1
|
Sivagnanapazham K, Karthikeyan G, Pavithran S, Harish S, Murugan M, Latha TKS, Devi HUN. Transmission dynamics and localization of tomato leaf curl New Delhi virus in cucurbits via sweet potato whitefly, Bemisia tabaci (Gennadius). Mol Biol Rep 2025; 52:358. [PMID: 40175766 DOI: 10.1007/s11033-025-10467-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/24/2025] [Indexed: 04/04/2025]
Abstract
BACKGROUND Bitter gourd (Momordica charantia), ridge gourd (Luffa acutangula), and pumpkin (Cucurbita pepo) are major vegetables of the Cucurbitaceae family cultivated extensively in India. However, their production is severely affected by begomoviruses, which inflict significant global damage to cucurbits. Among these, tomato leaf curl New Delhi virus (ToLCNDV), a whitefly-transmitted, persistent, circulative, and non-propagative begomovirus, seriously threatens cucurbit cultivation, often leading to substantial yield losses. METHODS AND RESULTS Understanding the interactions between vectors and viruses is therefore critical. This study explored the transmission dynamics, localization, and titre of ToLCNDV in bitter gourd, ridge gourd, and pumpkin. A maximum transmission rate of 80% was achieved when 15 whiteflies (Asia I cryptic species) were given an acquisition access period (AAP) and an inoculation access period (IAP) of 24 h. However, transmission was observed even after 1 h of AAP and IAP respectively. Immunofluorescent assays showed that ToLCNDV accumulated as vesicle-like structures in the midgut and salivary glands of B. tabaci. Using conventional PCR, ToLCNDV yielded an expected amplicon size of 1500 bp in the midgut and salivary gland DNAs of B. tabaci. The maximum viral titre of 7.2 × 107, 3.4 × 106 and 1.3 × 106 copies per µl at 24 h of IAP were observed in 20-day post-inoculation symptomatic leaves of bitter gourd, ridge gourd and pumpkin, respectively. CONCLUSIONS Bemisia tabaci (Asia I) efficiently transmitted ToLCNDV in bitter gourd, ridge gourd, and pumpkin. Localization studies confirmed the presence of virus particles in the midgut and salivary glands of viruliferous whiteflies. qPCR assays quantified viral titres in infected cucurbit crops. These findings enhance the understanding of virus-vector interactions and provide valuable insights for developing effective management strategies to combat leaf curl disease in cucurbits.
Collapse
Affiliation(s)
| | - Gandhi Karthikeyan
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, India.
| | | | | | - Marimuthu Murugan
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, India
| | - T K S Latha
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, India
| | | |
Collapse
|
2
|
Premchand U, Mesta RK, Basavarajappa MP, Venkataravanappa V, Narasimha Reddy LRC, Shankarappa KS. Epidemiological studies on the incidence of papaya ringspot disease under Indian sub-continent conditions. Sci Rep 2025; 15:6973. [PMID: 40011697 PMCID: PMC11865278 DOI: 10.1038/s41598-025-91612-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/21/2025] [Indexed: 02/28/2025] Open
Abstract
Papaya (Carica papaya L.) is a commercially important fruit crop cultivated worldwide due to its nutritional and medicinal values. Papaya ringspot disease (PRSD), caused by the papaya ringspot virus (PRSV), poses a significant threat to papaya cultivation, resulting in substantial yield losses. In this study, two independent field experiments were conducted at Bagalkote located in the Northern Dry Zone of Karnataka state of India. The first experiment aimed to identify the optimal planting month for papaya to effectively manage PRSV disease. The second experiment was conducted to determine the susceptible papaya growth stage for PRSV infection. The results revealed that early planting of papaya in June or late planting in March were identified as the most optimal planting times across the majority of growth stages, as they exhibited the lowest disease incidence along with superior growth and yield characteristics compared to other planting months. In contrast, planting during the winter season (September to January) resulted in high disease severity due to an increased aphid population. Conversely, planting during periods of low aphid activity (spring season) delayed disease onset until the monsoon. By the time the aphid population increased, the plants had already progressed beyond the flowering and fruit-bearing stages. In the second experiment, the severity and frequency of foliar symptoms on PRSV-inoculated papaya plants were significantly higher in those inoculated at the early growth stage compared to those inoculated at a later growth stage. This indicates that the early growth stage (up to 180 days after transplanting) is a critical period for PRSV infection, necessitating the implementation of effective disease management measures during this time to minimize disease spread and enhance growth and yield. Furthermore, plants inoculated at the early stage exhibited a higher viral titer, more severe symptoms, and a higher percent transmission rate compared to those inoculated at a later stage. These findings were supported by qRT-PCR analysis, which demonstrated a highly significant and positive correlation between early inoculation and disease severity.
Collapse
Affiliation(s)
- U Premchand
- ICAR- Krishi Vigyan Kendra, Indi (Vijayapura II), University of Agricultural Sciences, Dharwad, 586209, India.
| | - Raghavendra K Mesta
- Department of Plant Pathology, College of Horticulture, Bagalkote, University of Horticultural Sciences, Bagalkote, 587104, India.
| | - Mantapla Puttappa Basavarajappa
- Department of Plant Pathology, College of Horticulture, Bagalkote, University of Horticultural Sciences, Bagalkote, 587104, India
| | | | | | - Kodegandlu Subbanna Shankarappa
- Department of Plant Pathology, College of Horticulture, Bangalore, University of Horticultural Sciences, Bagalkote, 560065, India
| |
Collapse
|
3
|
Ferreira AL, Ghanim M, Xu Y, Pinheiro PV. Interactions between Common Bean Viruses and Their Whitefly Vector. Viruses 2024; 16:1567. [PMID: 39459901 PMCID: PMC11512337 DOI: 10.3390/v16101567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Common bean (Phaseolus vulgaris L.) is a widely cultivated crop, representing an important protein source in the human diet in developing countries. The production of this crop faces serious challenges, such as virus diseases transmitted by the whitefly Bemisia tabaci. Although there is a lot of information about some of these viruses, most of what we know has been developed using model systems, such as tomato plants and tomato yellow leaf curl virus (TYLCV). There is still very little information on the most relevant common bean viruses, such as bean golden mosaic virus (BGMV), bean golden yellow mosaic virus (BGYMV), bean dwarf mosaic virus (BDMV), cowpea mild mottle virus (CPMMV), and bean yellow disorder virus (BnYDV). In this review, we discuss the available data in the most up-to-date literature and suggest future research avenues to contribute to the development of management tools for preventing or reducing the damage caused by viruses in this important crop.
Collapse
Affiliation(s)
- Amanda L. Ferreira
- Institute of Tropical Pathology and Public Health (IPTSP), Universidade Federal de Goiás (UFG), Goiânia 74605-050, GO, Brazil;
| | - Murad Ghanim
- Department of Entomology, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel;
| | - Yi Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;
| | | |
Collapse
|
4
|
Fan Y, Zhong Y, Pan L, Wang X, Ding M, Liu S. A shift of vector specificity acquired by a begomovirus through natural homologous recombination. MOLECULAR PLANT PATHOLOGY 2023; 24:882-895. [PMID: 37191666 PMCID: PMC10346445 DOI: 10.1111/mpp.13351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023]
Abstract
Recombination is common in plant viruses such as geminiviruses, but the ecological and pathogenic consequences have been explored only in a few cases. Here, we found that a new begomovirus, tomato yellow leaf curl Shuangbai virus (TYLCSbV), probably originated from the recombination of Ageratum yellow vein China virus (AYVCNV) and tobacco curl shoot virus (TbCSV). Agrobacterium-mediated inoculation showed that TYLCSbV and AYVCNV have similar levels of infectivity on tomato and tobacco plants. However, the two viruses exhibit contrasting specificities for vector transmission, that is, TYLCSbV was efficiently transmitted by the whitefly Bemisia tabaci Mediterranean (MED) rather than by the whitefly B. tabaci Middle East-Asia Minor 1 (MEAM1), whereas AYVCNV was more efficiently transmitted by MEAM1. We also showed that the transmission efficiencies of TYLCSbV and AYVCNV are positively correlated with the accumulation of the viruses in whitefly whole bodies and organs/tissues. The key coat protein amino acids that determine their accumulation are between positions 147 and 256. Moreover, field surveys suggest that MED has displaced MEAM1 in some regions where TYLCSbV was collected. Viral competition assays indicated that TYLCSbV outcompeted AYVCNV when transmitted by MED, while the outcome was the opposite when transmitted by MEAM1. Our findings suggest that recombination has resulted in a shift of vector specificity that could provide TYLCSbV with a potential selective transmission advantage, and the population shift of whitefly cryptic species could have influenced virus evolution towards an extended trajectory of transmission.
Collapse
Affiliation(s)
- Yun‐Yun Fan
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang ProvinceInstitute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Yu‐Wei Zhong
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang ProvinceInstitute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Li‐Long Pan
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang ProvinceInstitute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Xiao‐Wei Wang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang ProvinceInstitute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Ming Ding
- Biotechnology and Germplasm Resources InstituteYunnan Academy of Agricultural SciencesKunmingChina
| | - Shu‐Sheng Liu
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang ProvinceInstitute of Insect Sciences, Zhejiang UniversityHangzhouChina
| |
Collapse
|
5
|
Kennedy GG, Sharpee W, Jacobson AL, Wambugu M, Mware B, Hanley-Bowdoin L. Genome segment ratios change during whitefly transmission of two bipartite cassava mosaic begomoviruses. Sci Rep 2023; 13:10059. [PMID: 37344614 DOI: 10.1038/s41598-023-37278-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/19/2023] [Indexed: 06/23/2023] Open
Abstract
Cassava mosaic disease is caused by a complex of whitefly-transmitted begomoviruses, which often occur in co-infections. These viruses have bipartite genomes consisting of DNA-A and DNA-B that are encapsidated into separate virions. Individual viruses exist in plants and whitefly vectors as populations comprising both genome segments, which can occur at different frequencies. Both segments are required for infection, and must be transmitted for virus spread to occur. Cassava plants infected with African cassava mosaic virus (ACMV) and/or East African cassava mosaic Cameroon virus (EACMCV), in which the ratios of DNA-A:DNA-B titers differed between plants, were used to examine how titers of the segments in a plant relate to their respective probabilities of acquisition by whiteflies and to the titers of each segment acquired and subsequently transmitted by whiteflies. The probabilities of acquiring each segment of ACMV did not reflect their relative titers in the source plant but they did for EACMCV. However, for both viruses, DNA-A:DNA-B ratios acquired by whiteflies differed from those in the source plant and the ratios transmitted by the whitefly did not differ from one - the ratio at which the highest probability of transmitting both segments is expected.
Collapse
Grants
- OISE-1545553 to L.H-B., G.G.K., and A.L.J. National Science Foundation
- OISE-1545553 to L.H-B., G.G.K., and A.L.J. National Science Foundation
- OISE-1545553 to L.H-B., G.G.K., and A.L.J. National Science Foundation
- OISE-1545553 to L.H-B., G.G.K., and A.L.J. National Science Foundation
- OISE-1545553 to L.H-B., G.G.K., and A.L.J. National Science Foundation
- OISE-1545553 to L.H-B., G.G.K., and A.L.J. National Science Foundation
- Hatch Project NCO2784 U.S. Department of Agriculture
Collapse
Affiliation(s)
- George G Kennedy
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695-7630, USA.
| | - William Sharpee
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695-7630, USA
| | - Alana L Jacobson
- Department of Entomology, Auburn University, Auburn, AL, 36849, USA
| | - Mary Wambugu
- International Livestock Research Institute (BecA), Nairobi, Kenya
| | - Benard Mware
- International Livestock Research Institute (BecA), Nairobi, Kenya
| | - Linda Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
6
|
Venkataravanappa V, Kodandaram MH, Prasanna HC, Reddy MK, Reddy CNL. Unraveling different begomoviruses, DNA satellites and cryptic species of Bemisia tabaci and their endosymbionts in vegetable ecosystem. Microb Pathog 2023; 174:105892. [PMID: 36502993 DOI: 10.1016/j.micpath.2022.105892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/16/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022]
Abstract
Bemisia tabaci species complex contains more than 46 cryptic species. It has emerged as an important pest causing significant yield loss in many cultivated crops. This pest is also a vector for more than 100 species of begomoviruses, that are a major threat for the cultivation of many crops in different regions of the world. The relation between cryptic species of the B. tabaci species complex and associated begomoviruses that infect different crops remains unclear. In the present study, four cryptic species (Asia I, China 3, Asia II 5 and Asia II-1) of B. tabaci and four associated endosymbionts (Arsenophonus, Cardinium, Rickettsia and Wolbachia) were identified in different vegetable crops. The vector-based PCR detection revealed five different begomoviruses such as okra enation leaf curl virus (OELCuV), tomato leaf curl Palampur virus (ToLCPalV), squash leaf curl China virus (SLCCNV), chilli leaf curl virus (ChiLCuV), and tomato leaf curl New Delhi virus (ToLCNDV). Of these begomoviruses, the maximum infection rate was observed (9.1%) for OELCuV, followed by 7.3% for ToLCNDV. The infection rate of the other three viruses (SLCCNV, ChiLCuV, ToLCPalV) ranged from 0.9 to 2.7% in cryptic species of B. tabaci. Further, each cryptic species was infected with multiple virus species and the virus infection rate of Asia I, Asia II-5, China 3 and Asia II-1 was 21.2%, 15.1%, 15.1% and 0.6% respectively. Similarly, in case of betasatellites the highest infection rate was 12% for ToLCBDB, followed by 6% for OLCuB and PaLCB. With regard to alphasatellites, the highest infection rate was 18.2% for AEV and 3% for CLCuMuA. This study demonstrates the distribution of cryptic species of whitefly and their endosymbionts, and associated begomoviruses and DNA satellites in vegetable ecosystem. We believe that the information generated here is useful for evolving an effective pest management strategies for vegetable production.
Collapse
Affiliation(s)
- V Venkataravanappa
- ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bengaluru, 560089, Karnataka, India; ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, Uttar Pradesh, India.
| | - M H Kodandaram
- ICAR- Indian Institute of Pulses Research, Regional Research Center, UAS Campus, Dharwad, 580005, Karnataka, India; ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, Uttar Pradesh, India.
| | - H C Prasanna
- ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bengaluru, 560089, Karnataka, India; ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, Uttar Pradesh, India
| | - M Krishna Reddy
- ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bengaluru, 560089, Karnataka, India
| | - C N Lakshminarayana Reddy
- Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, GKVK, Bengaluru, 560065, Karnataka, India
| |
Collapse
|
7
|
Kaur R, Singh S, Joshi N. Pervasive Endosymbiont Arsenophonus Plays a Key Role in the Transmission of Cotton Leaf Curl Virus Vectored by Asia II-1 Genetic Group of Bemisia tabaci. ENVIRONMENTAL ENTOMOLOGY 2022; 51:564-577. [PMID: 35485184 DOI: 10.1093/ee/nvac024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Indexed: 06/14/2023]
Abstract
Insects often coevolved with their mutualistic partners such as gut endosymbionts, which play a key in the physiology of host. Studies on such interactions between Bemisia tabaci and its primary and secondary endosymbionts have gained importance due to their indispensable roles in the biology of this insect. Present study reports the predominance of two secondary endosymbionts, Arsenophonus and Cardinium in the Asia II-1 genetic group of whitefly and elucidates their role in the transmission of its vectored Cotton leaf curl virus. Selective elimination of endosymbionts was optimized using serial concentration of ampicillin, chloramphenicol, kanamycin, tetracycline, and rifampicin administered to viruliferous whiteflies through sucrose diet. Primary endosymbiont, Portiera was unresponsive to all the antibiotics, however, rifampicin and tetracycline at 90 μg/ml selectively eliminated Arsenophonus from the whitefly. Elimination of Arsenophonus resulted in significant decrease in virus titer from viruliferous whitefly, further the CLCuV transmission efficiency of these whiteflies was significantly reduced compared to the control flies. Secondary endosymbiont, Cardinium could not be eliminated completely even with higher concentrations of antibiotics. Based on the findings, Arsenophonus plays a key role in the retention and transmission of CLCuV in the Asia II-1 genetic group of B. tabaci, while the role of Cardinium could not be established due to its unresponsiveness to antibiotics.
Collapse
Affiliation(s)
- Ramandeep Kaur
- Regional Research Station, Punjab Agricultural University, Faridkot, Punjab, India
| | - Satnam Singh
- Regional Research Station, Punjab Agricultural University, Faridkot, Punjab, India
| | - Neelam Joshi
- Department of Entomology, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
8
|
Gautam S, Mugerwa H, Buck JW, Dutta B, Coolong T, Adkins S, Srinivasan R. Differential Transmission of Old and New World Begomoviruses by Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED) Cryptic Species of Bemisia tabaci. Viruses 2022; 14:v14051104. [PMID: 35632844 PMCID: PMC9146840 DOI: 10.3390/v14051104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 02/06/2023] Open
Abstract
Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED) are two of the most invasive members of the sweetpotato whitefly, Bemisia tabaci, cryptic species complexes and are efficient vectors of begomoviruses. Bemisia tabaci MEAM1 is the predominant vector of begomoviruses in open-field vegetable crops in the southeastern United States. However, recently B. tabaci MED also has been detected in the landscape outside of greenhouses in Florida and Georgia. This study compared the transmission efficiency of one Old-World (OW) and two New-World (NW) begomoviruses prevalent in the southeastern United States, viz.., tomato yellow leaf curl virus (TYLCV), cucurbit leaf crumple virus (CuLCrV), and sida golden mosaic virus (SiGMV) between B. tabaci MEAM1 and B. tabaci MED. Bemisia tabaci MEAM1 efficiently transmitted TYLCV, CuLCrV, or SiGMV, whereas B. tabaci MED only transmitted TYLCV. Percent acquisition and retention of OW TYLCV following a 72 h acquisition access period was significantly higher for B. tabaci MED than B. tabaci MEAM1. In contrast, B. tabaci MEAM1 acquired and retained significantly more NW bipartite begomoviruses, CuLCrV or SiGMV, than B. tabaci MED. Quantitative analysis (qPCR) of virus DNA in whitefly internal tissues revealed reduced accumulation of CuLCrV or SiGMV in B. tabaci MED than in B. tabaci MEAM1. Fluorescent in situ hybridization (FISH) showed localization of CuLCrV or SiGMV in the midgut of B. tabaci MED and B. tabaci MEAM1. However, localization of CuLCrV or SiGMV was only observed in the primary salivary glands of B. tabaci MEAM1 and not B. tabaci MED. TYLCV localization was observed in all internal tissues of B. tabaci MEAM1 and B. tabaci MED. Overall, results demonstrate that both B. tabaci MEAM1 and B. tabaci MED are efficient vectors of OW TYLCV. However, for the NW begomoviruses, CuLCrV and SiGMV, B. tabaci MEAM1 seems to a better vector.
Collapse
Affiliation(s)
- Saurabh Gautam
- Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA; (S.G.); (H.M.)
| | - Habibu Mugerwa
- Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA; (S.G.); (H.M.)
| | - James W. Buck
- Department of Plant Pathology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA;
| | - Bhabesh Dutta
- Department of Plant Pathology, University of Georgia, 3250 Rainwater Road, Tifton, GA 31793, USA;
| | - Tim Coolong
- Department of Horticulture, University of Georgia, 3250 Rainwater Road, Tifton, GA 31793, USA;
| | - Scott Adkins
- United States Department of Agriculture-Agricultural Research Service, U.S. Horticultural Research Laboratory, Fort Pierce, FL 34945, USA;
| | - Rajagopalbabu Srinivasan
- Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA; (S.G.); (H.M.)
- Correspondence:
| |
Collapse
|
9
|
Srivastava A, Pandey V, Sahu AK, Yadav D, Al-Sadi AM, Shahid MS, Gaur RK. Evolutionary Dynamics of Begomoviruses and Its Satellites Infecting Papaya in India. Front Microbiol 2022; 13:879413. [PMID: 35685936 PMCID: PMC9171567 DOI: 10.3389/fmicb.2022.879413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
The genus Begomovirus represents a group of multipartite viruses that significantly damage many agricultural crops, including papaya, and influence overall production. Papaya leaf curl disease (PaLCD) caused by the complex begomovirus species has several important implications and substantial losses in papaya production in many developing countries, including India. The increase in the number of begomovirus species poses a continuous threat to the overall production of papaya. Here, we attempted to map the genomic variation, mutation, evolution rate, and recombination to know the disease complexity and successful adaptation of PaLCD in India. For this, we retrieved 44 DNA-A and 26 betasatellite sequences from GenBank reported from India. An uneven distribution of evolutionary divergence has been observed using the maximum-likelihood algorithm across the branch length. Although there were phylogenetic differences, we found high rates of nucleotide substitution mutation in both viral and sub-viral genome datasets. We demonstrated frequent recombination of begomovirus species, with a maximum in intra-species recombinants. Furthermore, our results showed a high degree of genetic variability, demographic selection, and mean substitution rate acting on the population, supporting the emergence of a diverse and purifying selection of viruses and associated betasatellites. Moreover, variation in the genetic composition of all begomovirus datasets revealed a predominance of nucleotide diversity principally driven by mutation, which might further accelerate the advent of new strains and species and their adaption to various hosts with unique pathogenicity. Therefore, the finding of genetic variation and selection emphases on factors that contribute to the universal spread and evolution of Begomovirus and this unanticipated diversity may also provide guidelines toward future evolutionary trend analyses and the development of wide-ranging disease control strategies for begomoviruses associated with PaLCD.
Collapse
Affiliation(s)
- Aarshi Srivastava
- Department of Biotechnology, D.D.U. Gorakhpur University, Gorakhpur, India
| | - Vineeta Pandey
- Department of Biotechnology, D.D.U. Gorakhpur University, Gorakhpur, India
| | - Anurag Kumar Sahu
- International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | - Dinesh Yadav
- Department of Biotechnology, D.D.U. Gorakhpur University, Gorakhpur, India
| | - Abdullah M. Al-Sadi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khod, Oman
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khod, Oman
- *Correspondence: Muhammad Shafiq Shahid,
| | - R. K. Gaur
- Department of Biotechnology, D.D.U. Gorakhpur University, Gorakhpur, India
- R. K. Gaur,
| |
Collapse
|
10
|
Barman M, Samanta S, Chakraborty S, Samanta A, Tarafdar J. Copy number variation of two begomovirus acquired and inoculated by different cryptic species of whitefly, Bemisia tabaci in Okra. PLoS One 2022; 17:e0265991. [PMID: 35353870 PMCID: PMC8966996 DOI: 10.1371/journal.pone.0265991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/12/2022] [Indexed: 11/18/2022] Open
Abstract
The whitefly, B.tabaci is a major pest of agricultural crops which transmits begomovirus in a species-specific manner. Yellow vein mosaic disease (YVMD) and okra leaf curl disease (OLCD) caused by distinct begomovirus are a major limitation to production of okra in India. In this framework the present investigation reports, for the first time, comparative study of begomovirus species viz. yellow vein mosaic virus (YVMV) and okra enation leaf curl virus (OELCuV) ingested and egested by two cryptic species (Asia I and Asia II 5) of B.tabaci at different time interval using detached leaf assay. A gradual increase of both virus copies were observed with increased feeding exposure in Asia I and Asia II 5. Both the genetic groups of whitefly could acquire the viruses within just 5 minutes of active feeding however, a significant amount of variation was noted in virus uptake by the both. At 24 hours of active feeding Asia II 5 acquired more of YVMV whereas, Asia I ingested more OELCuV. Similarly, the genetic group acquiring higher titre of virus egested higher amount during inoculation period. On the whole, it can be presumed that Asia I is a more effective transmitter of OELCuV whereas, Asia II 5 of YVMV further suggesting increased risk of virus pandemics (both YVMV and OELCuV) in regions where Asia I and Asia II 5 is dominant.
Collapse
Affiliation(s)
- Mritunjoy Barman
- Department of Agricultural Entomology, B.C.K.V, Mohanpur, West Bengal, India
| | - Snigdha Samanta
- Department of Agricultural Entomology, B.C.K.V, Mohanpur, West Bengal, India
| | | | - Arunava Samanta
- Department of Agricultural Entomology, B.C.K.V, Mohanpur, West Bengal, India
| | - Jayanta Tarafdar
- Department of Plant Pathology, B.C.K.V, Nadia, West Bengal, India
- Directorate of Research, B.C.K.V, Kalyani, India
- * E-mail:
| |
Collapse
|
11
|
Roy B, Chakraborty P, Ghosh A. How many begomovirus copies are acquired and inoculated by its vector, whitefly (Bemisia tabaci) during feeding? PLoS One 2021; 16:e0258933. [PMID: 34699546 PMCID: PMC8547624 DOI: 10.1371/journal.pone.0258933] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/08/2021] [Indexed: 11/19/2022] Open
Abstract
Begomoviruses are transmitted by whitefly (Bemisia tabaci Gennadius, Hemiptera: Aleyrodidae) in a persistent-circulative way. Once B. tabaci becomes viruliferous, it remains so throughout its life span. Not much is known about the copies of begomoviruses ingested and/or released by B. tabaci during the process of feeding. The present study reports the absolute quantification of two different begomoviruses viz. tomato leaf curl New Delhi virus (ToLCNDV, bipartite) and chilli leaf curl virus (ChiLCV, monopartite) at different exposure of active acquisition and inoculation feeding using a detached leaf assay. A million copies of both the begomoviruses were acquired by a single B. tabaci with only 5 min of active feeding and virus copy number increased in a logarithmic model with feeding exposure. Whereas, a single B. tabaci could inoculate 8.21E+09 and 4.19E+11 copies of ToLCNDV and ChiLCV, respectively in detached leaves by 5 min of active feeding. Virus copies in inoculated leaves increased with an increase in feeding duration. Comparative dynamics of these two begomoviruses indicated that B. tabaci adult acquired around 14-fold higher copies of ChiLCV than ToLCNDV 24 hrs post feeding. Whereas, the rate of inoculation of ToLCNDV by individual B. tabaci was significantly higher than ChiLCV. The study provides a better understanding of begomovirus acquisition and inoculation dynamics by individual B. tabaci and would facilitate research on virus-vector epidemiology and screening host resistance.
Collapse
Affiliation(s)
- Buddhadeb Roy
- Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Prosenjit Chakraborty
- Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Amalendu Ghosh
- Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
12
|
A plant DNA virus replicates in the salivary glands of its insect vector via recruitment of host DNA synthesis machinery. Proc Natl Acad Sci U S A 2020; 117:16928-16937. [PMID: 32636269 PMCID: PMC7382290 DOI: 10.1073/pnas.1820132117] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Viruses pose a great threat to animal and plant health worldwide. Whereas most plant viruses only replicate in plant hosts, some also replicate in their animal (insect) vector. A detailed knowledge of host expansion will give a better understanding of virus evolution, and identification of virus and host components involved in this process can lead to new strategies to combat virus spread. Here, we reveal that a plant DNA virus has evolved to induce and recruit insect DNA synthesis machinery to support its replication in vector salivary glands. Our study sheds light on the understanding of TYLCV–whitefly interactions and provides insights into how a plant virus may evolve to infect and replicate in an insect vector. Whereas most of the arthropod-borne animal viruses replicate in their vectors, this is less common for plant viruses. So far, only some plant RNA viruses have been demonstrated to replicate in insect vectors and plant hosts. How plant viruses evolved to replicate in the animal kingdom remains largely unknown. Geminiviruses comprise a large family of plant-infecting, single-stranded DNA viruses that cause serious crop losses worldwide. Here, we report evidence and insight into the replication of the geminivirus tomato yellow leaf curl virus (TYLCV) in the whitefly (Bemisia tabaci) vector and that replication is mainly in the salivary glands. We found that TYLCV induces DNA synthesis machinery, proliferating cell nuclear antigen (PCNA) and DNA polymerase δ (Polδ), to establish a replication-competent environment in whiteflies. TYLCV replication-associated protein (Rep) interacts with whitefly PCNA, which recruits DNA Polδ for virus replication. In contrast, another geminivirus, papaya leaf curl China virus (PaLCuCNV), does not replicate in the whitefly vector. PaLCuCNV does not induce DNA-synthesis machinery, and the Rep does not interact with whitefly PCNA. Our findings reveal important mechanisms by which a plant DNA virus replicates across the kingdom barrier in an insect and may help to explain the global spread of this devastating pathogen.
Collapse
|
13
|
Khatun MF, Hwang HS, Shim JK, Kil EJ, Lee S, Lee KY. Identification of begomoviruses from different cryptic species of Bemisia tabaci in Bangladesh. Microb Pathog 2020; 142:104069. [PMID: 32061918 DOI: 10.1016/j.micpath.2020.104069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/20/2020] [Accepted: 02/12/2020] [Indexed: 11/21/2022]
Abstract
Bemisia tabaci is a global species complex consisting of at least 40 cryptic species. It is also a vector for at least 100 species of begomovirus, many of which cause severe crop damage. The relationship between begomoviruses and cryptic species of the B. tabaci species complex, however, remains unclear. Our previous study [13] was identified four cryptic species (Asia I, Asia II 1, Asia II 5, and Asia II 10) of B. tabaci from Bangladesh. Using those 110 whitefly samples, vector-based PCR analysis identified 8 different begomovirus species: BYVMV, BGYVV, OELCV, SLCCV, SLCV, TbCSV, ToLCBV, and ToLCNDV. The overall rate of virus infection was 26.4%, and BYVMV and ToLCNDV were the most frequently detected in the B. tabaci vector. Virus infection rates for Asia I, Asia II 1, Asia II 5, and Asia II 10 were 22.4% (15/67), 35% (7/20), 27.3% (6/22), and 100% (1/1), respectively. Each cryptic species infected multiple virus species, but SLCCV, TbCSV, and BGYVV were each only detected in, Asia I, Asia II 1, and Asia II 5, respectively. This study demonstrates the geographic distribution of various begomoviruses in Bangladesh and their relationships with cryptic species of B. tabaci.
Collapse
Affiliation(s)
- Mst Fatema Khatun
- Division of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea; Department of Entomology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Dhaka, Bangladesh
| | - Hwal-Su Hwang
- Division of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea; Institute of Plant Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Kyoung Shim
- Division of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea; Institute of Plant Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Eui-Joon Kil
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sukchan Lee
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kyeong-Yeoll Lee
- Division of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea; Institute of Plant Medicine, Kyungpook National University, Daegu, Republic of Korea; Institute of Agricultural Science and Technology, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
14
|
Peng J, Xie G, Zhang S, Zheng L, Gao Y, Zhang Z, Luo L, Su P, Wang D, Liu Y, Dai L, Zhang D. Higher Ramie mosaic virus transmission efficiency by females than by males of Bemisia tabaci MED. Sci Rep 2020; 10:525. [PMID: 31949196 PMCID: PMC6965624 DOI: 10.1038/s41598-019-57343-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/27/2019] [Indexed: 11/25/2022] Open
Abstract
Begomoviruses can modify their transmission vector, Bemisia tabaci, to benefit their spread, although this may not always be the case. Here, the new begomovirus Ramie mosaic virus (RaMoV) and its vector B. tabaci MED, which is dominant in China and many regions of the world, were used as a model to examine direct and indirect interaction and virus transmission by B. tabaci MED of different sexes. No significant direct or indirect effects of RaMoV were observed in B. tabaci MED females, although RaMoV could shorten the life span of B. tabaci MED females by up to 4 days. A test of RaMoV transmission by different sexes of B. tabaci MED showed that there was higher virus transmission efficiency by females than males. Overall, RaMoV is transmitted by B. tabaci MED in a sex-dependent manner, and further research is needed to uncover the mechanism of the difference in RaMoV transmission by different sexes of B. tabaci.
Collapse
Affiliation(s)
- Jing Peng
- Plant Protection college, Hunan Agricultural University, No 1 Nongda Road, Furong District, Changsha, 410120, Hunan province, P.R. China
- Hunan Plant Protection Institute, No 726 Second Yuanda Road, Furong District, Changsha, 410125, Hunan Province, P.R. China
| | - Gang Xie
- Hunan Plant Protection Institute, No 726 Second Yuanda Road, Furong District, Changsha, 410125, Hunan Province, P.R. China
| | - Songbai Zhang
- Hunan Plant Protection Institute, No 726 Second Yuanda Road, Furong District, Changsha, 410125, Hunan Province, P.R. China
| | - Limin Zheng
- Hunan Plant Protection Institute, No 726 Second Yuanda Road, Furong District, Changsha, 410125, Hunan Province, P.R. China
| | - Yang Gao
- Hunan Plant Protection Institute, No 726 Second Yuanda Road, Furong District, Changsha, 410125, Hunan Province, P.R. China
| | - Zhuo Zhang
- Hunan Plant Protection Institute, No 726 Second Yuanda Road, Furong District, Changsha, 410125, Hunan Province, P.R. China
| | - Luyun Luo
- Hunan Plant Protection Institute, No 726 Second Yuanda Road, Furong District, Changsha, 410125, Hunan Province, P.R. China
| | - Pin Su
- Hunan Plant Protection Institute, No 726 Second Yuanda Road, Furong District, Changsha, 410125, Hunan Province, P.R. China
| | - Dongwei Wang
- Hunan Plant Protection Institute, No 726 Second Yuanda Road, Furong District, Changsha, 410125, Hunan Province, P.R. China
| | - Yong Liu
- Hunan Plant Protection Institute, No 726 Second Yuanda Road, Furong District, Changsha, 410125, Hunan Province, P.R. China
| | - Liangying Dai
- Plant Protection college, Hunan Agricultural University, No 1 Nongda Road, Furong District, Changsha, 410120, Hunan province, P.R. China.
| | - Deyong Zhang
- Plant Protection college, Hunan Agricultural University, No 1 Nongda Road, Furong District, Changsha, 410120, Hunan province, P.R. China.
- Hunan Plant Protection Institute, No 726 Second Yuanda Road, Furong District, Changsha, 410125, Hunan Province, P.R. China.
| |
Collapse
|
15
|
Fiallo-Olivé E, Pan LL, Liu SS, Navas-Castillo J. Transmission of Begomoviruses and Other Whitefly-Borne Viruses: Dependence on the Vector Species. PHYTOPATHOLOGY 2020; 110:10-17. [PMID: 31544592 DOI: 10.1094/phyto-07-19-0273-fi] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Most plant viruses require a biological vector to spread from plant to plant in nature. Among biological vectors for plant viruses, hemipteroid insects are the most common, including phloem-feeding aphids, whiteflies, mealybugs, planthoppers, and leafhoppers. A majority of the emerging diseases challenging agriculture worldwide are insect borne, with those transmitted by whiteflies (Hemiptera: Aleyrodidae) topping the list. Most damaging whitefly-transmitted viruses include begomoviruses (Geminiviridae), criniviruses (Closteroviridae), and torradoviruses (Secoviridae). Among the whitefly vectors, Bemisia tabaci, now recognized as a complex of cryptic species, is the most harmful in terms of virus transmission. Here, we review the available information on the differential transmission efficiency of begomoviruses and other whitefly-borne viruses by different species of whiteflies, including the cryptic species of the B. tabaci complex. In addition, we summarize the factors affecting transmission of viruses by whiteflies and point out some future research prospects.
Collapse
Affiliation(s)
- Elvira Fiallo-Olivé
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas-Universidad de Málaga (IHSM-CSIC-UMA), 29750 Algarrobo-Costa, Málaga, Spain
| | - Li-Long Pan
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas-Universidad de Málaga (IHSM-CSIC-UMA), 29750 Algarrobo-Costa, Málaga, Spain
| |
Collapse
|
16
|
Chi Y, Pan LL, Bouvaine S, Fan YY, Liu YQ, Liu SS, Seal S, Wang XW. Differential transmission of Sri Lankan cassava mosaic virus by three cryptic species of the whitefly Bemisia tabaci complex. Virology 2019; 540:141-149. [PMID: 31794888 PMCID: PMC6971692 DOI: 10.1016/j.virol.2019.11.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/23/2019] [Accepted: 11/23/2019] [Indexed: 11/20/2022]
Abstract
In recent years, Sri Lankan cassava mosaic virus (SLCMV), a begomovirus (genus Begmovirus, family Geminiviridae) causing cassava mosaic disease in Asia, poses serious threats to cassava cultivation in Asia. However, the transmission of SLCMV in the areas into which it has recently been introduced remain largely unexplored. Here we have compared the transmission efficiencies of SLCMV by three widely distributed whitefly species in Asia, and found that only Asia II 1 whiteflies were able to transmit this virus efficiently. The transmission efficiencies of SLCMV by different whitefly species were found to correlate positively with quantity of virus in whitefly whole body. Further, the viral transmission efficiency was found to be associated with varied ability of virus movement within different species of whiteflies. These findings provide detailed information regarding whitefly transmission of SLCMV, which will help to understand the spread of SLCMV in the field, and facilitate the prediction of virus epidemics.
Collapse
Affiliation(s)
- Yao Chi
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Li-Long Pan
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sophie Bouvaine
- Natural Resources Institute, University of Greenwich, Chatham, Kent, ME4 4TB, UK
| | - Yun-Yun Fan
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yin-Quan Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Susan Seal
- Natural Resources Institute, University of Greenwich, Chatham, Kent, ME4 4TB, UK.
| | - Xiao-Wei Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
17
|
Chen T, Saeed Q, He Z, Lu L. Transmission efficiency of Cotton leaf curl Multan virus by three cryptic species of Bemisia tabaci complex in cotton cultivars. PeerJ 2019; 7:e7788. [PMID: 31592168 PMCID: PMC6777476 DOI: 10.7717/peerj.7788] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/29/2019] [Indexed: 01/09/2023] Open
Abstract
Cotton leaf curl Multan virus (CLCuMuV) is a serious and economically important viral disease agent in cotton and ornamental plants like Hibiscus in many regions of the world, especially in South Asia. CLCuMuV is transmitted exclusively by Bemisia tabaci cryptic species complex. This virus was recently recorded in southern China, presumably an invasion from South Asia. This study was performed to estimate the efficiency of three species of the B. tabaci whitefly complex (tentatively named as MEAM1, MED and Asia II 7, respectively) to transmit CLCuMuV and Cotton leaf curl multan virus betasatelite (CLCuMuB). Transmission assays and real-time quantitative PCR were conducted using three cultivars of cotton, Gossypium hirsutum, including 112-2, Xinhai-21 and Zhongmian-40. The results indicated that Asia II 7 was able to transmit the virus to two of the cotton cultivars, i.e. 112-2 and Xinhai-21, with the highest transmission efficiencies of 40% and 30%, respectively, but was unable to transmit the virus to the cotton cultivar Zhongmian-40. MEAM1 and MED failed to transmit CLCuMuV and CLCuMuB to any of the three cotton cultivars. After the three cryptic species of whiteflies had fed on virus-infected cotton plants for 48 h, the relative quantity of CLCuMuV in Asia II 7 was detected to be significantly higher than that in both MEAM1 and MED (P < 0.05). These results indicate that among the three species of whiteflies Asia II 7 is likely the most efficient vector for CLCuMuV and CLCuMuB in Malvaceae crops in China. Our findings provide valuable information to the control of viral diseases caused by CLCuMuV in the field.
Collapse
Affiliation(s)
- Ting Chen
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Qamar Saeed
- Entomology, Department of Entomology, Bahauddin, Zakariya University, Multan, Pakistan
| | - Zifu He
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Lihua Lu
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| |
Collapse
|
18
|
Hamim I, Borth WB, Melzer MJ, Suzuki JY, Wall MM, Hu JS. Occurrence of tomato leaf curl Bangladesh virus and associated subviral DNA molecules in papaya in Bangladesh: molecular detection and characterization. Arch Virol 2019; 164:1661-1665. [PMID: 30949815 DOI: 10.1007/s00705-019-04235-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/15/2019] [Indexed: 11/29/2022]
Abstract
Forty-five papaya samples showing severe leaf curl symptoms were tested by PCR with a degenerate primer set for virus species in the genus Begomovirus. Of these, 29 were positive for tomato leaf curl Bangladesh virus (ToLCBV). The complete genome sequences of ToLCBV (GenBank accession no. MH380003) and its associated tomato leaf curl betasatellite (ToLCB) (MH397223) from papaya isolate Gaz17-Pap were determined and characterized. Defective betasatellites were found in ToLCBV-positive papaya isolates Gaz19-Pap, Gaz20-Pap and Gaz21-Pap. This study confirmed that papaya is a host of ToLCBV, ToLCB, and other defective and recombinant DNA satellites in Bangladesh.
Collapse
Affiliation(s)
- Islam Hamim
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.,Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Wayne B Borth
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Michael J Melzer
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Jon Y Suzuki
- USDA-ARS, Daniel K. Inouye, U.S. Pacific Basin Agricultural Research Center, 64 Nowelo St., Hilo, HI, 96720, USA
| | - Marisa M Wall
- USDA-ARS, Daniel K. Inouye, U.S. Pacific Basin Agricultural Research Center, 64 Nowelo St., Hilo, HI, 96720, USA
| | - John S Hu
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| |
Collapse
|
19
|
Guo Q, Shu YN, Liu C, Chi Y, Liu YQ, Wang XW. Transovarial transmission of tomato yellow leaf curl virus by seven species of the Bemisia tabaci complex indigenous to China: Not all whiteflies are the same. Virology 2019; 531:240-247. [PMID: 30933715 PMCID: PMC6990403 DOI: 10.1016/j.virol.2019.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/17/2019] [Accepted: 03/17/2019] [Indexed: 11/28/2022]
Abstract
Begomoviruses contain some of the most damaging viral disease agents of crops worldwide, and are transmitted by whiteflies of the Bemisia tabaci species complex. During the last 20 years, transovarial transmission of tomato yellow leaf curl virus (TYLCV) has been reported in two invasive species of the B. tabaci complex. To further decipher the importance of this mode of transmission, we analyzed transovarial transmission of TYLCV by seven whitefly species indigenous to China. TYLCV virions were detected in eggs of all species except one, and in nymphs of two species, but in none of the ensuing adults of all seven species. Our results suggest that these indigenous whiteflies are unable to transmit TYLCV, a begomovirus alien to China, via ova to produce future generations of viruliferous adults, although most of the species exhibit varying ability to carry over the virus to the eggs/nymphs of their offspring via transovarial transmission.
Collapse
Affiliation(s)
- Qi Guo
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan-Ni Shu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chao Liu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yao Chi
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yin-Quan Liu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Wei Wang
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
20
|
Comparative proteomic analysis provides new insight into differential transmission of two begomoviruses by a whitefly. Virol J 2019; 16:32. [PMID: 30857562 PMCID: PMC6413443 DOI: 10.1186/s12985-019-1138-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/26/2019] [Indexed: 11/16/2022] Open
Abstract
Background Viruses in the genus Begomovirus (Family Geminiviridae) include many important economic plant viruses transmitted by whiteflies of the Bemisia tabaci species complex. In general, different begomoviruses may be acquired and transmitted by the same whitefly species with different efficiencies. For example, the species Mediterranean (MED) in this whitefly species complex transmits tomato yellow leaf curl virus (TYLCV) at a higher efficiency than papaya leaf curl China virus (PaLCuCNV). However, the proteomic responses of whitefly to the infection of different begomoviruses remain largely unknown. Methods We used iTRAQ-based proteomics coupled with RT-qPCR to investigate and compare responses of the MED whitefly to the infection of TYLCV and PaLCuCNV. Results Totally, 259, 395 and 74 differently expressed proteins (DEPs) were identified in the comparisons of TYLCV-infected vs. un-infected, PaLCuCNV-infected vs. un-infected, and TYLCV-infected vs. PaLCuCNV-infected whiteflies, respectively. These proteins appear associated with catabolic process, metabolic process, transport, defense response, cell cycle, and receptor. The comparisons of TYLCV-infected vs. un-infected and PaLCuCNV-infected vs. un-infected shared some similar DEPs, indicating possible involvement of laminin subunit alpha, dystroglycan, integrin alpha-PS2 and cuticle proteins in viral transport as well as the role of putative defense proteins 3 and PITH in anti-viral response. However, 20S proteasome subunits associated with regulation of virus degradation and accumulation were up-regulated in PaLCuCNV-infected but not in TYLCV-infected whiteflies, which may be related to the constraints of PaLCuCNV accumulation in MED. Conclusions These findings provide valuable clues for unravelling the roles of some whitefly proteins in begomovirus transmission. Electronic supplementary material The online version of this article (10.1186/s12985-019-1138-4) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Tay WT, Gordon KHJ. Going global - genomic insights into insect invasions. CURRENT OPINION IN INSECT SCIENCE 2019; 31:123-130. [PMID: 31109665 DOI: 10.1016/j.cois.2018.12.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
The spread of invasive insect pests is becoming an increasing problem for agriculture globally. We discuss a number of invasive insects, already of major economic significance that have recently expanded their range to become truly global threats. These include the noctuid moths Helicoverpa and Spodoptera, whose caterpillars have long been among the worst pests in their native Old and New World habitats, respectively, and the whitefly Bemisia, a major vector of plant virus diseases. Importantly, genomic resources for these species have recently become available, allowing research to move beyond the restrictions imposed by earlier approaches limited to a single or few mitochondrial and nuclear markers, to employ genome-wide genotyping and resequencing protocols. These studies have shown hybridisation within the various species complexes, identified regions under selection in agricultural environments, and enable monitoring of genes important as biosecurity risks through introgression into established populations free of the genes. In all cases studied, global trade has emerged as the probable cause of insect spread, making it ever more important that biosecurity protocols and agencies work with researchers to make the most effective use of emerging genomic resources and tools.
Collapse
Affiliation(s)
- Wee Tek Tay
- CSIRO Black Mountain Laboratories, Clunies Ross Street, ACT 2601, Australia
| | | |
Collapse
|
22
|
Khatun MF, Jahan SMH, Lee S, Lee KY. Genetic diversity and geographic distribution of the Bemisia tabaci species complex in Bangladesh. Acta Trop 2018; 187:28-36. [PMID: 30055176 DOI: 10.1016/j.actatropica.2018.07.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/21/2018] [Accepted: 07/24/2018] [Indexed: 11/17/2022]
Abstract
Bemisia tabaci (Gennadius) is a species complex consisting of at least 40 cryptic species. Although the genetic diversity of B. tabaci has been studied in various regions, little is known about distribution in Bangladesh, which is covered by the Bengal delta, the largest delta on Earth. We conducted an extensive survey throughout the country and determined the nucleotide sequence of mitochondrial cytochrome c oxidase subunit 1 (COI) from 110 individuals. We then examined phylogenetic relationships. The results identified four cryptic species that expressed distinct interspecific variation but low intraspecific variation. Asia I was the most abundant, both Asia II 1 and Asia II 5 were moderately abundant, and Asia II 10 was found only in the central region. COI sequences of each cryptic species were distinctive and differentiated into many haplotypes. Our study provides important information to better understand the genetic diversity and geographic distribution of cryptic species in Bangladesh and nearby countries.
Collapse
Affiliation(s)
- M F Khatun
- Division of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea; Department of Entomology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Dhaka, Bangladesh
| | - S M H Jahan
- Department of Entomology, Patuakhali Science and Technology University, Dumki, Patuakhali, Bangladesh
| | - Sukchan Lee
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kyeong-Yeoll Lee
- Division of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea; Institute of Plant Medicine, Kyungpook National University, Daegu, Republic of Korea; Institute of Agricultural Science and Technology, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
23
|
Pan L, Chen Q, Guo T, Wang X, Li P, Wang X, Liu S. Differential efficiency of a begomovirus to cross the midgut of different species of whiteflies results in variation of virus transmission by the vectors. SCIENCE CHINA. LIFE SCIENCES 2018; 61:1254-1265. [PMID: 29785572 DOI: 10.1007/s11427-017-9283-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/28/2018] [Indexed: 10/16/2022]
Abstract
Begomoviruses are important crop viral disease agents, and they are transmitted by whiteflies of the Bemisia tabaci complex. Although the transmission of begomoviruses by whiteflies has been studied for many years, the mechanisms governing differential transmission of begomoviruses by different species of the Bemisia tabaci complex remain largely unknown. Here we firstly compared the transmission efficiency of tobacco curly shoot virus (TbCSV) by four species of the B. tabaci complex and found that Asia II 1 transmitted this virus with the highest efficiency, whereas MEAM1 transmitted it with the lowest. Next, by performing quantitative analysis of virus and immune-fluorescence detection, we found that the efficiency of TbCSV to cross the midgut wall was higher in Asia II 1 than in MEAM1. Finally, we set the quantities of virions in the haemolymph to the same level in Asia II 1 and MEAM1 via injection and then compared their capacity in TbCSV transmission, and found that the difference in TbCSV transmission between them became smaller. Taken together, our findings suggest that the efficiency of a begomovirus to cross the midgut wall of a whitefly to reach the vector's haemolymph plays a significant role in determining transmission of the virus.
Collapse
Affiliation(s)
- Lilong Pan
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qunfang Chen
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tao Guo
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinru Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ping Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaowei Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shusheng Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
24
|
Xia WQ, Liang Y, Chi Y, Pan LL, Zhao J, Liu SS, Wang XW. Intracellular trafficking of begomoviruses in the midgut cells of their insect vector. PLoS Pathog 2018; 14:e1006866. [PMID: 29370296 PMCID: PMC5800681 DOI: 10.1371/journal.ppat.1006866] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/06/2018] [Accepted: 01/09/2018] [Indexed: 01/28/2023] Open
Abstract
Begomoviruses are exclusively transmitted by whiteflies in a persistent circulative manner and cause considerable economic losses to crop production worldwide. Previous studies have shown that begomoviruses accumulate in vesicle-like structures in whitefly midgut cells and that clathrin-mediated endocytosis is responsible for their internalization. However, the process by which begomoviruses are trafficked within whitefly midgut cells remains largely unknown. In this study, we investigated the roles of vesicle trafficking in the transport of Tomato yellow leaf curl virus (TYLCV), a begomovirus that has spread to over 50 countries and caused extensive damage to a range of important crops, within midgut cells of whitefly (Bemisia tabaci). By disrupting vesicle trafficking using RNA silencing and inhibitors, we demonstrated that the early steps of endosomal trafficking are important for the intracellular transport of TYLCV in the whitefly midgut. In addition, our data show that, unlike many animal viruses, TYCLV is trafficked within cells in a manner independent of recycling endosomes, late endosomes, lysosomes, the Golgi apparatus and the endoplasmic reticulum. Instead, our results suggest that TYLCV might be transported directly from early endosomes to the basal plasma membrane and released into the hemolymph. Silencing of the sorting nexin Snx12, which may be involved in membrane tubulation, resulted in fewer viral particles in hemolymph; this suggests that the tubular endosomal network may be involved in the transport of TYLCV. Our results also support a role for the endo-lysosomal system in viral degradation. We further showed that the functions of vector early endosomes and sorting nexin Snx12 are conserved in the transmission of several other begomoviruses. Overall, our data indicate the importance of early endosomes and the tubular endosomal network in begomovirus transmission.
Collapse
Affiliation(s)
- Wen-Qiang Xia
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yan Liang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yao Chi
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Li-Long Pan
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jing Zhao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xiao-Wei Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Guo T, Zhao J, Pan LL, Geng L, Lei T, Wang XW, Liu SS. The level of midgut penetration of two begomoviruses affects their acquisition and transmission by two species of Bemisia tabaci. Virology 2017; 515:66-73. [PMID: 29272747 DOI: 10.1016/j.virol.2017.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 12/08/2017] [Accepted: 12/09/2017] [Indexed: 11/29/2022]
Abstract
Begomoviruses are transmitted by whiteflies in a persistent manner, but factors responsible for the variation of virus transmission by different species are poorly understood. We examined ingestion of papaya leaf curl China virus (PaLCuCNV) and tomato yellow leaf curl virus (TYLCV) by two species of the Bemisia tabaci complex, MEAM1 and MED, and then quantified the virion concentrations in different organs/tissues in each species. We found that PaLCuCNV penetrated the midgut wall of MED less efficiently than MEAM1, resulting in lower efficiency of PalCuCNV transmission by MED than that by MEAM1, while TYLCV penetrated the midgut wall of both species and was transmitted by them at similar levels of efficiency. Virus coat protein determined the virus capacity to cross the midgut wall of a given whitefly species. These data indicate that the level of midgut penetration determines virus acquisition and transmission by whiteflies in the first instance.
Collapse
Affiliation(s)
- Tao Guo
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jing Zhao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Li-Long Pan
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Liang Geng
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Teng Lei
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xiao-Wei Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
26
|
Varun P, Ranade SA, Saxena S. A molecular insight into papaya leaf curl-a severe viral disease. PROTOPLASMA 2017; 254:2055-2070. [PMID: 28540512 DOI: 10.1007/s00709-017-1126-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/12/2017] [Indexed: 06/07/2023]
Abstract
Papaya leaf curl disease (PaLCuD) caused by papaya leaf curl virus (PaLCuV) not only affects yield but also plant growth and fruit size and quality of papaya and is one of the most damaging and economically important disease. Management of PaLCuV is a challenging task due to diversity of viral strains, the alternate hosts, and the genomic complexities of the viruses. Several management strategies currently used by plant virologists to broadly control or eliminate the viruses have been discussed. In the absence of such strategies in the case of PaLCuV at present, the few available options to control the disease include methods like removal of affected plants from the field, insecticide treatments against the insect vector (Bemisia tabaci), and gene-specific control through transgenic constructs. This review presents the current understanding of papaya leaf curl disease, genomic components including satellite DNA associated with the virus, wide host and vector range, and management of the disease and suggests possible generic resistance strategies.
Collapse
Affiliation(s)
- Priyanka Varun
- Department of Biotechnology, School of Bioscience and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, U.P. State, India
| | - S A Ranade
- Genetics and Molecular Biology Department, CSIR-National Botanical Research Institute, Lucknow, U.P. State, India
| | - Sangeeta Saxena
- Department of Biotechnology, School of Bioscience and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, U.P. State, India.
| |
Collapse
|
27
|
Czosnek H, Hariton-Shalev A, Sobol I, Gorovits R, Ghanim M. The Incredible Journey of Begomoviruses in Their Whitefly Vector. Viruses 2017; 9:E273. [PMID: 28946649 PMCID: PMC5691625 DOI: 10.3390/v9100273] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 12/21/2022] Open
Abstract
Begomoviruses are vectored in a circulative persistent manner by the whitefly Bemisia tabaci. The insect ingests viral particles with its stylets. Virions pass along the food canal and reach the esophagus and the midgut. They cross the filter chamber and the midgut into the haemolymph, translocate into the primary salivary glands and are egested with the saliva into the plant phloem. Begomoviruses have to cross several barriers and checkpoints successfully, while interacting with would-be receptors and other whitefly proteins. The bulk of the virus remains associated with the midgut and the filter chamber. In these tissues, viral genomes, mainly from the tomato yellow leaf curl virus (TYLCV) family, may be transcribed and may replicate. However, at the same time, virus amounts peak, and the insect autophagic response is activated, which in turn inhibits replication and induces the destruction of the virus. Some begomoviruses invade tissues outside the circulative pathway, such as ovaries and fat cells. Autophagy limits the amounts of virus associated with these organs. In this review, we discuss the different sites begomoviruses need to cross to complete a successful circular infection, the role of the coat protein in this process and the sites that balance between virus accumulation and virus destruction.
Collapse
Affiliation(s)
- Henryk Czosnek
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel.
| | - Aliza Hariton-Shalev
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel.
| | - Iris Sobol
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel.
| | - Rena Gorovits
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel.
| | - Murad Ghanim
- Department of Entomology, Agricultural Research Organization, Volcani Center, HaMaccabim Road 68, Rishon LeZion, 7505101, Israel.
| |
Collapse
|
28
|
Vector development and vitellogenin determine the transovarial transmission of begomoviruses. Proc Natl Acad Sci U S A 2017; 114:6746-6751. [PMID: 28607073 DOI: 10.1073/pnas.1701720114] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The majority of plant viruses are transmitted by insect vectors between hosts, and transovarial transmission of viruses from vector parents to offspring has great significance to their epidemiology. Begomoviruses are transmitted by the whitefly Bemisia tabaci in a circulative manner and are maintained through a plant-insect-plant cycle. Other routes of begomovirus transmission are not clearly known. Here, we report that transovarial transmission from female whiteflies to offspring often happens for one begomovirus, Tomato yellow leaf curl virus (TYLCV), and may have contributed significantly to its global spread. We found that TYLCV entry of the reproductive organ of its vector mainly depended on the developmental stage of the whitefly ovary, and the transovarial transmission of TYLCV to offspring increased with whitefly adult age. The specific interaction between virus coat protein (CP) and whitefly vitellogenin (Vg) was vital for virus entry into whitefly ovary. When knocking down the expression of Vg, the entry of TYLCV into ovary was inhibited and the transovarial transmission efficiency decreased. In contrast, another begomovirus, Papaya leaf curl China virus (PaLCuCNV), CP did not interact with whitefly Vg, and PaLCuCNV could not be transovarially transmitted by whiteflies. We further showed that TYLCV could be maintained for at least two generations in the absence of virus-infected plants, and the adult progenies were able to infect healthy plants in both the laboratory and field. This study reports the transovarial transmission mechanism of begomoviruses, and it may help to explain the evolution and global spread of some begomoviruses.
Collapse
|
29
|
Mar TB, Mendes IR, Lau D, Fiallo-Olivé E, Navas-Castillo J, Alves MS, Murilo Zerbini F. Interaction between the New World begomovirus Euphorbia yellow mosaic virus and its associated alphasatellite: effects on infection and transmission by the whitefly Bemisia tabaci. J Gen Virol 2017; 98:1552-1562. [PMID: 28590236 DOI: 10.1099/jgv.0.000814] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The majority of Old World monopartite begomoviruses (family Geminiviridae) are associated with satellite DNAs. Alphasatellites are capable of autonomous replication, but depend on the helper virus for movement, encapsidation and transmission by the insect vector. Recently, Euphorbia yellow mosaic alphasatellite (EuYMA) was found in association with Euphorbia yellow mosaic virus (EuYMV) infecting Euphorbia heterophylla plants in Brazil. The geographical range of EuYMA was assessed in a representative sampling of E. heterophylla plants collected in several states of Brazil from 2009 to 2014. Infectious clones were generated and used to assess the phenotype of viral infection in the presence or absence of the alphasatellite in tomato, E. heterophylla, Nicotiana benthamiana, Arabidopsis thaliana and Crotalaria juncea. Phenotypic differences of EuYMV infection in the presence or absence of EuYMA were observed in A. thaliana, N. benthamiana and E. heterophylla. Symptoms were more severe when EuYMV was inoculated in combination with EuYMA in N. benthamiana and E. heterophylla, and the presence of the alphasatellite was determinant for symptom development in A. thaliana. Quantification of EuYMV and EuYMA indicated that EuYMA affects the accumulation of EuYMV during infection on a host-dependent basis. Transmission assays indicated that EuYMA negatively affects the transmission of EuYMV by Bemisia tabaci MEAM1. Together, these results indicate that EuYMA is capable of modulating symptoms, viral accumulation and whitefly transmission of EuYMV, potentially interfering with virus dissemination in the field.
Collapse
Affiliation(s)
- Talita Bernardon Mar
- Dep de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil.,National Research Institute for Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Igor Rodrigues Mendes
- Dep de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil.,National Research Institute for Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Douglas Lau
- Embrapa Trigo, Rodovia BR-285, CP 3081, Passo Fundo, RS, 99001-970, Brazil
| | - Elvira Fiallo-Olivé
- National Research Institute for Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil.,Instituto de Hortofruticultura Subtropical y Mediterránea ''La Mayora'', Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental ''La Mayora'', 29750 Algarrobo-Costa, Málaga, Spain
| | - Jesús Navas-Castillo
- National Research Institute for Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil.,Instituto de Hortofruticultura Subtropical y Mediterránea ''La Mayora'', Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental ''La Mayora'', 29750 Algarrobo-Costa, Málaga, Spain
| | - Murilo Siqueira Alves
- Dep de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil.,National Research Institute for Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - F Murilo Zerbini
- Dep de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil.,National Research Institute for Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| |
Collapse
|
30
|
Hu J, Zhang X, Jiang Z, Zhang F, Liu Y, Li Z, Zhang Z. New putative cryptic species detection and genetic network analysis of Bemisia tabaci (Hempitera: Aleyrodidae) in China based on mitochondrial COI sequences. Mitochondrial DNA A DNA Mapp Seq Anal 2017; 29:474-484. [PMID: 28366102 DOI: 10.1080/24701394.2017.1307974] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a cryptic species complex and widely distributed throughout tropical and subtropical regions. To understand the B. tabaci cryptic species diversity in China more comprehensively, in the year 2014 and 2016, a large-scale sampling was conducted from the famous biodiversity hotspot of China, Yunnan province. Mitochondrial cytochrome oxidase I gene sequences were used to identify new putative cryptic species. Phylogenetic analyses were performed using Bayesian methods to evaluate the position of new cryptic species in the context of the B. tabaci diversity in Asia. Two new cryptic species, China 5 and Asia V were identified. In total, 19 B. tabaci cryptic species are present in China, two invasive (MED and MEAM1) and 17 indigenous. A new sibling species of B. tabaci was first defined and reported. Based on the mtCOI sequences and haplotype network analyses, the genetic diversity of MED was far higher than MEAM1. We confirmed the exotic MED was originated from the western Mediterranean regions and first invaded into Yunnan, China. The genetic structures of other four indigenous species (Asia I, Asia II 1, Asia II 6, and China 1) with relatively wide distribution ranges in China were also discussed.
Collapse
Affiliation(s)
- Jian Hu
- a Ministry of Agriculture Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation , Yunnan Provincial Key Lab of Agricultural Biotechnology, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences , Kunming , China
| | - Xiaoyun Zhang
- a Ministry of Agriculture Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation , Yunnan Provincial Key Lab of Agricultural Biotechnology, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences , Kunming , China
| | - Zhilin Jiang
- b School of Biology and Chemistry, Pu'er University , Pu'er , China
| | - Feifei Zhang
- a Ministry of Agriculture Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation , Yunnan Provincial Key Lab of Agricultural Biotechnology, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences , Kunming , China
| | - Yuanyuan Liu
- a Ministry of Agriculture Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation , Yunnan Provincial Key Lab of Agricultural Biotechnology, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences , Kunming , China
| | - Zhan Li
- a Ministry of Agriculture Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation , Yunnan Provincial Key Lab of Agricultural Biotechnology, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences , Kunming , China
| | - Zhongkai Zhang
- a Ministry of Agriculture Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation , Yunnan Provincial Key Lab of Agricultural Biotechnology, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences , Kunming , China
| |
Collapse
|