biomarkers from transcriptomics data is of importance to cancer research. However, transcriptomics data are often complex and heterogeneous, which complicates the identification of cancer biomarkers in practice. Currently, the heterogeneity still remains a challenge for detecting subtle but consistent changes of gene expression in cancer cells. Results In this paper, we propose to adaptively capture the heterogeneity of expression across samples in a gene regulation space instead of in a gene expression space. Specifically, we transform gene expression profiles into gene regulation profiles and mathematically formulate gene regulation probabilities (GRPs)-based statistics for characterizing differential expression of genes between tumor and normal tissues. Finally, an unbiased estimator (aGRP) of GRPs is devised that can interrogate and adaptively capture the heterogeneity of gene expression. We also derived an asymptotical significance analysis procedure for the new statistic. Since no parameter needs to be preset, aGRP is easy and friendly to use for researchers without computer programming background. We evaluated the proposed method on both simulated data and real-world data and compared with previous methods. Experimental results demonstrated the superior performance of the proposed method in exploring the heterogeneity of expression for capturing subtle but consistent alterations of gene expression in cancer. Conclusions Expression heterogeneity largely influences the performance of cancer biomarker identification from transcriptomics data. Models are needed that efficiently deal with the expression heterogeneity. The proposed method can be a standalone tool due to its capacity of adaptively capturing the sample heterogeneity and the simplicity in use. Software availability The source code of aGRP can be downloaded from https://github.com/hqwang126/aGRP. Electronic supplementary material The online version of this article (10.1186/s12859-018-2437-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin-Ping Xie
- School of Mathematics and Physics, Anhui Jianzhu University, Hefei, 230022, Anhui, China
| | - Yu-Feng Xie
- School of Mathematics and Physics, Anhui Jianzhu University, Hefei, 230022, Anhui, China.,Institute of Intelligent Machines, Hefei Institutes of Physical Science, CAS, 350 Shushanhu Road, P.O.Box 1130, Hefei, 230031, Anhui, China.,Present Address: School of Electronics and Information, Northwestern Polytechnical University, Xi'an, 710100, China
| | - Yi-Tong Liu
- School of Mathematics and Physics, Anhui Jianzhu University, Hefei, 230022, Anhui, China.,Institute of Intelligent Machines, Hefei Institutes of Physical Science, CAS, 350 Shushanhu Road, P.O.Box 1130, Hefei, 230031, Anhui, China
| | - Hong-Qiang Wang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, CAS, 350 Shushanhu Road, P.O.Box 1130, Hefei, 230031, Anhui, China.
| |
Collapse
|
24
|
Corrà F, Agnoletto C, Minotti L, Baldassari F, Volinia S. The Network of Non-coding RNAs in Cancer Drug Resistance. Front Oncol 2018; 8:327. [PMID: 30211115 PMCID: PMC6123370 DOI: 10.3389/fonc.2018.00327] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Abstract
Non-coding RNAs (ncRNAs) have been implicated in most cellular functions. The disruption of their function through somatic mutations, genomic imprinting, transcriptional and post-transcriptional regulation, plays an ever-increasing role in cancer development. ncRNAs, including notorious microRNAs, have been thus proposed to function as tumor suppressors or oncogenes, often in a context-dependent fashion. In parallel, ncRNAs with altered expression in cancer have been reported to exert a key role in determining drug sensitivity or restoring drug responsiveness in resistant cells. Acquisition of resistance to anti-cancer drugs is a major hindrance to effective chemotherapy and is one of the most important causes of relapse and mortality in cancer patients. For these reasons, non-coding RNAs have become recent focuses as prognostic agents and modifiers of chemo-sensitivity. This review starts with a brief outline of the role of most studied non-coding RNAs in cancer and then highlights the modulation of cancer drug resistance via known ncRNAs based mechanisms. We identified from literature 388 ncRNA-drugs interactions and analyzed them using an unsupervised approach. Essentially, we performed a network analysis of the non-coding RNAs with direct relations with cancer drugs. Within such a machine-learning framework we detected the most representative ncRNAs-drug associations and groups. We finally discussed the higher integration of the drug-ncRNA clusters with the goal of disentangling effectors from downstream effects and further clarify the involvement of ncRNAs in the cellular mechanisms underlying resistance to cancer treatments.
Collapse
Affiliation(s)
- Fabio Corrà
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Chiara Agnoletto
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Linda Minotti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Federica Baldassari
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
25
|
Loginov VI, Filippova EA, Kurevlev SV, Fridman MV, Burdennyy AM, Braga EA. Suppressive and Hypermethylated MicroRNAs in the Pathogenesis of Breast Cancer. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418070086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
miR-24-3p/FGFR3 Signaling as a Novel Axis Is Involved in Epithelial-Mesenchymal Transition and Regulates Lung Adenocarcinoma Progression. J Immunol Res 2018; 2018:2834109. [PMID: 29850625 PMCID: PMC5933034 DOI: 10.1155/2018/2834109] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 02/05/2018] [Indexed: 12/27/2022] Open
Abstract
Our previous studies showed that Fibroblast growth factor receptor 3 (FGFR3) contributed to cell growth in lung cancer. However, the correlation between FGFR3 and tumor progression, coupled with the underlying mechanisms, are not fully understood. The clinical significance of FGFR3 was determined in two cohorts of clinical samples (n = 22, n = 78). A panel of biochemical assays and functional experiments was utilized to elucidate the underlying mechanisms and effects of FGFR3 and miR-24-3p on lung adenocarcinoma progression. Upregulated FGFR3 expression indicated an adverse prognosis for lung adenocarcinoma individuals and promoted metastatic potential of lung adenocarcinoma cells. Owing to the direct regulation towards FGFR3, miR-24-3p could interfere with the potential of proliferation, migration, and invasion in lung adenocarcinoma, following variations of EMT-related protein expression. As a significant marker of EMT, E-cadherin was negatively correlated with FGFR3, of which ectopic overexpression could neutralize the antitumour effects of miR-24-3p and reverse its regulatory effects on EMT markers. Taken together, these findings define a novel insight into the miR-24-3p/FGFR3 signaling axis in regulating lung adenocarcinoma progression and suggest that targeting the miR-24-3p/FGFR3 axis could be an effective and efficient way to prevent tumor progression.
Collapse
|
27
|
Hu W, Tan C, He Y, Zhang G, Xu Y, Tang J. Functional miRNAs in breast cancer drug resistance. Onco Targets Ther 2018; 11:1529-1541. [PMID: 29593419 PMCID: PMC5865556 DOI: 10.2147/ott.s152462] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Owing to improved early surveillance and advanced therapy strategies, the current death rate due to breast cancer has decreased; nevertheless, drug resistance and relapse remain obstacles on the path to successful systematic treatment. Multiple mechanisms responsible for drug resistance have been elucidated, and miRNAs seem to play a major part in almost every aspect of cancer progression, including tumorigenesis, metastasis, and drug resistance. In recent years, exosomes have emerged as novel modes of intercellular signaling vehicles, initiating cell–cell communication through their fusion with target cell membranes, delivering functional molecules including miRNAs and proteins. This review particularly focuses on enumerating functional miRNAs involved in breast cancer drug resistance as well as their targets and related mechanisms. Subsequently, we discuss the prospects and challenges of miRNA function in drug resistance and highlight valuable approaches for the investigation of the role of exosomal miRNAs in breast cancer progression and drug resistance.
Collapse
Affiliation(s)
- Weizi Hu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University.,Nanjing Medical University Affiliated Cancer Hospital
| | - Chunli Tan
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University.,Nanjing Medical University Affiliated Cancer Hospital
| | - Yunjie He
- The First Clinical School of Nanjing Medical University
| | - Guangqin Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University
| | - Yong Xu
- Nanjing Medical University Affiliated Cancer Hospital.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jinhai Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University
| |
Collapse
|
28
|
Gao B, Hao S, Tian W, Jiang Y, Zhang S, Guo L, Zhao J, zhang G, Yan J, Luo D. MicroRNA-107 is downregulated and having tumor suppressive effect in breast cancer by negatively regulating brain-derived neurotrophic factor. J Gene Med 2017; 19. [PMID: 27813254 DOI: 10.1002/jgm.2932] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/28/2016] [Accepted: 10/28/2016] [Indexed: 12/17/2022] Open
Affiliation(s)
- Bo Gao
- Department of Breast & Thyroid & Vascular Surgery, Research Institute of Surgery, Daping Hospital; Third Military Medical University; Chongqing China
| | - Shuai Hao
- Department of Breast & Thyroid & Vascular Surgery, Research Institute of Surgery, Daping Hospital; Third Military Medical University; Chongqing China
| | - Wuguo Tian
- Department of Breast & Thyroid & Vascular Surgery, Research Institute of Surgery, Daping Hospital; Third Military Medical University; Chongqing China
| | - Yan Jiang
- Department of Breast & Thyroid & Vascular Surgery, Research Institute of Surgery, Daping Hospital; Third Military Medical University; Chongqing China
| | - Shu Zhang
- Department of Breast & Thyroid & Vascular Surgery, Research Institute of Surgery, Daping Hospital; Third Military Medical University; Chongqing China
| | - Lingji Guo
- Department of Breast & Thyroid & Vascular Surgery, Research Institute of Surgery, Daping Hospital; Third Military Medical University; Chongqing China
| | - Jianjie Zhao
- Department of Breast & Thyroid & Vascular Surgery, Research Institute of Surgery, Daping Hospital; Third Military Medical University; Chongqing China
| | - Gang zhang
- Department of Breast & Thyroid & Vascular Surgery, Research Institute of Surgery, Daping Hospital; Third Military Medical University; Chongqing China
| | - Jie Yan
- Department of Breast & Thyroid & Vascular Surgery, Research Institute of Surgery, Daping Hospital; Third Military Medical University; Chongqing China
| | - Donglin Luo
- Department of Breast & Thyroid & Vascular Surgery, Research Institute of Surgery, Daping Hospital; Third Military Medical University; Chongqing China
| |
Collapse
|
29
|
Liu S, Qu D, Li W, He C, Li S, Wu G, Zhao Q, Shen L, Zhang J, Zheng J. miR‑647 and miR‑1914 promote cancer progression equivalently by downregulating nuclear factor IX in colorectal cancer. Mol Med Rep 2017; 16:8189-8199. [PMID: 28990086 PMCID: PMC5779906 DOI: 10.3892/mmr.2017.7675] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 09/19/2017] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) have been investigated as diagnostic and prognostic biomarkers for cancer; however, the significance of miRNAs in colorectal cancer (CRC) remains to be elucidated. The aim of the present study was to determine the genetic profiles of CRC tissue, and screen for miRNAs implicated in CRC cell proliferation and migration. RNA sequencing of 10 paired specimens was performed to for screen genes that were upregulated or downregulated in CRC. miRNA expression in CRC specimens and cell lines was confirmed using qPCR analysis. The significance of indicated miRNAs in CRC cell proliferation and migration was evaluated using MTT and scratch wound-healing assays. Online computational prediction, isobaric tags for relative and absolute quantification analysis and a luciferase reporter assay were applied to determine candidate targeted genes for the miRNAs. RNA-seq data revealed miR-1914 as the most prominent miRNA in CRC specimens. qPCR analysis also suggested that the expression of miR-1914, as well as its counterpart miR-647 were elevated in CRC specimens and cell lines. Suppression of miR-647/1914 using small interfering RNAs inhibited CRC SW480 and SW620 cell proliferation, and migration. Nuclear factor I/X (NFIX) was demonstrated to be a candidate for miR-647/1914 and mediated the oncogenic activity of miR-647/1914. In all, miR-647 and miR-1914 were demonstrated to promote the proliferation and migration of CRC cells by directly targeting NFIX. Therapeutic delivery of siRNAs targeting miR-647/1914 and overexpression of NFIX may be feasible approaches for CRC treatment.
Collapse
Affiliation(s)
- Shaoqing Liu
- Department of Digestive Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Dingding Qu
- Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Weiping Li
- Department of Neurology, Second Affiliated Hospital, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 712046, P.R. China
| | - Chenxiang He
- Department of Digestive Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Shisen Li
- Department of Digestive Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Guosheng Wu
- Department of Digestive Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Qingchuan Zhao
- Department of Digestive Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Liangliang Shen
- Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jian Zhang
- Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jianyong Zheng
- Department of Digestive Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
30
|
Yu H, Xing H, Han W, Wang Y, Qi T, Song C, Xu Z, Li H, Huang Y. MicroRNA-409-5p is upregulated in breast cancer and its downregulation inhibits cancer development through downstream target of RSU1. Tumour Biol 2017; 39:1010428317701647. [PMID: 28459205 DOI: 10.1177/1010428317701647] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We investigated the expression and function of miR-409-5p in human breast cancer. Quantitative real-time polymerase chain reaction was conducted to evaluate endogenous miR-409-5p expression in breast cancer tumors and breast cancer cell lines. Lentiviral transduction was performed to stably downregulate miR-409-5p in breast cancer cell lines MDA-MB-231 and MCF-7 and cells. The effects of miR-409-5p downregulation on breast cancer proliferation, migration, and xenograft development were then evaluated. Downstream target gene of miR-409-5p, Ras suppressor protein 1, was examined by dual-luciferase activity assay, quantitative real-time polymerase chain reaction, and western blot in lentiviral-transduced breast cancer cells. Ras suppressor protein 1 was also inhibited in miR-409-5p-downregulated breast cancer cells to examine its functional effect on breast cancer proliferation and migration. MiR-409-5p was aberrantly upregulated in both breast cancer tumors and cell lines. Lentiviral transduction successfully downregulated endogenous miR-409-5p expression as well as suppressed proliferation, migration, and xenograft development in MDA-MB-231 and MCF-7 cells. Ras suppressor protein 1 was confirmed to be directly targeted by miR-409-5p in breast cancer cells. Small interfering RNA-mediated Ras suppressor protein 1 inhibition reversely promoted cancer proliferation and migration in miR-409-5p-downregualted breast cancer cells. MiR-409-5p is downregulated in breast cancer and its inhibition has anti-cancer effect on breast cancer development both in vitro and in vivo. The regulatory effect of miR-409-5p inhibition is likely through the inverse upregulation of Ras suppressor protein 1 in breast cancer.
Collapse
Affiliation(s)
- Hong Yu
- 1 Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hua Xing
- 1 Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wei Han
- 2 Department of Hematology, Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yali Wang
- 3 Department of Blood Transfusion, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Tianyang Qi
- 4 Science Research Center, China-Japan Union Hosptial of Jilin University, Changchun, China
| | - Changlong Song
- 1 Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zheli Xu
- 1 Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hongjun Li
- 1 Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yinghui Huang
- 5 College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| |
Collapse
|
31
|
Campos-Parra AD, Mitznahuatl GC, Pedroza-Torres A, Romo RV, Reyes FIP, López-Urrutia E, Pérez-Plasencia C. Micro-RNAs as Potential Predictors of Response to Breast Cancer Systemic Therapy: Future Clinical Implications. Int J Mol Sci 2017; 18:E1182. [PMID: 28574440 PMCID: PMC5486005 DOI: 10.3390/ijms18061182] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/24/2017] [Accepted: 05/27/2017] [Indexed: 12/11/2022] Open
Abstract
Despite advances in diagnosis and new treatments such as targeted therapies, breast cancer (BC) is still the most prevalent tumor in women worldwide and the leading cause of death. The principal obstacle for successful BC treatment is the acquired or de novo resistance of the tumors to the systemic therapy (chemotherapy, endocrine, and targeted therapies) that patients receive. In the era of personalized treatment, several studies have focused on the search for biomarkers capable of predicting the response to this therapy; microRNAs (miRNAs) stand out among these markers due to their broad spectrum or potential clinical applications. miRNAs are conserved small non-coding RNAs that act as negative regulators of gene expression playing an important role in several cellular processes, such as cell proliferation, autophagy, genomic stability, and apoptosis. We reviewed recent data that describe the role of miRNAs as potential predictors of response to systemic treatments in BC. Furthermore, upon analyzing the collected published information, we noticed that the overexpression of miR-155, miR-222, miR-125b, and miR-21 predicts the resistance to the most common systemic treatments; nonetheless, the function of these particular miRNAs must be carefully studied and further analyses are still necessary to increase knowledge about their role and future potential clinical uses in BC.
Collapse
Affiliation(s)
- Alma D Campos-Parra
- Laboratorio de Genomica, Instituto Nacional de Cancerología (INCan), Av. San Fernando 22, Col. Sección XVI, C.P. 14080 Tlalpan, Ciudad de México, Mexico.
| | - Gerardo Cuamani Mitznahuatl
- Laboratorio de Genomica, Instituto Nacional de Cancerología (INCan), Av. San Fernando 22, Col. Sección XVI, C.P. 14080 Tlalpan, Ciudad de México, Mexico.
| | - Abraham Pedroza-Torres
- Laboratorio de Genomica, Instituto Nacional de Cancerología (INCan), Av. San Fernando 22, Col. Sección XVI, C.P. 14080 Tlalpan, Ciudad de México, Mexico.
- CATEDRA-CONACyT, Av. De los Insurgente Sur 1582, Col. Crédito Constructor., C.P. 03940 Benito Juárez, Ciudad de México, Mexico.
| | - Rafael Vázquez Romo
- Departamento de Cirugia de Tumores mamarios, Instituto Nacional de Cancerología (INCan), Av. San Fernando 22, Col. Sección XVI, C.P. 14080 Tlalpan, Ciudad de México, Mexico.
| | - Fany Iris Porras Reyes
- Servicio de Anatomia Patologica, Instituto Nacional de Cancerología (INCan), Av. San Fernando 22, Col. Sección XVI, C.P. 14080 Tlalpan, Ciudad de México, Mexico.
| | - Eduardo López-Urrutia
- Unidad de Biomedicina, FES-IZTACALA, Universidad Nacional Autónoma de Mexico (UNAM), Av. De Los Barrios 1, Los Reyes Ixtacala, Hab Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, C.P. 54090 Tlalnepantla, México, Mexico.
| | - Carlos Pérez-Plasencia
- Unidad de Biomedicina, FES-IZTACALA, Universidad Nacional Autónoma de Mexico (UNAM), Av. De Los Barrios 1, Los Reyes Ixtacala, Hab Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, C.P. 54090 Tlalnepantla, México, Mexico.
| |
Collapse
|
32
|
Zhao G, Li Y, Wang T. Potentiation of docetaxel sensitivity by miR-638 via regulation of STARD10 pathway in human breast cancer cells. Biochem Biophys Res Commun 2017; 487:255-261. [PMID: 28412359 DOI: 10.1016/j.bbrc.2017.04.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/10/2017] [Indexed: 12/22/2022]
Abstract
Acquired resistance to classical chemotherapeutics such as docetaxel (DTX) remains a critical challenge in breast cancer (BCa) treatment. Epigenetic modification by microRNAs (miRNAs) has been shown to play a crucial role in cancer drug resistance. Previous study, using human drug-resistant BCa tissues, has identified miR-638 as one of the most down-regulated miRNAs, but its exact roles and underlying mechanisms during the pathogenesis of chemoresistance remain to be determined. In the current study, we found that miR-638 expression was significantly down-regulated in clinical DTX-resistant BCa tissues compared to that in DTX-sensitive BCa tissues. By using the previously established DTX-resistant MCF-7 cells (MCF-7/R), we also confirmed that chemoresistant cells displayed decreased levels of miR-638. To provide the direct functional evidence, we inhibited and overexpressed miR-638 in different cell lines. Thereby, the cells were rendered more resistant or susceptible to DTX treatment. Mechanistically, the lipid-binding protein STARD10 was identified as a miR-638 target mediating the DTX-resistance. Hence, we provide a molecular explanation for acquired resistance to DTX that is caused by the miR-638 deficiency and subsequent STARD10 upregulation. In consequence, alteration of miR-638/STARD10 cascade may represent an attractive strategy in future adjuvant therapy along with DTX chemotherapy.
Collapse
Affiliation(s)
- Ge Zhao
- Department of Thyroid Gland and Breast Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, PR China
| | - Ying Li
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, PR China
| | - Ting Wang
- Department of Thyroid Gland and Breast Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, PR China.
| |
Collapse
|
33
|
Ayers D, Vandesompele J. Influence of microRNAs and Long Non-Coding RNAs in Cancer Chemoresistance. Genes (Basel) 2017; 8:genes8030095. [PMID: 28273813 PMCID: PMC5368699 DOI: 10.3390/genes8030095] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/15/2017] [Accepted: 02/24/2017] [Indexed: 12/16/2022] Open
Abstract
Innate and acquired chemoresistance exhibited by most tumours exposed to conventional chemotherapeutic agents account for the majority of relapse cases in cancer patients. Such chemoresistance phenotypes are of a multi-factorial nature from multiple key molecular players. The discovery of the RNA interference pathway in 1998 and the widespread gene regulatory influences exerted by microRNAs (miRNAs) and other non-coding RNAs have certainly expanded the level of intricacy present for the development of any single physiological phenotype, including cancer chemoresistance. This review article focuses on the latest research efforts in identifying and validating specific key molecular players from the two main families of non-coding RNAs, namely miRNAs and long non-coding RNAs (lncRNAs), having direct or indirect influences in the development of cancer drug resistance properties and how such knowledge can be utilised for novel theranostics in oncology.
Collapse
Affiliation(s)
- Duncan Ayers
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida MSD2080, Malta.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M1 7DN, UK.
| | - Jo Vandesompele
- Center for Medical Genetics Ghent, Ghent University, Ghent 9000, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
34
|
Liu K, Huang J, Ni J, Song D, Ding M, Wang J, Huang X, Li W. MALAT1 promotes osteosarcoma development by regulation of HMGB1 via miR-142-3p and miR-129-5p. Cell Cycle 2017; 16:578-587. [PMID: 28346809 DOI: 10.1080/15384101.2017.1288324] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Recently, emerging evidence has demonstrated that metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a long non-coding RNAs (lncRNAs), contributes to the initiation and development of tumors, including osteosarcoma (OS). Multiple studies have suggested an oncogenic role of MALAT1 and high-mobility group protein B1 (HMGB1) in OS tumorigenesis and metastasis, but the effects and mechanisms are not unanimous. Here, we showed that MALAT1 and HMGB1 were significantly increased in human OS cell lines and knockdown of MALAT1 reduced HMGB1 expression. By using online tools, we screen out 2 candidate miRNAs, miR-142-3p and miR-129-5p which may be associated with both MALAT1 and HMGB1. Luciferase reporter assay revealed a direct interaction between the 2 miRNAs and MALAT1, respectively, via a putative binding site within MALAT1. Meanwhile, both the 2 miRNAs could bind to HMGB1 3'-untranslated region (3'-UTR) and regulate HMGB1 expression. Moreover, knockdown of MALAT1 decreased HMGB1 expression, inhibited OS cell growth and promoted apoptosis, while miR-142-3p and miR-129-5p inhibitor partly restored the inhibitory effect of MALAT1 knockdown on HMGB1 expression, OS cell growth and the promotion of apoptosis. In OS tissues, the expression of MALAT1 and HMGB1 was upregulated while the expression of miR-142-3p and miR-129-5p was downregulated. Together, our results support a MALAT1/miR-142-3p/miR-129-5p/HMGB1 axis in OS cell proliferation and tumor progression. MALAT1 promoted OS cell growth through inhibition of miR-142-3p or miR-129-5p and by targeting HMGB1.
Collapse
Affiliation(s)
- Ke Liu
- a Department of Ophthalmology , The Second Xiangya Hospital, Central South University , Changsha , Hunan , P.R. China
| | - Jun Huang
- b Department of Orthopaedics , The Second Xiangya Hospital, Central South University , Changsha , Hunan , P.R. China
| | - Jiangdong Ni
- b Department of Orthopaedics , The Second Xiangya Hospital, Central South University , Changsha , Hunan , P.R. China
| | - Deye Song
- b Department of Orthopaedics , The Second Xiangya Hospital, Central South University , Changsha , Hunan , P.R. China
| | - Muliang Ding
- b Department of Orthopaedics , The Second Xiangya Hospital, Central South University , Changsha , Hunan , P.R. China
| | - Junjie Wang
- b Department of Orthopaedics , The Second Xiangya Hospital, Central South University , Changsha , Hunan , P.R. China
| | - Xianzhe Huang
- b Department of Orthopaedics , The Second Xiangya Hospital, Central South University , Changsha , Hunan , P.R. China
| | - Wenzhao Li
- b Department of Orthopaedics , The Second Xiangya Hospital, Central South University , Changsha , Hunan , P.R. China
| |
Collapse
|
35
|
Santos JC, Ribeiro ML, Sarian LO, Ortega MM, Derchain SF. Exosomes-mediate microRNAs transfer in breast cancer chemoresistance regulation. Am J Cancer Res 2016; 6:2129-2139. [PMID: 27822407 PMCID: PMC5088281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 09/09/2016] [Indexed: 06/06/2023] Open
Abstract
Breast cancer is the most common and fatal type of cancer in women worldwide due to the metastatic process and resistance to treatment. Despite advances in molecular knowledge, little is known regarding resistance to chemotherapy. One highlighted aspect is the DNA damage response (DDR) pathway that is activated upon genotoxic damage, controlling the cell cycle arrest or DNA repair activation. Recently, studies have showed that cancer stem cells (CSCs) could promote chemoresistance through DDR pathway. Furthermore, it is known that the epithelial-mesenchymal transition (EMT) can generate cells with CSCs characteristics and therefore regulate the chemoresistance process. The exosomes are microvesicles filled with RNAs, proteins and microRNAs (miRNAs) that can be released by many cell types, including tumor cells and CSCs. The exosomes content may be cell-to-cell transferable and it could control a wide range of pathways during tumor development and metastasis. A big challenge for modern medicine is to determine the reasons why patients do not respond to chemotherapy treatments and also guide the most appropriate therapy for each one. Considering that the CSCs are able to stimulate the formation of a more aggressive tumor phenotype with migration and metastasis ability, resistance to treatment and disease recurrence, as well as few studies capable to determine clearly the interaction of breast CSCs with its microenvironment, the present review summarize the possibility that exosomes-mediate miRNAs transfer and regulate chemoresistance in breast tumor cells and CSCs, to clarify the complexity of breast cancer progression and therapy.
Collapse
Affiliation(s)
- Juliana Carvalho Santos
- Women’s Health Hospital “Prof Dr José Aristodemo Pinotti” (CAISM), State University of Campinas (UNICAMP)Campinas, SP, Brazil
| | - Marcelo Lima Ribeiro
- Clinical Pharmacology and Gastroenterology Unit, São Francisco University, São Francisco UniversityBragança Paulista, SP, Brazil
| | - Luis Otávio Sarian
- Women’s Health Hospital “Prof Dr José Aristodemo Pinotti” (CAISM), State University of Campinas (UNICAMP)Campinas, SP, Brazil
| | - Manoela Marques Ortega
- Clinical Pharmacology and Gastroenterology Unit, São Francisco University, São Francisco UniversityBragança Paulista, SP, Brazil
| | - Sophie Françoise Derchain
- Women’s Health Hospital “Prof Dr José Aristodemo Pinotti” (CAISM), State University of Campinas (UNICAMP)Campinas, SP, Brazil
| |
Collapse
|